Тепловая защита электродвигателя 220 вольт: Тепловая защита электродвигателя 220 Вольт, 15А, 18А, 20А

Содержание

Защита электродвигателя. Настройка теплового реле на электродвигателе

Рассмотрим, как подключается контактор КМИ-10960 ИЭК на сеть 220 Вольт

  • В данном случае используем одну фазу А из трех A, B, C – желтый провод фаза А, и ноль N – синий провод.
  • В качестве нагрузки используем лампу индикаторную AD22DS на напряжение 220 вольт зеленого цвета свечения.
  • Нагрузку подключаем на клеммы теплового реле 2 (Т1) и 6 (Т3).
  • Питание подводим на клеммы электромагнитного контактора 1 (L1) и 5 (L3).
  • При этом сразу отметим, что дополнительно сделана перемычка между клеммами 1 (L1) и 13 (НО) – это сделано для того, чтобы и фаза, и ноль шли в разрыв, то есть отключались при выключении контактора.

  • Ну что? Поехали! Нажимаем на пуск…
  • Видим, что контактор включился – лампа загорелась. При этом фаза и ноль идут через контактор и через тепловое реле.
  • Нажимаем на красную кнопку стоп на тепловом реле и выключили – лампа перестала гореть.
  • Проверяем работоспособность. Нажимаем на кнопку пуск – выносная кнопка черного цвета, затем на красную кнопку стоп – на тепловом реле: 2 раза поочередно. Пуск – стоп. Пуск – стоп. Эти же кнопки соответствуют кнопкам на корпусе: пуск на корпусе – пуск на выносной кнопке черного цвета, стоп – красная кнопка стоп на тепловом реле.

Настройка теплового реле для защиты электродвигателя

Теперь рассмотрим, как настраивается электромагнитный контактор в корпусе с тепловым реле для работы электродвигателя от однофазной сети 220 В, либо это идет трехфазный электродвигатель с конденсатором. Таким образом, настроим тепловое реле для защиты электродвигателя.

Поехали!

Как и сказано, вместо лампочки подключаем двигатель. Допустим, у подключенного электродвигателя номинальный ток работы составляет 8 Ампер.

Мы производим следующие действия:

  • Сначала поворачиваем по часовой стрелке регулятор до максимального тока в 10 Ампер. Тепловое реле идет от 7 до 10 Ампер. РТИ-1314, РТН-1314, РТЭ-1314 все данные тепловые реле с одинаково цифровой маркировкой идут на одинаковой токовый диапазон от семи до десяти ампер.
  • Ставим на 10 ампер и нажимаем пуск. Повторяем, что вместо лампы должен быть электродвигатель.
  • Теперь, так как номинальный ток электродвигателя 8 ампер, мы вращаем токовый регулятор против часовой стрелки до уровня восьми ампер. Примерно на этом уровне тепловое реле должно сработать – выключиться. Таким образом на регуляторе будет тот ток, при котором выключится тепловое реле посредством срабатывания биметаллической пластины.
  • Теперь вращаем по часовой стрелке регулятор на ток 8,2-8,3 – что соответствует +2% +3%
  • Снова тестируем: нажимаем на пуск-стоп. Уже под нагрузкой электродвигатель должен нормально работать, не выключаясь. Если электродвигатель под нагрузкой работает, то есть не выключается после старта от размыкания теплового реле, то можно сказать, что тепловое реле настроено.

Теперь в случае, если на электродвигателе вал заклинит, ток при этом возрастет на 10-20% и тепловое реле тут же сработает на отключение.

Случай заклинивания вала электродвигателя

Рассмотрим обратный случай, при котором включен электродвигатель с настроенным тепловым реле на показатель в 10 Ампер. Сымитируем случай заклинивания вала:

  • Ток в обмотке увеличивается на 10-20%.
  • Тепловое реле продолжает работать, то есть продолжает оставаться во включенном состоянии.
  • Обмотки электродвигателя начинают нагреваться, плавиться. Электродвигатель выходит из строя.

Вот поэтому так важно именно настраивать тепловое реле перед тем, как эксплуатировать в нормальном режиме работы электродвигатель, даже на 220 Вольт.

После того, как тепловое реле настроено на работу конкретного электродвигателя, закрываем крышку контактора КМИ-10960, и закручиваем по часовой стрелке крепежные винты.

Следует отметить, что одинаковые по общему классификатору электродвигатели  могут иметь разные параметры по току в нормальном режиме работы.

Выбор электродвигателя по ппраметрам, а также сравнение типовых исполнений по электродвигателям можно сделать в подразделе ЭЛЕКТРОДВИГАТЕЛИ.

Руководствоваться показателями на шильдике конечно же стоит при первоначальной настройке электродвигателя, а именно величиной тока при нормальном режиме работы электродвигателя, но лучше пользоваться описанным выше практическим способом, при котором исключаются возможные погрешности.

Погрешности могут возникнуть случае:

  • Различных параметров электрической сети
  • Неточности данных в паспорте при изготовлении теплового реле
  • Неточности данных в паспорте при изготовлении электродвигателя

Это был обзор, в котором сымитировано подключение электродвигателя, а также установлена и настроена тепловая защита на него. На этом все.

Всё о тепловых реле, расчет и выбор теплового реле для защиты двигателя

Всё о тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле — реле, которое реагирует на изменение тепловых величин (температуры, теплового потока и т.п.).

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

  • NO – нормально-открытый – на индикацию;
  • NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Iреле=IН*1.2…1.3

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Iреле=1.94*1.3=2.522

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

  • РТЛ-1007, с токовым диапазоном 1.5-2.6 А;
  • РТЛ-1008, токовый диапазон 2,4-4 А;
  • РТИ-1307, токовый диапазон 1,6…2,5 А;
  • РТИ-1308, токовый диапазон 2,5…4 А;
  • ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

N2 = (T – 30)/10

где Т — температура окружающей среды, °С.

Шаг третий:

N = N1 + N2

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Ранее ЭлектроВести писали, что компания Schneider Electric, мировой эксперт в управлении энергией и автоматизации, представляет обновление линейки термомагнитных автоматических выключателей электродвигателей TeSys GV3 — TeSys GV3P73 и GV3P80, рассчитанных на токи 73 A и 80 A соответственно, которые дополнят серию GV3P и полностью заменят серию GV3ME80, снимаемую с производства.

По материалам: electrik.info.

Подключение трехфазного двигателя схема

Трехфазный электродвигатель при пуске контактами магнитного пускателя подключается к трёхфазной сети переменного тока напряжением 380 вольт. 
На рис 1. показан вариант схемы пуска с питанием катушки магнитного пускателя переменным током напряжением 220 вольт. Напряжение для схемы управления снимается с двух проводов: с фазного провода и провода нейтрали (на схеме рис.1 это провода «C» и «N»).


При нажатии кнопки «Пуск» напряжение 220 вольт через нормально замкнутые контакты кнопки «Стоп» поступает на обмотку магнитного пускателя. Сердечник обмотки втягивается и замыкает соединенные с ним три группы мощных контактов, подающие трехфазное напряжение на выводы обмоток электродвигателя.

Кроме трёх групп мощных контактов, магнитный пускатель замыкает группу маломощных нормально разомкнутых контактов (К1), включенных параллельно кнопке «Пуск». Контакты замыкаются и последующее отпускание кнопки «Пуск» уже не изменяет состояние схемы. Процесс пуска завершен.

Нейтральный провод (N) не участвует в питании электродвигателя, но, в соответствии с требованиями правил электробезопасности, при отсутствии заземления обязательно подсоединяется к корпусу электродвигателя. Если корпус электродвигателя по какой-то причине окажется под напряжением (например, фазная обмотка статора электродвигателя замкнёт на его корпус), то резко возрастёт потребляемый электродвигателем ток (идущий по цепи «фаза-нейтраль») и сработавшая схема защиты отключит электродвигатель от питающей сети, исключая тем самым поражение электрическим током человека, случайно прикоснувшегося к его корпусу.

Схема пуска может работать с магнитными пускателями рассчитаными на переменное напряжение напряжение 220 и 380 вольт. Выбор типа магнитного пускателя определен только конкретными условиями монтажа схемы. Если провод «нейтраль» недоступен, то дешевле применить магнитный пускатель с питающим напряжением обмотки катушки электромагнита пускателя 380 вольт, чем прокладывать дополнительно провод «нейтрали» для питания пускателя с обмоткой на 220 вольт. Такой вариант схемы пуска показан ниже на Рисунке 2.


Токовая защита трехфазного электродвигателя

Трехфазный электродвигатель следует защищать от выхода из строя, что может случитьсяАвтоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.

Кроме того, автоматические выключатели питания быстро срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов. Такие токи возникают при коротких замыканиях электрических цепей. Экстра ток — это такой ток, который превышает номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.

На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.при повышеннии напряжения источника питания, при перегреве элементов конструкции электродвигателя и при аварийной остановке вращения ротора электродвигателя. Внешнюю электрическую цепь, питающую трехфазный электродвигатель, следует защищать от токовых перегрузок, которые возникают при коротком замыкании электрических проводов схемы между собой или внутреннем замыкании токоведущих компонентов электродвигателя.


Простейшая токовая защита трехфазного электродвигателя выполнена посредством включения в цепь питающих проводов токовых тепловых датчиков, входящих в состав типового устройства токовой защиты. Превышение тока, потребляемого электродвигателем, в течении небольшого времени времени вызывает размыкание исполнительных контактов датчика тока, последовательно включенных в цепь питания катушки магнитного пускателя.

Существует линейная зависимость времени срабатывания устройства токовой защиты от кратности превышения тока. Токовая защита с паспортным значением 100А сработает через 1,5 минуты после пропускания по любой одной фазе (или по двум или трём фазным проводам сразу) тока в 100 ампер. При превышении тока в два раза, защита сработает в два раза быстрее, чем при номинальном токе, т.е. через 45 секунд и т.д. Устройство токовой защиты имеет возможность регулировки в небольших пределах (в 1.5-2 раза) номинального тока срабатывания защиты.

При срабатывании устройства токовой защиты размыкаются исполнительные контакты теплового датчика тока, что вызывает обесточивание и отпускание сердечника катушки магнитного пускателя, включенного последовательно с этими контактами (рис.3) и, соответственно, отключение электродвигателя от источника питающего напряжения. После остывания датчика, для приведения устройства в исходное состояние, нажимается кнопка возврата. При этом исполнительные контакты токового датчика вновь замыкаются. Теперь кнопкой «Пуск» можно вновь запустить электродвигатель.

Автоматический выключатель питания трехфазного электродвигателя

Подключение трехфазного электродвигателя обеспечивается достаточно сложной схемой. Для защиты питающих проводов от перегрева, для защиты помещения от пожара в случае возгорания электропроводки при коротком замыкания, на входе схемы подключения трехфазного электродвигателя применяются автоматические выключатели электропитания. Схема с применением такого автомата токовой защиты изображена ниже на Рис.4


Автоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.

Кроме того, автоматические выключатели питания быстро срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов. Такие токи возникают при коротких замыканиях электрических цепей. Экстра ток — это такой ток, который превышает номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.

На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя » сайт для электриков

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

{SOURCE}

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением

Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль

Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Особенности монтажа

Но при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.

  • Чтобы правильно подключить магнитный пускатель и тепловое реле надо вначале определить величину напряжения, на которое они рассчитаны. Его значение указывается как в техническом паспорте, так и на шильдике, расположенном на корпусе устройства.
  • Если указано напряжение 220 В устройство необходимо подключать к фазному напряжению, то есть к фазному и нулевому проводам. Если указано напряжение 380 В для подключения используется линейное напряжение, то есть к фазным проводам двух любых фаз.
  • Если напряжение не будет соответствовать паспортным данным устройства, возможна, либо его порча от перегрева, либо неправильная работа по причине недостаточно сильного магнитного поля в катушке управления.

Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя).

Преимущества реализации такой схемы подключения

  1. Коммутатор и манипулятор управления (кнопка) могут быть разнесены. То есть, управляющий элемент располагается в непосредственной близости от оператора, а массивный коммутатор можно разместить в любом удобном месте.
  2. Возможно управление с помощью ножного привода (руки остаются свободными). Это позволяет лучше контролировать электроустановку и удерживать обрабатываемую деталь.
  3. Схема подключения выносного пускателя позволяет разместить устройства безопасности. Например, защиту от короткого замыкания или тепловые реле, срабатывающие при температурных перегрузках. Кроме того, такая схема позволяет реализовать механическую защиту: при перемещении подвижных частей электроустановки до критической отметки, срабатывает концевой выключатель, и магнитный пускатель размыкается.
  4. Дистанционное расположение управляющих элементов позволяет расположить аварийную кнопку в удобном месте, что повышает безопасность эксплуатации.
  5. Есть возможность установить единый кнопочный пост для управления большим количеством магнитных пускателей при расположении электроустановок в разных местах и на большом удалении. Схема подключения через такой пост предполагает использование слаботочной управляющей проводки, что экономит средства на приобретение дорогостоящих силовых кабелей.
  6. Для управления одним пускателем можно установить несколько кнопочных постов. В таком случае управление электроустановкой с каждого поста будет равнозначным. То есть, можно запустить электродвигатель с одной точки, а выключить с другой. Схема подключения нескольких кнопочных постов на иллюстрации:
  7. Магнитные контакторы можно интегрировать в электронную систему управления. В этом случае команды на пуск и отключение электроустановок подаются автоматически, по заданному алгоритму. Организовать такую систему с помощью механических (ручных) включателей невозможно.

Фактически, такая коммутация представляет собой релейную схему.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Смена направления вращения реализуется общеизвестным способом — меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед

» и «Пуск назад

«, выключение — одной, общей кнопкой «Стоп

» , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает «защиту от дурака»

Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, «Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!» А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения
двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это — электрическая защита от того же дурака
. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки «Пуск» сразу, ничего не получится — двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую — моветон среди электриков
.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

здесь .

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:

Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Устройство и принцип работы

Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.

Тепловое реле, устройство которого составляют простейшие элементы:

  1. Термочувствительный элемент.
  2. Контакт с самовозвратом.
  3. Контакты.
  4. Пружина.
  5. Биметаллический проводник в виде пластины.
  6. Кнопка.
  7. Регулятор тока уставки.

Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.

Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).

Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.

Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.

Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.

При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.

Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.

Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.

Watch this video on YouTube

1.Принцип действия тепловых реле.

Тепловые
реле

это электрические аппараты, предназначенные
для защиты электродвигателей от токовой
перегрузки. Наиболее распространенные
типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.
Принцип действия тепловых реле основан
на свойствах биметаллической пластины
изменять свою форму при нагревании. В
общем случае тепловое реле представляет
собой расцепитель, в основе которого
лежит биметаллическая пластина, по
которой протекает ток. Под воздействием
теплового эффекта протекающего тока,
биметаллическая пластина изгибается,
разрывая цепи. При этом происходит
изменение состояния дополнительных
контактов. Первая и основная функция
тепловых реле — защита электрооборудования
от перегрузки.

Рис.1.Тепловое
реле
.

Долговечность
энергетического оборудования в
значительной степени зависит от
перегрузок, которым оно подвергается
во время работы. Для любого объекта
можно найти зависимость длительности
протекания тока от его величины, при
которых обеспечивается надежная и
длительная эксплуатация оборудования.
Эта зависимость представлена на рисунке
2 (кривая 1).

Рис.2.
Зависимость длительности протекания
тока от его величины.

При
номинальном токе допустимая длительность
его протекания равна бесконечности.
Протекание тока, большего, чем номинальный,
приводит к дополнительному повышению
температуры и дополнительному старению
изоляции. Поэтому чем больше перегрузка,
тем кратковременнее она допустима.
Кривая 1 на рисунке устанавливается
исходя из требуемой продолжительности
жизни оборудования. Чем короче его
жизнь, тем большие перегрузки допустимы.
При идеальной защите объекта зависимость
t
ср
(I) для реле должна идти немного ниже
кривой для объекта. Для защиты от
перегрузок, наиболее широкое распространение
получили тепловые реле с биметаллической
пластиной. Биметаллическая пластина
теплового реле состоит из двух пластин,
одна из которых имеет больший температурный
коэффициент расширения, другая —
меньший. В месте прилегания друг к другу
пластины жестко скреплены либо за счет
проката в горячем состоянии, либо за
счет сварки. Если закрепить неподвижно
такую пластину и нагреть, то произойдет
изгиб пластины в сторону материала с
меньшим. Именно это явление используется
в тепловых реле. Широкое распространение
в тепловых реле получили материалы
инвар (малое значение a) и немагнитная
или хромоникелевая сталь (большое
значение a). Нагрев биметаллического
элемента теплового реле может производиться
за счет тепла, выделяемого в пластине
током нагрузки. Очень часто нагрев
биметалла производится от специального
нагревателя, по которому протекает ток
нагрузки. Лучшие характеристики
получаются при комбинированном нагреве,
когда пластина нагревается и за счет
тепла, выделяемого током, проходящим
через биметалл, и за счет тепла, выделяемого
специальным нагревателем, также
обтекаемым током нагрузки. Прогибаясь,
биметаллическая пластина своим свободным
концом воздействует на контактную
систему теплового реле.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния. Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные

Первая должна находиться ниже, чем вторая

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Заключение

Все электромонтажные работы по подключению реле и прочего высоковольтного оборудования должен выполнять квалифицированный специалист, имеющий допуск и профильное образование. Самостоятельное проведение подобных работ сопряжено с опасностью для жизни и работоспособности электрических устройств. Если же все-таки необходимо разобраться с тем, как подключить реле, при его покупке нужно требовать распечатку схемы, которая обычно идет в комплекте с изделием.

Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

виды, основные параметры и сфера использования

Использование тепловых реле позволяет защитить электрические двигатели от токовой перегрузки: при превышении определенных параметров они отключают подачу электроэнергии.

При перегрузке в цепи происходит значительное повышение температуры. В некоторых случаях это может стать причиной неисправности или поломки оборудования. Применение тепловых реле дает возможность значительно продлить период эксплуатации аппаратуры, так как обеспечиваются нормальные условия для его функционирования.

Стоимость устройств варьируется в широком диапазоне. Во многом она зависит от особенностей эксплуатации, назначения и вида теплового реле. Например, РТЛ. Обеспечивают защиту электрических моторов от возможных перегрузок, исключают вероятность заклинивания ротора, перекоса фаз и затяжного пуска.

Цены на тепловые реле также зависят от того, какими технико-эксплуатационными характеристиками они обладают.

Основные параметры тепловых реле:

  1. Номинальный ток. При определенном значении ТР не срабатывает в течение длительного промежутка времени. В то же время превышение лимита не приводит к незамедлительному отключению цепи. Например, если значение больше номинального на 20 %, то ТР сработает примерно через 20-30 минут.
  2. Номинальное напряжение. Обычно бытовые модели предназначены для эксплуатации в однофазных сетях переменного тока (220 вольт и 50 Гц). При этом выпускаются и промышленные тепловые реле, которые могут быть рассчитаны на использование в трехфазных сетях.
  3. Эксплуатационные условия. Категория размещения тепловых реле определяется в соответствии с нормами ГОСТ 15150. Стандарт описывает возможные температурные значения и уровень влажности, а также устойчивость прибора к вибрациям, ударам, взрывоопасным газам.
  4. Граница срабатывания теплового реле.
  5. Количество и вид дополнительных контактов управления.
  6. Чувствительность к перекосу фаз.

ВИДЫ ТЕПЛОВЫХ РЕЛЕ, ИХ ПРИНЦИП ДЕЙСТВИЯ И СФЕРА ПРИМЕНЕНИЯ

Область применения такого оборудования — цеха промышленных предприятий, ремонтные мастерские, некоторые объекты сельского и коммунального хозяйства. Внедрение этих устройств позволяет защищать электроприводы от перегрузок.

Принцип действия реле основан на способности электрического тока повышать температуру проводника при прохождении через него.

Любой материал при нагреве увеличивает свой объем, но по-разному. Если нагреть две жестко соединенные пластины из разных металлов, то они деформируются. Движение передается на механическую защелку выключателя, который срабатывает и разъединяет электрические контакты.

Как правило, в тепловом реле используют 2 биметаллические пластины. Чаще всего это инвар, а также немагнитная или хромоникелевая сталь, имеющие разные коэффициенты расширения. Там, где пластины прилегают друг к другу, они жестко закрепляются путем штамповки, горячей прокатки или сварки. Когда происходит нагревание неподвижной части закрепленной пластины, она изгибается, что и приводит к срабатыванию — взаимодействию с контактным блоком реле.

Однако нагревание может происходить двумя способами. Например, тепло выделяется при прохождении через биметаллическую часть нагрузочного тока. Кроме того, нагрев возможен благодаря специальному нагревателю, также обтекаемому током нагрузки. Наиболее эффективно тепловое реле работает при комбинировании двух способов нагревания.

Разновидности применяемых в промышленности тепловых реле:

  • РТЛ;
  • РТТ;
  • ТРН;
  • РТП и др.

Серия РТЛ — устройства для защиты электродвигателей от длительных перегрузок или выпадения одной из фаз. Они применяются как в комплекте с пускателями типа ПМЛ, так и отдельно.

РТТ — тепловые реле для защиты промышленных асинхронных электромоторов (380 V) с короткозамкнутым ротором от затяжных перегрузок. Они также реагируют на выпадение фазы, иногда встраиваются в пускатели типа ПМА.

Серия ТРН — это двухфазные тепловые реле промышленного назначения. Они применяются в комплекте с магнитными пускателями и выполняют функцию защиты асинхронных электродвигателей от перегрузки.

РТП — тепловые реле с комбинированной системой нагрева биметаллической пластины. Конструкция устройства обеспечивает плавную ручную настройку тока срабатывания. Возврат якоря реле в исходное положение осуществляется двумя способами:

  • вручную, посредством кнопки;
  • автоматически, после остывания биметаллической пластины.

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов. Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя.

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В 660
Частота переменного тока, Гц 50 (60)
Время срабатывания при токе 1,2 Iном, мин 20
Время ручного возврата, мин, не менее 1,5
Время срабатывания при нагрузке 6-кратным Iном, с РТЛ-1000 4,5 … 9,0
РТЛ-2000 4,5 … 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток: до 10А 0,5
свыше 10А 1,0
Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-1001 0,10 … 0,17 2,05 РТЛ-1008 2,40 … 4,00 1,87
РТЛ-1002 0,16 … 0,26 2,03 РТЛ-1010 3,80 … 6,00 1,84
РТЛ-1003 0,24 … 0,40 1,97 РТЛ-1012 5,50 … 8,00 1,68
РТЛ-1004 0,38 … 0,65 1,99 РТЛ-1014 7,00 … 10,0 1,75
РТЛ-1005 0,61 … 1,00 1,8 РТЛ-1016 9,50 … 14,0 2,5
РТЛ-1006 0,95 … 1,6 1,8 РТЛ-1021 13,0 … 19,0 2,75
РТЛ-1007 1,50 … 2,60 1,8 РТЛ-1022 18,0 … 25,0 2,8
Номинальный ток 80А
РТЛ-2053 23 … 32 2,43 РТЛ-2059 47 … 64 3,69
РТЛ-2055 30 … 41 3,03 РТЛ-2061 54 … 74 4,38
РТЛ-2057 38 … 52 3,3 РТЛ-2063 63 … 86 5,62

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

Тепловая защита слабого двигателя

Предистория вопроса. Моя недавно купленная соковыжималка чуть
не оказалась на грани гибели, из-за мякоти груши она всего лишь немного снизила обороты. Сколько я выслушал в свой адрес. Но виноват ли я? Производитель удешевляя продукцию не делает никакой защиты слабого электродвигателя изделия.

Чтобы не допустить повторения данной ситуации, нужно защитить
данный двигатель.
В качестве варианта есть 2 вида защит:
-токовая (когда в цепь включается токовый датчик и по нему контролируется протекающий ток), в критических режимах
ток возрастает;
-тепловая (контролируется температура).

Дополнительная информация

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.


Решил делать вариант с тепловой защитой.
Пошарив на Aliexpress я нашел следующие изделия:
1.термовыключатель

2.термовыключатель

3.термовыключатель

ссылка

http://www.aliexpress.com/item/Free-Shipping-KSD301-85-Celsius-Normal-Close-NC-Temperature-Controlled-Switch-Thermostat-250V-10A/32380428013.html

По пункту 1, друзья из Китая прислали вместо 5А целых 10А.
Но решено было всеж испытать и это.

Нагрузив китайское изделие 17Амперной нагрузкой, мы ждали когда
наконец сработает защита, но чуть не сработал автомат защиты
лаборатории и через 20 секунд эксперимент был завершен.
После выигранного спора штучка была разобрана. Ну что сказать
2 биметалические пластины, наверно все вполне работоспособно,
нужно было только достаточное время.

Перехожу к пунктам 2 и 3.

Прозвонка мегометром на 1000v напряжении показало, что изоляция отличная больше 2000МОм.
Для проверки на сработку запасаюсь кострюлей воды. Вода закипает при нормальном давлении
при 100 градусах.Нам надо проверить 95,85 и 80.
Термовыключатели 2 работают отлично срабатываю при близких температурах и размыкаются
через 3 градуса.Вот такой гистерезис. Срабатывают тоже быстро 3с и готово.
Термовыключатель 3 надо греть дольше не менее 10 с, но тоже срабатывает при близких температурах, остывает дольше, отпускает при остывании на 3 градуса, но остывает дольше.

Доработка
Решил ставить термовыключатель 2 на 80 градусов. Наверно это лучший вариант с учетом
тепловой инерции и плоховатой теплопередачи через лак.
Ставим на статорную обмотку двигателя.
Разбираем соковыжималку и видим

чудеса китайских технологий, целый бутерброд из контактов и пластмассового термопредохранителя на 105 градусов.
Разбираем это добро

Делаем свой бутерброд, уже со своим дополнительным датчиком, обернутым в терморезину.

Пока ставлю светодиод сигнализатор о перегреве

Схема подключения

Получилось

Пока так, но в дальнейшем, после приобретения необходимого, буду делать защитное
отключение.Схема

Так можно доработать любой слабосильный электродвигатель, который может подгореть из-за
повышенной нагрузки.

Все. Выслушиваю ваши коментарии.

Подключение теплового. Изучение магнитного пускателя с тепловым реле

Схема подключения магнитного пускателя и теплового реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Важно! Величина рабочего напряжения катушки может быть 220 или 380 Вольт. При наличии первого показателя необходимо знать, что на ее контакты осуществляется подача фазы и ноля. Во втором случае это обозначает о наличии двух разноименных фаз.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Внимание. Наиболее часто используют схему, которая требует использования одного пускателя. Это объясняется ее простотой, что позволяет с ней справиться даже малоопытному мастеру.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Важно. При этом необходимо к кнопке Пуск подключить провод, который идет с контакта катушки. С него также делают перемычку, которая идет к замкнутому контакту кнопки Стоп.

Включение работы магнитного пускателя производится с помощью Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.


Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и в последствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Внимание. При подключении теплового реле, необходимо учитывать наличие на нем регулятора тока, который срабатывает в небольших пределах.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

Магнитный пускатель — это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя.

Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно , как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов , которые подают электропитание на электрооборудование.
  2. Схемы управления , которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт , если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых. Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки. Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск». С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель, ток в нем проходит последовательно через нагреватели термореле, и далее- к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В .

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ ;

— тепловое реле Р .

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С .

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р , которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопкуПУСК .Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU . В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Пускатель, схема «звезда-треугольник»

Сразу отсылаю читателя к статьям, которые предшествуют этой — , и . Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков «контактор» и «пускатель» очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель — устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо (как устройство рабочего или аварийного отключения),
  • (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки «Пуск», «Стоп», различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может — контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает — как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Чтобы всем было понятно, о чем идет речь — вот ссылка , там можно посмотреть и заказать по почте контактор. Не забудьте сообщить продавцу напряжение катушки!

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками «Пуск » и «Стоп » , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы — в статье про , см. последнюю в статье схему, пускатель КМ0.


5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку «Стоп» (провод 2 ).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки «подгорают» контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой «Стоп», номинал — несколько ампер.

Если теперь нажать на кнопку «Пуск», то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх «силовых» контактов у пускателя есть ещё один дополнительный контакт. Его называют «блокировочным» или «контактом самоподхвата».

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты «Самоподхвата» физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 «Пуск», замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка «Пуск» будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка «Стоп».

Часто в таких схемах бывает, что пускатель не становится на «самоподхват». Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у «них»)


6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:


7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он .

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле — 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее — 6 или 10А.

Может, это будет интересно:

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:


8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF — это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя «спрятана» в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы «проинформировать» контроллер о аварии. Часто этот контакт просто-напросто входит в , и останавливает весь станок.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Правое вращение (применяется чаще всего) — когда двигатель крутится по часовой стрелке, если смотреть ему «в зад». Левое вращение — против часовой.

Смена направления вращения реализуется общеизвестным способом — меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:


9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед » и «Пуск назад «, выключение — одной, общей кнопкой «Стоп » , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает «защиту от дурака». Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, «Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!» А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это — электрическая защита от того же дурака . Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки «Пуск» сразу, ничего не получится — двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую — моветон среди электриков .

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

здесь .

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто — надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

На этом всё, жду комментариев и обмена опытом!

Что такое «тепловая защита» электродвигателя?

Когда вы видите термин «тепловая защита» или «термически защищенный», используемый в описании электродвигателя, это относится к устройству, находящемуся в двигателе или компрессоре двигателя, которое предназначено для предотвращения опасного перегрева, который может вызвать отказ двигателя.

Назначение термозащиты

Этот перегрев обычно происходит, когда двигатель перегружен, когда подшипник заклинивает, когда что-то блокирует вал двигателя и препятствует его вращению, или когда двигатель просто не запускается должным образом.Неудачный запуск может быть вызван неисправностью пусковых обмоток двигателя.

Термозащитное устройство состоит из одного или нескольких термочувствительных элементов, встроенных в двигатель или мотор-компрессор, а также внешнего устройства управления. Имеется тепловая защита для выключения двигателя при чрезмерном нагреве в цепи двигателя. Эта функция безопасности предотвращает повышение температуры до того, как это может привести к сгоранию двигателя.

Как правило, термозащитные устройства возвращаются в исходное состояние, когда двигатель остывает до безопасной рабочей температуры.Обычно есть видимая красная кнопка, расположенная на стороне проводки двигателя — обычно, хотя и не всегда, напротив вала двигателя. На двигателях, оборудованных таким образом, вы должны нажать эту кнопку, чтобы сбросить и перезапустить двигатель. На других двигателях без кнопки сброса сброс происходит автоматически по мере охлаждения двигателя.

Выключение двигателя из-за срабатывания устройства ограничения температуры неудобно, но, безусловно, лучше, чем необходимость замены двигателя из-за его перегрева.А отключение может предупредить вас о проблемах с двигателем или подключенными устройствами, или о нагрузке, прикрепленной к двигателю. Если двигатель не запускается или перегревается во время работы, это может указывать на то, что срок службы двигателя подошел к концу и его необходимо заменить. Но часто проблема вовсе не в моторе. Например, может быть препятствие на нагрузке, прикрепленной к двигателю, что приводит к чрезмерной нагрузке, которая вызывает нагревание двигателя.

Примеры двигателей с термозащитой

Отстойник — это двигатель, для которого часто встречается этот сценарий.Если водоотливной насос перекачивает воду, заполненную мусором, частицы мусора могут попасть в рабочее колесо и заблокировать вращение двигателя насоса, что приведет к его очень быстрому перегреву. На насосе, оборудованном тепловой защитой, устройство отключит электрический ток к обмоткам двигателя. Это позволит мотору остыть и вполне может уберечь его от полного выхода из строя. Предупрежденный о проблеме из-за того, что двигатель отключается, вы можете очистить крыльчатку и оставить двигатель откачивающего насоса работать некоторое время, прежде чем его потребуется замена.

Какие обмотки двигателя?

Обмотки двигателя — это провода внутри двигателя, по которым проходит электрический ток. Обмотки помещены в катушки и обычно наматываются на железный магнитный сердечник, который формирует магнитные полюса, когда на него подается напряжение.

Тот же сценарий может быть верен и для других электродвигателей, которые обрабатывают переменные нагрузки, таких как мусороуборочные машины, стиральные машины или пылесосы. Без тепловой защиты такие двигатели могут быть более подвержены перегоранию.

Обычно при покупке оборудования с электродвигателями следует обратить внимание на тепловую защиту. Защищая двигатель от перегрева, он может значительно продлить срок службы двигателя.

Основы встроенной защиты двигателя для начинающих

Зачем нужна защита двигателя?

Во избежание неожиданных поломок, дорогостоящего ремонта и последующих потерь из-за простоя двигателя важно, чтобы двигатель был оснащен каким-либо защитным устройством.В этой статье речь пойдет о встроенной защите двигателя с тепловой защитой от перегрузки, чтобы избежать повреждения и поломки двигателя.

Основы встроенной защиты двигателя для начинающих (на фото: вид установленного внутри двигателя термостата; кредит: johndearmond.com)

Для встроенной защиты всегда требуется внешний автоматический выключатель, в то время как для некоторых встроенных типов защиты двигателя даже требуется реле перегрузки.


Внутренняя защита / Встроенная в двигатель

Зачем нужна встроенная защита двигателя, если двигатель уже оснащен реле перегрузки и предохранителями? Иногда реле перегрузки не регистрирует перегрузку двигателя.

Вот пара примеров этого:

  1. Если двигатель накрыт и медленно нагревается до высокой температуры повреждения.
  2. В целом высокая температура окружающей среды.
  3. Если внешняя защита двигателя настроена на слишком высокий ток отключения или установлена ​​неправильно.
  4. Если двигатель в течение короткого периода времени перезапускается несколько раз, ток заблокированного ротора нагревает двигатель и в конечном итоге приводит к его повреждению.

Степень защиты, которую обеспечивает внутреннее защитное устройство, классифицируется в стандарте IEC 60034-11.


Обозначение TP

TP — сокращение от термической защиты. Существуют различные типы тепловой защиты, которые идентифицируются кодом TP (TPxxx) , который указывает:

  • Тип тепловой перегрузки, на которую рассчитана тепловая защита (1 цифра)
  • Количество уровней и тип действие (2 цифры)
  • Категория встроенной тепловой защиты (3 цифры)

Что касается моторов насосов, наиболее распространенными обозначениями TP являются:

  • TP 111 — Защита от замедления перегрузка
  • TP 211 — защита как от быстрой, так и от медленной перегрузки.
Внутренняя защита, встроенная в обмотки

Индикация допустимого уровня температуры при тепловой перегрузке двигателя. Категория 2 допускает более высокие температуры, чем категория 1.

Символ
(TP)
Техническая перегрузка с вариациями
(1 цифра)
Количество уровней и функциональная область (2 цифры) Категория
(3 цифры)
TP 111 Только медленный (т.е. постоянная перегрузка) 1 уровень при отключении 1
TP 112 2
TP 121 2 уровня при аварийном сигнале и отключении 1
TP 122 2
TP 211 Медленно и быстро (т.е. постоянная перегрузка и состояние блокировки) 1 уровень при отключении 1
TP 212 2
TP 221 2 уровня при аварийном сигнале и отключении 1
TP 222 2
TP 311 Только быстро (т.е.е. состояние блокировки) 1 уровень при отсечении 1
TP 312 2

Информация о том, какой тип защиты применен к двигателю, может быть найдена на паспортной табличке с использованием TP (тепловая защита ) обозначение согласно IEC 60034-11 .

Как правило, внутренняя защита может быть реализована с использованием двух типов защит:

  1. Тепловые защиты или
  2. Термисторы.

Термозащитные устройства — встроены в клеммную коробку.

В термозащитных устройствах или термостатах используется биметаллический дисковый переключатель мгновенного действия для размыкания или замыкания цепи при достижении определенной температуры. Термозащитные устройства также называются Klixons (торговая марка Texas Instruments).

Когда биметаллический диск достигает заданной температуры, он размыкает или замыкает набор контактов в цепи управления под напряжением. Доступны термостаты с контактами для нормально разомкнутого или нормально замкнутого режима, но одно и то же устройство нельзя использовать для обоих.

Термостаты предварительно откалиброваны производителем и не могут быть отрегулированы. Диски герметично закрыты и размещаются на клеммной колодке.

Верхняя паспортная табличка: TP 211 в двигателе MG 3,0 кВт, оборудованном PTC; Нижняя паспортная табличка: TP 111 в двигателе Grundfos MMG мощностью 18,5 кВт, оборудованном PTC.
Символы теплового выключателя двигателя

Символы (слева направо):

  1. Термовыключатель без нагревателя
  2. Термовыключатель с нагревателем
  3. Термовыключатель без нагревателя для трехфазных двигателей (защита нейтрали)

Термостат может либо активировать цепь аварийной сигнализации , если нормально разомкнут, либо обесточить контактор двигателя , если нормально замкнут и включен последовательно с контактором.

Поскольку термостаты расположены на внешней поверхности концов змеевика, они определяют температуру в этом месте. В случае трехфазных двигателей термостаты считаются нестабильной защитой от останова или других быстро меняющихся температурных условий.

В однофазных двигателях термостаты действительно защищают от состояния блокировки ротора.

Вернуться к указателю ↑


Термовыключатель — встроен в обмотки

В обмотки также могут быть встроены термозащитные устройства, см. Рисунок ниже.Они работают как чувствительные выключатели питания как для однофазных, так и для трехфазных двигателей. В однофазных двигателях до данного типоразмера двигателя около 1,1 кВт он может быть установлен непосредственно в главной цепи в качестве устройства защиты на обмотке.

Обозначение тепловой защиты

Тепловая защита, подключаемая последовательно с обмоткой или цепью управления в двигателе.

Тепловая защита, встроенная в обмотки

Klixon и Thermik являются примерами теплового реле. Эти устройства также называются PTO (Protection Thermique à Ouverture).


Термовыключатели, чувствительные к току и температуре: Вверху: Klixons; Внизу: Thermik — PTO
Внутренний фитинг

В однофазных двигателях используется один термовыключатель. В трехфазных двигателях между фазами двигателя размещены 2 последовательно включенных термовыключателя. Таким образом, все три фазы контактируют с термовыключателем.

Термовыключатели могут быть установлены на конце змеевика, но в результате увеличивается время реакции. Коммутаторы должны быть подключены к внешней системе мониторинга.Таким образом двигатель защищен от медленной перегрузки. Термовыключатели не требуют реле усилителя.

Термовыключатели НЕ МОГУТ защитить от состояния блокировки ротора.

Вернуться к индексу ↑


Как работает термовыключатель?

Кривая справа показывает зависимость сопротивления от температуры для типичного термовыключателя. В зависимости от производителя термовыключателя кривая меняется.

TN обычно составляет около 150–160 ° C.

Зависимость сопротивления от температуры для типичного термовыключателя

Вернуться к указателю ↑


Подключение

Подключение трехфазного двигателя со встроенным термовыключателем и реле перегрузки.


Обозначение TP на схеме

Защита по стандарту IEC 60034-11: TP 111 (медленная перегрузка) . Чтобы работать с заблокированным ротором, двигатель должен быть оснащен реле перегрузки.

Автоматическое повторное включение (слева) и ручное повторное включение (справа)

Где:

  • S1 — Выключатель
  • S2 — Выключатель
  • K 1 — Контактор
  • t — Термовыключатель в двигателе
  • M — Двигатель
  • MV — Реле перегрузки

Термовыключатели могут быть нагружены следующим образом:

U max = 250 В переменного тока
I N = 1.5 A

I max = 5,0 A (ток включения и выключения)

Вернуться к индексу ↑


Термисторы — также встроены в обмотки

Второй тип внутренней защиты — это термисторы или датчики с положительным температурным коэффициентом (PTC) . Термисторы встроены в обмотки двигателя и защищают двигатель от заблокированного ротора, длительной перегрузки и высокой температуры окружающей среды.

В этом случае тепловая защита достигается путем контроля температуры обмоток двигателя с помощью датчиков PTC.Если обмотки превышают номинальную температуру срабатывания, датчик подвергается быстрому изменению сопротивления относительно изменения температуры.

В результате этого изменения внутренние реле обесточивают управляющую катушку контактора внешнего прерывания линии. По мере охлаждения двигателя и восстановления приемлемой температуры обмотки двигателя сопротивление датчика уменьшается до уровня сброса.

На этом этапе модуль автоматически перезагружается, если только он не был настроен на ручной сброс.Когда термисторы устанавливаются на концах катушки, термисторы могут быть классифицированы только как TP 111 . Причина в том, что термисторы не имеют полного контакта с концами катушки, и поэтому они не могут реагировать так быстро, как если бы они были изначально установлены в обмотку.

Термистор / PTC

Термисторная система измерения температуры состоит из датчиков положительного температурного коэффициента (PTC), установленных последовательно из трех — по одному между каждой фазой — и согласованного твердотельного электронного переключателя в закрытом модуле управления.Набор датчиков состоит из трех датчиков, по одному на фазу.

Защита PTC, встроенная в обмотку

Чувствительна только к температуре. Термистор должен быть подключен к цепи управления, которая может преобразовывать сигнал сопротивления, который снова должен отключать двигатель. Используется в трехфазных двигателях.

Сопротивление датчика остается относительно низким и постоянным в широком диапазоне температур и резко увеличивается при заранее определенной температуре или точке срабатывания.

Когда это происходит, датчик действует как твердотельный термовыключатель , а отключает питание пилотного реле .

Реле размыкает цепь управления машиной для отключения защищаемого оборудования. Когда температура обмотки возвращается к безопасному значению, модуль разрешает ручной сброс.

Вернуться к индексу ↑

Ссылка // Grundfos — Motor Book (Загрузить здесь)

Рекомендации по безопасности и защите насосов

Системы тепловой защиты

Если метод пуска пропорционален мощности двигателя, а также величине потребляемого тока и относительно настройки силы тока устройства защиты стартера (Amax × 1.1 = As), все однофазные / трехфазные насосы имеют защиту до 50% и 30% соответственно.

Примечание

Это наименее защитное устройство для насоса, которое также можно использовать в качестве выключателя питания. Все миниатюрные переключатели работают как эти стартеры Недостатки этих пускателей заключаются в том, что они не защищены от обрыва фазы, срабатывают с задержкой и не могут быть подключены к другим внешним контроллерам.

Очень важно комплектующие для пуска электродвигателей более 10 л.с.

Неиспользование системы защиты не только может серьезно повредить оборудование, но также может лишить законной силы все права на помощь по гарантии.

  • Процент защиты защитных систем на одной фазе

1- Тепловая защита, прямое подключение к электросети Электричество (перегрузка) снаружи и внутри сборки

Встроенная тепловая защита устанавливается производителем непосредственно на обмотку однофазных насосов и имеет только 50% защиту в зависимости от мощности двигателя. Например, электродвигатель мощностью 0,37 кВт защищен до 60% с помощью встроенного терморегулятора.

Преимущества и недостатки устройств защиты от перегрузок, установленных внутри катушек

Преимущества этой системы:

Пользователь не взимает никаких дополнительных комиссий при покупке. Все производители используют эту систему для максимальной мощности 1,5 л.с., а некоторые — до 2 л.с. Защита этой системы для предотвращения сгорания катушки в нормальном рабочем режиме и в зависимости от мощности электродвигателя может работать примерно до 60%

Недостатки этой системы:

Эта перегрузка контролирует систему путем измерения температуры, поэтому, когда ваш насос обнаруживает проблему, температура обмотки повышается по мере увеличения потребления силы тока, и эта перегрузка отключает электричество путем измерения температуры, но после охлаждения и снижения градуса , автоматически подключает электричество и насос включается авто

Очень важный момент:

Учитывая это, количество отключений и подключений, а также срок службы каждого типа перегрузки определяется производителем в соответствии с проходящим через него током.А если помпа по какой-либо причине застряла и не может работать, через нее пройдет много ампер. Особенно при большой мощности, например, 1,5 л.с. или 2 л.с. при 110 В будут передавать от 30 до 40 ампер. Слишком большая сила тока может вызвать сильные искры, и платина может свариться вместе. Если на входе нет другой надежной системы защиты линия электропередачи, ваша помпа обязательно сгорит. Например, срок службы хорошей перегрузки при 6 А составляет примерно 10 000 раз, но при 15 А — 200 раз, а при 30 А — только 10–20 раз.

  • Трехфазная система защиты от перегрузки

Примечание

Некоторые из трехфазных электронасосов оснащены системами тепловой защиты (термозащитными ограждениями), размещенными внутри внешней панели управления на линии цепи.

Эта система защиты для всех насосов с разной мощностью может обеспечить полную защиту до 75%.

Изготовитель использует два типа термозащитных устройств для трех фаз: 1 — Thermo Guard (двухпозиционный контакт) 2 — PTC (система сопротивления) 3 — PT100 sencore


Ручной пускатель

Если метод запуска пропорционален мощности двигателя, а также потребляемая текущая скорость и относительно настройки текущей скорости пускателя протектор (Amax × 1.1 = As), все одно- / трехфазные насосы защищены до 50%. и 30% соответственно.

Этот пускатель, использующий механический биметалл, в результате перелива регулируемого ток, его металл нагревается и отключает электричество

Преимущества этой системы:
Запуск и остановка только вручную Когда есть проблема и отключение питания, и он не включается снова Авто. Если питание отключено от сети, насос будет включен и запустится при подключении к сети.

Недостатки этой системы:
Запуск и остановка только вручную, не может добавить никакого сенкора, Эта система не очень защищает в трех фазах, таких как управление двухфазная электросеть И поскольку он задерживается, насос обычно не работает. Эта система управления трехфазными насосами может защитить только до 30%


Электрическая панель управления

Эти панели управления состоят из силовых контакторов, биметаллических (тепловых) устройств защиты, фазовых регуляторов и датчиков тока пуска / останова.

Однофазный 110 В 50/60 Гц или 220 В 50/60 Гц

В однофазной модели он включается контактором и имеет отдельный биметаллический контроллер перегрузки, а также имеет нижнюю часть пуска и останова и сброса, а также может быть добавлен терминал для автоматического и ручного пуска и останова с поплавковым переключателем и переключателем давления, и может быть в комплекте с рабочим конденсатором
В однофазном режиме можно управлять с 70% защитой

Три фазы 220 В 50/60 Гц или 380 В и 440 В и 480 В 50/60 Гц

Эти панели могут обеспечить до 50% полной защиты благодаря высокому качеству электрических компонентов и их способности регулировать фазу с защитой 70%

В трехфазной модели он включается контактором и имеет отдельный биметаллический контроллер перегрузки, а также имеет нижнюю часть пуска и останова и сброса, а также может быть добавлен терминал для автоматического и ручного пуска и останова с поплавковым выключателем и реле давления,

В дополнительных комбинированных пускателях серий ESWE и ESWF типа E с CPT «Электрическая система защиты жизни»


Электронные пускатели

Эти пускатели работают в зависимости от потребляемого тока и в зависимости от настройки защитного параметра немедленно отключают питание при увеличении тока.Он может обеспечить до 90% защиты в однофазных двигателях, 80% в трехфазных двигателях (если используется управление разомкнутой фазой) и 50% (если управление разомкнутой фазой не используется). Эти пускатели не могут быть подключены к другие внешние контроллеры.

  • Внешняя защита от перегрузки
  • Защита двигателя от остановки
  • Защита от сухого хода
  • Защита от сухого хода
  • Защита от недостаточного / чрезмерного избрания
  • Функция памяти при выключении и восстановлении
  • ЖК-экран
  • Калибровка нажимной кнопки
  • Зарезервированное место для установки конденсаторного пуска в однофазной сети
  • Автоматическое и ручное управление

Цифровая панель управления

Благодаря своему качеству и высокой точности измерительной электроники и возможности установки нескольких внешних контроллеров, они могут обеспечить защиту от 80 до 100%.Преимущества этих панелей включают начальные точные настройки, простоту использования, управление фазами, управление последовательностью фаз, защиту от поражения электрическим током и возможность подключения к другим внешним контроллерам, таким как механический поплавок, тепловые системы, измеритель влажности и многое другое. Эти цифровые панели производятся в различных моделях и типах, чтобы удовлетворить потребности потребителей. Golpumpstechnology.com предоставил ряд из них, полностью отвечающих потребностям потребителей.



SOFT-STARTER для электродвигателей и насосов elector

Очень важно комплектующие для пуска электродвигателей более 10 л.с.

Эти панели управления используются для контакторов и электроприборов и оснащены системой защиты плавного пуска.Эта система защиты почти так же эффективна, как и цифровые панели, и используется для запуска электромотора мощностью более 10 л.с. Эти типы управления могут защитить до 80%.

Устройства плавного пуска

— это приводы, предназначенные для плавного ускорения и замедления трехфазных асинхронных двигателей путем управления напряжением, подаваемым на двигатель.

Микропроцессорные и полностью цифровые устройства плавного пуска SSW06 были разработаны с использованием передовых технологий, обеспечивающих наилучшие характеристики при запуске и останове асинхронных двигателей.

Линия имеет расширенный рабочий интерфейс, который позволяет легко настраивать параметры, встроенную функцию управления насосом, обеспечивающую эффективное управление насосом, в дополнение к функции управления крутящим моментом, которая позволяет ускорения и замедления с линейным изменением скорости.

SSW06 может управлять входом термистора PTC двигателя и может быть дополнен преобразователем контроллера PT100 в качестве опции.

Защита электродвигателя: три распространенные ошибки и как их избежать

Если говорить о защите электродвигателя , они не имеют надлежащего размера или конфигурации, могут разворачиваться два возможных сценария.Есть несколько случаев, когда они срабатывают постоянно и отнимают драгоценное время у обслуживающего персонала, а в некоторых случаях они могут даже не срабатывать в ответ на небольшое пониженное напряжение или перегрузку, условия, которые не всегда очевидны и которые сокращают срок службы моторы.

Чтобы избежать некоторых типичных ошибок при настройке защиты двигателя, следует помнить о следующих шагах.

1) Установлена ​​слишком высокая защита от пониженного напряжения — Двигатели, которые работают ниже номинального напряжения, могут страдать от перегрева и иметь более короткий срок службы.Национальная ассоциация производителей электрооборудования (NEMA) не рекомендует эксплуатировать двигатели с напряжением ниже 90% от их номинального напряжения в течение длительного времени. Убедитесь, что если защита от пониженного напряжения установлена ​​слишком высоко, она может и, вероятно, отключит двигатель, когда в этом нет необходимости.

Например, трехфазный двигатель, если он имеет номинальное напряжение 230 В, что означает, что минимальное рабочее напряжение, допустимое в соответствии с NEMA, составляет 207 В (230 В x 90%). Однако, если регулируемое реле минимального напряжения установлено на 220 В, снижения напряжения на 5% будет достаточно для отключения двигателя.

2) Неправильно настроена тепловая перегрузка — Основное требование для настройки защиты от перегрузки для двигателей составляет 125% от их тока полной нагрузки в соответствии с NEC; тем не менее, убедитесь, что вы прочитали инструкции по реле перегрузки.

Некоторые производители имеют встроенную настройку 125%, что означает, что вы должны установить защиту от перегрузки в соответствии с током, указанным на паспортной табличке двигателя.

Если значение 125% не встроено в реле, необходимо установить его на ток, указанный на паспортной табличке двигателя, + 25%.

Например, предположим, что вы хотите защитить двигатель током полной нагрузки 60 А, и у вас есть реле перегрузки, которое можно установить от 50 до 100 А. Если устройство уже имеет коэффициент 125%, вы должны установить его на 60A. В противном случае правильная настройка — 75 А (60 А + 25%).

Если защита от перегрузки установлена ​​на слишком низкое значение, двигатель может быть отключен даже при нормальной работе. Например, если в описанном выше защитном устройстве циферблат установлен на 50 А, а для двигателя 60 А он был оставлен таким, оно может не сработать сразу, если двигатель просто слегка нагружен, что создает впечатление, что он работает правильно.Однако более высокие нагрузки двигателя, которые приводят к току выше 50 А, приведут к отключению устройства.

Конечно, защиту от перегрузки также не следует устанавливать слишком высоко, поскольку двигатель не будет должным образом защищен от перегрузки. Например, если вы добавите 25% при настройке реле перегрузки, которое уже имеет встроенное значение 125%, фактическое значение защиты от перегрузки будет 156%, что не соответствует требованиям NEC.

3) Неправильно установлена ​​магнитная защита. — В таких обстоятельствах, как неисправность, магнитная защита должна немедленно отключать двигатель, но должна пропускать пусковой ток без отключения.Еще одна вещь, которую следует иметь в виду, заключается в том, что если магнитная защита зафиксирована, убедитесь, что ее кривая срабатывания допускает пусковой ток, который может составлять только до 800% от номинального тока. Принимая во внимание, что если магнитная защита регулируется, то установите такое значение, чтобы она не сработала при пусковом токе. Убедитесь, что пусковой ток ниже, если двигатель оснащен пускателем пониженного напряжения, твердотельным пускателем или частотно-регулируемым приводом.

5 причин, по которым ваши электродвигатели продолжают перегреваться

Перегретый электродвигатель остановит ваше оборудование.И хотя чрезмерный нагрев может быть проблемой, с которой вы сталкиваетесь, совершенно необходимо знать, как и почему ваш мотор перегревается. Пока вы не доберетесь до корня проблемы, ваш двигатель будет продолжать достигать пиковых температур, снова и снова выходя из строя.

Квалификация перегретого электродвигателя

Первый шаг в работе с перегретым двигателем — убедиться, что перегрев действительно является проблемой. Если вы не будете активно следить за ним, когда он выходит из строя, вы можете не подозревать о перегреве. Чтобы проверить перегрев, вам нужно будет снова запустить двигатель — на этот раз с помощью методов его контроля:

  • Проверьте кнопку сброса температуры на двигателе, если она есть.Это самый быстрый и простой способ квалифицировать перегрев.
  • Простой термостат покажет вам, что температура поднимается выше безопасного рабочего уровня.
  • Если у вас под рукой передовая инфракрасная камера (FLIR), она быстро покажет вам, когда машина достигает температуры перегрузки.
  • Хотите высокотехнологичное решение? Умные датчики температуры будут делать больше, чем просто сообщать вам о перегреве — они точно определяют, когда это произошло и при какой температуре.

Любой из этих методов квалифицирует перегрев, поэтому вы можете быть уверены, что именно с этим вы имеете дело. После подтверждения вам нужно будет понять , почему ваш электродвигатель продолжает превышать безопасные рабочие температуры.

Общие проблемы, приводящие к перегреву

Как и в любой другой электрической системе, тепло является результатом плохих условий эксплуатации. В случае электродвигателей перегрев чаще всего связан с одной из следующих пяти основных проблем:

.

1.Электрическая перегрузка , вызванная чрезмерным напряжением питания или перегрузкой из-за потребления большего тока, приведет к проблемам с перегревом. По мере того как двигатель работает интенсивнее или при необычной нагрузке, основным побочным продуктом, приводящим к отказу, будет тепло.

2. Низкое сопротивление является наиболее частой причиной отказа электродвигателя. Деградация обмоток двигателя под воздействием тепла откроет путь к коротким замыканиям и утечкам, которые подвергают двигатель риску выхода из строя.

3. Загрязнение пылью и мусором повысит внутреннюю температуру двигателя и не даст ему остыть, что приведет к чрезмерному нагреву в течение более длительного периода времени.Обычно это происходит без надлежащего обслуживания или удаления частиц.

4. Частота пуска-останова играет большую роль в тепловом повреждении. Чрезмерный запуск, остановка и повторный запуск двигателя не позволят ему остыть должным образом. В результате создается высокотемпературная среда, которая нарушает целостность компонентов.

5. Вибрация из-за таких состояний, как мягкая ступня, приводит к чрезмерному нагреванию. Если вибрации достаточно сильные, они поднимут температуру до опасного уровня и нагружают компоненты, превышающие их тепловую способность.

Большинство техников-электриков могут обнаружить такие катализаторы, вызывающие нагрев, при разборке или осмотре двигателя.

Спросите у техника

Предотвращение отказов из-за перегрева

Проблема с отказами, вызванными нагревом, заключается в том, что они будут происходить до тех пор, пока техническое обслуживание не решит основную проблему. К счастью, есть способы пресечь эти проблемы в зародыше без особых изменений в плане обслуживания:

  • Тщательное плановое обслуживание гарантирует, что отдельным компонентам электрической системы уделяется необходимое внимание, чтобы свести к минимуму перегрузку и перегрев.
  • Установка интеллектуального датчика
  • может предупреждать технических специалистов о проблемах, вызванных перегревом, в режиме реального времени, позволяя вносить исправления и модификации до того, как произойдет полная поломка.
  • Установка устройств защиты от перегрузки и правильная конфигурация предотвратят проблемы с нагрузкой, напрямую устраняя несколько катализаторов повреждения головки.

Наряду с трением в механическом оборудовании, тепло является отравой для электрических устройств любого предприятия. Контроль температуры начинается с понимания того, что ее вызывает, и того, что вы можете сделать, чтобы минимизировать или устранить эти переменные.

Проблемы с перегревом электродвигателя? Вы всегда можете рассчитывать на профессионалов Global Electronic Services. Свяжитесь с нами по всем вопросам, связанным с промышленной электроникой, серводвигателями, двигателями переменного и постоянного тока, гидравлическими и пневматическими системами, и не забывайте ставить лайки и подписываться на нас на Facebook!

Запросить цену

Общие технические сведения об электродвигателях

Напряжение

Трехфазные односкоростные двигатели обычно могут подключаться для двух различных диапазонов напряжения.Это связано с тем, что три фазы обмотки статора могут быть соединены двумя способами: звездой (более высокое напряжение) или треугольником (более низкое напряжение) с коэффициентом √3. Самое низкое напряжение используется, когда двигатель подключен к D, и самое высокое напряжение, когда двигатель подключен к Y. Напряжение при Y = √3 × напряжение на D.

Наши двигатели намотаны на широкий диапазон напряжений, например 380-420В. Это дает широкий спектр применения и упрощает управление заказами и складскими запасами.

а) 220-240 В / 380-420 В — может иметь маркировку 230/400 В (стандарт для двигателей мощностью 3 кВт и менее).Подходит для прямого пуска от сети 380–420 В.

б) 380-420 В / 660-720 В — может иметь маркировку 400 В (стандарт для двигателей мощностью 4 кВт и более). Подходит для пуска по схеме звезда / треугольник от источников питания 380–420 В или прямого запуска от источников питания 660–720 В.

Напряжение сети может изменяться на ± 10% при 400 В или ± 5% для двигателей с широким диапазоном номинальных напряжений без изменения номинальной мощности двигателя. Обратите внимание, что КПД установлен на значениях 230 В и 400 В соответственно.

Балансировка

Двигатели сбалансированы полушпонкой. Специальные степени балансировки доступны по запросу.

Предохранители и защита двигателя

Предохранители не обеспечивают защиту двигателя, а служат только для защиты от короткого замыкания в цепи.

Выключатели защиты двигателя

Повышенная температура двигателя из-за перегрузки или обрыва фазы предотвращается с помощью защитного выключателя двигателя. Ток, на который должна быть установлена ​​защита от тепловой перегрузки, указан на паспортной табличке двигателя.В некоторых случаях обычного защитного выключателя двигателя недостаточно. Это особенно актуально для более сложных условий эксплуатации, например. запуск оборудования с высоким моментом инерции, при использовании преобразователей частоты и условиях эксплуатации с большими перепадами температуры охлаждения. В этих случаях можно использовать термозащитные устройства (например, Clixon) или термисторы в обмотках.

Тепловые защиты

Термозащитные устройства обычно устанавливаются в обмотку двигателя.При достижении определенной температуры тепловые предохранители разрывают электрическую цепь, например напряжение питания контактора, отключающего двигатель. Размыкающий контакт представляет собой термочувствительную биметаллическую пружину. BEVI может дооснастить термоконтакты двигателями любых размеров.

Термисторы

Термисторы используются для контроля температуры.

Блок защиты состоит из термисторов, которые могут быть установлены в обмотках, и пускового устройства. Термисторы представляют собой термочувствительные резисторы, которые при определенной температуре значительно изменяют сопротивление.Это воспринимается пусковым устройством, которое, в свою очередь, например, отключает питание главного контактора. Двигатели BEVI IE3 в стандартной комплектации оснащены термисторами. BEVI также может дооснастить термисторы двигателями любых размеров.

Охлаждение

В стандартной комплектации вентилятор и кожух устанавливаются на неприводной стороне (система охлаждения IC 411). Могут быть поставлены другие методы охлаждения, например вентилятор охлаждения с отдельным приводом, который часто используется с инверторными приводами.

Обогреватели для предотвращения образования конденсата

Двигатели, используемые в условиях резких перепадов температуры или экстремальных климатических условий, могут быть повреждены из-за конденсации и сырости в обмотках.В двигателях, оснащенных нагревателями, при выключенном двигателе обмотки нагреваются до температуры на несколько градусов выше температуры окружающей среды. Этого достаточно, чтобы предотвратить образование конденсата. Резервный отопитель должен быть выключен при работающем двигателе.

Малогабаритные двигатели можно также нагреть, подав на обмотку двигателя низкое напряжение. Напряжение должно составлять 5-10% от номинального напряжения по двум фазам.

BEVI может установить нагреватели для двигателей любого размера по запросу.

Класс изоляции

Двигатели изготавливаются с разным качеством по изоляционному материалу.Изоляционные материалы делятся на разные классы, которые обозначаются буквой, например: B или F. Класс изоляции указывает верхний предел температуры, который может выдержать изоляционный материал. Температура окружающей среды, допустимое превышение температуры и температурный резерв — это факторы, определяющие, насколько двигатель может быть нагружен.

Номинальная мощность двигателя обычно указывается для температуры окружающей среды + 40 ° C. Если температура окружающей среды выше, выходную мощность необходимо уменьшить.

Двигатели

BEVI обычно наматываются из материала класса F, но могут быть заказаны с другими материалами, например наши двигатели для сушилок для древесины намотаны из материала класса H.

Класс изоляции A E B F H
Температура окружающей среды (° C) 40 40 40 40 40
Допустимое превышение температуры (° C) 60 75 80 105 125
Резерв температуры (° C) 5 5 10 10 15
Макс.температура (° C) 105 120 130 155 180

Типы электродвигателя

Режим работы двигателя обозначается одним из обозначений S1 — S9.S1 — это нормальный режим работы, после которого отображается номинальная мощность двигателя. Однако при определенных операциях номинальная мощность двигателя может быть увеличена. В зависимости от того, как нагрузка и, следовательно, выходная мощность двигателя меняются со временем, ниже приведены различные режимы работы. Номинальная мощность для каждого типа работы определяется испытанием под нагрузкой, которое двигатель должен пройти без превышения температурных пределов, установленных в IEC 60034-1: 2017.

Для режима работы S2 после обозначения должна указываться продолжительность периода нагрузки.В режимах работы S3 и S6 после обозначения должен стоять коэффициент прерывистости. Пример: S2 60 мин, S3 25%, S6 40%. В режимах S4, S5, S7, S8, S9 после обозначения должен указываться момент инерции и т. Д.

  • S1 — Непрерывный режим
    Двигатель работает при постоянной нагрузке достаточно времени, чтобы достичь температурного равновесия.
  • S2 — Кратковременный
    Двигатель работает при постоянной нагрузке, но недостаточно долго для достижения температурного равновесия.Периоды покоя достаточно продолжительны, чтобы двигатель достиг температуры окружающей среды.
  • S3 — Прерывистый периодический режим
    Последовательные идентичные циклы работы и отдыха с постоянной нагрузкой. Температурное равновесие никогда не достигается. Пусковой ток мало влияет на повышение температуры.
  • S4 — кратковременный периодический режим с запуском
    Последовательные идентичные циклы пуска, работы и отдыха с постоянной нагрузкой. Температурное равновесие не достигается, но пусковой ток влияет на повышение температуры.(Аналогично S3, но в периодической работе есть значительное время пуска.)
  • S5 — Прерывистый периодический режим с электрическим торможением
    Последовательность одинаковых рабочих циклов — пуск, работа, торможение и отдых. Опять же, тепловое равновесие не достигается.
  • S6 — Непрерывный периодический режим работы
    Последовательные идентичные рабочие циклы с периодом при нагрузке, за которым следует период без нагрузки. Разница между S1 в том, что двигатель работает без нагрузки, без фактического останова.
  • S7 — Непрерывный периодический режим работы с электрическим торможением
    Последовательные идентичные циклы пуска, работы при постоянной нагрузке и электрического торможения. Никаких периодов отдыха.
    То же, что и S6, но со значительными периодами пуска и отключения электричества. Двигатель снова работает на холостом ходу в течение определенного периода времени, а не остановлен.
  • S8 — Периодический режим непрерывной работы с соответствующими изменениями нагрузки / скорости
    Последовательные идентичные рабочие циклы выполняются при постоянной нагрузке и заданной скорости, а затем выполняются при других постоянных нагрузках и скоростях.Никаких периодов отдыха и теплового равновесия не достигается.
  • S9 — Работа с непериодическими изменениями нагрузки и скорости
    Нагрузка и скорость периодически меняются в пределах допустимого рабочего диапазона. Возможны частые перегрузки.

Корпус (степень защиты)

Правильный класс защиты — необходимое условие для безопасной работы двигателя в течение длительного времени в тяжелых условиях и в сложных условиях. Двигатели стандартно производятся со степенью защиты IP55, но также доступны и другие стандарты.

Стандартный

Конструкция двигателя, номинальная мощность и установочные размеры соответствуют требованиям международных стандартов, перечисленных ниже.

Стандартный
  • МЭК 6034-1: 2017
  • МЭК 60072-1: 1994
Стандарт на методы измерения эффективности
  • МЭК 60034-30-1: 2014
  • МЭК 60034-2-1-2014

Йорген Даниэльссон, менеджер по продукции электродвигателей
Прямой: +46 499-271 26
[email protected]

Завод Инжиниринг | Четыре причины перегрева электродвигателей

Многие проблемы возникают с электродвигателями. В том числе связанные со смазкой и скачками напряжения. Также со временем возникает излишний нагрев. Повышение температуры электродвигателя сокращает срок его службы. Изоляция обмотки ухудшается, подшипники также могут выйти из строя.

Почему двигатели перегреваются

Электродвигатели перегреваются по многим причинам.Существует четыре основных причины перегрева:

1. Перегрузка

Стандартный ток проверяет большинство уровней нагрузки, но перенапряжение все же может быть проблемой. Уменьшение тока не может полностью снизить чрезмерное нагревание. Лучше всего знать рабочую мощность ваших моторов. Поддержание этого уровня помогает свести чрезмерное тепло к минимуму.

2. Запуск и остановка

Ограничение частоты запусков и остановок двигателя снижает его нагрев.Внимательно следите за тем, сколько раз он запускается. При необходимости урезать. Онлайн-тестирование двигателя — это самый простой способ контролировать запуск и остановку машины.

3. Плохое питание

Перебои с питанием часто приводят к перегреву. Низкая мощность связана с использованием частотно-регулируемых приводов, хотя частотно-регулируемый привод не может быть основной причиной проблемы.

4. Условия эксплуатации

Эксплуатация электродвигателей в неблагоприятных условиях окружающей среды также приводит к чрезмерному нагреву.Сопутствующие проблемы включают засорение воздуховодов и высокую температуру окружающей среды.

Как помочь моторам оставаться прохладными

Один из способов сохранить двигатели в холодном состоянии — снизить чрезмерную нагрузку на них. При рассмотрении технических характеристик поставленной задачи выберите подходящий двигатель для необходимой нагрузки.

Тестирование

Тестирование двигателя в рамках программы планового технического обслуживания также снижает вероятность выхода из строя из-за чрезмерного нагрева.Не судите о температуре двигателя, просто касаясь внешней поверхности рукой. Сенсорный, в общем, не лучший сенсор; то, что кажется вам горячим, круто для кого-то другого.

Программы техобслуживания

Нельзя сказать, что не беспокойтесь о том, насколько горячий двигатель на ощупь. Используйте соответствующие методы тестирования, чтобы найти горячие точки внутри обмоток двигателя. Эти доступные горячие точки сокращают срок службы двигателя.

Убедитесь, что ваши двигатели имеют надлежащую защиту.Эта защита включает термостаты и устройства защиты от перегрузки. Эти устройства являются частью хорошего плана обслуживания, они гарантируют, что двигатель не будет работать при опасных температурах.

Электродвигатели часто являются одними из самых дорогих активов на вашем предприятии. При правильном уходе и здравом смысле продлить срок их службы станет немного проще.

Дэвид Мэнни — менеджер по маркетингу в L&S Electric. Эта статья изначально была опубликована в блоге Watts New, L&S Electric.

Добавить комментарий

Ваш адрес email не будет опубликован.