Таблица систем счисления – Таблица соответствия десятеричного от 1 до 255 (decimal), двоичного (binary) и шестнадцатеричного (hexadecimal) представлений чисел. Шестнадцатиричная система счисления, двоичное счисление.

Содержание

Системы счисления. Перевод из одной системы в другую.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0000
1111
21022
311103
4100114
51011210
61102011
71112112
810002213
9100110014
10101010120
11101110221
12110011022
13110111123
14111011224
15111112030

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

00
11
22
33
44
55
66
77
88
99
10
11
1210
1311
1412
1513

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:



Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.


Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.


4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

00
11
102
113
1004
1015
1106
1117

Т.е.

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

00
11
102
113
1004
1015
1106
1117
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:



Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Переводы из различных систем счисления. Таблица соответствия систем.

Перевод из десятичной в двоичную систему счисления.

[youtube fLv4gs9EnJs nolink]

Перевод из двоичной в десятичную систему счисления и наоборот.

[youtube C0ai9-3GHJY nolink]

Перевод чисел из двоичной системы счисления в восьмеричную и наоборот.

[youtube x1bx7o2uESg nolink]

Перевод чисел из двоичной системы счисления в шестнадцатеричную. Сложение двоичных чисел.

[youtube rToqA6rEUQ8 nolink]

Перевод чисел в десятичную систему счисления. Полиномы.

[youtube eSviqB6Db7A nolink]

Краткая таблица соответствия — двоичная система в восьмеричную (8СС) и шестнадцатеричная (16СС) системы:

Таблица соответствия десятеричного от 1 до 255 (Decimal), двоичного (Binary) и шестнадцатеричного (Hexadecimal) представлений чисел.

Dec — десятеричная система;

Hex

— шестнадцатеричная система;

Bin — двоичная система.

DecHexBinDecHexBinDecHexBin
Dec
HexBin
0 0064 401000000128 8010000000192 c011000000
1 11
65
411000001129 8110000001193 c111000001
2 21066 421000010130 8210000010194 c211000010
3 31167 431000011131 8310000011195 c311000011
4 410068 441000100132 8410000100196 c411000100
5 510169 451000101133 8510000101197 c511000101
6 611070 461000110134 8610000110198 c611000110
7 711171 471000111135 8710000111199 c711000111
8 8100072 481001000136 8810001000200 c811001000
9 9100173 491001001137 8910001001201 c911001001
10 a101074 4a1001010138 8a10001010202 ca11001010
11 b101175 4b1001011139 8b10001011203 cb11001011
12 c110076 4c1001100140 8c10001100204 cc11001100
13 d110177 4d1001101141 8d10001101205 cd11001101
14 e111078 4e1001110142 8e10001110206 ce11001110
15 f111179 4f1001111143 8f10001111207 cf11001111
16 101000080 501010000144 9010010000208 d011010000
17 111000181 511010001145 9110010001209 d111010001
18 121001082 521010010146 9210010010210 d211010010
19 131001183 531010011147 9310010011211 d311010011
20 141010084 541010100148 9410010100212 d411010100
21 151010185 551010101149 9510010101213 d511010101
22 161011086 561010110150 9610010110214 d611010110
23 171011187 571010111151 9710010111215 d711010111
24 181100088 581011000152 9810011000216 d811011000
25 191100189 591011001153 9910011001217 d911011001
26 1a1101090 5a1011010154 9a10011010218 da11011010
27 1b1101191 5b1011011155 9b10011011219 db11011011
28 1c1110092 5c1011100156 9c10011100220 dc11011100
29 1d1110193 5d1011101157 9d10011101221 dd11011101
30 1e1111094 5e1011110158 9e10011110222 de11011110
31 1f1111195 5f1011111159 9f10011111223 df11011111
32 2010000096 601100000160 a010100000224 e011100000
33 2110000197 611100001161 a110100001225 e111100001
34 2210001098 621100010162 a210100010226 e211100010
35 2310001199 631100011163 a310100011227 e311100011
36 24100100100 641100100164 a410100100228 e411100100
37 25100101101 651100101165 a510100101229 e511100101
38 26100110102 661100110166 a610100110230 e611100110
39 27100111103 671100111167 a710100111231 e711100111
40 28101000104 681101000168 a810101000232 e811101000
41 29101001105 691101001169 a910101001233 e911101001
42 2a101010106 6a1101010170 aa10101010234 ea11101010
43 2b101011107 6b1101011171 ab10101011235 eb11101011
44 2c101100108 6c1101100172 ac10101100236 ec11101100
45 2d101101109 6d1101101173 ad10101101237 ed11101101
46 2e101110110 6e1101110174 ae10101110238 ee11101110
47 2f101111111 6f1101111175 af10101111239 ef11101111
48 30110000112 701110000176 b010110000240 f011110000
49 31110001113 711110001177 b110110001241 f111110001
50 32110010114 721110010178 b210110010242 f211110010
51 33110011115 731110011179 b310110011243 f311110011
52 34110100116 741110100180 b410110100244 f411110100
53 35110101117 751110101181 b510110101245 f511110101
54 36110110118 761110110182 b610110110246 f611110110
55 37110111119 771110111183 b710110111247 f711110111
56 38111000120 781111000184 b810111000248 f811111000
57 39111001121 791111001185 b910111001249 f911111001
58 3a111010122 7a1111010186 ba10111010250 fa11111010
59 3b111011123 7b1111011187 bb10111011251 fb11111011
60 3c111100124 7c1111100188 bc10111100252 fc11111100
61 3d111101125 7d1111101189 bd10111101253 fd11111101
62 3e111110126 7e1111110190 be10111110254 fe11111110
63 3f111111127 7f1111111191 bf10111111255 ff11111111

 

И, напоследок — удобный online-калькулятор систем счисления тут>>>.


Раздел: HOWTO’s Разное

rtfm.co.ua

Таблица чисел в системах счисления

Таблица умножения чисел в шестнадцатеричной системе счисления

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

2

0

2

4

6

8

A

C

E

10

12

14

16

18

1A

1C

1E

3

0

3

6

9

C

F

12

15

18

1B

1E

21

24

27

2A

2D

4

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

5

0

5

A

F

14

19

1E

23

28

2D

32

37

3C

41

46

4B

6

0

6

C

12

18

1E

24

2A

30

36

3C

42

48

4E

54

5A

7

0

7

E

15

1C

23

2A

31

38

3F

46

4D

54

5B

62

69

8

0

8

10

18

20

28

30

38

40

48

50

58

60

68

70

78

9

0

9

12

1B

24

2D

36

3F

48

51

5A

63

6C

75

7E

87

A

0

A

14

1E

28

32

3C

46

50

5A

64

6E

78

82

8C

96

B

0

B

16

21

2C

37

42

4D

58

63

6E

79

84

8F

9A

A5

C

0

C

18

24

30

3C

48

54

60

6C

78

84

90

9C

A8

B4

D

0

D

1A

27

34

41

4E

5B

68

75

82

8F

9C

A9

B6

C3

E

0

E

1C

2A

38

46

54

62

70

7E

8C

9A

A8

B6

C4

D2

F

0

F

1E

2D

3C

4B

5A

69

78

87

96

A5

B4

C3

D2

E1

Таблица сложения чисел в шестнадцатеричной системе счисления

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

2

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

3

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

4

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

5

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

6

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

7

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

8

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

9

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

A

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

B

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

C

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

D

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

E

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

F

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

Таблица сложения чисел в восьмеричной системе счисления

0

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

1

1

2

3

4

5

6

7

10

2

2

3

4

5

6

7

10

11

3

3

4

5

6

7

10

11

12

4

4

5

6

7

10

11

12

13

5

5

6

7

10

11

12

13

14

6

6

7

10

11

12

13

14

15

7

7

10

11

12

13

14

15

16

Таблица умножения чисел в восьмеричной системе счисления

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

0

1

0

1

2

3

4

5

6

7

2

0

2

4

6

10

12

14

16

3

0

3

6

11

14

17

22

25

4

0

4

10

14

20

24

30

34

5

0

5

12

17

24

31

36

43

6

0

6

14

22

30

36

44

52

7

0

7

16

25

34

43

52

61

studfile.net

Методическая разработка по информатике и икт (10 класс) по теме: Таблица перевода из одной системы счисления в другую

По теме: методические разработки, презентации и конспекты

«Способы перевода из одной системы счисления в другую»

конспект и презентация…

Системы счисления. Перевод из одной системы счисления в другую.

Разработка урока «Системы счисления. Перевод из одной системы счисления в другую «…

Кодирование информации. Системы счисления. Перевод из одной системы счисления в другую.

В архиве приложены скриншоты презентации.Файл с презентацией полностью можно скачать по ссылке http://ultrashare.net/hosting/fl/7a2929007…

Системы счисления. Перевод чисел из одной системы счисления в другую систему счисления.

План-конспект урока с использованием ЭОР «Системы счисления. Перевод чисел из одной системы счисления в другую систему счисления»….

Урок-игра по информатике и ИКТ в 8 классе по теме: «Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»

Урок-игра по информатике и ИКТ в 8 классе по теме: «Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»…

«Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»

систематизировать знания учащихся по теме «Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»…

Открытый урок «Перевод из одной системы счисления в другую»

открытый урок по информатике для 9 класса…

nsportal.ru

Справочный материал по теме «Системы счисления»

Позиционные системы счисления

Система счисления

Основание

Алфавит

Десятичная

10

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Двоичная

2

0, 1

Троичная

3

0, 1, 2

Восьмеричная

8

0, 1, 2, 3, 4, 5, 6, 7

Шестнадцатеричная

16

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

А, B, C, D, E, F

10 11 12 13 14 15

Правила перевода чисел

1. Перевод целых чисел из ПСС с основанием q в 10-ю СС.

Чтобы перевести целое число из любой ПСС с основанием q в 10-ую СС, необходимо представить его в развёрнутом виде (составить сумму степенного ряда с основанием системы, в которой записано число), а затем выполнить арифметические действия. Например: перевод двоичного числа:

2. Перевод целых чисел из 10-ой СС в ПСС с основанием q.

Чтобы перевести целое 10-ое число в другую СС, необходимо осуществлять последовательное деление 10-ого числа и затем получаемых целых частных на основание той системы, в которую оно переводится, до тех пор, пока не получится частное, меньшее делителя. Число в новой системе записывается в виде остатков от деления, начиная с последнего частного.

Таблица степеней

Степень

0

1

2

3

4

5

6

7

8

9

10

2

1

2

4

8

16

32

64

128

256

512

1024

8

1

8

64

512

4096

16

1

16

256

4096

Двоичная арифметика

+

0

1

х

0

1

0

0

1

0

0

0

1

1

10

1

0

1

Связь родственных систем

Из 2-ичной в 8-ричную: 011 101  000 2

3 5 0 8

Из 2-ичной в 16-ричную: 1110 1000 2

Е 8 16

Из 8-ричной в 2-ичную: 3 5 0 8

011 101  000 2

Из 16-ричной в 2-ичную: Е 8 16

1110 1000 2

Таблица родственных систем счисления:

10-тичная

2-ичная

8-ричная

16-ричная

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

16

10000

20

10

infourok.ru

Перевод чисел из одной системы счисления в другую онлайн

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.

 Результат уже получен!

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число6372
позиция3210

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·103+3·102+7·101+2·100.

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число1287.923
позиция3210 -1-2-3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.

В общем случае формулу можно представить в следующем виде:

Цn·snn-1·sn-1+…+Ц1·s10·s0-1·s-1-2·s-2+…+Д-k·s-k

(1)

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
102816
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

 

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

1592      
158792     
178392    
 138192   
  11892  
   1842 
    1422
     021
      0 

Рис. 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

15910=100111112.

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

6158  
608768 
77298
 481
  1 

Рис. 2

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

61510=11478.

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

1967316  
19664122916 
912167616
 13644
  12 

Рис. 3

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

  0.214
 x2
0 0.428
 x2
0 0.856
 x2
1 0.712
 x2
1 0.424
 x2
0 0.848
 x2
1 0.696
 x2
1 0.392

Рис. 4

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.

Следовательно можно записать:

0.21410=0.00110112.

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

  0.125
 x2
0 0.25
 x2
0 0.5
 x2
1 0.0

Рис. 5

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.12510=0.0012.

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

  0.214
 x16
3 0.424
 x16
6 0.784
 x16
12 0.544
 x16
8 0.704
 x16
11 0.264
 x16
4 0.224

Рис. 6

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.21410=0.36C8B416.

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

  0.512
 x8
4 0.096
 x8
0 0.768
 x8
6 0.144
 x8
1 0.152
 x8
1 0.216
 x8
1 0.728

Рис. 7

Получили:

0.51210=0.4061118.

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.12510=10011111.0012.

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

19673.21410=4CD9.36C8B416.

matworld.ru

двоичная, восьмеричная, шестнадцатеричная — урок. Информатика, 8 класс.

Для кодирования информации в компьютере вместо привычной десятичной системы счисления используется двоичная система счисления.

Двоичной системой счисления люди начали пользоваться очень давно. Древние племена Австралии и островов Полинезии использовали эту систему в быту. Так, полинезийцы передавали необходимую  информацию, выполняя два вида ударов по барабану: звонкий и глухой. Это было примитивное представление двоичной системы счисления.

Двоичной системой счисления называется позиционная система счисления с основанием \(2\).

Для записи чисел в ней использовали только две цифры:  \(0\) и \(1\).

Для обозначения системы счисления, в которой представляется число, используют нижний индекс, указывающий основание системы. Например, 110112 —  число в двоичной системе счисления.

 

Цифры в двоичном числе являются коэффициентами его представления в виде суммы степеней с основанием \(2\), например:

 

1012=1 ·22+0 ·21+1 ·20.

 

В десятичной системе счисления это число будет выглядеть так:

 

1012=4+0+1=5.

 

Для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на \(2\) до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём десятичное число \(13\) в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

 

 

Получили 1310=11012.

Пример:

Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:

 

\(224\)

\(112\)

\(56\)

\(28\)

\(14\)

\(7\)

\(3\)

\(1\)

\(0\)

\(0\)

\(0\)

\(0\)

\(0\)

\(1\)

\(1\)

\(1\)

 

22410=111000002.

Восьмеричной системой счисления называется позиционная система счисления с основанием \(8\).

 

Для записи чисел в восьмеричной системе счисления используются цифры:  \(0\), \(1\), \(2\), \(3\), \(4\), \(5\), \(6\), \(7\).

Для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём восьмеричное число  154368 в десятичную систему счисления.

154368=1 ·84+5 ·83+4 ·82+3 ·81+6 ·80=694210

Пример:

Переведём десятичное число \(94\) в восьмеричную систему счисления.

 

 

9410=1368

Шестнадцатеричной системой счисления называется позиционная система счисления с основанием \(16\).

 

Для записи чисел в шестнадцатеричной системе счисления используются цифры:  \(0\), \(1\), \(2\), \(3\), \(4\), \(5\), \(6\), \(7\), \(8\), \(9\) и латинские буквы A, B, C, D, E, F. Буквы A, B, C, D, E, F имеют значения 1010, 1110, 1210, 1310, 1410, 1510.

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Для перевода целого десятичного числа в шестнадцатеричную  систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на \(16\) до тех пор, пока не получим частное, равное нулю. Исходное число в системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём шестнадцатеричное число \(2\)\(A7\) в десятичное. В соответствии с вышеуказанными правилом представим его в виде суммы степеней с основанием \(16\):

2A716=2 ·162+10 ·161+7 ·160=512+160+7=679.

Пример:

Переведём десятичное число \(158\) в шестнадцатеричную систему счисления.

 

 

15810=9E16.

Для перевода числа из любой позиционной системы счисления в десятичную необходима использовать развернутую формулу числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами.

Для перевода целых чисел десятичной системы счисления в число любой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы счисление, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

www.yaklass.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *