как соединить две первичные и две вторичные обмотки трансформатора
Как соединить две первичные и две вторичные обмотки трансформатора
Типичный понижающий трансформатор с двумя первичными (Primary) и двумя вторичными (Secondary) обмотками, представлен на изображении.
Темная точка обозначает начало обмотки (идентичную полярность обмоток в данной точке)
Объединяя обмотки первичные между собой, мы тем самым назначим применение трансформатору либо в сети с напряжением переменного тока — 110 -120 vv, либо в сети переменного тока 220 — 240 vv .
Объединяя вторичные обмотки трансформатора и в зависимости от схемы объединения, мы тем самым определяем какое схемное решение будет использовать ту или иную схемы объединения вторичных обмоток трансформатора.
Манипулируя способом объединения между собой первичных и между собой вторичных обмоток трансформатора мы можем увеличить или уменьшить выходное напряжение или мощность. А также пределы входного напряжения.
Как соединить две первичные и две вторичные обмотки трансформатора
Типовое соединение первичных обмоток трансформатора показано на изображении с лева.
При параллельным (Parallel) соединении, напряжение питания параллельно соединенных первичных обмоток трансформатора останется неизменным в нашем примере 120 v.
В случае же последовательного (Series) соединения, напряжение питания удвоится. При таком соединении мы сможем подать, теперь уже на одну обмотку общую 240v напряжения.
Типовое соединение вторичных обмоток трансформатора.
1.Первый вариант — это когда используем как есть . Каждая вторичная обмотка трансформатора запитывает свою нагрузку.
2. Второй вариант — это последовательное соединение вторичных обмоток трансформатора.
В итоге мы получим удвоенное напряжение на выходе 2*12.
Мы получим выходное напряжение 24v при тех же токах, что и в схеме независимой работы вторичных обмоток.
3. Третий вариант — это схема со средней точкой. Этот вариант применим в схемах с двуполярным питанием.
4. Четвертый вариант — это параллельное соединение вторичных обмоток трансформатора. Такая схема увеличивает в двое выходной ток. Увеличивает выходную мощность , напряжение остается прежним.
Как соединить две первичные и две вторичные обмотки трансформатора. Трансформаторы с двойными обмотками перевичными и двойными обмотками вторичными, имеют хорошую универсальность, что дает возможность их использования в различных схемных решениях.
Один из таких трансформаторов, с двумя первичными обмотками на напряжение 115 v (2*115v) и двумя вторичными обмотками на напряжение 12 v (2*12v) номинальной мощностью 8va , предназначенный для использования в цепях переменного тока 50-60gz — Трансформатор 2x115V 2x12V 8VA 50-60hz, смотреть Здесь.
Post Views: 14 041
repair-and-servise.com
Параллельная работа трансформаторов: 5 условий и схема
Параллельная работа трансформатора характеризуется особенной работой обмоток. К первичным контурам подводится питающая сеть. Подключение обмотки вторичного типа производится к общей сети. Исходящее электричество питает различных потребителей.
Требования сети
Включение трансформаторов на параллельную работу вызвано определенными особенностями эксплуатации электроустановок. Представленный подход позволяет решить проблемы электроснабжения.
При параллельном подключении силовых трансформаторов удается избежать увеличения токов основного устройства. Система менее подвержена перегрузкам. В процессе параллельного подключения обмоток трансформатора уменьшается показатель сбоев в работе электросети. Вероятность, что не будут работать сразу два трансформаторных устройства, крайне мала.
При эксплуатации силового оборудования высокой мощности необходимо обеспечить достаточное пространство (в высоту) для установки агрегата. В небольшом помещении допускается параллельная работа трансформаторов, согласно ПУЭ. На территории одной электроустановки со стандартными размерами пространства возможно использовать необходимое количество силовой аппаратуры. Для увеличения продуктивности, безопасности работающих от разных источников агрегатов, потребуется правильно создать параллельное соединение обмоток.
Особенности
Параллельное соединение трансформаторов тока должно выполнять установленные правила и условия включения. Силовые агрегаты при включении должны характеризоваться определенным показателем полной мощности. Эта величина соответствует сумме мощностей соединенных приборов. При этом выполняется условие. Величины сопротивлений, коэффициент трансформации в процессе включения трансформаторов на параллельную работу, равны.
Если величины мощности неодинаковы, нагрузка делится в соответствии с номиналами. Это происходит при условии равенства коэффициента трансформации подключаемых объектов.
Существует правило. Разрешается допускать соединения параллельным включением установок с мощностью выше в 2 раза. В этом случае нужно следить за работой агрегатов. Трансформаторы не функционируют постоянно.
Условия
Существуют определенные условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно при следующих условиях:
- Фазировка. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Токи вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения.
- Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется с соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %.
- Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%.
- Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы.
- Мощность аппаратуры не должна отличаться в 3 раза. Это является важным условием правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности.
Следуя перечисленным условиям, обеспечивается стабильная, эффективная работа силового оборудования. Безопасность и надежность функционирования системы повышается.
Невыполнение условий
Если не соблюдается хотя бы одно из условий, следует ожидать сбоев в работе оборудования. Нужно знать, в каком случае эксплуатация коммутированной установки будет небезопасной.
При использовании разных типов соединения появляется сдвиг фаз. При этом по контурам будет бежать ток, превышающий установленные производителем параметры. Максимальное увеличение значения появляется при возникновении короткого замыкания. Сдвиг фазы при этом составляет 180º для трансформаторов с группами обмоток 12 и 6.
Следующая небезопасная ситуация возможна при неравенстве коэффициентов трансформации. Во вторичной обмотке появится результирующее напряжение. Электричество будет протекать по цепи на холостом ходу.
При несовпадении показателей короткого замыкания будут неравны внутренние сопротивления. На холостом ходу электричество не появится, но нагрузка распределится в обратной зависимости от их сопротивления. Маломощный агрегат в такой ситуации будет перегружен.
Выполнение фазировки
Чтобы избежать появления короткого замыкания, на низшем выводе напряжения проводится фазировка. Если этот показатель в указанной точке не превышает 1000 В, применяется вольтметр. Его настраивают на соответствующий уровень напряжения.
Фазируемые обмотки соединяют. Это позволит получить замкнутый контур. Обмотки могут иметь заземленную нейтраль или выпускаться без нее. В первом случае контур замыкается через землю. Сопротивление между выводами замеряется. Результат сопоставляется с указанными производителем значениями.
Если нейтраль в конструкции не предусмотрена, потребуется ставить последовательно перемычку между соответствующими выводами двух трансформаторов. Между ними замеряют напряжение. Чтобы обеспечить безопасную работу агрегатов, соединяют те выводы, между которыми при замере не было напряжения.
Рассмотрев особенности параллельного соединения трансформаторных устройств, а также условия и рекомендации по проведению этого процесса, можно обеспечить стабильную и безопасную работу системы. Это предоставляет массу преимуществ в процессе энергоснабжения потребителей электричеством.
Соединение обмоток трансформатора (параллельное, последовательное). _v_
Тема: как соединять обмотки трансформатора, увеличивая ток и напряжение.
Трансформатор является электротехническим устройством, которое способно преобразовывать электрическую энергию посредством электромагнитных полей. Конструкция классического трансформатора представляет собой магнитопровод, состоящий из пластин (с хорошими ферромагнитными свойствами) и имеющий замкнутый контур (может быть круглым, Ш-образным, П-образным). На этот ферромагнитный сердечник наматываются обмотки медного провода. Обычно это первичная и вторичная обмотка.
Смысл трансформатора заключается в том, что при подачи переменного тока на первичную обмотку вокруг сердечника образуется переменное электромагнитное поле. Это поле порождает во вторичной обмотке ЭДС (электродвижущую силу). Значение тока и напряжения на вторичной намотке будет зависит от пропорциональности количества витков между первичной и вторичной обмоткой. Но и первичная обмотка должна быть рассчитана на свои величины тока и напряжения, поскольку неверное количество витков и сечения провода намоток влияют на КПД трансформатора (коэффициент полезного действия).
Намотки трансформатора можно соединять между собой определенным образом. Соединение обмоток трансформатора бывает параллельным, последовательным и смешанным. Итак, у нас имеется трансформатор, у которого есть две первичные обмотки и две вторичные. Его первичные обмотки рассчитаны на переменное напряжение с величиной 110 вольт. Вторичные по 6 вольт. Если у нас сеть на 220 вольт, то мы должны первичные обмотки соединить последовательно (110 + 110 = 220), после чего смело может на эту объединенную первичную обмотку подавать 220 вольт. Хотя если сеть у нас оказалась на 110 вольт, то подавать это напряжение можно на любую намотку, рассчитанную на 110 вольт.
Соединение обмоток трансформатора смешанным типом подразумевает по собой одновременное соединение и параллельными и последовательными способом. В этом случае будет повышаться и сила тока на намотках и напряжение. А что будет если мы будем соединять обмотки трансформатора, имеющие разное сечение? Если это параллельное соединение, то это равносильно тому, что сечение обмоток будет просто суммироваться (будет повышаться сила тока, которое соответствует общему, суммарному сечению провода намоток). Если же это последовательное соединение обмоток трансформатора, то итоговая сила тока будет соответствовать обмотке, у которой наименьший диаметр провода.
P.S. Наиболее практичным соединением намоток трансформатора можно считать вариант, когда за счет последовательного соединения можно подбирать наиболее подходящее напряжение на вторичной обмотке. Мы наматываем вторичную обмотку с отводами, имеющими определенный шаг (к примеру делаем 10 обмоток, на каждой из которых по 3 вольта). В итоге мы имеем возможность получать любое напряжение от нуля до 30 вольт с шагом в 3 вольта. В этом случае мы имеем наибольшую экономию электроэнергии, в отличии от способа, когда имея на выходе только 30 вольт делаем нужное напряжение за счёт схемы стабилизатора (излишек напряжения расходуется просто в нагрев). Учтите, что при соединении обмоток трансформатора имеет значение их направленность (полярность).
electrohobby.ru
Последовательное и параллельное включение обмоток.
Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?
Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.
Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-
ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).
Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток). Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами. В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.
На рис. 16 точкой возле обмотки обозначается ее условное начало. Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря «плюс»), то и на выводах с точкой всех вторичных обмоток в этот момент также «плюс». Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.
Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.
На самом деле это очень «тонкий» вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть. И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины. Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно. Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 «Трансформаторы питания для бытовой аппаратуры» дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!). При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:
Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.
Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.
Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).
Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!
А если напряжение на двух обмотках получилось не
Рис. 17
ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток. Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт. Тогда уравнительный ток будет
2. Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление). Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.
Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!
Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз. Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки. С течением времени витки разбалтываются, и акустический шум трансформатора растет.
Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.
Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора. В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией. И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.
Трансформаторы с пониженной рабочей индукцией. Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис. 9). Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального. Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.
Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.
Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае). Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка. Поэтому «низкоиндукционный» трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.
Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще). Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток. Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.
А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются. На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем. Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.
Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.
Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.
nauchebe.net
5 правил, особенности и схема
Некоторые особенности эксплуатации электрических сетей и установок требуют возможность включения нескольких устройств преобразования электроэнергии. При соблюдении условий параллельной работы силовых трансформаторов улучшаются большинство показателей электроснабжения, в том числе перегрузочная способность и надежность.
Включение по данной схеме требует проведения дополнительных работ, направленных на недопущение неправильных подключений и возникновение недопустимых режимов и аварийных ситуаций.
В каких случаях нужен параллельный режим работы трансформаторов
Включение нескольких устройств преобразования электрической энергии преследует несколько целей:
- Повышение мощности преобразования.
- Увеличение надежности.
- Увеличение перегрузочной способности.
- Более рациональное использование свободного места.
- Снижение потерь при работе в периоды малой нагрузки.
Увеличение мощности потребителей требует соответственного увеличения мощности трансформатора. Цель параллельного включения – возможность не выполнять демонтаж и замену более слабого оборудования. В данном случае применяют дополнительную установку параллельно подключенного трансформатора. В первом приближении можно считать, что допустимая мощность потребителей в таком случае удваивается.
Отдельная категория потребителей отличается высокими требования к надежности электропитания. В таком случае назначение дублирующих трансформаторов – возможность обеспечения питанием в случае выхода части преобразователей из строя.
Параллельное включение трансформаторов применяют также в том случае, когда установка одного более мощной конструкции не соответствует требованиям по габаритам. Часто проще установить несколько малогабаритных конструкций вместо одно более мощной.
Снижение потерь на преобразование в период минимального потребления достигается путем отключения части трансформаторов.
Особенности и схема работы параллельного соединения
Не следует путать совместную и параллельную работу силовых трансформаторов. В первом случае устройства подключены параллельно в питающую сеть, но работают на разные потребители или на одни, но в разное время путем установки переключателя. Таким образом, происходит распределение нагрузки между преобразователями электроэнергии.
Параллельная работа трансформирующих устройств требует выполнения нескольких условий. При не соблюдении хотя бы одного из них, по обмоткам трансформаторов начинает протекать уравнительный ток, который снижает допустимую мощность нагрузки, вызывает перегруз преобразователя и снижает общий КПД.
Условия включения и работы по ПУЭ
В нормативно-технической документации, в частности Правилах устройства электроустановок (ПУЭ) оговорены все допустимые условия проектирования, установки и эксплуатации трансформаторного оборудования.
Условия параллельной работы дополнительно сформулированы в Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП). В частности, здесь сформулированы основные требования подключения:
- соответствие групп соединения обмоток;
- допустимое соотношение мощностей трансформаторов;
- допустимые нормы отклонения коэффициентов трансформации;
- нормы напряжения короткого замыкания;
- фазировка.
Фазировка
Одно из важнейших требований к параллельному включению трансформаторов – выполнение фазировки обмоток.
Соблюдать правильность чередования фаз необходимо потому, что в противном случае произойдет короткое замыкание между обмотками трансформаторов. При смещении фаз в проводниках величина напряжения в каждый момент времени различна, поэтому между ними возникает электрический ток.
Особенно важна процедура фазировки в случаях использования устройств с разными группами включения обмоток.
Напряжение на обмотках
Параллельная работа допускается только в случае равенства напряжений на высокой и низкой сторонах. Данное требование вызвано тем, что при неодинаковых значениях напряжения через обмотки начнут протекать уравнительные токи.
В устройствах с возможностью регулировки коэффициента трансформации необходимо учитывать положение переключающих устройств. Допускается коррекция выходных значений до необходимых значений с учетом того, чтобы не возникло перегрузки одного из трансформаторов.
Напряжение короткого замыкания
Трансформаторы должны иметь равное напряжение короткого замыкания, что обусловлено сопротивлением обмоток. Устройства с низким напряжением короткого замыкания имеют более низкоомную обмотку, а, как известно из схемы параллельного включения цепей, величина тока обратно пропорциональна сопротивлению участка. В противном случае возможна ситуация, когда трансформатор с более низким значением напряжения короткого замыкания будет работать в более нагруженном режиме.
Разница в данном параметре не должна превышать 10%.
Соответствующие друг другу обмотки
Обмотки устройств должны иметь одинаковую группу соединений, поскольку при сдвиге фаз, между обмотками начнут протекать уравнительные токи и тем большие, чем выше величина сдвига фазы, вплоть до короткого замыкания при сдвиге фаз 180 гр.
Перед включением необходимо проверить соответствие группы включения и фазировку каждой обмотки.
Мощность
Несколько меньшие требования предъявляются к трансформаторам в отношении их мощности. В соответствии с требованиями ПТЭЭП соотношение мощностей не должно превышать 1:3.
Подключение устройств с разной мощностью приводит к тому, нагрузка между установками будет распределена неравномерно и менее мощное устройство будет работать с перегрузкой.
Как выполнить фазировку
Фазировку выполняют, в основном, для вторичных цепей. В зависимости от состояния нейтрали, измерения производят по двум методикам.
Заземленная нейтраль
- В сеть подключаются цепи первичных обмоток. Нейтраль заземляется.
- Измеряют напряжение относительно вывода а1 первого трансформатора и выводами а2, в2, с2 второго;
- Повторяют те же действия для выводов в1 и с1.
Изолированная нейтраль
- Подключаются первичные обмотки;
- Подключают перемычку между выводами а1 и а2;
- Измеряют напряжение в1-в2, с1-с2;
- Переставляют перемычку на выводы в1 и в2;
- Измеряют напряжение а1-а2, с1-с2;
- Повторяют действия, переставив перемычку на выводя с1 и с2.
При обоих способах измерений соединению подлежат выводы, между которыми отсутствует напряжение.
Для измерения используются такие приборы:
- Для цепей 0.4 кВ и ниже – вольтметры;
- От 0.4 до 10 кВ – указатели напряжения;
- Свыше 10 кВ – трансформаторы напряжения.
Устройства для измерения должны быть рассчитаны на удвоенное линейное напряжение.
Как выполнить подключение
Подключение трансформаторов в параллельную работы допускается только при соблюдении всех перечисленных условий. Допускается возможность работы устройств с различными группами включения обмоток:
- в группах с разницей 4 часа (120 гр.) производится круговая перестановка обмоток;
- группы с разницей 6 часов (180 гр.), например 0, 4, 8 и 6, 10, 2, подключаются после смены мест начала и конца обмотки одного из трансформаторов;
- в нечетных группах меняются местами две фазы на обмотках высокого и низкого напряжений.
Во всех случаях выполняют повторную фазировку обмоток.
Включение в параллельную работу устройств с четной и нечетной группы невозможно.
Все работы по установке и коммутации выполняются при отсутствии высокого напряжения.
Последствия невыполнения условий
Невыполнение перечисленных условий приводит к следующим последствиям:
- Несоблюдение фазы вызывает прохождение тока через первичную обмотку даже при отсутствии нагрузки в результате сдвига фаз между проводами. В наихудшем варианте, при сдвиге фаз 180 гр., ток будет равен току короткого замыкания.
- Неравенство коэффициента трансформации. Ток будет протекать от устройства с высоким напряжением. Также увеличится холостой ход, который будет тем выше, чем больше разница в коэффициенте трансформации. Допустимая разница коэффициентов трансформации составляет не более 0.5%.
- Неравенство напряжения короткого замыкания не вызывает роста тока холостого хода, но при подключении нагрузки трансформатор с меньшим сопротивлением обмотки будет работать с перегрузкой. Допускается разница напряжения короткого замыкания не более 10%.
- Аналогичная ситуация возникает при использовании устройств с большой разницей номинальной мощности. Мощность одного из устройств не должна превышать более, чем в 3 раза мощность другого.
Достоинства и недостатки
Среди достоинств рассматриваемого типа включения следует отметить следующие:
- увеличение допустимой мощности потребителей;
- возможность горячего резервирования питания особо требовательных групп потребителей;
- улучшение условий охлаждения устройств;
- возможность оперативного регулирования количества подключенных устройств в условиях значительного изменения мощности потребителей.
При проектировании питающих установок нужно учитывать, что параллельные схемы включения не лишены недостатков:
- усложнение за счет установки коммутирующих и соединительных устройств;
- необходимость установки однотипных устройств;
- увеличение габаритов помещения;
- сложность подключения.
otransformatore.ru
Параллельное соединение обмоток трансформатора | Сабвуфер своими руками
Мне часто задают вопрос: «Можно ли соединять параллельно одинаковые вторичные обмотки силовых трансформаторов?» Вопрос, безусловно, правильный, и на него нужно отвечать. Ныне в устаревшей аппаратуре можно найти большое количество готовых силовых трансформаторов заводского изготовления, которые радиолюбители приспосабливают под свои запросы. Очень часто эти трансформаторы не совсем подходят по параметрам, например, по требуемому току нагрузки.
Но если в трансформаторе имеется несколько одинаковых обмоток, возникает мысль увеличить выходной ток, соединив эти обмотки параллельно. Казалось бы, соединяй выводы одинаковых обмоток между собой и все! Но не все так просто. Во- первых, обмотки нужно соединить синфазно. Для проверки синфазности вторичных обмоток соединяем одни из выводов двух обмоток, включаем трансформатор в сеть и измеряем напряжение между оставшимися свободными концами. Если это напряжение близко к нулю, значит, обмотки соединены противофазно последовательно.
Когда на выводах удвоенное напряжение одной из обмоток, они соединены синфазно последовательно. В первом случае свободные концы обмоток можно соединить вместе и получить параллельное включение обмоток. Во втором случае концы одной из обмоток нужно поменять местами. Однако малейшая неидентичность обмоток способна повлиять на параметры силового трансформатора: его габаритная мощность и КПД при этом уменьшаются, а нагрев обмоток увеличивается.
Фактически соединять параллельно можно обмотки таких трансформаторов, при изготовлении которых специально принимаются меры для получения идентичности обмоток. Например, в паспортах на трансформаторы типа ТПП (трансформаторы питания полупроводниковой аппаратуры) указывается на допустимость параллельного соединения одинаковых обмоток.
Чаще всего радиолюбительские конструкции питаются постоянным током, поэтому проблему соединения обмоток параллельно лучше рассматривать в комплексе с выпрямителем.
Возьмем, скажем, унифицированный трансформатор ТН-60 (трансформатор накальный), имеющий 4 одинаковые вторичные обмотки по 6,3 В (две обмотки имеют еще и отводы на 5 В), рассчитанные каждая на ток 6 А. Для получения токов, вчетверо больших, необходимо соединить обмотки так, как показано на рис.1 (включение обмоток с однополупериодным выпрямлением). Поскольку из-за конструктивного разброса параметров обмотки могут иметь немного отличающиеся напряжения, большее потребление тока (при идентичных диодах) будет от той обмотки, напряжение которой выше.
Диоды позволяют развязать обмотки друг от друга, т.е. теперь каждая обмотка работает только на общую нагрузку, а не на другую обмотку. В результате, мы получили выпрямленное напряжение с четырех обмоток с максимальным током нагрузки 24 А (через каждый диод будет проходить только четвертая часть общего тока нагрузки). Схема двухполупериодного выпрямления приведена на рис.2. Такое соединение выводов обмоток также обеспечивает независимое питание нагрузки. В случае параллельного включения нечетного числа обмоток возможно лишь однополупериодное выпрямление.
Для питания различных конструкций часто применяется напряжение 12 В, поэтому соединение обмоток для такого применения можно выполнить согласно рис.3. В этом случае через каждый диод будет проходить половина тока нагрузки. Чтобы получить выходное стабилизированное напряжение около 13,8 В, принятое как стандарт в радиопередающей аппаратуре, необходимо применять стабилизаторы с низким падением напряжения на регулирующем элементе [1, 2].
Минимально необходимый перепад напряжений на регулирующем элементе таких стабилизаторов составляет около 0,5 В. Его устанавливают при максимальном токе нагрузки, подбирая емкость конденсатора фильтра после выпрямителя. Чем больше емкость этого конденсатора, тем больший выходной ток можно «отобрать» от стабилизатора при заданном входном напряжении.
www.radiochipi.ru
Можно ли у двух одинаковых трансформатов вторичные обмотки соединить параллельно для увеличения мощности ? | | |
Почему бы и нет? Главное -вольтаж на вторичках должен совпадать. | | |
Интересный вопрос… А как по-вашему, что Вы делаете, когда мотаете обмотку в два провода? Или литцендратом? | | |
После выпрямителей можно параллелить и с не очень точно совпадающим напряжением. | | |
Использую подобное включение часто. Но для увеличения мощности надо ещё и первичные запараллелить (они, ведь, тоже одинаковые), или последовательно соединить. | | |
ВиНи если я вас правильно понял, то вы соеденяете последовательно как первичную, так и вторичную обмотки. | | |
Не знаю, уловили ли вы нюанс с последовательным соединением обмоток в моём случае, но из двух вариантов ответов на ваш вопрос я могу ответить ДА. | | |
HardMaster: Можно ли у двух одинаковых трансформатов вторичные обмотки соединить параллельно для увеличения мощности ? И объясните, что вы имеете в виду под увеличением мощности? Мощность, отдаваемая трансформатором, в основном определяется конструкцией сердечника, а не числов вторичных обмоток и количеством витков в них. Конкретный трансформатор не даст вам больше мощности с нескольких обмоток, чем с одной. | | |
GM: И объясните, что вы имеете в виду под увеличением мощности? | | |
Спец: что Вы делаете, когда мотаете обмотку в два провода? Эти два провода на одном железе, в одном магнитном потоке. Двух одинаковых трансов не найдется даже с конвейера… | | |
pro-radio.ru