Удельное сопротивление. Реостаты — урок. Физика, 8 класс.
Для рассмотрения характеристик электрических параметров рассмотрим назначение приборов:
- сила тока в цепи определяется амперметров, который подключается последовательно с соблюдением полярности;
- напряжение на участке цепи измеряется вольтметром, который подключается параллельно к тому участку или прибору, на котором нужно узнать разность потенциалов или напряжения;
- на деревянной изолирующей подставке — устройство, имеющее провода с различными значениями сопротивления;
- значение тока можно регулировать реостатом.
В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
Впервые зависимость сопротивления проводника от вещества, из которого он изготовлен, и от длины проводника обнаружил немецкий физик Георг Ом. Он установил:
Сопротивление проводника напрямую зависит от его длины и материала, но обратным образом зависит от площади поперечного сечения проводника.
Обрати внимание!
Из этого можно сделать вывод: чем длиннее проводник, тем больше его электрическое сопротивление.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.
Удельное электрическое сопротивление — физическая величина \(\rho\), характеризующая свойство материала оказывать сопротивление прохождению электрического тока:
Определим единицу удельного сопротивления. Воспользуемся формулой ρ=R⋅Sl.
Как известно, единицей электрического сопротивления является \(1\) Ом, единицей площади поперечного сечения проводника — \(1\) м², а единицей длины проводника — \(1\) м. Подставляя в формулу, получаем:
1 Ом ⋅1м21 м=1 Ом ⋅1 м, т.е. единицей удельного сопротивления будет Ом⋅м.
На практике (например, в магазине при продаже проводов) площадь поперечного сечения проводника измеряют в квадратных миллиметрах, В этом случае единицей удельного сопротивления будет:
1 Ом ⋅1мм21 м, т.е. Ом⋅мм2м.
В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.
Обрати внимание!
Удельное сопротивление с изменением температуры меняется.
Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.
Обрати внимание!
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. А это значит, что медь и серебро лучше остальных проводят электрический ток.
При проводке электрических цепей, например, в квартирах не используют серебро, т.к. это дорого. Зато используют медь и алюминий, так как эти вещества обладают малым удельным сопротивлением.
Обрати внимание!
Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.
На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.
Реостат — это резистор, значение сопротивления которого можно менять.
Реостаты используют в цепи для изменения значений силы тока и напряжения.
Реостат на рисунке состоит из провода с большим удельным сопротивлением (никелин, нихром), по которому передвигается подвижный контакт \(C\) по длине провода, плавно изменяя сопротивление реостата. Сопротивление такого реостата пропорционально длине провода между подвижным контактом \(C\) и неподвижным \(A\). Чем длиннее провод, тем больше сопротивление участка цепи и меньше сила тока. С помощью вольтметра и амперметра можно проследить эту зависимость.
На школьных лабораторных занятиях используют переменное сопротивление — ползунковый реостат.
Он состоит из изолирующего керамического цилиндра, на который намотан провод с большим удельным сопротивлением. {-2}}=100$$
Ответ. n=100
Читать дальше: Формула внутренней энергии.
от чего зависит сопротивление проводника, формулы для расчета
Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.
Физический смысл сопротивления
Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева , а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.
При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.
Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.
Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:
- Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
- Полупроводники (могут проводить электрический ток, но при определенных условиях).
Обозначается эта характеристика буквой R и измеряется в Омах (Ом). Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.
Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.
Расчет электрической проводимости
Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.
Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.
Для полного участка цепи эта формула принимает следующий вид: R = (U / I) — Rвн, где Rвн — внутреннее R источника питания.
Зависимость проводимости материала
Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.
В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.
От чего зависит сопротивление: от длины проводника — l, удельного сопротивления — p и от площади сечения (с радиусом r) — S = Пи * r * r.
Формула R проводника: R = p * l / S.
Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p — это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².
Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.
Влияние температуры окружающей среды
Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.
Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.
Схема 1 — Электрическая цепь для проведения опыта
Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.
Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.
Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l — не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура окружающей среды и a — коэффициент пропорциональности (температурный коэффициент).
Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.
Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро — удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.
Деформация и удельное сопротивление
При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.
При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться. При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.
Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.
Цепи переменного тока
Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.
Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.
При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).
Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.
Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:
- Измеряется частота переменного тока (как правило, 50 Гц).
- Умножается на 6,283.
Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).
Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:
- Длины проводника.
- Площади сечения — S.
- Температуры.
- Типа материала.
- Емкости.
- Индуктивности.
- Частоты.
Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z. Меняется и закон для полной цепи.
Измерение электрической проводимости
Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.
Измеряют R все комбинированные приборы, такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).
Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.
При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:
- Вытянуть вилку из сети.
- Включить прибор, при этом произойдет разрядка конденсаторов.
- Приступить к измерению или прозвонке.
- Установить переключатель в режим измерения сопротивления.
- Закоротить щупы прибора, чтобы удостовериться в его работоспособности (покажет очень малое сопротивление).
- Измерить необходимый участок.
В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.
Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника. В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока. Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.
Электрический проводник. Сопротивление, сечение, длина
Электрический проводник. Сопротивление, сечение, длинаПрограмма КИП и А
Windows ⁄ Android ⁄ macOS ⁄ iOSВ электротехнике иногда приходится рассчитывать параметры проводника в зависимости от вещества, из которого он сделан, сопротивления, сечения, длины и температуры. В программу КИП и А встроен модуль, позволяющий рассчитать:
- Сопротивление электрического проводника, по его длине, сечению, температуре и вещества, из которого он изготовлен.
- Длину электрического проводника, по его сечению, температуре и вещества, из которого он изготовлен.
- Сечение электрического проводника, по заданному току ⁄ мощности.
Электрические свойства проводника в большой степени зависят от вещества из которого он сделан. Важнейшими являются:
- Удельное сопротивление вещества проводника [ρ], измеряется в Ом·м в международной системе единиц (СИ). Это означает, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом.
Также довольно часто применяется внесистемная единица Ом·мм²/м.
1 Ом·мм²/м = 10−6 Ом·м - Температурный коэффициент электрического сопротивления [α], характеризует зависимость электрического сопротивления от температуры и измеряется в Кельвин в минус первой степени K−1. Это величина, равная относительному изменению удельного ⁄ электрического сопротивления вещества при изменении температуры на единицу. Расчет удельного сопротивления ρt при произвольной температуре t производится по классической формуле (1):
ρt = ρ20[1 + α(t — 20)]
ρt — удельное сопротивление при температуре t
t — температура
ρ20 — удельное сопротивление при температуре 20°C
α — температурный коэффициент сопротивления
Формула применима в небольшом диапазоне температур: от 0 до 100 °C. Вне этого диапазона или для точных результатов применяют более сложные вычисления.
Ниже приведена таблица наиболее популярных металлов для изготовления проводников, с их удельными сопротивлениями и температурными коэффициентами электрического сопротивления. Данные таблицы взяты из различных источников. Следует обратить внимание на то, что и удельное сопротивление проводника, и его температурный коэффициент электрического сопротивления зависят от чистоты металла, а в случае сплавов (сталь) могут существенно отличаться от марки к марке.
Таблица 1 | ||
Металл | Удельное сопротив при t = 20 °C, Ом·мм²/м | Температурный коэффициент электрического сопротивления [α], K−1 |
Медь | 0.0175 | 0.0043 |
Алюминий | 0.0271 | 0.0039 |
Сталь | 0.125 | 0.006 |
Серебро | 0.016 | 0.0041 |
Золото | 0.023 | 0.004 |
Платина | 0.107 | 0.0039 |
Магний | 0.044 | 0.0039 |
Цинк | 0.059 | 0.0042 |
Олово | 0.12 | 0.0044 |
Вольфрам | 0.055 | 0.005 |
Никель | 0.087 | 0.0065 |
Никелин | 0.42 | 0.0001 |
Нихром | 1.1 | 0.0001 |
Фехраль | 1.25 | 0.0002 |
Хромаль | 1.4 | 0.0001 |
Программа КИП и А при вычислении свойств электрического проводника оперирует со следующими входными ⁄ выходными параметрами и их единицами измерения:
- Вещество, из которого изготовлен проводник (Смотрите таблицу 1)
- Длина проводника. мм, см, м, км, дюймы, футы, ярды
- Температура проводника. °C, °F
- Диаметр проводника. мм
- Сечение проводника. мм², kcmil
kcmil — тысяча круговых мил = 0.5067 мм² - Сопротивление проводника. Ом, кОм, МОм
Ниже, на рисунках представлены скриншоты модулей программы КИП и А по расчету параметров проводника.
Рисунок 1
Рисунок 2
Рисунок 3
Расчет сопротивления электрического проводника
Сопротивление электрического проводника рассчитываем по формуле:
R = ρ * L / S
- R — сопротивление электрического проводника
- ρ — удельное сопротивление проводника
вычисляется по формуле (1): ρ = ρ20[1 + α(t — 20)]- ρ20 — удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
- t — температура проводника
- α — температурный коэффициент электрического сопротивления (Таблица 1)
- L — длина электрического проводника
- S — сечение электрического проводника
Расчет длины электрического проводника
Длину электрического проводника рассчитываем по формуле:
L = R * S / ρ
- L — длина электрического проводника
- R — сопротивление электрического проводника
- S — сечение электрического проводника
- ρ — удельное сопротивление проводника
вычисляется по формуле (1): ρ = ρ20[1 + α(t — 20)]- ρ20 — удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
- t — температура проводника
- α — температурный коэффициент электрического сопротивления (Таблица 1)
Расчет сечения электрического проводника
Минимальное сечение электрического проводника при допустимых потерях напряжения рассчитываем по формуле:
S = I * ρ * L / ΔU
- S — сечение электрического проводника
- I — сила тока в электрической цепи
- L — длина электрического проводника
при двухпроводной линии, длина проводника (значение L) удваивается - ΔU — допустимые потери напряжения
- ρ — удельное сопротивление проводника
вычисляется по формуле (1): ρ = ρ20[1 + α(t — 20)]- ρ20 — удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
- t — температура проводника
- α — температурный коэффициент электрического сопротивления (Таблица 1)
От чего зависит сопротивление
☰
Сила тока в проводнике прямо пропорциональна напряжению на нем. Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.
Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.
Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.
Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.
Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.
От чего же зависит сопротивление проводника? Оно зависти от
- длины проводника,
- площади его поперечного сечения,
- вещества, из которого изготовлен проводник,
- температуры.
Чтобы связать вещество и его сопротивление, вводится такое понятие как удельное сопротивление вещества. Оно показывает, какое будет сопротивление в данном веществе, если проводник из него будет иметь длину 1 м и площадь поперечного сечения 1 м2. Проводники такой длины и толщины, изготовленные из разных веществ, будут иметь разные сопротивления. Это связано с тем, что у каждого металла (чаще всего именно они являются проводниками) своя кристаллическая решетка, свое количество свободных электронов.
Чем меньше удельное сопротивление вещества, тем лучшим проводником электрического тока оно является. Маленьким удельным сопротивлением обладают, например, серебро, медь, алюминий; куда большее у железа, вольфрама; очень большое у различных сплавов.
Чем длиннее проводник, тем большее сопротивление он имеет. Это становится понятно, если принять во внимание, что движению электронов в металлах мешают ионы, составляющие кристаллическую решетку. Чем их больше, т. е. чем длиннее проводник, тем больше у электрона шанс замедлить свой путь.
Однако увеличение площади поперечного сечения делает как бы дорогу шире. Электронам легче течь и не сталкиваться с узлами кристаллической решетки. Поэтому чем толще проводник, тем его сопротивление меньше.
Таким образом, сопротивление прямо пропорционально зависит от удельного сопротивления (ρ) и длины (l) проводника и обратно пропорционально зависит от площади (S) его поперечного сечения. Получаем формулу сопротивления:
R = ρl/S
В этой формуле на первый взгляд не отражается зависимость сопротивления проводника от его температуры. Однако удельное сопротивление вещества меряется при определенной температуре (обычно 20 °C). Поэтому температура учитывается. Для вычислений удельные сопротивления берут из специальных таблиц.
Для металлических проводников чем больше температура, тем сопротивление больше. Это связано с тем, что при повышении температуры ионы решетки начинают сильнее колебаться и больше мешать движению электронов. Однако в электролитах (растворах, где заряд несут ионы, а не электроны) с повышением температуры сопротивление уменьшается. Здесь это связано с тем, что чем выше температура, тем больше происходит диссоциация на ионы, и они быстрее двигаются в растворе.
Расчёт сопротивления проводника | Частная школа. 8 класс
Конспект по физике для 8 класса «Расчёт сопротивления проводника». От каких параметров зависит сопротивление проводника. Что такое удельное сопротивление проводника. Для чего используют реостаты.
Конспекты по физике Учебник физики Тесты по физике
Расчёт сопротивления проводника
Опыты показывают, что разные проводники обладают разным сопротивлением. С какими свойствами нужно выбрать проводник, чтобы при заданном значении напряжения обеспечить необходимую силу тока в цепи?
ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ЕГО ДЛИНЫ
В цепь, состоящую из источника тока, лампочки, амперметра и ключа, включён проводник в виде нихромовой проволоки длиной 1 м и площадью поперечного сечения 0,4 мм2 (зажимы 1 и 2). Если замкнуть цепь, то лампочка загорится, а показания амперметра составят 1 А. Что произойдёт, если увеличить длину нихромовой проволоки в 2 раза, добавив в цепь проволоку такой же длины и сечения (зажимы 1 и 3)?
Замкнув цепь, заметим, что показания амперметра уменьшились в 2 раза. При этом яркость лампочки также уменьшилась. Если длину проводника увеличить в 3 раза, то сила тока уменьшится в 3 раза. Итак, увеличение длины проводника, включённого в цепь, приводит к уменьшению силы тока в цепи. По закону Ома сила тока обратно пропорционально сопротивлению проводника: I = U/R. Таким образом, чем больше длина проводника, тем больше его сопротивление, или можно сказать, что сопротивление проводника прямо пропорционально его длине: R ~ I.
ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ПЛОЩАДИ ЕГО ПОПЕРЕЧНОГО СЕЧЕНИЯ
Продолжим опыт. В цепь включим два нихромовых проводника длиной по 1 м и площадями поперечного сечения 0,4 и 0,1 мм2 соответственно (зажимы 1—2 и 4—5). Поочерёдно включая их в цепь, заметим, что показания амперметра больше для проводника с большей площадью поперечного сечения.
Таким образом, чем больше площадь поперечного сечения проводника (при условии, что их длина и материал, из которого они изготовлены, одинаковы), тем больше сила тока в цепи. Это означает, что сопротивление проводника обратно пропорционально площади его поперечного сечения: R ~ 1 /S.
ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ МАТЕРИАЛА, ИЗ КОТОРОГО ОН ИЗГОТОВЛЕН
До сих пор мы проводили опыты с проводниками из одного материала, различающимися лишь размерами. Как вы думаете, будет ли зависеть сопротивление от материала, из которого изготовлен проводник?
Воспользуемся выше приведённой цепью. Подключим в неё два проводника длиной по 1 м и площадью поперечного сечения по 0,4 мм2, один из которых изготовлен из меди, а другой из нихрома (зажимы 1—2 и 8—9). Поочерёдно включая их в цепь, мы заметим, что показания амперметра больше, когда в цепь включён медный проводник, чем когда в цепь включён проводник из нихрома. Это означает, что сопротивления проводников, изготовленных из разных материалов, различны. Следовательно, сопротивление зависит от материала, из которого изготовлен проводник.
УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ПРОВОДНИКА
Итак, сопротивление проводника прямо пропорционально его длине и обратно пропорционально его сечению. Коэффициент пропорциональности, отражающий зависимость сопротивления от свойств материала, обозначается буквой р и называется удельным сопротивлением проводника. Таким образом, можно записать: R = pl/S.
Удельное сопротивление проводника — это физическая величина, которая показывает, каким сопротивлением обладает изготовленный из данного вещества проводник длиной 1 м и площадью поперечного сечения 1 мм2.
Единицей сопротивления в СИ является Ом. Поэтому единицей удельного сопротивления является Ом • м (ом-метр). На практике часто используется внесистемная единица Ом • мм2/м.
Значения удельного сопротивления для разных проводников получают опытным путём. Результаты измерений занесены в справочные таблицы.
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Это лучшие проводники электричества. Фарфор и эбонит имеют такое большое удельное сопротивление, что почти не проводят электрический ток.
Для изготовления проводов чаще всего используют алюминий, железо или медь.
Удельное сопротивление вещества зависит от его температуры. Например, для металлов с ростом температуры растёт и удельное сопротивление. Этот факт приходится учитывать на практике при точных расчётах спиралей электронагревательных приборов. У электролитов, наоборот, при повышении температуры удельное сопротивление уменьшается.
Для решения ряда практических задач часто требуется либо увеличивать, либо уменьшать силу тока в цепи. Изменение силы тока в цепи происходит при изменении сопротивления.
Прибор, позволяющий плавно регулировать силу тока в цепи, называют реостатом. В ползунковом реостате проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.
Сопротивление проводника не зависит от значений тока и напряжения, а определяется его геометрическими размерами и зависит от материала, из которого он изготовлен.
Вы смотрели Конспект по физике для 8 класса «Расчёт сопротивления проводника».
Вернуться к Списку конспектов по физике (Оглавление).
Просмотров: 1 564
Электрическое сопротивление проводников. Единицы сопротивления
1035. Выразите в омах значения следующих сопротивлений: 500 мОм; 0,2 кОм; 80 МОм.
1036. Два провода изготовлены из одного материала и площади их сечений одинаковы. Во сколько раз сопротивление одного провода (длиной 10 м) больше сопротивления другого провода (длиной 1,5 м)?
1037. Каково сопротивление медной струны сечением 0,1 мм² и длиной 10 м.
1038. Железная и медная проволоки равной длины имеют одинаковые сечения. Одинаково ли сопротивление проволок? Если нет, то какая из них будет иметь большее сопротивление и во сколько раз?
1039. Медный тросик имеет длину 100 м и поперечное сечение 2 мм²? Чему равно его сопротивление?
1040. В электрической цепи общая длина подводящих железных проводов сечением 1 мм² равна 5 м. Определите сопротивление подводящих проводов.
1041. На рисунке 101 изображены медный, алюминиевый и железный проводники. Вычислите сопротивление каждого проводника.
1042. Медный трамвайный провод имеет длину 3 км и площадь поперечного сечения 30 мм2. Чему равно сопротивление провода?
1043. Имеются две проволоки одинакового сечения и материала. Длина первой 20 см, а второй 1,5 м. Сопротивление какой проволоки больше и во сколько раз? Почему?
1044. Имеются две проволоки одинаковой длины и материала. Сечение одной проволоки 0,2 см2, а другой 4 мм2. Сопротивление какой проволоки больше и во сколько раз? Почему?
1045. Имеются две проволоки одного и того же материала. Длина первой проволоки 5 м, а второй 0,5 м; сечение первой 0,15 см2, а второй 3 мм2. Сопротивление какой проволоки больше и во сколько раз?
1046. Имеются два алюминиевых провода одинаковой длины, но разного сечения. Сечение первого 0,1 см², а второго 2 мм². Сопротивление первого 2 Ом. Определите сопротивление второго. (Задачу следует решать, не прибегая к формуле.)
1047. Удельное сопротивление никелина 0,45 мкОм • м. Объясните, что это значит.
Сопротивление одного метра никелинового проводника сечением 1 м² равно 0,45 мкОм.
1048. Подсчитайте в уме (конечно, не прибегая к формуле), какое сопротивление имеет алюминиевый провод длиной 20 м и сечением 1 мм².
В 20 раз больше удельного сопротивления алюминия Ral = 0,56 Ом.
1049. Подсчитайте в уме сопротивление никелиновой проволоки длиной 1 м и сечением 0,1 мм2.
1050. Какого сечения нужно взять алюминиевую проволоку, чтобы ее сопротивление было такое же, как у медной проволоки сечением 2 мм², если длины обеих проволок одинаковы?
1051. Рассчитайте по формуле сопротивление километра медного трамвайного провода, если его сечение 0,65 см².
1052. Длина медных проводов, соединяющих энергоподстанцию с потребителем электроэнергии, равна 2 км. Определите сопротивление проводов, если сечение их равно 50 мм².
1053. В автомобильном аккумуляторе площадь поверхности пластинок S = 300 см2, расстояние между ними 2 см. Пластинки погружены в 20%-ный раствор серной кислоты с удельным сопротивлением ρ = 0,015 Ом • м. Определите сопротивление слоя кислоты между пластинками.
1054. Телеграфный провод между Москвой и Санкт-Петербургом сделан из железной проволоки диаметром 4 мм. Определите сопротивление провода, если расстояние между городами около 650 км.
1055. Каково сопротивление платиновой нити, радиус сечения которой 0,2 мм, а длина равна 6 см?
1056. Какова длина медной проволоки сечением 0,8 мм2 и сопротивлением 2 Ом?
1057. Четыре провода — медный, алюминиевый, железный и никелиновый — с одинаковым сечением 1 мм² имеют одинаковое сопротивление 10 Ом. Какова длина каждого провода?
1058. Медная и алюминиевая проволоки имеют одинаковую длину. Какое сечение должно быть у алюминиевой проволоки, чтобы ее сопротивление было таким же, как у медной проволоки с площадью поперечного сечения 2 мм²?
1059. Для реостата, рассчитанного на 20 Ом, используют никелиновую проволоку длиной 100 м. Найдите сечение проволоки.
1060. Железная проволока сопротивлением 2 Ом имеет длину 8 м. Каково ее сечение?
1061. Длина металлической нити электролампочки равна 25 см, удельное электрическое сопротивление материала нити ρ = 0,2 Ом • м. Каково сечение нити, если ее сопротивление в нагретом состоянии равно 200 Ом?
1062. Для реостата, рассчитанного на 20 Ом, нужно взять никелиновую проволоку длиной 5 м. Какого сечения должна быть проволока?
1063. Если вместо никелиновой проволоки в предыдущей задаче взять для реостата железную проволоку такого же размера, то каково будет сопротивление реостата?
1064. Может ли медный провод длиной 100 м с поперечным сечением 4 мм² иметь сопротивление 5 Ом?
1065. Медная спираль, состоящая из 200 витков проволоки сечением 1 мм², имеет диаметр 5 см. Определите сопротивление спирали.
1066. По никелиновому проводнику длиной 10 м, сечением 0,5 мм2 проходит ток силой 1 А….
1067. Вычислить удельное сопротивление круглого провода, диаметр сечения которого 1 см, если кусок этого провода длиной 2,5 м имеет сопротивление 0,00055 Ом.
1068. Чему равно удельное сопротивление ртути при 0 °С?
1069. Два куска железной проволоки имеют одинаковый вес, а длина одного из этих кусков в 10 раз больше длины другого….
1070. Какой длины потребуется взять константановую проволоку сечением 1 мм2 для изготовления эталона в 2 Ом?
1071. Из манганиновой проволоки изготовлен эталон, который имеет сопротивление 100 Ом при 15 °С. Каково будет сопротивление этого эталона при 5 °С?
1072. Сколько требуется меди на провод длиной 10 км, сопротивление которого должно быть 10 Ом? Плотность меди ρ = 8,5 г/см3.
1073. Для изготовления реостата сопротивлением 2 Ом взяли железную проволоку сечением 3 мм². Определите массу проволоки.
1074. Никелиновая спираль электроплитки имеет длину 5 м и площадь поперечного сечения 0,1 мм². Плитку включают в сеть с напряжением 220 В. Какой силы ток будет в спирали в момент включения электроплитки?
1075. Через реостат течет ток силой 2,4 А. Каково напряжение на реостате, если он изготовлен из константа- новой проволоки длиной 20 м и сечением 0,5 мм²?
1076. Каково напряжение на концах железной проволоки длиной 12 см и площадью поперечного сечения 0,04 мм², если сила тока, текущего через эту проволоку, равна 240 мА?
1077. Для изготовления нагревательного прибора, рассчитанного на напряжение 220 В и силу тока 2 А, необходима никелиновая проволока диаметром 0,5 мм. Какой длины надо взять проволоку?
Сопротивление в проводниках
- Изучив этот раздел, вы сможете:
- • Рассчитайте размеры проводника.
- • Опишите влияние длины и площади поперечного сечения на сопротивление проводника.
Как размеры проводника влияют на его сопротивление
Проводник — это любой материал, позволяющий протекать через него электрическому току.Способность любого проводника в электрической цепи пропускать ток оценивается по его электрическому СОПРОТИВЛЕНИЮ. Сопротивление — это способность противодействовать прохождению электрического тока. Напряжение — это электрическая сила, которая заставляет ток течь через проводник, но чем больше значение сопротивления любого проводника, тем меньше тока будет протекать при любом конкретном значении приложенного напряжения. Сопротивление проводника в основном зависит от трех факторов:
Рис. 1.3.1 Расчет размеров проводника
1. ДЛИНА проводника.
2. ПЛОЩАДЬ ПОПЕРЕЧНЯ кондуктора.
3. МАТЕРИАЛ, из которого изготовлен проводник.
Поскольку сопротивление больше в более длинных проводниках, чем в более коротких, то:
СОПРОТИВЛЕНИЕ (R) ПРОПОРЦИОНАЛЬНО ДЛЯ ДЛИНЫ (L)
и записывается как R ∝ L (∝ означает пропорционально …)
Следовательно, чем длиннее проводник, тем больше сопротивление и, следовательно, меньше ток.
Также, поскольку сопротивление меньше в проводниках с большой площадью поперечного сечения:
СОПРОТИВЛЕНИЕ (R) ОБРАТНО ПРОПОРЦИОНАЛЬНО ПОПЕРЕЧНОЙ ПЛОЩАДИ (A)
, который записывается как R ∝ 1 / A (или R ∝ A -1 ).
Чем больше площадь поперечного сечения, тем больше тока может протекать по проводнику, поэтому тем меньше значение сопротивления проводника.
Круглые проводники
Если проводник имеет круглое поперечное сечение, площадь круга можно определить по формуле:
π r 2 Где π = 3,142, а r — радиус окружности.
Если поперечное сечение проводника квадратное или прямоугольное, площадь поперечного сечения проводника все же можно определить, просто умножив ширину на высоту.Большинство проводников, используемых в кабелях и т. Д., Конечно, имеют круглое поперечное сечение.
Материал, из которого изготовлен проводник, также влияет на его сопротивление, величина которого зависит от СОПРОТИВЛЕНИЯ материала, описанного в Модуле 1.4 резисторов и схем.
Калькулятор сопротивления провода
С помощью этого калькулятора сопротивления провода можно быстро вычислить электрические свойства конкретного провода — его сопротивление и проводимость. Сопротивление описывает, насколько сильно данный кабель препятствует прохождению электрического тока, а проводимость измеряет способность провода проводить его.С ними также связаны две физические величины — удельное электрическое сопротивление и электропроводность. Прочитав приведенный ниже текст, вы, например, узнаете, как можно оценить сопротивление провода, используя формулу сопротивления (так называемый закон Пуйе).
В настоящее время одним из наиболее часто используемых проводников является медь, которую можно найти почти в каждом электрическом устройстве. Прочтите, если вы хотите узнать, что такое проводимость меди и удельное сопротивление меди, а также какие единицы удельного сопротивления и единицы проводимости использовать.Вы также можете рассчитать падение напряжения на конкретном проводе — в этом случае попробуйте наш калькулятор падения напряжения!
Единицы удельного сопротивления и электропроводности
Удельное сопротивление ρ
, в отличие от сопротивления, является внутренним свойством материала. Это значит, что неважно, толстая или тонкая проволока, длинная или короткая. Удельное сопротивление всегда будет одинаковым для конкретного материала, а единицы удельного сопротивления — «омметр» ( Ом * м
). Чем выше удельное сопротивление, тем труднее протекать току через провод.Вы можете проверить наш калькулятор скорости дрейфа, чтобы узнать, насколько быстро проходит электричество.
С другой стороны, у нас есть проводимость σ
, которая строго связана с удельным сопротивлением. В частности, он определяется как обратное: σ = 1 / ρ
. Как и удельное сопротивление, это внутреннее свойство материала, но единицы проводимости — «сименс на метр» ( См / м
). Электрический ток может плавно течь по проводу при высокой проводимости.
В некоторых материалах при очень низких температурах мы можем наблюдать явление, называемое сверхпроводимостью.Сопротивление в сверхпроводнике резко падает до нуля, и, таким образом, проводимость приближается к бесконечности. Можно сказать, что это идеальный дирижер. Сверхпроводимость также связана с левитацией, которую мы описали в нашем калькуляторе магнитной проницаемости.
Формула проводимости и формула сопротивления
И проводимость, и сопротивление зависят от геометрических размеров провода. В нашем калькуляторе сопротивления проводов используется следующая формула сопротивления:
R = ρ * L / A
где
-
R
— сопротивление в Ом, -
ρ
— удельное сопротивление материала в Ом * м, -
L
— длина провода, -
A
— площадь поперечного сечения провода.
Вы также можете использовать этот калькулятор сопротивления проводов для оценки проводимости, так как:
G = σ * A / L
где
-
G
— проводимость в сименсах (S), -
σ
— проводимость в См / м, -
L
иA
сохраняют то же значение.
В расширенном режиме вы можете напрямую изменять значения удельного сопротивления ρ
и проводимости σ
.Комбинируя два приведенных выше уравнения с соотношением ρ = 1 / σ
, мы получаем аналогичную связь между сопротивлением и проводимостью:
R = 1 / G
Вы уже рассчитали сопротивление вашего провода? Попробуйте наш калькулятор последовательных резисторов и параллельный калькулятор резисторов, чтобы узнать, как можно рассчитать эквивалентное сопротивление различных электрических цепей.
Электропроводность меди и удельное сопротивление меди
Такие материалы, как медь и алюминий, имеют низкий уровень удельного сопротивления, что делает эти материалы идеальными для производства электрических проводов и кабелей.(-8) Ом * м .
Удельное сопротивление | Физика проводников и изоляторов
Расчет сопротивления проводов
Номинальная допустимая токовая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания. Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела.В этом случае падение напряжения из-за сопротивления проводов может вызвать технические проблемы, будучи в пределах безопасных (пожарных) пределов допустимой нагрузки:
Если нагрузка в приведенной выше схеме не выдерживает напряжения ниже 220 В при напряжении источника 230 В, тогда нам лучше убедиться, что проводка не упадет более чем на 10 вольт по пути. Если подсчитать как питающие, так и обратные проводники этой цепи, это оставляет максимально допустимое падение в 5 вольт по длине каждого провода.Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:
Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для определенного размера и длины провода? Для этого нам понадобится другая формула:
Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.
Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):
Удельное сопротивление при 20 градусах Цельсия
Материал | Элемент / Сплав | (Ом-смил / фут) | (мкОм-см) |
---|---|---|---|
нихром | Сплав | 675 | 112,2 |
Нихром В | Сплав | 650 | 108,1 |
Манганин | Сплав | 290 | 48.21 |
Константан | Сплав | 272,97 | 45,38 |
Сталь * | Сплав | 100 | 16,62 |
Платина | Элемент | 63,16 | 10,5 |
Утюг | Элемент | 57,81 | 9,61 |
Никель | Элемент | 41,69 | 6,93 |
цинк | Элемент | 35.49 | 5,90 |
молибден | Элемент | 32,12 | 5,34 |
Вольфрам | Элемент | 31,76 | 5,28 |
Алюминий | Элемент | 15,94 | 2,650 |
Золото | Элемент | 13,32 | 2,214 |
Медь | Элемент | 10,09 | 1.678 |
Серебро | Элемент | 9,546 | 1,587 |
* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%
Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы ожидаем использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.
Метрическая единица измерения удельного сопротивления — ом-метр (Ом-м) или ом-сантиметр (Ом-см), с 1,66243 x 10 -9 Ом-метров на Ом-смил / фут (1,66243 x 10 -7 Ом-см на Ом-см-дюйм). В столбце таблицы Ом-см цифры фактически масштабированы как мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.
При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь — в квадратных метрах.При использовании единицы Ом-сантиметр (Ом-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.
Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см). Однако можно предпочесть использовать Ом-см-мил / фут при работе с круглым проводом, площадь поперечного сечения которого уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлической заготовки, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления Ом-метр или Ом-см.
Решение
Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:
Алгебраически решая относительно A, мы получаем значение 116035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что проволока «двойной длины» (2/0) с длиной 133 100 см является достаточной, в то время как следующий меньший размер, «одинарная проводка» (1/0) с длиной 105 500 см слишком мала. .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медных проводов на открытом воздухе, достаточно было бы провода калибра 14 (что касается , а не , вызывающего пожар). Однако с точки зрения падения напряжения провод 14-го калибра был бы совершенно неприемлемым.
Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы все еще используем медь в качестве материала для проволоки (хороший выбор, если только мы не действительно богаты и не можем позволить себе 4600 футов серебряной проволоки 14 калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см · дюйм :
Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый кусок провода в цепи имеет сопротивление 5,651 Ом:
Наше общее сопротивление проводов цепи в 2 раза больше 5.651 или 11,301 Ом. К сожалению, это намного больше сопротивления, чем , чтобы обеспечить ток в 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток цепи до 20,352 ампер! Как видите, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.
Давайте рассмотрим пример проблемы сопротивления для отрезка сборной шины, изготовленной по индивидуальному заказу.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Во-первых, нам нужно определить площадь поперечного сечения стержня:
Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:
Как видите, из-за большой толщины шины имеет очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.
Процедура определения сопротивления шины принципиально не отличается от процедуры определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.
ОБЗОР:
- Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
- Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
- Удельное сопротивление материалов указывается в единицах Ом-см / фут или Ом-метр (метрическая система).Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут или 1,66243 x 10 -7 Ом-см на Ом-см-мил / фут.
- Если падение напряжения в цепи критично, перед выбором сечения проводов необходимо произвести точный расчет сопротивления проводов.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Сопротивление проводника
Хотя можно использовать провод любого размера или значения сопротивления, слово «проводник» обычно относится к материалам, которые обладают низким сопротивлением току, а слово «изолятор» описывает материалы, которые обладают высоким сопротивлением току. .Между проводниками и изоляторами нет четкой разделительной линии; при определенных условиях все типы материалов проводят ток. Материалы, обеспечивающие сопротивление току на полпути между лучшими проводниками и самыми плохими проводниками (изоляторами), иногда называют «полупроводниками» и находят наибольшее применение в области транзисторов.
Лучшие проводники — это материалы, в основном металлы, которые обладают большим количеством свободных электронов; И наоборот, изоляторы — это материалы с небольшим количеством свободных электронов.Лучшие проводники — серебро, медь, золото и алюминий; но некоторые неметаллы, такие как углерод и вода, могут использоваться в качестве проводников. Такие материалы, как резина, стекло, керамика и пластмассы, являются настолько плохими проводниками, что их обычно используют в качестве изоляторов. Ток в некоторых из этих материалов настолько мал, что обычно считается нулевым. Единица измерения сопротивления называется ом. Символ ома — греческая буква омега (Ω). В математических формулах заглавная буква «R» обозначает сопротивление.Сопротивление проводника и приложенное к нему напряжение определяют количество ампер тока, протекающего по проводнику. Таким образом, сопротивление 1 Ом ограничивает ток до 1 ампера в проводнике, к которому приложено напряжение 1 вольт.
Факторы, влияющие на сопротивление
- Сопротивление металлического проводника зависит от типа материала проводника. Было указано, что некоторые металлы обычно используются в качестве проводников из-за большого количества свободных электронов на их внешних орбитах.Медь обычно считается лучшим доступным материалом для проводников, поскольку медная проволока определенного диаметра обеспечивает меньшее сопротивление току, чем алюминиевая проволока того же диаметра. Однако алюминий намного легче меди, и по этой причине, а также по соображениям стоимости, алюминий часто используется, когда важен весовой коэффициент.
- Сопротивление металлического проводника прямо пропорционально его длине. Чем больше длина провода данного сечения, тем больше сопротивление.На рисунке 12-41 показаны два проводника разной длины. Если электрическое давление 1 вольт приложено к двум концам проводника длиной 1 фут, а сопротивление движению свободных электронов предполагается равным 1 Ом, ток ограничивается 1 ампер. Если провод того же размера удвоить в длину, те же электроны, приведенные в движение под действием приложенного 1 вольта, теперь обнаруживают удвоенное сопротивление; следовательно, ток уменьшается вдвое. Рисунок 12-41. Сопротивление зависит от длины проводника.
- Сопротивление металлического проводника обратно пропорционально площади поперечного сечения. Эта область может быть треугольной или даже квадратной, но обычно круглой. Если площадь поперечного сечения проводника увеличивается вдвое, сопротивление току уменьшается вдвое. Это верно из-за увеличенной площади, в которой электрон может перемещаться без столкновения или захвата атомом. Таким образом, сопротивление изменяется обратно пропорционально площади поперечного сечения проводника.
- Четвертым основным фактором, влияющим на сопротивление проводника, является температура.Хотя некоторые вещества, такие как углерод, демонстрируют снижение сопротивления при повышении температуры окружающей среды, большинство материалов, используемых в качестве проводников, увеличивают сопротивление при повышении температуры. Сопротивление некоторых сплавов, таких как константан и манганин ™, очень мало изменяется при изменении температуры. Величина увеличения сопротивления 1-омного образца проводника на один градус повышения температуры выше 0 ° по Цельсию (C), принятого стандарта, называется температурным коэффициентом сопротивления.Для каждого металла это разные значения. Например, для меди это значение составляет примерно 0,00427 Ом. Таким образом, медный провод, имеющий сопротивление 50 Ом при температуре 0 ° C, имеет увеличение сопротивления на 50 × 0,00427 или 0,214 Ом на каждый градус повышения температуры выше 0 ° C. Температурный коэффициент сопротивления необходимо учитывать там, где наблюдается заметное изменение температуры проводника во время работы. Доступны графики с указанием температурных коэффициентов сопротивления для различных материалов.На Рис. 12-42 показана таблица «удельного сопротивления» некоторых распространенных электрических проводников.
Сопротивление материала определяется четырьмя свойствами: материалом, длиной, площадью и температурой. Первые три свойства связаны следующим уравнением при T = 20 ° C (комнатная температура):
Сопротивление и связь с размером провода
Круглые проводники (провода / кабели)
Поскольку известно, что Сопротивление проводника прямо пропорционально его длине, и если нам дано сопротивление единичной длины провода, мы можем легко вычислить сопротивление любой длины провода из того же материала, имеющего тот же диаметр.Кроме того, поскольку известно, что сопротивление проводника обратно пропорционально его площади поперечного сечения, и если нам дано сопротивление отрезка провода с единичной площадью поперечного сечения, мы можем вычислить сопротивление такой же длины. из проволоки из того же материала любой площади сечения. Следовательно, если мы знаем сопротивление данного проводника, мы можем рассчитать сопротивление для любого проводника из того же материала при той же температуре. Из отношения:
Также можно записать:
Если у нас есть проводник длиной 1 метр (м) с площадью поперечного сечения 1 (миллиметр) мм 2 и сопротивлением 0 .017 Ом, каково сопротивление 50 м провода из того же материала, но с площадью поперечного сечения 0,25 мм 2 ?
В то время как единицы СИ обычно используются при анализе электрических цепей, электрические проводники в Северной Америке все еще производятся с использованием стопы в качестве единицы длины и мил (одна тысячная дюйма) в качестве единицы диаметра. Прежде чем использовать уравнение R = (ρ × l) ⁄A для расчета сопротивления проводника данного американского калибра проводов (AWG), площадь поперечного сечения в квадратных метрах должна быть определена с использованием коэффициента преобразования 1 mil = 0. .0254 мм. Самая удобная единица длины проволоки — стопа. Используя эти стандарты, единицей измерения является мил-фут. Таким образом, проволока имеет единичный размер, если она имеет диаметр 1 мил и длину 1 фут.
В случае использования медных проводников мы избавляемся от утомительных вычислений с использованием таблицы, показанной на Рисунке 12-43. Обратите внимание, что размеры поперечного сечения, указанные в таблице, таковы, что каждое уменьшение на один номер датчика равняется 25-процентному увеличению площади поперечного сечения.Из-за этого уменьшение трех калибровочных чисел означает увеличение площади поперечного сечения примерно на 2: 1. Аналогичным образом, изменение десяти калибровочных номеров проводов представляет собой изменение площади поперечного сечения 10: 1 — кроме того, при удвоении площади поперечного сечения проводника сопротивление уменьшается вдвое. Уменьшение числа сечений проводов на три уменьшает сопротивление проводника заданной длины вдвое.
Рисунок 12-43. Таблица преобразования при использовании медных жил.Прямоугольные проводники (шины)
Для вычисления площади поперечного сечения проводника в квадратных милях длина одной стороны в милах возводится в квадрат.В случае прямоугольного проводника длина одной стороны умножается на длину другой. Например, обычная прямоугольная шина (большой, специальный проводник) имеет толщину 3⁄8 дюйма и ширину 4 дюйма. Толщина 3⁄8 дюйма может быть выражена как 0,375 дюйма. Поскольку 1000 мил равняется 1 дюйму, ширину в дюймах можно преобразовать в 4000 мил. Площадь поперечного сечения прямоугольного проводника находится путем преобразования 0,375 в мил (375 мил × 4000 мил = 1 500 000 квадратных мил).
Flight Mechanic рекомендует
Resisistance and Resistance — University Physics Volume 2
Теперь рассмотрим сопротивление провода или компонента.Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.
Чтобы рассчитать сопротивление, рассмотрим участок проводящего провода с площадью поперечного сечения A , длиной 90 489 L и удельным сопротивлением. Батарея подключается к проводнику, обеспечивая разность потенциалов на нем ((рисунок)).Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно.
Величина электрического поля на участке проводника равна напряжению, деленному на длину,, а величина плотности тока равна току, деленному на площадь поперечного сечения. Используя эту информацию и вспомнив что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:
Единицей измерения сопротивления является ом,.Для заданного напряжения чем выше сопротивление, тем ниже ток.
Резисторы
Резистор является обычным компонентом электронных схем. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. (Рисунок) показывает символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC).Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.
Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (б) символ IEC.
Зависимость сопротивления материала и формы от формы
Резистор можно смоделировать как цилиндр с площадью поперечного сечения A, и длиной L , сделанный из материала с удельным сопротивлением ((Рисунок)).Сопротивление резистора составляет.
Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.
Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных вывода.Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным. Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на (Рисунок).
Многие резисторы имеют вид, показанный на рисунке выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора.{5} \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} Ошибка пакета inputenc: символ Юникода ± (U + 00B1) начальный текст: … ext {Ω} \ phantom {\ rule {0.2em} {0ex}} \ text {±} Файл завершился при сканировании использования \ text @. Экстренная остановка..
Сопротивления варьируются от многих порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление или более. Сухой человек может иметь сопротивление руки к ноге, тогда как сопротивление человеческого сердца составляет около.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.
Плотность тока, сопротивление и электрическое поле для токонесущего провода. Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2,053 мм (калибр 12), по которому проходит ток с током 0,5 м.
СтратегияМы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая есть, и определение плотности тока. Сопротивление можно найти, используя длину провода, площадь и удельное сопротивление меди, где. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.
Решение Сначала мы вычисляем плотность тока:
Сопротивление провода
Наконец, мы можем найти электрическое поле:
Значение Исходя из этих результатов, неудивительно, что медь используется для проводов, пропускающих ток, потому что сопротивление довольно мало.Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.
Сопротивление объекта также зависит от температуры, поскольку оно прямо пропорционально. Мы знаем, что для цилиндра L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на
— это температурная зависимость сопротивления объекта, где — исходное сопротивление (обычно принимается равным R — сопротивление после изменения температуры. Цветовой код показывает сопротивление резистора при температуре.
Многие термометры основаны на влиянии температуры на сопротивление ((Рисунок)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.
Проверьте свои знания Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?
Рисунок фольги растягивается по мере растяжения основы, а дорожки фольги становятся длиннее и тоньше.Поскольку сопротивление рассчитывается как, сопротивление увеличивается по мере того, как дорожки из фольги растягиваются. При изменении температуры меняется и удельное сопротивление дорожек фольги, изменяя сопротивление. Один из способов борьбы с этим — использовать два тензодатчика, один используется в качестве эталона, а другой — для измерения деформации. Два тензодатчика поддерживаются при постоянной температуре
Сопротивление коаксиального кабеля Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом, окруженного вторым, внешним концентрическим проводником с радиусом ((Рисунок)). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки. Определите сопротивление коаксиального кабеля длиной L .
Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.
Стратегия Мы не можем использовать уравнение напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.
Решение Мы сначала находим выражение для dR , а затем интегрируем от до,
Значение Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника.Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.
Проверьте свое понимание Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников. Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?
Чем больше длина, тем меньше сопротивление.Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше соотношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений для этих переменных будет зависеть от приложения. Например, если кабель должен быть гибким, выбор материалов может быть ограничен.
Сопротивление и удельное сопротивление
Электрическое сопротивление электрического проводника зависит от
- длины проводника
- материала проводника
- температуры материала
- площади поперечного сечения проводника
и может быть выражено как
R = ρ L / A (1)
где
R = сопротивление проводника (Ом, Ом)
ρ = удельное сопротивление материала проводника (Ом метр, Ом · м)
L = длина проводника (м)
A = площадь поперечного сечения проводника (м 2 )
Удельное сопротивление некоторых обычных проводников
- Алюминий: 2.65 x 10 -8 Ом м (0,0265 мкОм м)
- Углерод: 10 x 10 -8 Ом м (0,10 мкОм м)
- Медь: 1,724 x 10 -8 Ом · м (0,0174 мкОм · м)
- Железо: 10 x 10 -8 Ом · м (0,1 мкОм · м)
- Серебро: 900 35618 1,6 x -8 Ом м (0,0265 мкОм м)
Обратите внимание, что удельное сопротивление зависит от температуры .Вышеуказанные значения относятся к температурам 20 o C .
Удельное сопротивление некоторых обычных изоляторов
- бакелит: 1 x 10 12 Ом м
- стекло: 1 x 10 10 — 1 x 10 11 Ом м
- мрамор: 1 x 10 8 Ом м
- слюда: 0,9 x 10 13 Ом м
- парафиновое масло: 1 x 10 16 Ом м
- парафиновый воск (чистый ) : 1 x 10 16 Ом м
- оргстекло: 1 x 10 13 Ом м
- полистирол: 1 x 10 14 Ом м
- фарфор: 1 x 10 12 Ом м
- прессованный янтарь: 1 x 10 16 Ом м
- вулканит: 1 x 10 14 Ом м
- вода, дистиллированная: 1 x 10 10 Ом м
Обратите внимание, что хороший кон проводники электричества имеют низкое удельное сопротивление, а хорошие изоляторы имеют высокое удельное сопротивление.
Пример — сопротивление проводника
Сопротивление 10 метров калибра 17 медного провода с площадью поперечного сечения 1,04 мм 2 можно рассчитать как
R = (1,7 x 10 — 8 Ом м) (10 м) / ((1,04 мм 2 ) (10 -6 м 2 / мм 2 ))
= 0,16 Ом
Пример — перекрестный площадь сечения и сопротивление
Медный провод выше уменьшен до калибра 24 и площади поперечного сечения 0.205 мм 2 . Увеличение сопротивления можно рассчитать как
R = (1,7 x 10 -8 Ом м) (10 м) / ((0,205 мм 2 ) (10 -6 м 2 / мм 2 ))
= 0,83 Ом
электромагнетизм — сопротивление пропорционально длине и его отношение к величине тока
Тот факт, что сопротивление пропорционально длине и обратно пропорционально площади, можно интуитивно показать с помощью небольшого мысленного эксперимента.
Допустим, у вас есть проводник длиной $ L $, и когда вы прикладываете $ 5 В $, через него протекает ток в $ 3 A $. Таким образом, сопротивление равно $ \ frac {5} {3} \ Omega $. Теперь возьмем еще один точно такой же проводник. Теперь, если вы соедините их встык, у вас будет проводник длиной 2 L $. Теперь, если вам нужно пропустить через этот новый проводник тока на $ 3 A $, какое напряжение вам нужно?
Что ж, так как каждому из проводников требовалось 5 В $, чтобы пропустить через них $ 3 А $, то в сумме потребуется (5 + 5) В = 10 В $ по объединенному проводнику, чтобы пропустить такое же количество тока.Следовательно, сопротивление становится равным $ \ frac {10} {3} \ Omega $, что ровно в 2 раза больше, чем у исходного проводника. Если вы возьмете $ n $ проводов и соедините их встык, у вас будет новое сопротивление в $ n $, умноженное на исходное сопротивление , то есть сопротивление пропорционально его длине.
Вы можете подумать об увеличении площади вдвое (или в $ n $ раз) так же, как и раньше. Применение одинаковых $ 5 В $ к двум проводникам, соединенным бок о бок, создаст ток $ 3 А $ в каждом проводнике, всего $ 6 А $ (или $ 3n \ A $) через комбинированный проводник.Делаем новое сопротивление равным $ \ frac {5} {6} \ Omega $, что составляет половину (n-ю) от первоначального сопротивления. Таким образом, сопротивление обратно пропорционально площади.
Примечание: Теперь вы можете сказать, что этот метод просто доказывает это для целых кратных исходной длины / площади. Чтобы решить эту проблему, мы могли бы воспользоваться различными длинами / площадями. Рассмотрим исходный проводник длиной $ L $ и площадью $ A $. Вы могли бы просто сказать, что этот проводник на самом деле сложен из разных крошечных проводников длиной $ \ frac {L} {N} $ и площадью $ \ frac {A} {M} $, где $ M $ и $ N $ — огромные числа.Строго говоря, мы говорим о дифференциальной длине и дифференциальной площади. Итак, теперь вы можете просто говорить о любых целых числах, кратных этим дифференциальным проводникам. Это доказало бы пропорциональность для любой длины / площади исходного проводника, а не только для целых кратных единиц.
N.B. Я просто подумал об увеличении длины, поскольку последовательное соединение большего количества проводников увеличивает эквивалентное сопротивление. И увеличение площади при параллельном подключении, что снижает эквивалентное сопротивление.
.