Система пуска двигателя
- Устройство системы пуска двигателя
- Работа системы пуска двигателя
- Диагностика системы пуска двигателя
Двигатель не может запуститься сам. Чтобы завести его нужно приложить внешние усилия и повернуть коленчатый вал. В этой статье мы рассмотрим систему пуска, которая запускает двигатель.
Устройство и работа системы пуска двигателяНа двигателе имеется маховик. Обод маховика снабжен зубьями и превращен в зубчатый венец. Установленная на электромоторе стартера приводная шестерня входит с ним в зацепление и вращает коленчатый вал, инициируя рабочий цикл двигателя. Раcсмотрим, как это происходит:
Работа системы пуска двигателя с редуктором
Существует три типа систем пуска:
- Система пуска двигателя с редуктором;
- Система пуска двигателя с планетарным механизмом;
Рассмотрим конструкцию, работу и проверку системы пуска двигателя обычного типа.
1.Устройство системы пуска двигателяВ обычной системе пуска двигателя можно выделить три основных механизма:
- Электромотор – создает вращающий момент.
- Система привода – передает вращение на двигатель.
- Электромагнитный включатель – приводит ведущую шестерню стартера в зацепление с ободом маховика, а также дает электрический ток в электромотор.
Рассмотрим электромотор системы пуска, создающий вращающий момент. Корпус электромотора выполнен из стали и имеет внешний вид цилиндра. Внутри корпуса имеются обмотки возбуждения, намотанные вокруг сердечников, прикрепленных к корпусу.
Втягивающее реле служит для подачи тока на мотор стартера и вводит бендикс в зацепление с маховиком для запуска двигателя. Устройство втягивающего реле, неисправности тягового реле. Как определить неисправности втягивающего реле? |
Рассмотрим, как устроен щеткодержатель: в щеткодержателе объединены 4 щетки, прижимаемые к коллектору. Две из четырех щеток находятся в изолированных оправках и соединены с обмотками якоря и далее через коллектор с обмотками возбуждения. Те и другие заземлены на корпус.
Схема системы пуска двигателя:1. Коллектор
- Система привода системы пуска двигателя
Этот механизм передает вращающий момент от электромотора к маховику. На валу якоря установлена шестерня привода. Действие электромагнитного включателя заставляет рычаг привода перевести шестерню привода в зацепление с зубчатым ободом маховика (в этом положение вращение передается на вал двигателя). Когда двигатель запущен, расцепляется оконная муфта, и теперь шестерня привода вертится в холостую. Позднее при включенном зажигании шестерня привода расцепляется с зубчатым ободом.
Теперь рассмотрим реальный механизм: оконная муфта передает вращение только в одном направлении и связана с шестерней привода. На муфте стартерного электромотора имеются винтовые шлицы. Винтовые шлицы имеются также на валу якоря. Шестерня привода способна скользить вдоль них вращаясь при этом. Винтовые шлицы обеспечивают плавное сцепление шестерни привода с зубчатым ободом. После сцепления зубчатого обода с ведущей шестерней раскручивается двигатель. Шестерня привода вертит зубчатый обод (при этом работает оконная муфта). Когда двигатель запущен, то двигатель вертит шестерню привода, при этом оконная муфта отключена. Шестерня привода вертится в холостую, чтобы не повредить электромотор.
Электромагнитный включатель – заставляет приводной рычаг передвинуть шестерню привода и направляет ток в электромотор.
Схема работы электромагнитного включателя
В центре включателя находится плунжер. Плунжер выполняет две функции: перемещает приводной рычаг, соединенный с одним концом плунжера, а также включает главные контакты через контактную пластину, соединенную с его другим концом. Плунжер окружает втягивающая обмотка, которая подтягивает плунжер к главным контактам. Поверх втягивающей обмотки расположена удерживающая обмотка, которая удерживает плунжер у контактов.
Как устроен электромагнитный включатель?
Втягивающие и удерживающие обмотки закреплены на корпусе включателя. Контактная пластина расположена на торце плунжера напротив главного контакта. Втягивающие и удерживающие обмотки размещены вокруг плунжера, который поджимается возвратной пружиной. После запуска двигателя возвратная пружина перемещает шестерню привода в исходное положение.
Схема системы пуска двигателя
- Электромотор;
- Система передачи;
- Электромагнитный включатель;
Электрическая схема системы пуска двигателя
Положительный полюс АКБ соединен с клеммой 30 и включателем зажигания. Клемма С соединена с обмотками возбуждения и обмоткой якоря, заземленными на корпус и далее соединенными с отрицательным полюсом АКБ. Все соединения выполнены мощным кабелем, который выдерживает большой ток. Клемма 50 соединена с положительным полюсом АКБ через включатель зажигания.
При повороте ключа зажигания ток сначала проходит через втягивающую и удерживающие обмотки, затем по обмоткам возбуждения и обмотке якоря, и наконец в землю. Поскольку сопротивление якоря и обмоток возбуждения очень низкое почти все напряжение АКБ падает на втягивающую и удерживающие обмотки. Возникающее в них поле перемещает плунжер вправо. Приводной рычаг, связанный с плунжером переводит муфту влево, одновременно поворачивая ее на винтовых шлицах якоря. Вместе с зацеплением привода с зубчатым венцом маховика временно замыкаются главные контакты.
Система электропуска двигателя: назначение. Стартер: устройство, работа.
Система запуска двигателя, как следует из названия, предназначена для запуска двигателя автомобиля. Система обеспечивает вращение двигателя со скоростью, при которой происходит его запуск.
На современных автомобилях наибольшее распространение получила стартерная система запуска. Система запуска двигателя входит в состав электрооборудования автомобиля. Питание системы осуществляется постоянным током от аккумуляторной батареи.
Система запуска имеет следующее устройство:
стартер с тяговым реле и механизмом привода;
замок зажигания;
комплект соединительных проводов.
Стартер создает необходимый крутящий момент для вращения коленчатого вала двигателя. Он представляет собой электродвигатель постоянного тока. Конструктивно стартер состоит из статора (корпуса), ротора (якоря), щеток со щеткодержателем, тягового реле и механизма привода.
Тяговое реле обеспечивает питание обмоток стартера и работу механизма привода. Для выполнения своих функций тяговое реле имеет обмотку, якорь и контактную пластину. Внешнее подключение к тяговому реле осуществляется через контактные болты.
Механизм привода предназначен для механической передачи крутящего момента от стартера на коленчатый вал двигателя. Конструктивными элементами механизма являются: рычаг привода (вилка) с поводковой муфтой и демпферной пружиной, муфта свободного хода (обгонная муфта), ведущая шестерня. Передача крутящего момента осуществляется путем зацепления ведущей шестерни с зубчатым венцом маховика коленчатого вала.
Замок зажигания при включении обеспечивает подачу постоянного тока от аккумуляторной батареи к тяговому реле стартера.
Система запуска, устанавливаемая на бензиновые и дизельные двигатели, имеет аналогичную конструкцию. Для облегчения запуска дизельных двигателей в холодное время система запуска может оборудоваться свечами накаливания, которые подогревают воздух во впускном коллекторе. С этой же целью на автомобилях применяются системы предпускового подогрева.
Дальнейшим развитием системы запуска двигателя являются:
система автоматического запуска двигателя;
система интеллектуального доступа в машину и запуска двигателя;
система Стоп-Старт;
система непосредственного запуска Direct Start.
Работа системы запуска осуществляется следующим образом. При повороте ключа в замке зажигания ток от аккумуляторной батареи поступает на контакты тягового реле. При протекании тока по обмоткам тягового реле происходит втягивание якоря. Якорь тягового реле перемещает рычаг механизма привода и обеспечивает зацепление ведущей шестерни с зубчатым венцом маховика.
При движении якорь также замыкает контакты реле, при котором происходит питание током обмоток статора и якоря. Стартер начинает вращаться и раскручивает коленчатый вал двигателя.
Как только происходит запуск двигателя, обороты коленчатого вала резко возрастают. Для предотвращения поломки стартера срабатывает обгонная муфта, которая отсоединяет стартер от двигателя. При этом стартер может продолжать вращаться.
При повороте ключа в замке зажигания стартер останавливается. Возвратная пружина тягового реле перемещает якорь, который в свою очередь возвращает механизм привода в исходное положение.
Система электропуска предназначена для предания вращения КВ двигателя с пусковой частотой, при которой обеспечиваются необходимые условия смесеобразования, воспламенения рабочей смеси.
Основными частями стартера являются: стальной цилиндрический корпус с 4 полюсными сердечниками и обмоткой возбуждения, якорь, в пазах которого уложена обмотка, коллектор и 4 щетки, укрепленные на передней крышке корпуса стартера. Обмотка возбуждения стартера включена последовательно в обмотку якоря.
Вал якоря стартера вращается во втулках. С валом якоря связана шестерня, вводимая в зацепление с зубчатым венцом маховика во время пуска двигателя.
Взаимодействие элементов стартера при пуске двигателя происходит следующим образом.
При замыкании контактов выключателя по обмотке тягового реле проходит ток, сердечник электромагнита втягивается внутрь обмотки, а соединенный с ним рычаг перемещает шестерню привода и вводит ее в зацепление с зубчатым венцом маховика. При полном зацеплении зубчатой передачи сердечник через контактный диск замыкает контакты, и ток АКБ поступает в обмотку электродвигателя. Якорь электродвигателя начинает вращаться и передает крутящий момент через шестерню и зубчатый венец маховика на КВ двигателя. После пуска двигателя выключатель размыкает контакты, и цепь обмотки электродвигателя прерывается. Под действием пружины контактный диск и шестерня механизма привода возвращаются в исходное положение.
Системы пуска двигателя внутреннего сгорания.
Системы пуска двигателя
Система пуска обеспечивает первоначальное проворачивание коленчатого вала при пуске двигателя, поскольку сам двигатель в неподвижном состоянии не создает вращающего момента, и без внешнего источника энергии не запустится.
Для того, чтобы вдохнуть в двигатель жизнь, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения, после чего начинают протекать газообменные и термодинамические процессы в цилиндрах, а также функционировать основные системы, обеспечивающие работу двигателя – питания, зажигания, смазки. В цилиндры двигателя начинает поступать горючая смесь (у дизелей – чистый воздух), в нужный момент на свечи зажигания подается искрообразующий электрический импульс, либо впрыскивается порция топлива (у дизелей), а система смазки обеспечивает снижение сил трения при работе механизмов двигателя – двигатель запускается и начинает работать самостоятельно.
При первоначальном проворачивании коленчатого вала системе пуска необходимо преодолеть моменты сопротивления следующих составляющих:
- момент сил трения, возникающих между поверхностями сопряженных деталей двигателя и во вспомогательных механизмах, имеющих привод от коленчатого вала;
- момент инерционных сил, которые появляются в процессе разгона двигателя, создаваемых движущимися деталями. Основную долю момента инерционных сил составляет момент инерции маховика;
- момент сопротивления тепловых циклов горючей смеси, определяемый затратами энергии на расширение и сжатие заряда в цилиндрах двигателя. Эта составляющая зависит от величины компрессии в цилиндрах, степени сжатия и рабочего объема двигателя.
Суммарный момент сопротивления зависит, также, от типа и мощности двигателя, а также от его температуры и технического состояния. Так, с понижением температуры увеличивается вязкость масла смазывающей системы, что приводит к увеличению момента сил трения.
Система пуска должна обладать достаточной мощностью, чтобы преодолеть моменты сопротивления, заставив вращаться коленчатый вал с частотой, необходимой для запуска двигателя. За все время существования двигателей внутреннего сгорания изобретатели и конструкторы разработали и испробовали на практике разнообразные способы пуска двигателей. И в современных двигателях можно встретить разные по принципу действия и конструкции пусковые устройства. При этом используемый в двигателе способ пуска во многом определяется назначением и характером работы машины, а также условиями, в которых она эксплуатируется.
***
Классификация систем пуска двигателя
Поршневые двигатели внутреннего сгорания можно запустить, раскручивая коленчатый вал различными способами:
Мускульный пуск
Мускульный пуск осуществляется вручную при помощи пусковой рукоятки (или другого аналогичного устройства), либо проворачиванием вывешенного ведущего колеса, когда второе ведущее колесо заторможено (опирается на дорогу и не вращается благодаря дифференциалу).
В данном способе источником энергии для проворачивания коленчатого вала двигателя является мускульная сила человека.
Мускульный пуск применяется на современных автомобилях только в случае отказа штатной системы пуска. Он достаточно опасен с точки зрения травмирования человека, поэтому требует особой осторожности при применении. Запускать дизельный двигатель при помощи мускульного пуска значительно сложнее и опаснее, чем двигатель с принудительным воспламенением из-за высокой степени сжатия в цилиндрах.
В последние годы на легковых автомобилях производителями не предусматриваются штатные устройства для мускульного пуска двигателя.
Пуск методом буксировки
Методом буксировки двигатель можно запустить при помощи другого транспортного средства либо с использованием мускульной силы группы людей или животных (лошадей, мулов и т. п.).
Буксированием автомобиль разгоняется до некоторой скорости, после чего водитель включает передачу КПП (обычно 3-ю) и плавно включает сцепление, заставляя коленчатый вал крутиться.
Данный метод пуска двигателя не применим для автомобилей, оборудованных автоматической коробкой передач.
Пуск от электродвигателя
Пуск от электрического двигателя постоянного тока — стартера, использующего для своей работы энергию аккумуляторной батареи автомобиля. Этот способ наиболее удобен и практичен, поэтому применяется в подавляющем большинстве систем пуска современных автомобильных двигателей.
Стартер конструктивно объединяет электродвигатель постоянного тока, привод с обгонной муфтой, соединяющий стартер с венцом маховика, и электрическое реле включения электродвигателя.
Пуск с помощью вспомогательного двигателя — «пускача»
Пуск основного двигателя от вспомогательного двигателя внутреннего сгорания малой мощности, который запускается от других источников энергии, в том числе – вручную. Этот способ нередко применяется в тракторных двигателях, поскольку позволяет легко запустить двигатель большой мощности с высокой степенью сжатия, свойственной дизелям, мало зависит от степени заряда аккумуляторной батареи, поэтому применим в любых условиях, в том числе вдали от населенных пунктов.
В качестве пусковых двигателей обычно используют небольшие карбюраторные двигатели, называемые «пускачами».
Пневматический пуск
Пневматический пуск осуществляется с использованием энергии сжатого воздуха, который накапливается в специальных баллонах при работе основного двигателя. Этот способ пуска ДВС в автомобильном транспорте применения не нашел; его чаще используют для запуска судовых и тепловозных двигателей, а также дизелей тяжелой бронетанковой техники.
Инерционный пуск
Инерционный пуск с использованием энергии вращающегося маховика, накопившего энергию во время работы двигателя — может использоваться для запуска двигателя после кратковременной остановки. Впрочем, известны инерционные системы пуска, в которых тяжелый маховик первоначально раскручивался вручную, после чего его энергия использовалась для пуска двигателя и после длительной стоянки.
К инерционному пуску можно отнести пуск двигателя, заглохшего во время движения транспортного средства – включение какой-либо передачи КПП при плавном включении сцепления позволяет раскрутить коленчатый вал от вращающихся колес. Такой способ пуска двигателя иногда еще называют ротационным.
Непосредственный пуск
Непосредственный пуск (Direct Start) – перспективный способ пуска двигателя внутреннего сгорания без применения внешних источников механической энергии, предложенный известной фирмой Bosch.
Оригинальность этого способа пуска заключается в том, что с помощью бортового компьютера определяется, какой из цилиндров двигателя наиболее подходит для выполнения такта рабочего хода (поршень находится чуть за пределами верхней мертвой точки), после чего в него подается и воспламеняется небольшая порция горючей смеси – двигатель начинает работать.
По ряду причин этот способ можно использовать в двигателях с числом цилиндров не менее четырех.
Работы над воплощением этой идеи в настоящее время ведутся, и вполне возможно, электрическую систему пуска заменит более эффективный и удобный непосредственный пуск.
Пиротехнический пуск
Еще один редкий способ запуска двигателя. Пиротехнический пуск — способ с использованием пиротехнических веществ, например, пороха, не получивший применения на автомобилях. Этот способ технологически похож на пневматический пуск, и отличается тем, что не требует запаса сжатого воздуха — давление пуска обеспечивают пороховые газы, образующиеся при сгорании пиропатрона, который можно воспламенить электрической искрой или ударом обыкновенного молотка по капселю.
В настоящее время пиротехнический пуск используется на некоторых моделях снегоходов и моторных судовых шлюпок, поскольку удобен тем, что в некоторых условиях для пуска двигателя другие источники энергии недоступны.
Основное требование, предъявляемое к системам пуска двигателя – обеспечение достаточной частоты вращения коленчатого вала, для чего необходим крутящий момент определенной величины. При этом система пуска должна надежно функционировать в любых условиях эксплуатации двигателя внутреннего сгорания, и минимально расходовать запасы собственных источников энергии транспортного средства.
***
Вспомогательные устройства пуска двигателя
К системе пуска относятся и устройства, облегчающие пуск холодного двигателя, особенно при низких температурах окружающей среды. Такие устройства в момент пуска холодного двигателя позволяют улучшить искрообразование (в двигателях с принудительным воспламенением смеси), обеспечить подачу в цилиндры горючей смеси необходимого качества и количества, выполняют продувку цилиндров, а также предварительный подогрев горючей смеси, смазочного материала, охлаждающей жидкости и деталей основных механизмов двигателя.
Особенно затруднен пуск холодного двигателя, оборудованного газовой и дизельной системой питания в зимнее время. Здесь, наряду с перечисленными выше причинами, имеют место и специфические трудности пуска, обусловленные характеристиками используемого топлива и типом системы питания.
Так, газовое топливо при выходе из баллонов нуждается в подогреве (газообразное) или испарении (жидкий газ). Для того, чтобы подогреватель или испаритель начали функционировать, необходимо изначально запустить и прогреть двигатель, поскольку в подогревателе используются отработавшие газы, а в испарителе — горячая жидкость системы охлаждения. Очевидно, в холодном состоянии системы двигателя не могут обеспечить нормальный подогрев газа перед подачей его в редуктор и смеситель. Поэтому пуск двигателя в газобаллонных автомобилях обычно осуществляется на бензине, а после некоторого прогрева двигателя переключают систему питания на газообразное топливо.
Для дизелей дополнительной причиной затруднения пуска является холодный воздух. Поскольку дизельный двигатель использует для воспламенения горючей смеси сильное сжатие воздуха, то очевидно, что холодный воздух при одной и той же степени сжатия прогреется меньше, чем теплый воздух, и воспламенение смеси будет затруднено или даже невозможно. Кроме того, высокая степень сжатия в дизелях, характеризующаяся значительным компрессионным сопротивлением, создает дополнительное препятствие работе системы пуска (стартера или пускового двигателя), и при запуске трудно раскрутить коленчатый вал до нужной частоты.
Для устранения описанных причин затрудненного пуска дизелей применяются такие конструкторские решения, как предварительный подогрев воздуха во впускном трубопроводе с помощью специальных электронагревательных свечей, а также декомпрессоры — устройства, снижающие компрессию двигателя в момент раскручивания коленчатого вала перед пуском двигателя. Декомпрессоры обычно открывают клапана (впускной, выпускной или оба), что облегчает стартеру раскручивание коленчатого вала до нужной частоты, а после отключения декомпрессора двигатель запускается.
Кроме того, декомпрессор может быть использован для аварийной остановки двигателя в случае необходимости — снижение компрессии в цилиндрах исключает возгорание горючей смеси, и дизель глохнет.
Конструктивно декомпрессор представляет собой систему тяг и рычагов с ручным или электромагнитным приводом, воздействующих на штанги толкателей и открывающих клапаны ГРМ.
В условиях очень низких температур для облегчения пуска двигателя нередко применяют эфиросодержащие жидкости, впрыскиваемые в небольшом количестве во впускной тракт системы питания.
В холодное время года наиболее удобным и надежным средством облегчения пуска двигателей являются предпусковые подогреватели.
***
Автомобильные стартеры
Главная страница
Дистанционное образование
Специальности
Учебные дисциплины
Олимпиады и тесты
Системы электрозапуска газотурбинных двигателей
Вращающий момент, Н·м122,5 Н·м
Частота вращения, об/мин9000 об/мин
Масса электростартера, кг135,5 кг
Технодинамика разработала уникальную систему электрозапуска для газовых турбин
24. 12.2020
Уфимское агрегатное производственное объединение холдинга «Технодинамика» Госкорпорации Ростех (входит в Союз машиностроителей России) изготовило партию систем электрического запуска СЭЗ-130, предназначенных для газовых турбин газоперекачивающих агрегатов и автономных электростанций. Заказчиком системы, не имеющих аналогов в России, выступило ПАО «ОДК-УМПО».
СЭЗ-130 состоит из стартера СТ-130 и преобразователя частоты «ЭРАТОН-М4-150». Стартер включает в себя синхронный двигатель на постоянных магнитах, а преобразователь обеспечивает управление этим двигателем. Система питается от промышленной сети трехфазного переменного тока с линейным напряжением 380 Вольт.
Разработка успешно прошла опытно-конструкторскую эксплуатацию на электростанции ГТЭ-18.
«Система электрического запуска башкирского предприятия «Технодинамики» не имеет аналогов в России и является одним из перспективных направлений линейки нашей гражданской продукции. На сегодняшний день УАПО заключило договор на изготовление и поставку 14-ти таких изделий для Уфимского моторостроительного производственного объединения. Оно специализируется на изготовлении газотурбинных двигателей, в частности турбины АЛ-31 СТ, для запуска которой и предназначена СЭЗ-130», — прокомментировал генеральный директор холдинга «Технодинамика», куратор Ульяновского и Пензенского региональных отделений Союза машиностроителей России, член бюро Лиги содействия оборонным предприятиям Игорь Насенков.
АО «Уфимское агрегатное производственное объединение» занимает одно из лидирующих мест по изготовлению систем зажигания и авиационных свечей, генераторов, электродвигателей постоянного и переменного тока, электромашинных преобразователей, датчиков, взрывозащищенных двигателей типа АИМ для нефтяной и газовой промышленности, а также бытовых и промышленных электронасосов различных моделей.
Acquista система электропуска двигателя online
Esplora un’ampia varietà di система электропуска двигателя e fai shopping in tutta semplicità su AliExpress
Cerchi система электропуска двигателя di buona qualità ai prezzi più bassi? Beh, sei fortunato! Su AliExpress, puoi completare la tua ricerca di система электропуска двигателя e trovare buone offerte che offrono un ottimo rapporto qualità-prezzo! Non sai da dove cominciare? Ecco una guida rapida per sfruttare al meglio AliExpress e ottenere le migliori offerte!
Utilizza i filtri: AliExpress ha un’ampia selezione per ogni articolo. Per trovare система электропуска двигателя che corrisponde alle tue esigenze, basta armeggiare con i filtri per ordinare in base alla migliore corrispondenza, al numero di ordini o al prezzo. Puoi anche filtrare gli articoli che offrono la spedizione gratuita, la consegna veloce o il reso gratuito per restringere la tua ricerca!
Esplora i brand: Acquista система электропуска двигателя di brand fidati e noti che ami, semplicemente cliccando sul logo del brand nella barra laterale sinistra. Questo ti aiuterà a filtrare ogni система электропуска двигателя che il brand ha a disposizione!
Leggi le recensioni: Ogni volta che stai cercando la migliore система электропуска двигателя, leggi le recensioni reali lasciate dagli acquirenti nella pagina dei dettagli dell’articolo. Lì troverai un sacco di informazioni utili sulla система электропуска двигателя ma anche consigli e trucchi per rendere la tua esperienza di shopping incredibile!
Con i suggerimenti di cui sopra, sei sulla strada giusta per trovare система электропуска двигателя di buona qualità a prezzi scontati, godendo di vantaggi come la spedizione rapida o il reso gratuito. Se sei un nuovo utente, potrai anche godere di speciali offerte per nuovi utenti o di omaggi! Sfoglia AliExpress per trovare ancora più articoli in e completa la tua esperienza d’acquisto online. Ora è facile e immediato avere tutto ciò che desideri, di buona qualità e a prezzi bassi.
«Система пуска двигателя» | План-конспект урока (технология, 11 класс) на тему:
ПЛАН-КОНСПЕКТ УРОКА ПО УСТРОЙСТВУ АВТОМОБИЛЯ
ТЕМА УРОКА : «СИСТЕМА ПУСКА ДВИГАТЕЛЯ. »
Преподаватель Спасский Ю.Н.
Цель урока: ознакомить учащихся с устройством и работой системы пуска двигателя. Развивать логическое и творческое мышление , прививать любовь к технике и выбранной профессии.
Тип урока : комбинированный
Материально-техническое обеспечение : действующий макет системы электрооборудования автомобиля ВАЗ-2106; стенды электрооборудования; стартер в разрезе и разобранном виде; плакаты.
Межпредметные связи : физика, электротехника.
ПЛАН УРОКА.
1) Организационная часть.
2) Проверка домашнего задания.
3) Объяснение нового материала.
4) Закрепление нового материала.
5) Подведение итогов урока.
6) Домашнее задание.
ХОД УРОКА.
1) Организационная часть.
2) Проверка домашнего задания.
Проверка домашнего задания проводится в виде ролевой игры, когда один учащийся задает вопрос другому. Если на вопрос не дается правильный ответ, то задававший вопрос отвечает сам . За правильные ответы учащиеся получают баллы, за которые потом выставляются оценки.
3) Объяснение нового материала.
Система электропуска предназначена для предания вращения коленчатому валу двигателя с пусковой частотой, при которой обеспечиваются необходимые условия смесеобразования, воспламенения и горения рабочей смеси. Пусковая частота вращения коленчатого вала для карбюраторных двигателей находится в пределах 50-100 об/мин, а для дизелей –в пределах 150-250 об/мин.
Пусковой ток у стартеров различного типа достигает 300-800 А. Система электропуска карбюраторных двигателей состоит из стартера , аккумуляторной батареи и цепи стартера
(выключателя массы, реле включения стартера, проводов).
Основной частью стартера является электродвигатель постоянного тока, питаемый от аккумуляторной батареи. Стартер должен развивать требуемый крутящий момент , чтобы коленчатый вал провернулся на 2-4 оборота до того , как установится пусковая частота вращения коленчатого вала в заданных пределах, что необходимо для образования готовой к воспламенению рабочей смеси.
Вал стартера соединяется с коленчатым валом только во время пуска двигателя. Для этой цели служит шестерня, установленная на валу стартера при помощи шлицевого соединения, допускающего осевое перемещение шестерни по валу и ее соединение и разъединение с зубчатым венцом маховика. Разъединение шестерни с зубчатым венцом маховика после пуска двигателя должно происходить автоматически, так как из-за большого передаточного числа этой передачи частота вращения вала стартера возрастает до 10-15 тыс. об/мин, что может привести к вылету обмотки якоря под действием центробежных сил. Для предотвращения этого явления на большинстве стартеров устанавливается муфта свободного хода, обеспечивающая передачу крутящего момента только в одном направлении – от вала стартера к маховику.
На современных автомобилях управление стартером дистанционное – из кабины водителя. При этом управлении включение стартера осуществляется контактами из тягового реле. Взаимодействие элементов стартера 1 при пуске двигателя происходит следующим образом. При замыкании контактов выключателя 2 по обмотке 7 тягового реле 5 проходит ток, сердечник 8 электромагнита втягивается внутрь обмотки, а соединенный с ним рычаг 11 перемещает шестерню 12 привода 10 и вводит ее в зацепление с зубчатым венцом 13 маховика. При полном зацеплении зубчатой передачи сердечник 8 через контактный диск 6 замыкает контакты 4 и ток от аккумуляторной батареи поступает в обмотку электродвигателя 3. Якорь электродвигателя начинает вращаться и передает крутящий момент через шестерню 12 и зубчатый венец 13 маховика на коленчатый вал двигателя. После пуска двигателя выключатель 2 размыкает контакты и цепь обмотки электродвигателя прерывается. Под действием пружины 9 контактный диск 6 и шестерня 12 механизма привода возвращаются в исходное положение.
Стартер следует включать на время не более 5-10 с. Если двигатель не пустился , стартер можно включить повторно с интервалом не менее 30с. Этот промежуток времени необходим для восстановления работоспособности аккумуляторной батареи. Включать стартер повторно можно не более 3 раз подряд, затем следует найти и устранить неисправность в системах питания или зажигания.
4) Закрепление нового материала.
Этот этап будет проходить в виде игры «Ромашка». На доске закрепляется ромашка с отрывными лепестками. На обратной стороне каждого лепестка написаны вопросы по новой теме. Учащимся необходимо оторвать любой лепесток и ответить на вопрос.
Перечень вопросов для игры:
1) Что является основной частью стартера?
2) В чем сходство и различие между стартером и генератором?
3) Общее устройство стартера.
4) Какие приборы входят в систему пуска двигателя?
5) Устройство тягового реле.
6) Каково назначение тягового реле?
7) Для чего предназначена муфта свободного хода?
8) Устройство муфты свободного хода.
В это же время двое учащихся выходят к столу , на котором лежат детали от стартера и генератора. Их задача : рассортировать детали и сказать их названия.
5) Подведение итогов урока.
На этом этапе преподаватель выставляет учащимся оценки за урок , делает краткий анализ работы группы.
6) Домашнее задание.
Конспект, пункт 12.1 учебника.
Как работает система запуска
Стартер с предварительным включением
Шестерня приводится в движение соленоидом; есть начальный период, когда двигатель вращается медленно, чтобы обеспечить зацепление, поэтому вся операция более щадящая и вызывает меньший износ зубьев.Сделать двигатель начать его надо крутить на какой-то скорости, чтоб хреново топливо и воздух в цилиндры , и сжимает его.
Мощный электрический стартер мотор делает поворот.Его вал несет небольшую шестерню ( механизм колеса), которая входит в зацепление с большим зубчатым венцом вокруг обода двигатель маховик .
В варианте с передним расположением двигателя стартер установлен низко рядом с задней частью двигателя.
Стартеру нужен тяжелый электрический Текущий , который он протягивает через толстые провода от аккумулятор . Нет обычного ручного управления выключатель может включить его: для работы с большим током нужен большой переключатель.
Выключатель должен включаться и выключаться очень быстро, чтобы избежать опасного, опасного искрения.Так что соленоид используется — устройство, в котором небольшой переключатель включает электромагнит завершить схема .
Цепь стартера
Все компоненты заземлены на металлический кузов автомобиля. Для передачи тока к каждому компоненту нужен только один провод.Выключатель стартера обычно срабатывает зажигание ключ. Поверните ключ за пределы положения «зажигание включено», чтобы подать ток на соленоид.
выключатель зажигания имеет возвратная пружина , так что как только вы отпускаете ключ, он пружинит и выключает стартер.
Когда переключатель подает ток на соленоид, электромагнит притягивает железный стержень.
Движение штока замыкает два тяжелых контакта, замыкая цепь от аккумулятор к стартеру.
Шток также имеет возвратную пружину — когда ключ зажигания перестает подавать ток на соленоид, контакты размыкаются и пусковой двигатель останавливается.
Возвратные пружины необходимы, потому что стартер не должен вращаться больше, чем необходимо, чтобы запустить двигатель. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Частично причина в том, что стартер потребляет много электроэнергии, которая быстро разряжает аккумулятор.
Кроме того, если двигатель запускается, а стартер остается включенным, двигатель будет вращать стартер так быстро, что это может быть серьезно повреждено.
Сам стартер имеет устройство, называемое шестерней Bendix, которое взаимодействует своей шестерней с зубчатым венцом на маховике только тогда, когда стартер вращает двигатель. Он отключается, как только двигатель набирает обороты, и это можно сделать двумя способами: инерция система и система с предварительным включением.
Инерционный стартер полагается на инерцию шестерни, то есть ее сопротивление вращению.
Система инерции
Стартер инерционного типа: это «внутренний» стартер, в котором шестерня Bendix отбрасывает шестерню в сторону двигателя; есть и «внешние», в которых он движется в другую сторону.Шестерня не прикреплена жестко к валу двигателя — она навинчивается на него, как свободно вращающаяся гайка на болте с очень крупной резьбой.
Представьте, что вы внезапно закручиваете болт: инерция гайки не дает ей сразу повернуться, поэтому она смещается по резьбе болта.
При вращении инерционного стартера шестерня движется по резьбе вала двигателя и входит в зацепление с зубчатым венцом маховика.
Затем он достигает остановки в конце резьбы, начинает вращаться вместе с валом и, таким образом, вращает двигатель.
Инерция тяжелого поршневого узла предотвращает его немедленное вращение при вращении вала двигателя, поэтому он скользит по резьбе и входит в зацепление; при запуске двигателя шестерня вращается быстрее, чем вал, поэтому она выходит из зацепления.При запуске двигателя шестерня вращается быстрее, чем вал собственного стартера. Вращающееся действие закручивает шестерню обратно на резьбу и выходит из зацепления.
Шестерня возвращается в исходное положение с такой силой, что на валу должна быть сильная пружина, чтобы смягчить ее удар.
Резкое включение и выключение инерционного стартера может вызвать сильный износ зубьев шестерни. Чтобы решить эту проблему, был введен стартер с предварительным включением, который имеет соленоид, установленный на двигателе.
Автомобильная стартерная система — это еще не все: соленоид не только включает двигатель, но и перемещает шестерню по валу, чтобы зацепить ее.
Вал прямой шлицы вместо резьбы Бендикс, чтобы шестерня всегда вращалась вместе с ней.
Шестерня входит в контакт с зубчатым венцом маховика с помощью скользящей вилки. Вилка приводится в движение соленоидом, который имеет два набора контактов, замыкающихся один за другим.
Первый контакт подает слабый ток на двигатель, поэтому он вращается медленно — ровно настолько, чтобы зубья шестерни зацепились.Затем замыкаются вторые контакты, запитывая двигатель большим током, который вращает двигатель.
Электрические системы запуска и стартер-генераторная система запуска
Электрические системы запуска для газотурбинных самолетов бывают двух основных типов: электрические системы прямого запуска и системы стартер-генератор. Системы электрического запуска с прямым проворачиванием коленчатого вала используются в основном на небольших турбинных двигателях, таких как вспомогательные силовые установки (ВСУ), и некоторых небольших турбовальных двигателях. Многие газотурбинные самолеты оснащены системами стартер-генераторов.Системы запуска генератора стартера также похожи на электрические системы прямого запуска, за исключением того, что после работы в качестве стартера они содержат вторую серию обмоток, которые позволяют ему переключаться на генератор после того, как двигатель достигнет самоподдерживающейся скорости. Это экономит вес и экономит место на двигателе.
Стартер-генератор постоянно связан с валом двигателя посредством необходимых приводных шестерен, в то время как стартер с прямым проворачиванием коленчатого вала должен использовать некоторые средства отсоединения стартера от вала после запуска двигателя.Блок стартер-генератор — это в основном шунтирующий генератор с дополнительной тяжелой последовательной обмоткой. [Рисунок 5-16] Эта последовательная обмотка электрически соединена для создания сильного поля и, как следствие, высокого крутящего момента для запуска. Стартер-генераторные агрегаты желательны с экономической точки зрения, так как один агрегат выполняет функции и стартера, и генератора. Кроме того, уменьшается общий вес компонентов системы запуска и требуется меньше запчастей.
Рисунок 5-16. Типовой стартер-генератор.Внутренняя цепь стартер-генератора имеет четыре обмотки возбуждения: последовательное поле (поле C), шунтирующее поле, компенсирующее поле и межполюсную или коммутирующую обмотку. [Рисунок 5-17] Во время пуска используются обмотки возбуждения C, компенсационная и коммутирующая обмотки. Устройство похоже на пускатель с прямым проворачиванием, поскольку все обмотки, используемые во время пуска, включены последовательно с источником. Выступая в качестве стартера, блок не использует на практике свое шунтирующее поле. Для запуска обычно требуется источник 24 В и пиковый ток 1500 ампер.
Рисунок 5-17. Внутренняя цепь стартер-генератора.При работе в качестве генератора используются шунтирующая, компенсационная и коммутирующая обмотки. Поле C используется только для начальных целей. Шунтирующее поле подключено к обычной цепи управления напряжением для генератора. Компенсирующие и коммутирующие или межполюсные обмотки обеспечивают практически безискровую коммутацию от холостого хода до полной нагрузки. На рисунке 5-18 показана внешняя схема стартер-генератора с регулятором минимального тока.Этот блок управляет стартер-генератором, когда он используется в качестве стартера. Его цель — обеспечить положительное действие стартера и поддерживать его в рабочем состоянии до тех пор, пока двигатель не начнет вращаться достаточно быстро, чтобы поддерживать сгорание. Блок управления регулятора минимального тока содержит два реле. Одно из них — это реле двигателя, которое управляет входом в стартер; другое, реле минимального тока, управляет работой реле двигателя.
Рисунок 5-18. Схема стартер-генератора. [Щелкните изображение, чтобы увеличить] Последовательность работы системы запуска обсуждается в следующих параграфах. [Рисунок 5-18] Чтобы запустить двигатель, оборудованный реле минимального тока, сначала необходимо замкнуть главный выключатель двигателя. Это замыкает цепь от автобуса самолета до пускового переключателя, топливных клапанов и реле дроссельной заслонки. При подаче питания на реле дроссельной заслонки запускаются топливные насосы, а замыкание цепи топливного клапана обеспечивает необходимое давление топлива для запуска двигателя. При включении аккумулятора и пускового переключателя замыкаются три реле: реле двигателя, реле зажигания и реле отключения аккумулятора.Реле двигателя замыкает цепь от источника питания до стартера; реле зажигания замыкает цепь на блоки зажигания; реле отключения аккумулятора отключает аккумулятор. Размыкание цепи аккумуляторной батареи необходимо, поскольку сильный разряд стартера может повредить аккумулятор. Замыкание реле двигателя позволяет протекать к двигателю очень сильному току. Поскольку этот ток протекает через катушку реле минимального тока, оно замыкается. При замыкании реле минимального тока замыкается цепь от положительной шины к катушке реле двигателя, катушке реле зажигания и катушке реле отключения аккумуляторной батареи.Пусковой выключатель может вернуться в нормальное положение выключения, и все блоки продолжают работать.По мере того, как двигатель набирает скорость, ток, потребляемый двигателем, начинает уменьшаться. При снижении до менее 200 ампер размыкается реле минимального тока. Это действие разрывает цепь от положительной шины до катушек двигателя, реле зажигания и отключения аккумуляторной батареи. Обесточивание этих катушек реле останавливает операцию запуска.
После завершения этих процедур двигатель должен работать эффективно, а зажигание должно быть самоподдерживающимся.Если, однако, двигатель не набирает обороты, достаточные для остановки работы стартера, можно использовать выключатель останова для разрыва цепи от положительной шины до главных контактов реле минимального тока.
Поиск и устранение неисправностей в системе запуска стартера-генератора
Процедуры, перечисленные на Рисунке 5-19, являются типичными для тех, которые используются для устранения неисправностей в системе запуска стартер-генератора, аналогичной системе, описанной в этом разделе. Эти процедуры представлены только в качестве руководства.Для соответствующего самолета всегда следует обращаться к соответствующим инструкциям производителя и утвержденным директивам по техническому обслуживанию.
Рисунок 5-19. Процедуры поиска и устранения неисправностей в системе запуска стартер-генератора. [Щелкните изображение, чтобы увеличить]Flight Mechanic рекомендует
Как это работает: стартеры и технология автоматического старт-стоп
Когда вы поворачиваете ключ автомобиля или нажимаете кнопку пуска, все запускается стартером. Это электродвигатель с единственной целью — вращать коленчатый вал для запуска двигателя, но на многих новых автомобилях он играет эту роль еще чаще.Некоторые производители автомобилей добавляют технологию старт-стоп, которая выключает двигатель на холостом ходу, а затем запускает его снова, когда вы будете готовы к работе.
Сердцем двигателя является его центральный коленчатый вал, который вращается, вызывая движение, которое в конечном итоге поворачивает колеса. Его вращают поршни, которые двигаются вверх и вниз, вращая его так же, как ваши ноги приводят в движение велосипед. Чтобы двигатель запускался и работал, большинство связанных с ним функций также должны запускаться одновременно. Некоторые запускаются при первых оборотах коленчатого вала; электрическая система также включает топливный насос и систему зажигания для свечей зажигания.
К задней части коленчатого вала прикреплен диск, называемый маховиком, который вращается всякий раз, когда коленчатый вал вращается. Одной из его функций является выравнивание движения коленчатого вала для уменьшения вибрации, но он также важен для запуска двигателя благодаря зубчатому венцу, зубчатому колесу вокруг его обода. Соленоид на стартере создает контакт, который передает мощность аккумулятора на стартер. Приводной механизм стартера, называемый шестерней Bendix, зацепляет свою малую ведущую шестерню с зубьями кольцевой шестерни.При вращении ведущей шестерни вращается и коронная шестерня, что приводит к вращению коленчатого вала.
Этот спиннинг запускает все. Коленчатый вал опускает некоторые поршни, создавая в каждом цилиндре вакуум, который всасывает топливо и воздух. Свеча зажигания воспламеняет смесь, создавая сгорание, которое приводит в действие каждый поршень и запускает вращение коленчатого вала. Стартер больше не нужен. Пружина отсоединяет его от зубчатого венца, а контакт соленоида размыкается и отключает питание.
На обычном автомобиле запуск двигателя — это основная работа аккумулятора. Когда двигатель работает, он запускает генератор / генератор, который обеспечивает электроэнергию автомобиля, от зажигания свечей зажигания до включения света. Он также подает электричество обратно в аккумулятор, где оно сохраняется для следующего запуска двигателя. Единственные другие задачи аккумулятора — это запускать аксессуары при выключенном двигателе — например, когда вы сидите с включенной стереосистемой — или брать на себя управление в случае отказа генератора, и в этом случае автомобиль будет работать до тех пор, пока аккумулятор не разрядится.
Единственная задача стартера — вращать коленчатый вал для запуска двигателя. Джил МакИнтош / ВождениеВы, наверное, видели старинные фотографии автомобилистов, поворачивающих ручку на передней части своих автомобилей. На этих ранних автомобилях вращение коленчатого вала для запуска двигателя выполнялось исключительно с помощью мускулов. Cadillac представила первый автомобиль с автостартером в 1912 году, и эта базовая конструкция используется до сих пор.
У гибридных автомобилей также должны запускаться бензиновые двигатели, но в дополнение к двигателю у них есть электродвигатель-генератор.Это работает либо само по себе, когда автомобиль работает только на электричестве, либо в сочетании с газовым двигателем для дополнительного ускорения. Вместо обычного стартера он также вращает коленчатый вал, чтобы запустить двигатель по мере необходимости — не только при первом запуске автомобиля, но и в любое время, когда системе необходимо перейти с электрической системы на газоэлектрическую. Двигатель очень быстро вращает коленчатый вал, и запуск двигателя в целом происходит более плавно. У некоторых гибридов бывает трудно определить, когда срабатывает бензиновый двигатель во время движения.
Гибриды выключают бензиновый двигатель на холостом ходу, например, когда вы сидите на стоп-сигнале, и теперь многие негибриды делают то же самое, чтобы сэкономить топливо и уменьшить выбросы. Все остальное продолжает работать, включая климат-контроль, фары и стереосистему, а двигатель перезапускается, как только вы снимаете ногу с тормоза.
5,7-литровый двигатель Hemi V8 Ram 1500 2019 года с eTorque. Раздаточный материал / БаранЭти негибридные автомобили, конечно, используют стартер, но поскольку двигатель останавливается и запускается очень много раз, стартер и его система оптимизированы для уменьшения износа.Сюда могут входить специальные материалы и подшипники для увеличения срока службы, улучшенное передаточное число ведущей шестерни, чтобы стартер не вращался так быстро, и модули управления, которые останавливают цилиндры двигателя в точке, где легче всего запустить все снова. Система старт-стоп также не срабатывает, если для нее не созданы все условия, включая температуру окружающей среды и если двигатель достаточно прогрелся. Большинство транспортных средств дают водителю возможность временно отключить систему, если старт-стоп нежелателен, а также автоматически отключить ее, если автомобиль переведен в спортивный режим.
Некоторые автомобили имеют мягкие гибридные системы, такие как система eTorque, доступная на Ram 1500 2019 года. Они объединяют мотор-генератор с 48-вольтовой батареей, и хотя они не управляют автомобилем только на электричестве в качестве полного гибрид может, они заводят бензиновый мотор и сглаживают ускорение. Ожидайте увидеть это еще больше, поскольку автопроизводители работают над соблюдением стандартов эффективности — и вы тоже можете начать работу.
Системы пуска поршневых двигателей самолетов
Системы запуска поршневых двигателей На ранних этапах разработки самолетов относительно маломощные поршневые двигатели запускались путем вытягивания пропеллера вручную на часть оборота.В холодную погоду часто возникали трудности с запуском, когда температура смазочного масла была близка к точке застывания. Кроме того, магнитные системы давали слабую пусковую искру при очень низких скоростях проворачивания. Это часто компенсировалось созданием горячей искры с использованием таких устройств системы зажигания, как бустерная катушка, индукционный вибратор или импульсная связь.Некоторые небольшие маломощные самолеты, в которых для запуска используется ручной запуск пропеллера или подпорка, все еще эксплуатируются.На протяжении всей разработки авиационного поршневого двигателя с самого начала использования пусковых систем до настоящего времени использовался ряд различных стартерных систем. Большинство стартеров поршневых двигателей — электрические с прямым запуском. Несколько старых моделей самолетов до сих пор оснащены инерционными стартерами. Таким образом, на эту страницу включено только краткое описание этих стартовых систем.
Инерционные пускатели
Существует три основных типа инерционных пускателей: ручные, электрические и комбинированные ручные и электрические.Работа всех типов инерционных пускателей зависит от кинетической энергии, накопленной в быстро вращающемся маховике для проворачивания. Кинетическая энергия — это энергия, которой обладает тело в силу своего состояния движения, которое может быть движением по линии или вращением. В инерционном пускателе энергия медленно накапливается во время процесса включения ручным пускателем или электрически с помощью небольшого двигателя. Маховик и подвижные шестерни комбинированного ручного электроинерционного стартера показаны на рисунке 1.Рисунок 1. Комбинированный ручной и электрический инерционный пускатель |
Электрическая схема электрического инерционного стартера показана на рисунке 2. Во время включения стартера все движущиеся части внутри него, включая маховик, приводятся в движение. После того, как стартер был полностью запитан, он соединяется с коленчатым валом двигателя с помощью троса, протянутого вручную, или зацепляющего соленоида, который находится под напряжением.Когда стартер включен или зацеплен, энергия маховика передается двигателю через комплекты редукторов и муфту отключения по крутящему моменту. [Рисунок 3]
Рисунок 2. Электрическая инерционная пусковая цепь |
Рис. 3. Муфта выключения перегрузки по крутящему моменту |
Электростартер поршневого двигателя прямого запуска
Наиболее широко используемая система запуска на всех типах поршневых двигателей использует электрический стартер с прямым запуском.Этот тип стартера обеспечивает мгновенный и непрерывный запуск двигателя под напряжением. Электростартер с прямым запуском состоит в основном из электродвигателя, редукторов и механизма автоматического включения и выключения, который приводится в действие с помощью регулируемой муфты отключения по крутящему моменту. Типичная схема электрического стартера с прямым запуском показана на рисунке 4. Двигатель запускается непосредственно при замкнутом соленоиде стартера. Как показано на Рисунке 4, основные кабели, идущие от стартера к батарее, имеют большую нагрузку на протекание большого тока, который может находиться в диапазоне от 350 до 100 ампер (ампер), в зависимости от пускового момента. обязательный.Использование соленоидов и толстой проводки с переключателем дистанционного управления снижает общий вес кабеля и общее падение напряжения в цепи.
Рис. 4. Типовая схема пуска с использованием электрического стартера прямого запуска |
Типичный стартер — это 12- или 24-вольтовый двигатель с последовательной обмоткой, развивающий высокий пусковой момент. Крутящий момент двигателя передается через редукторы на предохранительную муфту.Обычно это действие приводит в действие вал со спиральными шлицами, перемещающий губку стартера наружу, чтобы зацепить губку проворачивания двигателя, прежде чем губка стартера начнет вращаться. После того, как двигатель наберет заданную скорость, стартер автоматически отключается. Схема на рисунке 5 представляет собой схематическое изображение всей системы запуска для легкого двухмоторного самолета.
Рис. 5. Схема запуска двигателя легкого двухмоторного самолета |
Система электрического запуска с прямым запуском для больших поршневых двигателей
В типичном высокомощном поршневом двигателе для запуска основные компоненты: двигатель в сборе и зубчатая передача.Зубчатая передача прикреплена болтами к приводному концу двигателя, образуя единый блок.
Узел двигателя состоит из узла якоря и шестерни двигателя, узла концевого раструба и узла корпуса двигателя. Корпус двигателя также действует как магнитное ярмо для структуры поля.
Стартер представляет собой нереверсивный межполюсный двигатель. Его скорость напрямую зависит от приложенного напряжения и обратно пропорционально нагрузке. Секция шестерни стартера состоит из внешнего корпуса со встроенным монтажным фланцем, планетарного редуктора, узла солнечной и встроенной шестерен, муфты ограничения крутящего момента и узла кулачка и конуса.[Рис. 6] Когда цепь стартера замкнута, крутящий момент, развиваемый в стартере, передается на челюсть стартера через редуктор и муфту.
Рисунок 6. Зубчатая передача стартера |
Зубчатая передача стартера преобразует низкий крутящий момент двигателя на высокой скорости в высокий крутящий момент на низкой скорости, необходимый для запуска двигателя. В зубчатой части шестерня двигателя входит в зацепление с шестерней промежуточного промежуточного вала.[Рис. 6] Шестерня промежуточного вала входит в зацепление с внутренней шестерней. Внутренняя шестерня является неотъемлемой частью солнечной шестерни в сборе и жестко прикреплена к валу солнечной шестерни. Солнечная шестерня приводит в движение три планетарных шестерни, которые являются частью планетарной шестерни. Отдельные валы планетарной шестерни поддерживаются несущим планетарным рычагом, бочкообразной частью, показанной на Рисунке 6. Несущий рычаг передает крутящий момент от планетарных шестерен к кулачку стартера следующим образом:
- Цилиндрическая часть несущего рычага имеет продольные шлицы вокруг внутренней поверхности.
- На внешней поверхности цилиндрической части кулачка стартера нарезаны ответные шлицы.
- Зажим скользит вперед и назад внутри несущего рычага, чтобы войти в зацепление с двигателем и расцепить его.
Будучи нарезанным таким образом, вращение вала выталкивает гайку, и гайка увлекает за собой губку. Пружина губки вокруг ходовой гайки удерживает губку с гайкой и стремится удерживать коническую поверхность муфты вокруг внутренней стенки головки губки, прилегающей к аналогичной поверхности вокруг нижней стороны головки гайки.Возвратная пружина установлена на продолжении вала солнечной шестерни между плечом, образованное сплайнами вокруг внутренней стенки бегущей гайки, и челюсть остановки удерживающей гайку на конце вала. Поскольку конические поверхности муфты ходовой гайки и кулачка стартера входят в зацепление за счет давления пружины кулачка, две части имеют тенденцию вращаться с одинаковой скоростью. Однако удлинитель вала солнечной шестерни вращается в шесть раз быстрее, чем кулачок. Спиральные шлицы на нем нарезаны с левой стороны, и удлинитель вала солнечной шестерни, поворачиваясь вправо относительно кулачка, выталкивает ходовую гайку и кулачок из стартера на полный ход (около 5⁄16 дюйма) примерно на 5/16 дюйма. 12 ° поворот челюсти.
В челюсти двигается, пока он не будет остановлен либо путем взаимодействия с двигателем или с помощью челюстей остановки стопорной гайки. Ходовая гайка продолжает немного перемещаться за предел хода кулачка, достаточного для того, чтобы ослабить давление пружины на конические поверхности муфты. Пока стартер продолжает вращаться, на конические поверхности муфты оказывается достаточно давления, чтобы обеспечить крутящий момент на спиральных шлицах, которые уравновешивают большую часть давления пружины кулачка. Если двигатель не запускается, губка стартера не втягивается, поскольку механизм стартера не обеспечивает силы втягивания.Однако, когда двигатель запускается и кулачок двигателя выходит за пределы кулачка стартера, наклонные наклоны зубьев кулачка заставляют кулачок стартера вжиматься в стартер, преодолевая давление пружины кулачка. Это полностью разъединяет конические поверхности сцепления, и давление пружины кулачка заставляет ходовую гайку скользить по спиральным шлицам до тех пор, пока конические поверхности сцепления снова не войдут в контакт.
Когда стартер и двигатель работают, возникает сила зацепления, удерживающая губки в контакте, которая продолжается до тех пор, пока стартер не будет обесточен.Однако быстро движущиеся зубцы челюсти двигателя, ударяясь о медленно движущиеся зубья челюсти стартера, удерживают губку стартера в выключенном состоянии. Как только стартер останавливается, сила зацепления снимается, и малая возвратная пружина переводит губку стартера в полностью втянутое положение, где она остается до следующего запуска. Когда кулачок стартера впервые входит в контакт с кулачком двигателя, якорь двигателя успевает набрать значительную скорость из-за высокого пускового момента. Внезапное зацепление подвижной губки стартера с неподвижной губкой двигателя привело бы к развитию достаточно больших сил, чтобы серьезно повредить двигатель или стартер, если бы диски в пакете сцепления не проскальзывали, когда крутящий момент двигателя превышает момент проскальзывания сцепления.
При нормальном прямом проворачивании коленчатого вала внутренние стальные зубчатые диски муфты удерживаются неподвижно за счет трения бронзовых пластин, с которыми они чередуются. Однако, когда крутящий момент, создаваемый двигателем, превышает настройку муфты, диски муфты с внутренним зацеплением вращаются против трения муфты, позволяя планетарным шестерням вращаться, в то время как планетарный рычаг и кулачок остаются неподвижными. Когда двигатель достигает скорости, которую пытается достичь стартер, крутящий момент падает до значения, меньшего, чем настройка сцепления, диски муфты с внутренним зубчатым колесом снова удерживаются в неподвижном состоянии, а губка вращается со скоростью, которую пытается достичь двигатель. води его.Выключатели управления стартером схематически показаны на Рисунке 7.
Рисунок 7. Схема управления стартером |
Селекторный переключатель двигателя должен быть установлен в положение, а переключатель стартера и выключатель безопасности, соединенные последовательно, должны быть замкнуты, прежде чем можно будет включить стартер. Ток подается в цепь управления стартером через автоматический выключатель с надписью «Стартер, праймер и индукционный вибратор».”[Рис. 7] Когда селекторный переключатель двигателя находится в положении для запуска двигателя, при включении стартера активируется реле стартера, расположенное в области гондолы двигателя. Подача напряжения на реле стартера замыкает цепь питания стартера. Ток, необходимый для такой большой нагрузки, снимается непосредственно с главной шины через кабель шины стартера.
Все системы запуска имеют ограничения по времени работы из-за высокой энергии, используемой при запуске или вращении двигателя. Эти ограничения называются пределами стартера и должны соблюдаться, иначе произойдет перегрев и повреждение стартера.После подачи питания на стартер в течение 1 минуты ему следует дать остыть не менее 1 минуты. После второго или последующего периода проворачивания в течение 1 минуты он должен остыть в течение 5 минут.
Система электрического запуска с прямым запуском для малых самолетов
В большинстве небольших самолетов с поршневым двигателем используется электрическая система запуска с прямым запуском. Некоторые из этих систем запускаются автоматически, другие запускаются вручную. В системах запуска с ручным включением, используемых на многих старых небольших самолетах, используется приводная шестерня обгонной муфты с ручным управлением для передачи мощности от электродвигателя стартера на ведущую шестерню стартера коленчатого вала.[Рис. 8] Ручка или ручка на приборной панели соединена гибким элементом управления с рычагом на стартере. Этот рычаг переводит ведущую шестерню стартера в положение включения и замыкает контакты переключателя стартера при нажатии на ручку или ручку стартера.
Рисунок 8. Регуляторы и регулировка уровня стартера |
Рычаг стартера прикреплен к возвратной пружине, которая возвращает рычаг и гибкий регулятор в выключенное положение.Когда двигатель запускается, обгонное действие муфты защищает ведущую шестерню стартера до тех пор, пока рычаг переключения передач не может быть отпущен, чтобы высвободить шестерню. Для типичного агрегата существует указанная длина хода шестерни стартера. [Рис. 8] Важно, чтобы рычаг стартера перемещал ведущую шестерню стартера на это надлежащее расстояние до того, как регулируемый стержень рычага коснется переключателя стартера.
В системах автоматического запуска или запуска с дистанционным соленоидом используется электрический стартер, установленный на адаптере двигателя.Электромагнит стартера активируется нажатием кнопки или поворотом ключа зажигания на приборной панели. Когда соленоид активирован, его контакты замыкаются, и электрическая энергия питает стартер. Начальное вращение стартера включает стартер через обгонную муфту в адаптере стартера, который включает червячные редукторы.
Некоторые двигатели оснащены системой автоматического запуска, в которой используется электрический стартер, установленный на адаптере привода под прямым углом.Поскольку стартер находится под напряжением, червячный вал адаптера и шестерня входят в зацепление с шестерней вала стартера посредством пружины и муфты в сборе. Вал-шестерня, в свою очередь, вращает коленчатый вал. Когда двигатель начинает работать самостоятельно, пружина сцепления выходит из зацепления с шестерней вала. В адаптере стартера используется вал червячной шестерни и червячная шестерня для передачи крутящего момента от стартера к муфте в сборе. [Рис. 9] Когда червячная передача вращает червячное колесо и пружину сцепления, пружина сцепления сжимается вокруг барабана шестерни стартового вала.При вращении шестерни вала крутящий момент передается непосредственно на шестерню коленчатого вала.
Рисунок 9. Адаптер стартера |
В других двигателях используется стартер, который приводит в движение коронную шестерню, установленную на ступице гребного винта. [Рис. 10] В нем используется электродвигатель и ведущая шестерня, которая включается, когда двигатель находится под напряжением, и вращает шестерню, которая выдвигается и входит в зацепление с зубчатым венцом на ступице гребного винта, проворачивая двигатель для запуска.
Рис. 10. Кольцевая шестерня стартера, установленная на ступице гребного винта |
[Рис. ведущая шестерня. [Рис. 12] Стартерные двигатели на небольших самолетах также имеют эксплуатационные ограничения с временами остывания, которые следует соблюдать.
Рисунок 11. Монтажные отверстия ведущей шестерни стартера и электрический разъем |
Рисунок 12. Стартер двигателя, установленный на двигателе |
СВЯЗАННЫЕ ЗАПИСИ
Введение в систему пуска
Практика технического обслуживания системы пуска поршневого двигателя
Стартеры газотурбинных двигателей
Системы электрического пуска и стартер-генераторная система пуска Пускатели воздушной турбины
Honda GX390 13-сильный двигатель (электрический запуск) — опрыскиватель
Двигатель коммерческого класса Honda 390cc GX Series OHV разработан для самых требовательных коммерческих применений.Он является отраслевым стандартом надежности и долговечности. Конструкция верхнего клапана обеспечивает более холодную и экономичную работу, а чугунная гильза цилиндра обеспечивает более длительный срок службы. GX отличается надежностью, легкостью запуска и бесшумной работой. Соответствует стандартам EPA и CARB по уровню выбросов. Этот легендарный двигатель заработал репутацию предпочтительного двигателя для строительной техники. Общие области применения включают мойки высокого давления, компрессоры, картинги, дровоколы и измельчители / измельчители. ТОПЛИВОЭФФЕКТИВНАЯ РАБОТА С ВЫСОКОЙ МОЩНОСТЬЮ:
-Цифровая система зажигания CDI с изменяемой синхронизацией
-Увеличенная степень сжатия
-Точная конструкция распределительного вала предлагает точную синхронизацию фаз газораспределения и оптимальное перекрытие клапанов для повышения топливной экономичности Конструкция
-OHV для повышения эффективности и оптимальной передачи мощности
ГЛАДКИЕ ХАРАКТЕРИСТИКИ:
-Точно спроектированные компоненты приводят к снижению вибрации
-Коленчатый вал с опорой на шариковые подшипники для большей стабильности
-Уравновешивающий вал для тяжелых условий эксплуатации
-Улучшенная конструкция поршня
ИСКЛЮЧИТЕЛЬНО ТИХИЕ:
-Большая производительность, многокамерная выхлопная система
-Улучшенная выхлопная система распределительный вал и глушитель снижают общий уровень шума двигателя до 5 дБ.
— Коленчатый вал из кованой стали и жесткий картер
— Винтовые шестерни
— Сложная система впуска воздуха
ДОКАЗАННАЯ НАДЕЖНОСТЬ:
— Оповещение о масле
— Гильза цилиндра из чугуна
— Высококачественные материалы , установка и отделка
-Двойной воздушный фильтр
-Fuel Val ve
ПРОСТОТА В ИСПОЛЬЗОВАНИИ И ОБСЛУЖИВАНИИ:
-Простое управление дроссельной заслонкой
-Большие топливные баки и крышка топливного бака автомобильного типа
-Два слива масла и заливка
-Легкий, удобный, сверхмощный блок управления
-Легко доступная свеча зажигания
ПРОСТОЙ ЗАПУСК
— Роторный стартер для тяжелых условий эксплуатации
— Автоматическая механическая система декомпрессии
— Регулировка угла опережения зажигания
СООТВЕТСТВУЮТ ВЫБРОСАМ:
— Сертификаты CARB и EPA
— Катализатор не требуется
Каковы различные способы запуска двигателя RC Nitro?
Чтобы запустить нитро-RC, вам нужно включить переключатель передатчика, затем переключатель приемника, добавить топливо, заправить двигатель (подать топливо в карбюратор), зажечь свечу накаливания, затем запустить двигатель, вращая маховик одним из трех способов. .
Три основных способа запуска нитродвигателя: запуск по нажатию, отбойный старт, электрический запуск.
Начать работу
Подобно механизму ручного пуска на газонокосилке, тяговый шнур прикреплен к нитродвигателю, и вы тянете Т-образную рукоятку, прикрепленную к узлу шнура стартера, чтобы вращать маховик и запускать двигатель.
Механизм ручного пуска, также называемый возвратным стартером, заставляет двигатель располагаться немного выше, влияя на центр тяжести, что может быть проблемой в гонках на радиоуправлении.
Tamiya предоставляет несколько фильмов в формате MPEG, в которых показано, как использовать стартер отдачи.
Bump Start (Стартовый блок)
У RC без системы запуска от протяжки есть отверстие в шасси, обеспечивающее доступ к маховику. RC помещается наверху стартового блока, из которого торчит вращающийся резиновый диск с электрическим приводом, который контактирует с маховиком автомобиля и вращает его, чтобы запустить двигатель. Это известно как система пуска от удара, потому что маховик ударяется о диск в коробке стартера, чтобы запустить двигатель.
Может быть небольшое преимущество в весе (меньший вес) для двигателя без ручного пуска, потому что он не имеет лишнего веса механизма запуска от натяжения. Однако с двигателем без пускового механизма вам нужно будет носить с собой стартерную коробку и иметь доступ к источнику питания для коробки.
Электрический запуск
- Вал стартера. Вместо механизма ручного пуска электрический стартер RC имеет специальный редуктор, в который вставлен вал на конце небольшого ручного электродвигателя (очень похожего на аккумуляторную дрель или вращающийся инструмент).Одним нажатием кнопки он запускает двигатель. Некоторые нитро-RC оснащены системой электрического запуска, в то время как другие модели RC могут быть оснащены ею. Ручной стартер Losi Spin Start и система электрического запуска HPI Roto Start являются примерами электрического стартера такого типа.
- Стартер бортовой. Встроенный электрический стартер, такой как Traxxas EZ-Start, размещает небольшой двигатель для системы электрического запуска на ПДУ, затем использует ручной инструмент с батарейным питанием для его питания и одновременного зажигания свечи накаливания. автоматически.
Некоторые модели нитро с системой электрического запуска также могут быть настроены для работы со стартовой коробкой, чтобы обеспечить альтернативный метод запуска. При использовании альтернативного отбойного старта автоматический воспламенитель свечи накаливания (при наличии) использовать нельзя, поэтому вам также понадобится стартер накаливания.
Как и в случае с методом отбойного пуска, наличие двигателя без запуска от тяги означает наличие дополнительного оборудования — электрического стартера, а также его аккумуляторов и зарядного устройства. Бортовые компоненты системы электрического запуска также добавляют немного лишнего веса, что особенно важно в серьезных гонках на радиоуправлении.
Traxxas предоставляет несколько часто задаваемых вопросов по двигателям, которые охватывают их систему EZ-Start, включая то, как установить систему EZ-Start и какие двигатели будут ее поддерживать.
Основные компоненты системы электрического запуска | by Starlight Generator
В этой статье в основном рассказывается об основных компонентах системы электрического запуска. Если вам интересно, найдите время, чтобы прочитать сообщение.
Зарядный генератор с приводом от двигателя преобразует механическую энергию двигателя в электрическую и заряжает аккумуляторные батареи двигателя во время работы двигателя, чтобы поддерживать аккумулятор полностью заряженным.Когда двигатель запускается, батареи подают пусковой ампер-час на коленчатый двигатель через пусковой соленоид. Электродвигатель преобразует электрическую энергию аккумуляторов в механическую, чтобы разогнать двигатель до определенной скорости, при которой он может запускаться самостоятельно. Эта скорость обычно составляет одну треть номинальной скорости двигателя.
Основные компоненты системы электрического запуска
1. Аккумулятор
2. Зарядные устройства
3. Коленчатый двигатель
4.Электромагнитный пусковой механизм
5. Пусковое реле
6. Система управления
Электростанциядля газотурбинных самолетов бывает двух основных типов: электрические системы прямого запуска и системы стартер-генератор. Электростанции с прямым запуском двигателя используются в основном на небольших газотурбинных двигателях. Многие газотурбинные самолеты оснащены системами стартер-генераторов. Системы запуска генератора стартера также похожи на электрические системы запуска, за исключением того, что после работы в качестве стартера они содержат вторую серию обмоток, которые позволяют ему переключаться на генератор после того, как двигатель достигнет самоподдерживающейся скорости.
Пусковой двигатель для дизельных и бензиновых двигателей работает по тому же принципу, что и электродвигатель постоянного тока. Двигатель рассчитан на большие нагрузки, поскольку он потребляет ток и быстро перегревается. Чтобы избежать перегрева, никогда не позволяйте двигателю работать дольше указанного времени, обычно 30 секунд за раз для охлаждения в течение 2 или 3 минут, прежде чем использовать его снова.
Внимание: Чтобы запустить дизельный двигатель, вы должны быстро его перевернуть, чтобы получить достаточно тепла для воспламенения топлива.Пусковой двигатель расположен рядом с маховиком, а ведущая шестерня на стартере расположена так, что может входить в зацепление с зубьями маховика при замкнутом пусковом переключателе.
Об аккумуляторах
Аккумуляторы — это накопитель энергии, вырабатываемой зарядными устройствами. Он накапливает эту энергию, преобразовывая электрическую энергию в химическую, а затем в электрическую. Он подает питание на коленчатый двигатель для запуска двигателя. Он обеспечивает дополнительную мощность, необходимую, когда электрическая нагрузка двигателя превышает мощность системы зарядки.Кроме того, он также действует как стабилизатор напряжения в электрической системе, где он выравнивает скачки напряжения и предотвращает их повреждение других компонентов в электрической системе.
Свинцово-кислотные батареи обычно используются для запуска двигателей генераторных установок. Другие батареи, такие как никель-кадмиевые батареи, также широко используются.
Основные компоненты свинцово-кислотных аккумуляторов
1. Упругий пластиковый контейнер
2. Положительные и отрицательные внутренние пластины из свинца
3.Пластинчатые сепараторы из пористого синтетического материала.
4. Электролит, разбавленный раствор серной кислоты и воды, более известный как аккумуляторная кислота.
5. Выводные клеммы, точка соединения между батареей и всем, что она питает.