Симисторный: принцип работы и основные отличия

Содержание

принцип работы и основные отличия

Тиристорные и симисторные стабилизаторы напряжения относятся к семейству электронных стабилизаторов. Стабилизацию напряжения реализуют ключи, собранные на полупроводниковых приборах, – тиристорах или симисторах. Назначение этих аппаратов – нормализация параметров входного тока, что позволяет защитить дорогостоящее оборудование, технику и инструмент от повреждений из-за некачественного сетевого напряжения.

Устройство и принцип работы тиристорных и симисторных стабилизаторов напряжения

В конструкцию стабилизирующих аппаратов на полупроводниковых ключах входят:

  • Входной фильтр. Предназначен для устранения помех высокой частоты и кратких скачков напряжения, негативно влияющих на работоспособность техники на электронных компонентах.
  • Схема контроля и управления. Контролирует входной сетевой ток и при его изменениях с помощью полупроводниковых ключей управляет секциями вторичной обмотки.
  • Силовой трансформатор. В его конструкции присутствует секционированная вторичная обмотка, обеспечивающая ступенчатое изменение выходных характеристик тока.
  • Силовые ключи – тиристорные или симисторные. В симисторном аппарате может присутствовать более 10 ступеней, обеспечивающих получение достаточно точных параметров тока, поступающего к потребителям.

Принцип работы трансформатора на полупроводниковых ключах:

  • При изменениях характеристик входного тока схема контроля и управления сравнивает текущие и допустимые параметры.
  • Если колебания параметров сетевого тока находятся в установленных пределах, подается сигнал на полупроводниковый ключ, который корректирует выходное напряжение.
  • При скачках входного напряжения за допустимые пределы защитная система в аварийном режиме обесточивает цепь.

В чем разница между тиристорами и симисторами

Общей характеристикой тиристоров и симисторов является тот факт, что ими управляют подачей на управляющий электрод положительного потенциала. Различия заключаются в конструкции полупроводников.

Тиристор – однонаправленный преобразователь, в структуре которого имеются анод, катод, управляющий электрод. Симистор – полупроводниковый прибор, состоящий из двух параллельно соединенных тиристоров. Благодаря такой конструкции симисторный переключатель обладает двунаправленным действием – он может проводить ток в двух направлениях.

Преимущества и недостатки стабилизаторов тиристорного типа

Преимущества тиристорных стабилизаторов:

  • достаточно высокая скорость стабилизации – до 20 мс;
  • хороший КПД;
  • защищенность от сетевых помех;
  • значительный интервал регулирования;
  • устойчивость к перегрузам;
  • надежность, долговечность.

Минусы стабилизаторов на тиристорных ключах, ограничивающих их применение:

  • низкая эффективность при работе с реактивными потребителями;
  • значительное снижение мощности при низких напряжениях на входе;
  • высокая стоимость;
  • сложность ремонтных мероприятий;
  • форма выходного напряжения, далекая от синусоиды, что делает невозможным применение этих аппаратов для обслуживания электродвигателей.

Ступенчатая стабилизация и ее недостаточная точность ограничивают использование аппаратов для питания потребителей с особой чувствительностью к качеству электропитания.

Плюсы и минусы симисторных стабилизаторов

Для симисторных аппаратов характерны следующие преимущества:

  • хорошее быстродействие и достаточно точная коррекция;
  • высокая величина КПД;
  • малый уровень шума, что принципиально при использовании в закрытых помещениях, в которых часто находятся люди;
  • широкий допустимый интервал параметров сетевого тока на входе;
  • надежность, длительный рабочий период.

К минусам относят ступенчатую стабилизацию, форму напряжения, отличную от синусоидальной, большие габариты, меньшую стойкость к перегрузкам по току, более высокую степень нагрева по сравнению с тиристорными аналогами. Симисторные аппараты отличаются низкой стойкостью при индуктивных нагрузках.

Какой стабилизатор лучше выбрать – тиристорный/симисторный или электронно-релейный

Еще один тип электронных стабилизаторов – электронно-релейный. К таким аппаратам относятся модели серии «Каскад». При их создании использовались технологии, устраняющие недостатки тиристорных и симисторных аппаратов. Обмотки трансформатора в этих моделях переключают электронные ключи, состоящие из транзистора и реле. Они устойчивы к сетевым помехам и не провоцируют их появление.

Преимущества электронно-релейных стабилизирующих аппаратов по сравнению с тиристорными/симисторными:

  • Возможность работать с перегрузками до 1000 %, для тиристорных/симисторных моделей допустимый перегруз не превышает 40 %.
  • Синусоидальная форма напряжения на выходе.
  • Наличие оригинальной схемы коррекции параметров напряжения не в силовой, а во вторичной цепи исключает вероятность замыкания трансформаторных обмоток. В аппаратах с полупроводниковыми ключами такое замыкание может произойти при импульсных помехах и грозовых разрядах.

Стабилизаторы электронно-релейного типа относятся к наиболее надежным, поскольку они эффективно защищают промышленное оборудование, технику, инструменты от аварий в электросети, помех, грозовых разрядов, коротких замыканий. При включении электронно-релейные аппараты серии «Каскад» анализируют параметры сети и тестируют защитные системы.

Какой стабилизатор напряжения лучше: релейный или симисторный

Время прочтения: 5 мин

Дата публикации: 12-08-2020

Вопрос стабильного электропитания будет актуален всегда, так как факторов, влияющих на сетевое напряжение, довольно много. Часть из них является виной человека, а часть — результатом стечения обстоятельств по независящим ни от кого причинам. И не важно, живете ли Вы в квартире или на даче, сеть постоянно будет подвергаться перегрузкам, неблагоприятным метеорологическим условиям и многим другим негативным воздействиям. Какой бы ни была причина сетевых колебаний, их результат неизменен: некорректная работа оборудования или его выход из строя.

Лучше всего действовать превентивно и обеспечить защиту своих электроприборов, не дожидаясь неудачного стечения обстоятельств, из-за которых оборудование сгорит. Оптимальный вариант сделать это — установить стабилизатор напряжения. В бытовой сфере фигурирует три основных типа стабилизаторов: релейные, электронные и сервоприводные. Последние (их еще называют электромеханическими) не особо популярны из-за некоторых компромиссных моментов в работе, поэтому чаще всего пользователи обращают внимание на релейные и электронные (симисторные/тиристорные).

Какой стабилизатор напряжения лучше: релейный или симисторный? Все зависит от того, чего конкретно Вы хотите от стабилизатора. Попробуем разобраться, как работают данные типы стабилизаторов и какой из них выбрать.

Принцип работы ступенчатого стабилизатора

Как симисторный, так и релейный стабилизатор имеют схожий принцип работы, основанный на коммутации ступеней стабилизации. Ступень стабилизации можно представить как вывод автотрансформатора. Эти выводы находятся в разных частях обмотки и, соответственно, соответствуют разным коэффициентам трансформации. Представим ситуацию: на входе напряжение поднялось до 250В. Чтобы получить искомое значение 220В, надо найти вывод, коэффициент трансформации которого будет несколько ниже единицы. Так мы понизим напряжение до значения, близкого к 220В. И чем больше у трансформатора ступеней (выводов), тем меньше шаг регулировки между двумя ступенями и, как следствие, меньше отклонение от искомого значения 220В.

Таким образом, принцип работы ступенчатого стабилизатора заключается в том, чтобы своевременно фиксировать отклонения на входе и подбирать ту ступень стабилизации, при которой выход будет ближе всего к номинальному значению. За весь этот процесс отвечает автоматика стабилизатора, которая нас не сильно интересует в данном контексте. Куда важнее, посредством чего осуществляется подключение (коммутация) ступени. Тут у стабилизаторов напряжения релейного и симисторного типа начинаются различия. И об этих отличиях говорит само название. В релейном стабилизаторе напряжения коммутация ступеней осуществляется посредством электромагнитных реле, когда как симисторный аналог выполняет эту задачу при помощи полупроводниковых ключей — симисторов.

Чем отличаются релейные и симисторные стабилизаторы

Выше мы уже упомянули основное отличие электронного стабилизатора от релейного. Пройдемся по преимуществам и недостаткам того или иного решения:

  • Долговечность. Электромагнитные реле состоят из подвижных контактов и якоря, который их перемещает, притягиваясь к намагниченной катушке. Любые подвижные элементы снижают надежность конструкции. К тому же, при каждой коммутации контакта реле возникает искра, приводящая к постепенному подгоранию контакта. Нагар — это одна из самых распространенных причин выхода реле из строя. Ресурс реле при максимальной нагрузке обычно составляет около 100 тыс коммутаций. Полупроводниковые ключи подобными проблемами не страдают и имеют неограниченный срок службы.
  • Шум. Нередко стабилизаторы напряжения устанавливаются в жилом помещении, в связи с чем одним из важных критериев может считаться бесшумность работы. Релейные стабилизаторы бесшумными быть просто не могут даже при наличии пассивной системы охлаждения. Каждое переключение ступени стабилизации будет сопровождаться легким щелчком, сравнимым с авторучкой, звук которой несколько приглушен корпусом прибора. Симисторы и тиристоры, ожидаемо, никакие звуковые эффекты не производят.
  • Скорость. Как симисторы, так и реле срабатывают при подаче управляющего сигнала постоянного тока. Временем замыкания тиристора фактически можно пренебречь, посему скорость реакции электронных стабилизаторов обычно оценивается в пределах 20 миллисекунд. Причем, в эти 20 миллисекунд входит время на фиксацию входных колебаний и обработку информации. В случае с реле определенное время тратится на перемещение якоря. Этот процесс очень быстрый, для глаза практически мгновенный, но на деле время реакции релейных стабилизаторов может достигать 100 миллисекунд (0,1с). Однако это время все равно считается очень быстрым и безопасным, особенно на фоне электромеханических аналогов.
  • Цена. Пожалуй, это единственное преимущество релейных ключей перед полупроводниковыми. Стоимость одного реле во много раз ниже стоимости одного симистора. И чем выше мощность, тем больше эта разница.

Какой стабилизатор купить

И все же, какой стабилизатор напряжения лучше: релейный или симисторный? Если смотреть на характеристики, то симисторный стабилизатор по всем параметрам лучше. Но лучшим считается не тот стабилизатор, чьи характеристики превосходят, а тот, который за минимальную цену эффективно выполняет поставленную перед ним задачу.

Попробуем перефразировать сказанное выше на конкретном примере. Вы собираетесь защитить газовый котел, который установлен в отдельном помещении. Смысла переплачивать за симисторный стабилизатор не много, так как щелчки реле беспокоить не будут, а сам котел назвать очень чувствительным к колебаниям нельзя — ему хватит и базовой защиты. Другое дело, когда требуется защитить высокоточную чувствительную технику. Тогда лучше выбрать симисторный стабилизатор с большим количеством ступеней (релейные стабилизаторы обычно не отличаются большим количеством ступеней, чтобы снизить количество коммутаций при слабых сетевых колебаниях). В бытовой сфере симисторный стабилизатор может также пригодиться в случае его установки в жилом помещении.

Если Вы не знаете, какой стабилизатор подойдет именно в Вашем случае — проконсультируйтесь со специалистами.

Симисторные регуляторы мощности для электронагревателей РНС

Симисторный регулятор предназначен для регулирования мощности электрических нагревателей.

Особенности модели

  • Описание
  • Модификации
  • Загрузки

Описание

Описание

ПРИМЕНЕНИЕ КОНСТРУКЦИЯ И УПРАВЛЕНИЕ
  • Применяется в системах вентиляции для регулирования мощности электрических нагревателей с током нагрузки до 120 А.
  • Корпус регулятора изготовлен из негорючего термопластика.
  • Регулятор оборудован кнопкой включения/выключения и ручкой регулирования температуры нагрева.
  • Регулирование электрической мощности происходит посредством пропорционального включения и отключения полной нагрузки в соответствии с заданной температурой нагрева.
  • Для регулятора РНС-16 предусмотрено управление только одной ступенью нагрева.
  • Регулятор РНС-25 имеет возможность управления одной или тремя ступенями нагрева с равной или меньшей мощностью по сравнению с мощностью управляемой ступени.
  • Управление первой ступенью нагрева осуществляется плавно, путем включения и отключения полной нагрузки.
  • Управление второй и третьей ступенью нагрева осуществляется ступенчато.
  • Для защиты от перегрева электронагреватель должен быть оборудован двумя встроенными термоконтактами: ТК50 с температурой срабатывания +50° С с автоматическим перезапуском и ТК90 с температурой срабатывания +90° С с ручным перезапуском.
  • Температура воздуха устанавливается при помощи встроенного потенциометра или при помощи внешнего управляющего устройства с управляющим сигналом 0-10 В для пропорционального нагрева температуры в канале в диапазоне от 0 до +40° С.
  • Датчик температуры в канале должен быть установлен за нагревателем по направлению движения воздуха на расстоянии не менее 50 см от нагревателя.
  • Если регулятор работает в режиме поддержания мощности нагрева независимо от показателей датчика температуры, то установка канального датчика температуры не требуется, а мощность нагрева регулируется от 0 до 100% посредством управляющего сигнала 0-10 В.
ЗАЩИТА
  • Входная цепь регулятора скорости защищена от перегрузки плавким предохранителем.
МОНТАЖ
  • Установка регулятора осуществляется внутри помещений.
  • Монтаж необходимо производить с учётом свободной рециркуляции воздуха для охлаждения внутренних цепей.
  • Рабочая позиция регулятора – вертикальная.
  • Не устанавливайте регулятор над отопительными приборами и в зонах с плохой конвекцией воздуха.
 
 
 
 
 
 
 
 
 
 
 
 
ПАРАМЕТРЫ УПРАВЛЕНИЯ
 
Время регулирования, с 0,1 (фиксированное) 
Продолжительность цикла, с 1…10 (настраиваемая) 
Индикация Индикатор питания, работы, аварии
Тип используемого датчика температуры LM 60 
Параметры входного сигнала, В 0…10 (постоянный ток) 
Диапазон устанавливаемой температуры, °С 0…40 (настраиваемая)

Модификации

Наименование модификации

Загрузки

Загрузки

Выберите тип документа

Симисторный регулятор AMR220AC

Согласие на обработку персональных данных

В соответствии с требованиями Федерального закона от 27.07.2006 г. № 152-ФЗ «О персональных данных» я выражаю согласие на обработку своих персональных данных администрацией ресурса turkov.ru без оговорок и ограничений, совершение с моими персональными данными действий, предусмотренных п.3 ч.1 ст.3 Федерального закона от 27.07.2006 г. №152-ФЗ «О персональных данных», и подтверждаю, что, давая такое согласие, действую свободно, по своей воле и в своих интересах.

Данное согласие действует до даты его отзыва путем направления, подписанного мною соответствующего письменного заявления, которое может быть направлено мной в адрес администрации ресурса turkov.ru по почте заказным письмом с уведомлением о вручении, либо вручено лично под расписку надлежащее уполномоченному представителю ресурса turkov.ru.

В случае получения моего письменного заявления об отзыве настоящего согласия на обработку персональных данных, администрация ресурса turkov.ru обязана прекратить их обработку и исключить персональные данные из базы данных, в том числе электронной.

Я осознаю, что проставление отметки «V» в поле слева от фразы «Принимаю условия «Соглашения на обработку персональных данных» на сайте turkov.ru выше текста настоящего Соглашения означает мое согласие с условиями, описанными в нём.

Администрации ресурса turkov.ru гарантирует конфиденциальность получаемой информации. Обработка персональных данных осуществляется в целях эффективного исполнения заказов, договоров и иных обязательств, принятых администрацией ресурса turkov.ru в качестве обязательных к исполнению.

В случае необходимости предоставления Ваших персональных данных правообладателю, дистрибьютору или реселлеру программного обеспечения в целях регистрации программного обеспечения на ваше имя, вы даёте согласие на передачу ваших персональных данных. Администрации ресурса turkov.ru гарантирует, что правообладатель, дистрибьютор или реселлер программного обеспечения осуществляет защиту персональных данных на условиях, аналогичных изложенным в Политике конфиденциальности персональных данных.

Настоящее согласие распространяется на следующие Ваши персональные данные: фамилия, имя и отчество, адрес электронной почты, почтовый адрес доставки заказов, контактный телефон, платёжные реквизиты.

Гарантирую, что представленная мной информация является полной, точной и достоверной, а также что при представлении информации не нарушаются действующее законодательство Российской Федерации, законные права и интересы третьих лиц. Вся представленная информация заполнена мною в отношении себя лично.

Настоящее согласие действует в течение всего периода хранения персональных данных, если иное не предусмотрено законодательством Российской Федерации.

Симисторный регулятор температуры Pulser

Настенный контроллер Regin Pulser для электрических нагревателей.

Симисторный регулятор температуры Pulser предназначен для поддержания заданной температуры с помощью изменения мощности однофазных и двухфазных электрических нагревателей. Регулирование мощности происходит за счёт изменения времени включения и выключения полной мощности нагревателя (пропорциональное регулирование по времени). Время цикла составляет приблизительно 60 секунд. Переключение нагрузки осуществляется полупроводниковым прибором (симистором) в тот момент, когда ток и напряжение на нагревателе равны нулю. Это уменьшает потребление электроэнергии, исключает возникновение электромагнитных помех и увеличивает время безотказной работы оборудования. Регулятор оснащён встроенным термодатчиком и имеет контакты для подключения внешнего датчика температуры. Регулятор автоматически изменяет закон управления в соответствии с динамикой объекта управления. Для быстро изменяющейся температуры, например, при регулировании температуры приточного воздуха Pulser работает в режиме пропорциональноинтегрального регулирования с фиксированной зоной пропорциональности 20 К и временем интегрирования, равным 6 мин. Для медленно изменяющейся температуры, например, при регулировании температуры в помещении Pulser работает в режиме пропорционального регулирования с фиксированной зоной пропорциональности 2 К. В регуляторе предусмотрена перенастройка с помощью внешнего переключателя, например, таймера на пониженную температуру в ночной период в диапазоне ∆Т = 0–10 К. Функция управления от внешнего сигнала 0…10 В(или 0…100%-TBI-100).

Технические характеристики:
Модель — Pulser
Максимальная нагрузка — 3,6 кВт(230В, 1 фаза) или 6.4 КвТ(400В, 2 фазы)
Монтаж — настенный
Максимальный ток — 16 А
Выделяемая тепловая мощность — 20 Вт
Степень защиты — IP 20
Диапазон регулирования температуры — 0…30 °C
Понижение температуры — 0…10 °C
Принцип регулирования — ПИ/П

Симистор — это… Что такое Симистор?

Обозначение на схемах Эквивалентная схема симистора Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

Стабилизатор напряжения СНС1-1-10 кВА симисторный переносной TDM SQ1203-0008

  • Для стабилизации напряжения питания и защиты бытовой и промышленной техники, торгового оборудования, аппаратуры связи, а также в системах комплексного питания промышленного оборудования, коттеджей, квартир и офисов.

Назначение

Стабилизаторы переменного напряжения СНС предназначены для обеспечения качественной работы различных устройств в условиях нестабильного по значению напряжения в сети.

При изменении напряжения в сети от 140 до 250В стабилизаторы поддерживают уровень выходного напряжения 220В с точностью 4%.

При изменении напряжения в сети от 90 до 140В и от 250 до 270В стабилизаторы поддерживают уровень выходного напряжения 220В с точностью 7%.

Конструкция

Электронный стабилизатор напряжения состоит из:

  • Корпус
  • Автоматический выключатель для стабилизаторов мощности 0,5-2 кВА включительно
  • Двухполюсный автоматический выключатель с механической блокировкой включения режима «Байпас» при включении стабилизации для стабилизаторов мощности от 3 до 10 кВА включительно
  • Цветной дисплей контроля работы стабилизатора
  • Автотрансформатор
  • Полупроводниковые элементы -симисторы
  • Датчик температуры обмоток автотрансформатора
  • Плата управления

Преимущества

  • Точность стабилизации:4% в диапазоне от 140 до 250В
  • Широкий диапазон входных напряжений питающей сети (90-270В)
  • Современный принцип коммутации, основанный на использовании мощных бесконтактных ключей-симисторов
  • Высокая эксплуатационная надежность и продолжительный срок службы благодаря отсутствию механических коммутирующих элементов.
  • Сверхбыстрая реакция на изменение входного напряжения.
  • Многофункциональный дисплей для отображения режима работы стабилизатора.
  • Двойная индикация: входного и выходного напряжения
  • Намотка трансформатора обеспечивает надежность и бесшумность работы.
  • Термозащита обеспечивает отключение нагрузки при повышении температуры автотрансформатора.
  • Высокий КПД (более 97%)
  • Защита от скачков напряжения, коротких замыканий и перегрузок
  • Возможность непосредственного подключение питающей сети к нагрузке (минуя силовой блок стабилизации) при значении входного напряжения близком к 220В в стабилизаторах от 3 до 10 кВА с целью снижения собственного энергопотребления и нагрева (функция «байпас»).
  • Непрерывный круглосуточный режим работы
  • Не требует установки специалистом.
  • Разработан с учетом особенностей российских электросетей

Для справки потребляемую мощность того или иного прибора или устройства можно ориентировочно определить по приведенной ниже таблице.

Рекомендуется выбирать мощность стабилизатора на 20-30% выше, чем предполагаемая мощность нагрузки.

Что такое симистор — переключатель симистора »Электроника

Симисторы — это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности — их преимущество в том, что они могут переключать обе половины переменного цикла.


Triac, Diac, SCR Учебное пособие включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Симисторы — это электронные компоненты, которые широко используются в системах управления питанием переменного тока.Они могут переключать высокое напряжение и высокий уровень тока, а также по обеим частям сигнала переменного тока. Это делает схемы симистора идеальными для использования в различных приложениях, где требуется переключение мощности.

В частности, симисторные схемы используются в регуляторах освещенности для домашнего освещения, а также во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.

Благодаря своим характеристикам симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, оставляя тиристоры для использования в приложениях переключения мощности переменного тока в очень тепловых режимах.

Среднетоковый симистор

Основы симистора

Симистор является развитием тиристора. В то время как тиристор может управлять током только в течение одной половины цикла, симистор управляет им в течение двух половин сигнала переменного тока.

Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя затворами, соединенными вместе, и анодом одного устройства, соединенным с катодом другого, и т. Д.

Форма сигнала переключения симистора

Тот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока может использоваться полный цикл.Для базовых схем с тиристорами используется только половина формы волны, а это означает, что в базовых схемах, в которых используются тиристоры, не будут использоваться обе половины цикла. Для использования обеих половин требуются два устройства. Однако симистору требуется только одно устройство для управления обеими половинами формы волны переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.

Символ симистора

Как и другие электронные компоненты, симистор имеет собственный символ схемы, который используется на принципиальных схемах, и это указывает на его двунаправленные свойства.Символ симистора можно рассматривать как пару символов тиристоров в противоположных смыслах, объединенных вместе.

Обозначение схемы симистора

Симистор, как и тиристор, имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие выводы подключены к тому, что фактически является катодом одного тиристора и анодом другого в пределах всего устройства.

Есть вентиль, который действует как спусковой крючок для включения устройства. В дополнение к этому, другие клеммы оба называются анодами или главными клеммами. Обычно они обозначаются как анод 1 и анод 2 или главный вывод 1 и главный вывод 2 (MT1 и MT2).При использовании симисторов МТ1 и МТ2 имеют очень похожие свойства.

Как работает симистор?

Прежде чем смотреть, как работает симистор, полезно понять, как работает тиристор. Таким образом, можно понять основные концепции более простого полупроводникового прибора, а затем применить их к более сложному симистору.

Что касается работы симистора, то из условного обозначения схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному.Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне гораздо сложнее.

Эквивалентная схема симистора

Структура симистора показана ниже, и можно увидеть, что есть несколько областей материала N-типа и P-типа, которые образуют фактически пару встречных тиристоров.

Базовая структура симистора

Симистор может работать разными способами — больше, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2.Он также может запускаться как положительными, так и отрицательными токами затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима или квадранта запуска:

  • I + Mode Ток MT2 равен + ve, ток затвора + ve
  • I- Mode Ток MT2 + ve, ток затвора -ve
  • III + Mode: Ток MT2 -ve, ток затвора + ve
  • III- Режим: Ток MT2 -ve, ток затвора -ve

Обнаружено, что чувствительность триггера по току триака является максимальной, когда токи MT2 и затвора имеют одинаковую полярность, т.е.е. оба положительные или оба отрицательные. Если токи затвора и MT2 имеют противоположную полярность, тогда чувствительность обычно составляет примерно половину значения, когда они одинаковы.

Типичную ВАХ симистора можно увидеть на диаграмме ниже, где отмечены четыре различных квадранта.

IV характеристика симистора

Применение симистора

Симисторы

используются во многих приложениях. Эти электронные компоненты часто используются при коммутации переменного тока малой и средней мощности.Там, где требуется переключение больших уровней мощности, обычно используются два тиристора / тиристора, поскольку ими легче управлять.

Тем не менее симисторы широко используются во многих приложениях:

  • Управление освещением — особенно бытовые диммеры.
  • Управление вентиляторами и небольшими двигателями.
  • Электронные переключатели для общего переключения и управления переменным током

Естественно, существует множество других применений симисторов, но это одни из самых распространенных.

В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, включающим твердотельное реле в соответствии с входным сигналом.

Обычно в твердотельных реле светодиодный источник света или инфракрасного излучения и оптический симистор содержатся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.

Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.

Использование симисторов

При использовании симисторов следует обратить внимание на ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы получить от них максимальную производительность, необходимо понять несколько советов по использованию симисторов.

Было обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинами эти электронные компоненты не срабатывают симметрично.Это приводит к генерации гармоник: чем менее симметрично срабатывает симистор, тем выше уровень создаваемых гармоник. Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, и в результате симисторы не подходят для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как их срабатывание легче контролировать.

Чтобы помочь в преодолении проблемы несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диак (диодный переключатель переменного тока), часто подключается последовательно с затвором симистора.Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.

Это происходит из-за того, что характеристика переключения диака намного лучше, чем у симистора. Поскольку диак предотвращает протекание тока затвора до тех пор, пока напряжение срабатывания триггера не достигнет определенного значения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.

Внутренняя схема симисторного регулятора освещенности

Примеры схем симистора

Есть много способов использования симисторов.Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми приборами.

  • Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель — он может активировать пусковой импульс переключателя малой мощности для включения симистора для управления гораздо более высокими уровнями мощности, которые могут быть возможны с помощью простой переключатель. Схема простого симисторного переключателя
  • Схема регулируемой мощности симистора или диммера: Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке.
    Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Можно использовать гораздо больше схем симистора. Устройство очень универсально и может использоваться в различных схемах, обычно для обеспечения различных форм переключения переменного тока.

Примечание по схемам и конструкции симистора:
Цепи симистора

могут переключать обе половины на переменную форму волны с помощью одного устройства, что делает их очень привлекательными для использования во многих коммутационных схемах переменного тока малой и средней мощности.

Подробнее о Симисторные схемы и конструкция

Характеристики симистора

Симисторы

имеют много характеристик, которые очень похожи на характеристики тиристоров, хотя, очевидно, они предназначены для работы симистора на обеих половинах цикла и должны интерпретироваться как таковые.

Однако их работа очень похожа, как и основные типы спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т.п., необходимы при проектировании схемы симистора, обеспечивая достаточный запас для надежной работы схемы.

Симисторы

— идеальные устройства для использования во многих приложениях переменного тока малой мощности. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, и их легко и просто реализовать. При использовании симисторов диаки часто включаются в схему, как упоминалось выше, чтобы помочь снизить уровень генерируемых гармоник.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Введение в основы TRIAC

Тиристор — это общий термин, обозначающий широкий спектр полупроводниковых компонентов, используемых в качестве электронного переключателя. Подобно механическому переключателю, тиристоры имеют только два состояния: включено (токопроводящее) и выключенное (непроводящее). Их также можно использовать, помимо переключения, для регулировки мощности, подаваемой на нагрузку.

Тиристоры используются в основном с высокими напряжениями и токами. Триод переменного тока (TRIAC) и кремниевый управляемый выпрямитель (SCR) являются наиболее часто используемыми тиристорными устройствами.В этой статье исследуются конструкция, характеристики и применение символьных ключей.

Что такое ТРИАК?

TRIAC — это двунаправленный трехэлектродный переключатель переменного тока, который позволяет электронам течь в любом направлении. Это эквивалент двух тиристоров, соединенных обратно-параллельно с затворами, соединенными друг с другом.

TRIAC запускается в проводимость в обоих направлениях стробирующим сигналом, подобным сигналу SCR. TRIAC были разработаны, чтобы предоставить средства для разработки улучшенных средств управления мощностью переменного тока.

TRIAC доступны в различных упаковках. Они могут работать в широком диапазоне тока и напряжения. TRIAC обычно имеют относительно слабые возможности по сравнению с SCR — они обычно ограничены до 50 А и не могут заменить SCR в сильноточных приложениях.

TRIAC

считаются универсальными из-за их способности работать с положительным или отрицательным напряжением на своих выводах. Поскольку тиристоры имеют недостаток в том, что они проводят ток только в одном направлении, управление малой мощностью в цепи переменного тока лучше выполнять с помощью тиристоров.

TRIAC Construction

Хотя TRIAC и SCR похожи, их схематические символы не похожи. Клеммы TRIAC — это затвор, клемма 1 (T1) и клемма 2 (T2). См. Рисунок 1.

Рис. 1. Клеммы TRIAC включают затвор, клемму 1 (T1) и клемму 2 (T2).

Обозначения анода и катода нет. Ток может течь в любом направлении через клеммы главного переключателя, T1 и T2.Клемма 1 является опорной клеммой для всех напряжений. Клемма 2 — это корпус или металлический язычок, к которому можно прикрепить радиатор.

Триггерная схема TRIAC и ее преимущества

TRIAC блокируют ток в любом направлении между T1 и T2. TRIAC может быть запущен в проводимость в любом направлении мгновенным положительным или отрицательным импульсом, подаваемым на затвор.

Если на затвор TRIAC подается соответствующий сигнал, он проводит электричество.TRIAC остается выключенным до тех пор, пока в точке A не сработает вентиль. См. Рисунок 2.

Рисунок 2. TRIAC остается выключенным, пока не сработает его вентиль.

В точке A схема триггера подает импульс на затвор, и TRIAC включается, позволяя току течь.

В точке B прямой ток уменьшается до нуля, и TRIAC выключается.

Цепь триггера может быть спроектирована так, чтобы генерировать импульс, который изменяется в положительном или отрицательном полупериоде в любой точке.Следовательно, средний ток, подаваемый на нагрузку, может варьироваться.

Одним из преимуществ TRIAC является то, что практически не теряется энергия при преобразовании в тепло. Тепло выделяется, когда ток прерывается, а не когда ток отключен. TRIAC либо полностью ВКЛЮЧЕН, либо полностью ВЫКЛЮЧЕН. Он никогда не ограничивает частично ток.

Еще одной важной особенностью TRIAC является отсутствие условий обратного пробоя при высоких напряжениях и больших токах, например, в диодах и SCR.

Если напряжение на TRIAC становится слишком высоким, TRIAC включается. После включения TRIAC может проводить достаточно высокий ток.

Характеристическая кривая TRIAC

Характеристики TRIAC основаны на T1 как опорной точке напряжения. Полярности, показанные для напряжения и тока, являются полярностями T2 по отношению к T1.

Полярность, показанная для затвора, также относится к T1. См. Рисунок 3.

Рисунок 3. Характеристическая кривая TRIAC показывает характеристики TRIAC при срабатывании проводимости.

Опять же, TRIAC может запускаться в проводимость в любом направлении током затвора (IG) любой полярности.

Приложения TRIAC

TRIAC

часто используются вместо механических переключателей из-за их универсальности. Кроме того, при низкой силе тока тиристоры тиристоров более экономичны, чем тиристоры, соединенные спина к спине.

Пускатели однофазных двигателей

Часто конденсаторный двигатель или двигатель с расщепленной фазой должен работать там, где искрение механического выключателя запуска нежелательно или даже опасно.В таких случаях механический выключатель пуска можно заменить на TRIAC. См. Рисунок 4.

Рисунок 4. Механический выключатель пуска может быть заменен на TRIAC.

TRIAC может работать в таких опасных средах, потому что он не создает дуги. Сигналы затвора и отключения подаются на симистор через трансформатор тока.

По мере увеличения скорости двигателя ток в трансформаторе тока уменьшается, и трансформатор больше не запускает TRIAC.При выключенном TRIAC пусковые обмотки удаляются из схемы.

Процедуры тестирования TRIAC

TRIAC

следует тестировать в рабочих условиях с помощью осциллографа. Цифровой мультиметр можно использовать для грубой проверки TRIAC вне цепи. См. Рисунок 5.

Рис. 5. Цифровой мультиметр можно использовать для грубого тестирования симистора TRIAC, находящегося вне цепи.

Для проверки TRIAC с помощью цифрового мультиметра применяется следующая процедура:

  1. Установите цифровой мультиметр по шкале Ω.
  2. Подключите отрицательный провод к главной клемме 1.
  3. Подсоедините положительный провод к главной клемме 2. Цифровой мультиметр должен показывать бесконечность.
  4. Замкните накоротко ворота на главный вывод 2 с помощью проволочной перемычки. Цифровой мультиметр должен показывать почти 0 Ом. Нулевое показание должно оставаться при удалении провода.
  5. Поменяйте местами выводы цифрового мультиметра так, чтобы положительный вывод находился на главной клемме 1, а отрицательный — на главной клемме 2. Цифровой мультиметр должен показывать бесконечность.
  6. Замкните накоротко затвор TRIAC на главный вывод 2 с помощью перемычки.Цифровой мультиметр должен показывать почти 0 Ом. Нулевое показание должно остаться после удаления провода.

TRIAC | Руководство для новичков

В этом руководстве мы узнаем о некоторых основах TRIAC. В процессе мы разберемся со структурой, символом, работой, характеристиками, применением TRIAC.

Введение

Как известно, SCR как однонаправленное устройство имеет обратную блокирующую характеристику, которая предотвращает прохождение тока в обратном смещенном состоянии.Но для многих приложений требуется двунаправленное управление током, особенно в цепях переменного тока. Чтобы достичь этого с помощью SCR, два SCR должны быть соединены встречно параллельно для управления как положительными, так и отрицательными полупериодами входа.

Однако эту структуру можно заменить специальным полупроводниковым устройством, известным как TRIAC, для выполнения двунаправленного управления. TRIAC — это устройство двунаправленной коммутации, которое может эффективно и точно управлять мощностью переменного тока. Они часто используются в контроллерах скорости двигателя, цепях переменного тока, системах контроля давления, регуляторах освещенности и другом оборудовании для управления переменным током.

К началу

Основы TRIAC

Симистор — важный член семейства тиристорных устройств. Это двунаправленное устройство, которое может пропускать ток как в прямом, так и в обратном смещении, и, следовательно, это устройство управления переменным током. Симистор эквивалентен двум спина к спине SCR, подключенным к одной клемме затвора, как показано на рисунке.

TRIAC — это аббревиатура переключателя TRIode AC. TRI означает, что устройство, состоящее из трех клемм, а AC означает, что оно контролирует мощность переменного тока или может проводить в обоих направлениях переменный ток.

Симистор имеет три клеммы, а именно: главный терминал 1 (MT1), главный терминал 2 (MT2) и затвор (G), как показано на рисунке. Если MT1 смещен вперед по отношению к MT2, то ток течет от MT1 к MT2. Точно так же, если MT2 смещен в прямом направлении относительно MT1, тогда ток течет от MT2 к MT1.

Два вышеуказанных условия достигаются всякий раз, когда стробирующий элемент запускается соответствующим стробирующим импульсом. Подобно SCR, симистор также включается путем подачи соответствующих импульсов тока на вывод затвора.Как только он включен, он теряет контроль над своей проводимостью. Таким образом, траекторию можно выключить, уменьшив ток до нуля через главные клеммы.

К началу

Строительство TRIAC

Симистор — это пятислойный полупроводниковый прибор с тремя выводами. Клеммы обозначены как MT1, MT2 как анодные и катодные клеммы в случае SCR. А вентиль изображен как G, аналогичный тиристору. Вывод затвора соединен с областями N4 и P2 металлическим контактом и находится рядом с выводом MT1.

Терминал MT1 подключен к областям N2 и P2, а MT2 подключен к областям N3 и P1. Следовательно, клеммы MT1 и MT2 подключены как к областям P, так и к N устройства, и, таким образом, полярность приложенного напряжения между этими двумя клеммами определяет ток, протекающий через слои устройства.

Когда ворота открыты, MT2 становится положительным по отношению к MT1 для трассы с прямым смещением. Следовательно, цепь работает в режиме прямой блокировки до тех пор, пока напряжение на симисторе не станет меньше, чем напряжение прямого переключения.Аналогично для симистора с обратным смещением, MT2 становится отрицательным по отношению к MT1 с открытым затвором.

До тех пор, пока напряжение на симисторе не станет меньше обратного напряжения отключения, устройство работает в режиме обратной блокировки. Траектория может быть сделана проводящей с помощью положительного или отрицательного напряжения на клемме затвора.

К началу

Работа и работа TRIAC

К клеммам симистора можно подключать различные комбинации отрицательного и положительного напряжения, поскольку это двунаправленное устройство.Четыре возможных комбинации электродных потенциалов, которые заставляют симистор работать в четырех различных рабочих квадрантах или режимах, обозначены как.

  1. MT2 положительный по отношению к MT1 с положительной полярностью затвора по отношению к MT1.
  2. MT2 является положительным по отношению к MT1 с отрицательной полярностью затвора по отношению к MT1.
  3. MT2 является отрицательным по отношению к MT1 с отрицательной полярностью затвора по отношению к MT1.
  4. MT2 является отрицательным по отношению к MT1 с положительной полярностью затвора по отношению к MT1.

Как правило, ток фиксации выше во втором квадранте или режиме, в то время как ток запуска затвора выше в четвертом режиме по сравнению с другими режимами для любого симистора.

В большинстве приложений используется цепь отрицательного тока запуска, что означает, что 2 и 3 квадранты используются для надежного запуска при двунаправленном управлении, а также когда чувствительность затвора критична. Чувствительность затвора самая высокая, когда обычно используются режимы 1 и 4.

Режим 1: MT2 положительный, ток затвора положительный

Когда вывод затвора становится положительным по отношению к MT1, ток затвора течет через переход P2 и N2.Когда этот ток течет, слой P2 заполняется электронами, и далее эти электроны диффундируют к краю перехода J2 (или перехода P2-N1).

Эти электроны, собранные слоем N1, создают объемный заряд на слое N1. Следовательно, больше дырок из области P1 диффундирует в область N1, чтобы нейтрализовать отрицательные объемные заряды. Эти дырки попадают в переход J2 и создают положительный объемный заряд в области P2, что заставляет больше электронов инжектироваться в P2 из N2.

Это приводит к положительной регенерации, и, наконец, основной ток течет от MT2 к MT1 через области P1- N1 — P2 — N2.

Режим 2: MT2 положительный, ток затвора отрицательный

Когда MT2 положительный, а вывод затвора отрицательный по отношению к MT1, ток затвора протекает через переход P2-N4. Этот ток затвора смещает в прямом направлении переход P2-N4 для вспомогательной структуры P1N1P2N4. Это приводит к тому, что симистор сначала проводит через слои P1N1P2N4.

Это еще больше увеличивает потенциал между P2N2 в сторону потенциала MT2. Это заставляет ток устанавливать слева направо в слое P2, что смещает переход P2N2 вперед. И поэтому основная структура P1N1P2N2 начинает проводить.

Первоначально проводимая вспомогательная структура P1N1P2N4 рассматривается как SCR пилот-сигнала, в то время как более поздняя проводимая структура P1N1P2N2 рассматривается как основная SCR. Следовательно, анодный ток контрольного тиристора служит током затвора для основного тиристора. Чувствительность к току затвора в этом режиме меньше, и, следовательно, для включения симистора требуется больший ток затвора.

Режим 3: MT2 отрицательный, ток затвора положительный

В этом режиме MT2 становится отрицательным по отношению к MT1, и устройство включается путем подачи положительного напряжения между затвором и выводом MT1. Включение инициируется N2, который действует как дистанционное управление затвором, и структура приводит к включению симистора P2N1P1N3.

Внешний ток затвора смещает в прямом направлении переход P2-N2. Слой N2 вводит электроны в слой P2, которые затем собираются переходом P2N1.В результате увеличивается ток, протекающий через переход P2N1.

Отверстия, введенные из слоя P2, диффундируют через область N1. Это создает положительный пространственный заряд в P-области. Следовательно, больше электронов из N3 диффундируют в P1, чтобы нейтрализовать положительные объемные заряды.

Следовательно, эти электроны попадают в переход J2 и создают отрицательный объемный заряд в области N1, что приводит к инжекции большего количества дырок из P2 в область N1. Этот процесс регенерации продолжается до тех пор, пока структура P2N1P1N3 не включит симистор и не проведет внешний ток.

Поскольку симистор включается удаленным затвором N2, устройство менее чувствительно к положительному току затвора в этом режиме.

Режим 4: MT2 отрицательный, ток затвора отрицательный

В этом режиме N4 действует как удаленный затвор и вводит электроны в область P2. Внешний ток затвора смещает переход P2N4 в прямом направлении. Электроны из области N4 собираются переходом P2N1, увеличивая ток через переход P1N1.

Следовательно, структура P2N1P1N3 включается посредством рекуперативного действия.Симистор более чувствителен в этом режиме по сравнению с положительным током затвора в режиме 3.

Из приведенного выше обсуждения можно сделать вывод, что режимы 2 и 3 являются менее чувствительной конфигурацией, для которой требуется больший ток затвора для запуска симистора, тогда как более распространенными режимами запуска симистора являются 1 и 4, которые имеют более высокую чувствительность. На практике выбирается более чувствительный режим работы, при котором полярность затвора должна совпадать с полярностью клеммы MT2.

К началу

Характеристики V-I TRIAC

Функционирует как два тиристора, соединенных встречно-параллельно, и, следовательно, VI-характеристики симистора в 1-м и 3-м квадрантах будут аналогичны VI-характеристикам тиристоров. Когда терминал MT2 является положительным по отношению к терминалу MT1, считается, что маршрут находится в режиме прямой блокировки.

Через устройство протекает небольшой ток утечки при условии, что напряжение на устройстве ниже, чем напряжение отключения.Когда достигается напряжение отключения устройства, симистор включается, как показано на рисунке ниже.

Однако также возможно включить симистор ниже VBO, применив импульс затвора, так что ток через устройство должен быть больше, чем ток фиксации симистора.

Точно так же, когда терминал MT2 становится отрицательным по отношению к MT1, трасса находится в режиме обратной блокировки. Через устройство протекает небольшой ток утечки, пока он не сработает по напряжению отключения или по методу срабатывания затвора.Следовательно, положительный или отрицательный импульс на затвор запускает симистор в обоих направлениях.

Напряжение питания, при котором симистор начинает проводить, зависит от тока затвора. Если ток затвора больше, меньшее будет напряжение питания, при котором симистор включается. Вышеупомянутый запуск режима -1 используется в первом квадранте, тогда как запуск режима 3 используется в 3-м квадранте.

Из-за внутренней структуры симистора фактические значения тока фиксации, тока запуска затвора и тока удержания могут немного отличаться в разных режимах работы.Поэтому номиналы у трейков значительно ниже, чем у тиристоров.

К началу

Преимущества

Симистор

может срабатывать при подаче напряжения как положительной, так и отрицательной полярности на затвор.

  • Он может работать и переключать оба полупериода сигнала переменного тока.
  • По сравнению с конфигурацией встречно-параллельного тиристора, которая требует двух радиаторов немного меньшего размера, симистор требует одного радиатора немного большего размера.Следовательно, симистор экономит место и экономит затраты в приложениях питания переменного тока.
  • В приложениях постоянного тока тиристоры должны быть подключены к параллельному диоду для защиты от обратного напряжения. Но симистор может работать и без диода, безопасный пробой возможен в любую сторону.

Наверх

Недостатки

  • Доступны в более низких номиналах по сравнению с тиристорами.
  • При выборе схемы запуска затвора требуется тщательное рассмотрение, поскольку симистор может срабатывать как в прямом, так и в обратном смещении.
  • Они имеют низкий рейтинг du / dt по сравнению с тиристорами.
  • Они имеют очень малую частоту переключения.
  • Симисторы менее надежны, чем тиристоры.

Наверх

Приложения

Благодаря двунаправленному управлению переменным током, симисторы используются в качестве контроллеров мощности переменного тока, контроллеров вентиляторов, контроллеров нагревателей, пусковых устройств для тиристоров, трехпозиционного статического переключателя, регуляторов освещенности и т. Д. Симистор в качестве переключателя и приложений управления фазой рассматриваются ниже.

Симистор как переключатель высокой мощности

Поскольку симистор использует низкое напряжение затвора и токи для управления высоким напряжением и токами нагрузки, он часто используется в качестве переключающего устройства во многих коммутационных операциях. На рисунке ниже показано использование симистора в качестве переключателя ВКЛ / ВЫКЛ переменного тока для управления лампой высокой мощности.

Когда переключатель S находится в положении 1, симистор находится в режиме прямой блокировки и, следовательно, лампа остается в выключенном состоянии. Если переключатель переведен в положение 2, через клемму затвора протекает небольшой ток затвора, и, следовательно, симистор включается.Это дополнительно заставляет лампу включаться для получения полной мощности.

Управление фазой с помощью симистора

Как и в случае с тиристорами, с симисторами также возможен метод управления фазой с изменением средней мощности нагрузки. Регулируя угол срабатывания в каждом полупериоде входного переменного тока, можно управлять мощностью, подаваемой на нагрузку. Задержка, на которую задерживается запуск, называется углом задержки, а угол, на который проводит симистор, называется углом проводимости.

На приведенном ниже рисунке показано использование симистора для метода управления фазой для выработки переменной мощности на нагрузке. Диоды D1 и D2 пропускают ток к клемме затвора в положительном и отрицательном полупериодах соответственно.

Как только на схему подается входной переменный ток, симистор находится в состоянии блокировки (вперед или назад) при условии, что приложенное напряжение меньше VBO или ток затвора меньше минимального тока затвора. Во время положительного полупериода входа диод D1 смещен в прямом направлении, и, следовательно, на затвор подается положительный ток затвора.

Следовательно, срабатывает затвор, и симистор переходит в состояние проводимости. Во время отрицательного полупериода входа диод D2 смещен в прямом направлении, следовательно, через него протекает ток затвора, в результате чего симистор включается.

Аналогичным образом, мощность переменного тока, подаваемая на нагрузку, регулируется в любом направлении с помощью надлежащего стробирующего сигнала. Угол проводимости симистора регулируется путем изменения сопротивления R2 в указанной выше цепи.

К началу

Симистор против SCR

  • Симистор — двунаправленное устройство, тогда как тиристор — однонаправленное устройство.
  • Клеммы симистора — это MT2, MT1 и затвор, в то время как SCR имеет клеммы анода, катода и затвора.
  • Как для положительного, так и для отрицательного тока затвора, тракт проводит, но только с направлением тока затвора включает тиристор.
  • Четыре различных режима работы возможны с симистором, тогда как с SCR возможен один режим работы.
  • Triac доступны с меньшими номиналами по сравнению с SCR.
  • Характеристики симистора лежат в первом и третьем квадранте, а характеристики SCR лежат в первом квадранте.
  • Надежность меньше по сравнению с SCR.

Наверх

ТРИАК | Тиристоры | Учебник по электронике

SCR

— это однонаправленные (односторонние) устройства тока, что делает их полезными только для управления постоянным током. Если два тиристора соединены последовательно параллельно, так же, как два диода Шокли были соединены вместе, чтобы сформировать DIAC, у нас есть новое устройство, известное как TRIAC: (рисунок ниже)

Эквивалент TRIAC SCR и условное обозначение TRIAC.

Поскольку отдельные тиристоры более гибкие для использования в передовых системах управления, они чаще встречаются в схемах, таких как моторные приводы; TRIAC обычно используются в простых приложениях с низким энергопотреблением, например, в бытовых диммерных переключателях. На рисунке ниже показана простая схема регулятора яркости лампы вместе с цепью фазосдвигающего резистора-конденсатора, необходимой для срабатывания после пика.

TRIAC фазорегулятор мощности

TRIAC известны тем, что не стреляют симметрично.Это означает, что они обычно не срабатывают при точно таком же уровне напряжения затвора для одной полярности, что и для другой. Вообще говоря, это нежелательно, потому что асимметричное срабатывание приводит к форме волны тока с большим разнообразием гармонических частот. Формы сигналов, симметричные выше и ниже их средних осевых линий, состоят только из гармоник с нечетными номерами. С другой стороны, асимметричные сигналы содержат гармоники с четными номерами (которые также могут сопровождаться или не сопровождаться гармониками с нечетными номерами).

В интересах уменьшения общего содержания гармоник в энергосистемах, чем меньше и менее разнообразны гармоники, тем лучше — это еще одна причина, по которой отдельные тиристоры предпочтительнее триАКов для сложных мощных цепей управления. Один из способов сделать форму сигнала тока TRIAC более симметричным — это использовать устройство, внешнее по отношению к TRIAC, для синхронизации запускающего импульса. DIAC, размещенный последовательно с воротами, справляется с этим неплохо: (Рисунок ниже)

DIAC улучшает симметрию управления

Напряжение переключения

DIAC имеет тенденцию быть гораздо более симметричным (одинаковым в одной полярности, чем в другой), чем пороговые значения напряжения срабатывания TRIAC.Поскольку DIAC предотвращает любой ток затвора до тех пор, пока напряжение запуска не достигнет определенного повторяемого уровня в любом направлении, точка срабатывания TRIAC от одного полупериода к следующему имеет тенденцию быть более согласованной, а форма волны более симметричной сверху и снизу. его осевая линия.

Практически все характеристики и номиналы SCR одинаково применимы к TRIAC, за исключением того, что TRIAC, конечно, двунаправленные (могут обрабатывать ток в обоих направлениях). Больше нечего сказать об этом устройстве, за исключением важной оговорки, касающейся обозначений клемм.

Из эквивалентной принципиальной схемы, показанной ранее, можно было подумать, что главные клеммы 1 и 2 взаимозаменяемы. Это не так! Хотя полезно представить TRIAC как состоящий из двух SCR, соединенных вместе, на самом деле он построен из единого куска полупроводникового материала, должным образом легированного и многослойного. Фактические рабочие характеристики могут незначительно отличаться от аналогичной модели.

Это становится наиболее очевидным при сравнении двух простых схемотехнических решений, одна из которых работает, а другая — нет.Следующие две схемы представляют собой разновидность схемы регулятора яркости лампы, показанной ранее, фазосдвигающий конденсатор и DIAC удалены для простоты. Хотя полученной схеме не хватает возможности точного управления более сложной версией (с конденсатором и DIAC), она работает: (рисунок ниже)

Эта схема с логическим элементом MT2 работает.

Предположим, мы должны были поменять местами два основных терминала TRIAC. Согласно эквивалентной схеме, показанной ранее в этом разделе, замена не должна иметь никакого значения.Схема должна работать: (рисунок ниже)

Если вентиль переключен на MT1, эта схема не работает.

Однако, если эта схема будет построена, обнаружится, что она не работает! Нагрузка не получит питания, симистор вообще не сработает, независимо от того, насколько низкое или высокое значение сопротивления установлено на управляющем резисторе. Ключ к успешному срабатыванию TRIAC — убедиться, что затвор получает ток срабатывания со стороны основного вывода 2 схемы (основной вывод на противоположной стороне символа TRIAC от вывода затвора).Идентификация терминалов MT1 и MT2 должна производиться по артикулу TRIAC со ссылкой на технический паспорт или книгу.

ОБЗОР:

  • TRIAC действует так же, как два тиристора, подключенных спина к спине для двунаправленной (AC) работы.
  • Элементы управления
  • TRIAC чаще встречаются в простых схемах с низким энергопотреблением, чем в сложных схемах большой мощности. В схемах управления большой мощностью, как правило, предпочтение отдается нескольким тиристорам.
  • При использовании для управления подачей переменного тока на нагрузку, TRIAC часто сопровождается DIAC, соединенным последовательно с их выводами затвора.DIAC помогает TRIAC стрелять более симметрично (более последовательно от одной полярности к другой).
  • Основные клеммы 1 и 2 на TRIAC не взаимозаменяемы.
  • Для успешного запуска TRIAC ток затвора должен поступать со стороны главной клеммы 2 (MT2) схемы!

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

ТРИАК: Что это? (Определение, работа и применение)

Что такое симистор?

Симистор определяется как трехконтактный переключатель переменного тока, который отличается от других кремниевых выпрямителей в том смысле, что он может проводить в обоих направлениях, то есть независимо от того, является ли подаваемый сигнал затвора положительным или отрицательным, он будет проводить.Таким образом, это устройство можно использовать для систем переменного тока в качестве выключателя.

Это трехконтактное четырехслойное двунаправленное полупроводниковое устройство, контролирующее мощность переменного тока. На рынке доступен симистор максимальной мощностью 16 кВт.


На рисунке показан символ симистора, который имеет две основные клеммы MT 1 и MT 2 , соединенные обратно параллельно, и клемму затвора.

Конструкция симистора

Два тиристора подключены обратно параллельно клемме затвора как общий.Клеммы затвора подключены как к областям N, так и к P, благодаря чему сигнал затвора может подаваться независимо от полярности сигнала. Здесь у нас нет анода и катода, поскольку он работает для обеих полярностей, что означает, что устройство двустороннее. Он состоит из трех клемм, а именно: основной клеммы 1 (MT 1 ), основной клеммы 2 (MT 2 ) и клеммы затвора G.


На рисунке показана конструкция симистора. Есть два основных терминала, а именно MT 1 и MT 2 , а оставшийся терминал — это терминал ворот.

Работа симистора

Симистор можно включить, приложив напряжение затвора выше, чем напряжение отключения. Однако, не создавая высокого напряжения, его можно включить, применив стробирующий импульс длительностью 35 микросекунд. Когда приложенное напряжение меньше напряжения отключения, мы используем метод запуска затвора, чтобы включить его.
Существует четыре различных режима работы:

  1. Когда MT 2 и вентиль положительный по отношению к MT 1
    Когда это происходит, ток течет по пути P 1 -N 1 -P 2 -N 2 .Здесь P 1 -N 1 и P 2 -N 2 смещены вперед, а N 1 -P 2 смещены в обратном направлении. Говорят, что симистор работает в положительно смещенной области. Положительный вентиль относительно MT 1 прямое смещение P 2 -N 2 и происходит пробой.
  2. Когда MT 2 положительный, но затвор отрицательный относительно MT 1
    Ток течет по пути P 1 -N 1 -P 2 -N 2 .Но P 2 -N 3 имеет прямое смещение, и носители тока вводятся в P 2 на симисторе.
  3. Когда MT 2 и Gate отрицательны по отношению к MT 1
    Ток течет по пути P 2 -N 1 -P 1 -N 4 . Два соединения P 2 -N 1 и P 1 -N 4 смещены в прямом направлении, а соединение N1-P1 смещено в обратном направлении. Говорят, что симистор находится в отрицательно смещенной области.
  4. Когда MT 2 отрицательный, но затвор положительный по отношению к MT 1
    P 2 -N 2 При этом условии смещен вперед. Вводятся носители тока, поэтому симистор включается. Этот режим работы имеет недостаток, заключающийся в том, что его не следует использовать для цепей с высоким (di / dt). Чувствительность запуска в режимах 2 и 3 высока, и если требуется предельная способность запуска, следует использовать отрицательные стробирующие импульсы. Срабатывание в режиме 1 более чувствительно, чем в режиме 2 и режиме 3.

Характеристики симистора

Симистор Характеристики аналогичны тиристору, но он применим как к положительному, так и к отрицательному напряжению симистора. Операцию можно резюмировать следующим образом:

Работа симистора в первом квадранте

Напряжение на клемме MT 2 положительно по отношению к клемме MT 1 , а напряжение затвора также положительно по отношению к первой клемме.

Работа симистора во втором квадранте

Напряжение на клемме 2 положительно по отношению к клемме 1, а напряжение затвора отрицательно по отношению к клемме 1.

Работа симистора в третьем квадранте

Напряжение клеммы 1 положительное по отношению к клемме 2, а напряжение затвора отрицательное.

Работа симистора в четвертом квадранте

Напряжение клеммы 2 отрицательное по отношению к клемме 1, а напряжение затвора положительное.

Когда устройство включается, через него проходит сильный ток, который может повредить устройство, поэтому для ограничения тока к нему должен быть подключен резистор ограничения тока.Применяя правильный стробирующий сигнал, можно контролировать угол включения устройства. Для правильного срабатывания затвора следует использовать схемы срабатывания затвора. Мы можем использовать diac для запуска стробирующего импульса. Для срабатывания устройства с правильным углом стрельбы можно применять стробирующий импульс длительностью до 35 микросекунд.

Преимущества симистора

  1. Может срабатывать с положительной или отрицательной полярностью импульсов затвора.
  2. Требуется только один радиатор немного большего размера, тогда как для SCR требуется два радиатора меньшего размера.
  3. Требуется один предохранитель для защиты.
  4. Безопасный пробой в любом направлении возможен, но для защиты SCR следует использовать параллельный диод.

Недостатки симистора

  1. Они не очень надежны по сравнению с тиристором.
  2. Он имеет рейтинг (dv / dt) ниже, чем SCR.
  3. Доступны более низкие рейтинги по сравнению с SCR.
  4. Нам нужно быть осторожными со схемой запуска, так как она может срабатывать в любом направлении.

Использование симистора

  1. Они используются в цепях управления.
  2. Используется в переключении ламп высокой мощности.
  3. Используется в управлении мощностью переменного тока.

Тиристор против симистора — celduc® relais

В переключающих твердотельных реле

переменного тока используются тиристоры и симисторы переменного тока в качестве встроенного устройства переключения выходов. В чем разница между симисторами и тиристорами?


Принцип работы тиристоров и симисторов

Тиристор (или SCR)

Тиристор , также называемый SCR, означает кремниевый управляемый выпрямитель.

Это полупроводниковое переключающее устройство с двумя выводами питания, называемыми анодом (A) и катодом (K), и одним выводом управления, называемым затвором (G).

Как диод, ток может течь только в одном направлении, от анода к катоду. Таким образом, для работы от сети переменного тока можно использовать 2 тиристора, соединенные спина к спине:


Запуск тиристора осуществляется приложением импульса тока, положительно циркулирующего от затвора к катоду

Фиксация тиристора (для переключения тиристора во включенное состояние) после импульса тока затвора может произойти только с тех пор, как:
— Напряжение между анодом и катодом положительное
— Ток между анодом и катодом после триггера превышает Ток фиксации .

При указанных выше условиях тиристор остается включенным даже при отсутствии тока на затворе (эффект памяти).

Защелку можно сбросить ( Тиристор выключается ) в 2 случаях:
— поскольку ток между анодом и катодом падает ниже Ток удержания
— Поскольку напряжение между анодом и катодом становится отрицательным

Симистор

TRIAC означает TRIode для переменного тока.

Хотя он имеет такое же поведение срабатывания и фиксации по сравнению с тиристором, он отличается тем, что он может переключаться на проводимость в обоих направлениях напряжения / тока в ответ на положительный или отрицательный сигнал затвора.

Thyistor и Triac — полупроводниковые приборы

Поскольку они являются полупроводниковыми приборами, они не могут обеспечить гальваническую изоляцию, когда ими не управляют. Они могут даже иметь опасный ток утечки в выключенном состоянии. Кроме того, пробой часто приводит к их короткому замыканию, позволяя току течь к нагрузке.

Это важный аспект, который необходимо учитывать для обеспечения безопасности при проектировании системы в случае отказа или обслуживания: пользователь должен обеспечить возможность гальванической развязки SSR и нагрузочной части цепи с помощью контактора или MCB.

В этом случае используется симистор или тиристоры, соединенные задними сторонами друг к другу: типовое применение

Симисторы

основаны на одной кремниевой микросхеме, в то время как тиристоры, расположенные спина к спине, представляют собой две отдельные кремниевые микросхемы.
Это физическое различие играет роль с точки зрения коммутационной способности по току :
Для токов нагрузки до 25 А симистор — хорошее и легкодоступное решение возможность переключения высокой мощности.

Если у вас возникнут какие-либо вопросы, обращайтесь к нашим техническим специалистам и специалистам по продажам.

Структура абзаца TRIAC — д-р Эрик Дроун

Начинающие академические писатели часто задаются вопросом, как улучшить свои абзацы, не добавляя лишних слов. TRIAC может помочь авторам подробно объяснить свои идеи. Параграфы TRIAC (или последовательности параграфов) содержат следующие элементы:

Тема . Начните абзац с темы, которая поддерживает или усложняет ваш тезис — центральную проблему или идею, на изучение которой направлен абзац. Лучшие тематические предложения функционируют как мини-тезисы и заявляют о теме.

Ограничение . Поскольку может быть много аспектов и подходов к теме, имеет смысл указать аспект или подход, который вы собираетесь использовать. Следуйте за темой предложениями, которые сужают объем темы. В этих предложениях вы переписываете тему более конкретными терминами и устанавливаете направление, в котором будет следовать абзац.

Иллюстрация / Пример / Доказательства . Помогите читателю понять ограниченную тему в конкретных терминах и дайте ему или ей повод подумать, предложив пример, экспонат или доказательства.

Анализ . Помогите читателю понять вашу точку зрения, посмотрев на доказательства, которые вы предложили, своими глазами. Какие его части являются наиболее важными? Как доказательства подтверждают, усложняют или опровергают ограниченное утверждение по теме, которую вы (или другой писатель) делаете?

Выводы / Подключения . Что ваш читатель, поняв ваши доказательства, должен был извлечь уроки из вашего абзаца? Как этот вывод может быть связан с другими важными идеями в вашем эссе?

Вот пример короткого абзаца TRIAC.

[ТЕМА] Многие критики обеспокоены тем, что то, как мы используем Интернет, меняет наше сознание. [ОГРАНИЧЕНИЕ] Их больше всего беспокоит то, что наши привычки поверхностного чтения способствуют невнимательности и подрывают грамотность. [ИЛЛЮСТРАЦИЯ / ПРИМЕР] Например, в статье «Google Делает нас глупыми?» Журналист Николас Карр обеспокоен тем, что умственное состояние установления соединения, которому способствует медленное, глубокое чтение, уступает место состоянию поиска информации разум лучше всего приспособлен к поиску отдельных фрагментов информации.По его мнению, вместо того, чтобы погрузиться в океан идей, мы просто «несемся по поверхности, как парень на гидроцикле». [ АНАЛИЗ ] Карр справедливо отмечает, что наши читательские привычки, безусловно, меняются. Это правда, что большая часть нашего повседневного чтения подпитывает наши стремления к поиску информации. Верно также и то, что нужно потрудиться, чтобы научиться читать и думать медленно и глубоко. Но его настойчивому утверждению, что мы теряем способность мыслить сложным образом, противостоит медленное терпеливое мышление, которое имеет место в таких действиях, как молитва, медитация и обучение .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *