Реверс трехфазного двигателя в однофазной сети
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).
Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.
Обо всем этом читайте здесь.
А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.
Вот так она выглядит.
Вот как раз таки в этой кнопке имеется две пары контактов:
- (1-2) — нормально-разомкнутый
- (3-4) — нормально-замкнутый
В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.
Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.
Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.
Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.
Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).
Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть
Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.
В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости — МБГО-1, 20 (мкФ), напряжение 500 (В).
Собираем схему.
В моем примере взят двигатель напряжением — 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.
Для тех кто забыл, то читайте статью о схемах соединения обмоток двигателя (звезда и треугольник).
Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.
Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).
Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).
Если на Вашем двигателе отсутствует маркировка выводов обмоток, то ее можно найти самостоятельно — вот Вам в помощь моя статья об определении начала и конца обмоток электродвигателя.
Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.
Работу реверса смотрите в видеоролике:
P.S. На этом, пожалуй, все. Если у Вас возникли вопросы по материалу статьи, то пишите их в комментариях или мне на почту. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Реверс однофазного конденсаторного двигателя — Всё о электрике
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Схема подключения двигателя через конденсатор
Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Онлайн расчет емкости конденсатора мотора
Введите данные для расчёта конденсаторов — мощность двигателя и его КПД
Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:
Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.
Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.
Пусковые конденсаторы для моторов
Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.
Реверс направления движения двигателя
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Реверс однофазного двигателя
Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.
Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.
Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).
Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.
Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.
Но совсем другое дело, если ротор подтолкнуть, – тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.
Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это – как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.
Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.
Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.
Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.
Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.
Реверсивное подключение однофазного асинхронного двигателя своими руками
Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?
Постановка задачи
Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.
Уточним важные моменты:
- Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
- Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
- Направление вращения ротора обозначено с помощью стрелок.
Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.
Вариант 1: переподключение рабочей намотки
Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:
- Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
- Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.
В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.
Вариант 2: переподключение пусковой намотки
Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:
- Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
- Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.
После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.
Вариант 3: смена пусковой обмотки на рабочую, и наоборот
Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.
На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.
В этом случае поступают так:
- Снимают конденсатор с начального вывода А;
- Подсоединяют его к конечному выводу D;
- От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).
Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.
Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:
- Длина пусковой и рабочей намоток одинакова;
- Площадь их поперечного сечения соответствует друг другу;
- Эти провода изготовлены из одного и того же материала.
Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.
Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.
Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.
{SOURCE}
Схема реверса 3 х фазного двигателя
Схема реверса трехфазного двигателя
Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.
Общая схема реверса электродвигателей
В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.
Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.
Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.
Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.
На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.
Схема реверса трехфазного двигателя и кнопочного поста
В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.
Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.
Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).
Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.
В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.
Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.
По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.
Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.
Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.
Схема реверса трехфазного двигателя, подключенного в однофазную сеть
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).
Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.
А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.
Вот так она выглядит.
Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.
Вот как раз таки в этой кнопке имеется две пары контактов:
- (1-2) — нормально-разомкнутый
- (3-4) — нормально-замкнутый
В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.
Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.
Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.
Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.
Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).
Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть
Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.
В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости — МБГО-1, 20 (мкФ), напряжение 500 (В).
В моем примере взят двигатель напряжением — 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.
Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.
Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).
Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).
Если на Вашем двигателе отсутствует маркировка выводов обмоток, то ее можно найти самостоятельно — вот Вам в помощь моя статья об определении начала и конца обмоток электродвигателя.
Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.
Работу реверса смотрите в видеоролике:
Схема подключения реверсивного магнитного пускателя.
08 Апр 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.
Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.
На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.
В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.
Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.
Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.
1. Исходное состояние схемы.
При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.
Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.
На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.
2. Работа цепей управления при вращении двигателя влево.
При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.
Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.
На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.
3. Работа цепей управления при вращении двигателя вправо.
Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.
Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.
При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:
Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.
Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.
4. Силовые цепи.
А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.
Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.
Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.
А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.
Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.
Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».
Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.
5. Защита силовых цепей от короткого замыкания или «защита от дурака».
Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.
Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».
А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.
6. Заключение.
Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.
И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.
А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!
Реверсивная схема подключения электродвигателя
Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.
Переменная сеть: мотор 380 к сети 380
Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:
Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:
Для подключения дополнительно понадобятся:
- Магнитный пускатель (или контактор) – КМ2;
- Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).
Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».
Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.
Для запуска двигателя:
- Включите автоматы АВ1 и АВ2;
- Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
- Двигатель работает.
Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.
Переменная сеть: электродвигатель 220 к сети 220
Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.
В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:
Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.
Переменная сеть: 380В к 220В
Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.
Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.
Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.
Постоянный электроток: особенности
Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.
Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:
- с возбуждением независимым,
- с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).
Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.
В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.
В электротранспорте применяются агрегаты с последовательным возбуждением.
Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.
Все способы включения электродвигателей постоянного тока могут реверсироваться:
- Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
- В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.
Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.
Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.
Схема реверсивного подключения электродвигателя
В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.
Принцип работы
Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:
Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:
В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:
Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.
Требуемые компоненты
Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.
Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.
Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.
Принципиальная схема
На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.
Процесс включения
Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.
Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.
После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.
Этапы подключения
Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.
К трехфазной сети
Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.
К однофазной сети
В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.
Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.
Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.
Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.
Резюме
Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.
Схемы подключения трехфазных электродвигателей
ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.
Условные обозначения на схемахМагнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.
У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.
Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.
В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).
Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.
Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».
Схема прямого включения электродвигателяДанная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.
Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.
Схема подключения электродвигателя через магнитный пускательЭту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.
При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.
Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:
При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:
В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.
При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.
Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Запуск трехфазных электродвигателей с помощью конденсаторов
Запуск трехфазных электродвигателей с помощью конденсаторов, подключая их к бытовой однофазной электросети, можно осуществлять только в исключительных случаях (когда нет возможности подключиться к трехфазной сети), поскольку в ней сразу возникает вращающееся магнитное поле, создающее условия для того, чтобы ротор вращался в статоре. Помимо прочего, этот режим позволяет достичь максимальной мощности и эффективности работы электромотора.
Для того чтобы достичь максимальной выходной мощности электродвигателя (максимум 70% сравнительно с трехфазным подключением), при подключении к домашней однофазной электросети совершают три обмотки по схеме «треугольник». При подключении по схеме «звезда» максимальная мощность достигает не более 50% от возможной. При однофазном подключении на два выхода создается возможность подключения фазы и ноля без третьей фазы, которую восполняет конденсатор.
От того, как сформирован третий контакт (через фазу или ноль), зависит направление вращения ротора. В режиме одной фазы достигается идентичность частоты вращения трехфазному режиму.
Как подключить электромотор с конденсатором
Асинхронные электромоторы мощностью до 1.5кВт, запускающиеся без нагрузки, требуют для своего подключения только рабочий конденсатор. Один конец конденсатора подключают к нулю, а второй – к третьему выходу треугольника. Для изменения направления вращения ротора подключение конденсатора ведут от фазы.
Если мотор сразу при запуске работает под нагрузкой или его мощность превышает 1.5кВт, в схему вводят пусковой конденсатор, включающийся в работу параллельно рабочему. Он включается всего на несколько секунд и увеличивает пусковой толчок во время старта. При кнопочном подключении пускового конденсатора остальную схему подключают от сети через тумблер или через кнопку с двумя фиксирующими положениями.
Для запуска подключают питание через тумблер или двухпозиционную кнопку, затем нажимают на пусковую кнопку и удерживают ее до запуска электромотора. По осуществлении запуска кнопку отпускают, и ее пружина размыкает контакты и отключает пусковую емкость.
Для реверсивного запуска трехфазных электродвигателей с помощью конденсаторов в сети 220В в схему вводят тумблер переключения, который служит для подключения одного конца рабочего конденсатора к фазе и к нулю.
Если мотор не запускается или слишком медленно набирает обороты, в схему вводят пусковой конденсатор, подключаемый через кнопку «Пуск». Обычно на схемах провода, предназначенные для подключения этой кнопки в режиме реверса, обозначаются фиолетовым цветом. Если реверс не нужен, кнопка с проводами и правый пусковой конденсатор в схему не вводятся. Для запуска двигателя, рассчитанного на 220В, конденсаторы не нужны.
Выбор конденсаторов для электромоторов
Для подключения трехфазных электромоторов к бытовой сети нужно использовать только модели типа МБГЧ, МБПГ, МБГО и БГТ с рабочим напряжением (U раб.) минимум 300 вольт. Обозначение и величина емкости конденсатора указываются на его корпусе.
Расчет емкости
- Для подключения звездой используют формулу Сраб.=2800х(I/U), а для подключения треугольником – Сраб.=4800х(I/U), где Сраб. – это емкость рабочего конденсатора в мкФ, I – потребляемый мотором ток (по паспорту), U – напряжение сети, равное 220 вольтам. Емкость пусковых конденсаторов, обычно превышающую емкость рабочих конденсаторов вдвое-втрое, подбирают экспериментальным путем.
- Расчет надо составлять на номинальную мощность, поскольку при работе в половину силы электромотор будет нагреваться. Для уменьшения тока в обмотке необходимо уменьшить емкость рабочего конденсатора. Если емкости не хватает до необходимой, электродвигатель будет развивать низкую мощность.
- Лучше всего начинать подбор конденсатора для трехфазного электродвигателя с наименьшего допустимого значения емкости, и постепенно увеличивать показатель до оптимальной величины.
- При долгой работе без нагрузки электромотор, переделанный с 380В на 220В, сгорит.
- После отключения агрегата на выводах конденсаторов долго сохраняется напряжение опасной величины, поэтому их надо ограждать во избежание случайного прикосновения.
- Необходимо разряжать конденсаторы каждый раз перед началом их эксплуатации.
- Трехфазный электромотор мощностью свыше 3кВт нельзя подключать к домашней электросети на 220 вольт, потому что при неправильно подобранной защите будет плавиться изоляция проводов и выбиваться пробки, в худшем случае возможно возгорание.
При соблюдении вышеперечисленных правил и рекомендаций подключение трехфазного электродвигателя к бытовой сети не представляет сложности. Не следует только забывать о технике безопасности.
схемы соединения обмоток и конденсаторы, емкость, реверс
Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов. Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.
Подключение двигателя 380 на 220
380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.
Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.
То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.
В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты
- Три клеммы ОДНОГО ряда соединены между собой — звезда.
- МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.
Какую схему соединения обмоток выбрать
Читаем информацию о рабочем напряжении на табличке:
- 380В — только треугольник.
- 380В/220В — треугольник или звезда.
- 220/127 — только звезда. Очень редкий вариант.
Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.
Подбираем конденсатор
В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.
Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.
- Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.
Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.
А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.
В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.
Подсчет итоговой ёмкости
При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.
Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.
Реверс
Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.
Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.
А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.
подключение трехфазного двигателя к однофазной и трехфазной сети
За счет простой конструкции и легкости обслуживания асинхронные электрические двигатели находят широкое применение практически в любой сфере от промышленных предприятий до бытовой техники. Из-за особенности рабочего принципа они по-разному подключаются к трехфазным и однофазным электросетям.
Содержание:
- Принцип работы
- Подключение к однофазной сети через конденсатор
- Подключение без конденсатора
- Реверс двигателя в однофазной сети
- Подключение к трехфазной сети двигателя с короткозамкнутым ротором
- Подключение двигателя с фазным ротором
Принцип работы
Асинхронный трехфазный электродвигатель представляет собой конструкцию из двух основных компонентов: статора – большого неподвижного элемента, служащего одновременно и корпусом двигателя, и ротора – подвижной детали, передающей механическую энергию на вал. Читайте более подробно о принципе работы асинхронного двигателя в отдельной статье. Очень рекомендуем сделать это, т.к. информация там может быть полезна в работе!
Коротко, статор представляет собой корпус, внутри которого находится сердечник или магнитопровод. Внешне он похож на беличье колесо и собирается из электротехнической стали, изолированный с помощью нанесения специального лака. Такая конструкция снижает количество вихревых токов, появляющихся при воздействии с круговым магнитным полем двигателя. В пазах сердечника располагаются три обмотки, на которые подается питание.
беличье колесо
Ротор представляет собой шихтованный сердечник и вал. Стальные листы, используемые в роторном сердечнике, не обрабатываются лаком-изолятором. Обмотка ротора – короткозамкнутая.
Рассмотрим принцип действия этой конструкции. После подачи энергии на асинхронный двигатель с короткозамкнутым ротором на фиксированных обмотках статора создается магнитное поле. При подключении к сети с синусоидальным переменным током, характер поля будет изменяться с изменением показателей сети. Поскольку обмотки статора смещены относительно друг друга не только в пространстве, но и во времени, возникают три магнитных потока со смещением, в результате взаимодействия которых возникает вращающееся результирующее поле, проводящее ротор в движение.
Несмотря на то, что фактически ротор неподвижен, вращение магнитных полей на обмотках статора создает относительно вращение, что и приводит его в движение. Результирующее поле, «собранное» потоками обмоток, в процессе вращения наводит электродвижущую силу в проводники ротора. Согласно правилу Ленца, основное поле буквально пытается догнать поток на обмотках с целью сокращения относительной скорости.
Асинхронные двигателя относятся к электрическим машинам и, следовательно, могут использоваться не только в качестве моторов, но и как генераторы. Для этого необходимо, чтобы вращение ротора осуществлялось через некий внешний источник энергии, например, через другой двигатель или воздушную турбину. При наблюдении остаточного магнетизма на роторе, то в обмотках статора также будет генерироваться переменный поток, что приведет к получению напряжения на них за счет принципа индукции. Такие генераторы называют индукционными, они находят в бытовой и хозяйственной сфере для обеспечения бесперебойной работы непостоянных сетей переменного тока.
Подключение к однофазной сети через конденсатор
Подключение трехфазного двигателя к однофазной сети невозможно в чистом виде, без изменения схемы питания. Дело в том, что для создания вращающегося магнитного потока необходимо наличие как минимум двух обмоток со сдвигом по фазе, за счет которого и создает относительное движение статора. Если мотор подключить к бытовой однофазной сети напрямую, подав питание на одну из обмоток статора, он не будет работать. Это связано с тем, что одна работающая фаза создает пульсирующее поле, которое может обеспечивать движение вращающегося ротора, но не способно запустить его.
Для решения этой проблемы в двигателе размещается дополнительная обмотка под углом в 90˚ относительно основной, в цепь которой последовательно включен фазосмещающий элемент. В этом качестве могут выступать резисторы, индукционные катушки и другие устройства, однако лучшую эффективность показало применение конденсаторов.
Дополнительная обмотка, создаваемая с помощью конденсаторов, чаще всего выступает в роли пускателя двигателя, поэтому её называют пусковой. По достижении определенной температуры и скорости вращения вала срабатывает переключатель, размыкающий цепь. После этого работа двигателя обеспечивает взаимодействием между ротором и пульсирующим полем рабочей обмотки, как уже было описано выше.
Для обеспечения максимальной эффективности работы необходимо использование конденсаторов, чья ёмкость подходит под сетевые показатели. Кроме того, нередко в таких двигателях используется магнитный пускатель или реле тока для автоматического управления рабочим процессом. В видео ниже, будет и про магнитный пускатель.
Функциональные особенности подключения асинхронного двигателя с одним конденсатором отличаются хорошими пусковыми характеристиками, но сравнительно небольшой мощностью. Поскольку частота бытовой сети с напряжением 220 В составляет 50 Гц, такие моторы не могут вращаться со скоростью более 3000 об/мин. Это сокращает сферу их использования до бытовых приборов: пылесосов, холодильников, триммеров, блендеров и т.д.
Очень настоятельно рекомендуем посмотреть два видео ролика в этом разделе (одно сверху, другое снизу), т.к. наглядное пособие, может быть крайне полезным.
Подключение без конденсатора
Для подключения асинхронного двигателя в однофазную сеть без использования конденсаторов существуют две популярные схемы. Для обеспечения работы двигателя берутся синисторы с разнополярными импульсами управления и симметричный динистор.
Первая схема предназначена для электродвигателей с величиной номинального вращения от 1500 об/мин. В качестве фазосмещающего элемента выступает специальная цепочка. Схема соединения обмоток статора – треугольник.
Необходимо создать сдвинутое напряжение на конденсаторе путем изменения сопротивления. После того, как напряжение конденсатора достигнет нужного уровня, динистор переключится и включит заряженный конденсатор в схему запуска.
Вторая схема подходит для электродвигателей с большим пусковым сопротивлением или номинальной скоростью вращения от 3000 об/мин.
Очевидно, в данной ситуации необходимо создать сильный пусковой момент. Именно по этой причине в машинах этого типа для подключения статорных обмоток используется треугольник. Вместо фазосдвигающих конденсаторов в этой схеме применяются электронные ключи. Первый из них последовательно включается в цепь рабочей фазы, а второй – параллельно. В результате этой хитрости создается опережающий сдвиг тока. Однако данный способ эффективен только для двигателей 120˚ электрическим смещением.
Трехфазный электромотор можно подключить с помощью тиристорного ключа. Это, пожалуй, самый простой и эффективный способ подключения асинхронного двигателя в однофазную сеть без конденсаторов. Принцип его действия таков: ключ остается закрытым во время максимального сопротивления. Благодаря этому создается наибольший фазовый сдвиг и, соответственно, пусковой момент. По мере ускорения вала сопротивление снижается до оптимального уровня, сохраняющего сдвиг по фазе в пределах значения, обеспечивающего работу двигателя.
При наличии тиристорного ключа можно и вовсе отказаться от конденсаторов – он демонстрирует лучшие рабочие и пусковые характеристики даже для двигателей мощностью более 2 кВт.
Реверс электродвигателя в однофазной сети
При подключении асинхронного двигателя в сеть с однофазным током управлять реверсом (обратным вращением) ротора можно с помощью третьей обмотки. Для этого необходим тумблер или аналогичный двухпозиционный переключатель. Сначала с ним через конденсатор соединяется третья обмотка. Два контакта тумблера подключаются к двум другим обмоткам. Такая простая схема позволит управлять направлением вращения, переводя переключатель в нужное положение.
Подключение к трехфазной сети двигателя с короткозамкнутым ротором
Самыми эффективными и часто используемыми способами подключения асинхронного двигателя к трехфазной сети являются так называемые звезда и треугольник.
В конструкции двигателя с короткозамкнутым ротором есть всего шесть контактов обмоток – по три на каждой. Для того чтобы подключить асинхронный двигатель звездой необходимо соединить концы обмоток в одном месте, подобно лучам звезды. Примечательно, что в такой схеме напряжение у начал обмоток составляет 380 В, а на участке цепи, пролегающем между их соединением и местом подключения фаз – 220 В. Возможность включения двигателя данным методом указывается на его бирке символом Y.
Главное достоинство этой схемы в том, что она предотвращает возникновение перегрузок по току на электродвигателе при условии использования четырехполюсного автомата. Машина запускает плавно, без рывков. Недостаток схемы в том, что пониженное напряжение на каждой из обмоток не дает двигателю развивать максимальную мощность.
схема подключения звезда
Если электродвигатель с короткозамкнутым ротором был подключен по схеме звезда, это можно заметить по общей перемычке на концах обмоток.
Асинхронный двигатель, звезда в сборе
Для обеспечения предельной рабочей мощности трехфазного электродвигателя его подключают к сети треугольником. В этой схеме обмотки статора соединяются друг с другом по принципу конец-начало. При питании от трехфазной сети нет необходимости в соединении с рабочим нулем. Напряжение на участках цепи между выводами будет равняться 380 В. На табличке двигателя, подходящего для подключения треугольников, изображается символ ∆. Иногда производитель даже указывает номинальную мощность при использовании той или иной схемы.
схема подключения «треугольник»
Главный недостаток треугольника – пусковые токи слишком большой величины, которые иногда перегружают проводку и выводят её из строя. В качестве оптимального решения изредка создают комбинированную схему, в которой запуск и набор скорости происходит при «звезде», а затем обмотки переключают на «треугольник».
Подключение с фазным ротором
Асинхронные электродвигатели с фазным ротором имеют высокие пусковые и регулировочные характеристики, благодаря чему применяются в высокомощных машинах и приборах малой мощности. Конструктивно этот асинхронный двигатель отличается от обычного трехфазного тем, что на роторе есть своя трехфазная обмотка со сдвинутыми катушками.
Для подключения электродвигателей с фазным ротором применяются описанные выше схемы звезда и треугольник (для 380 В и 220 В сетей соответственно). Стоит заметить, что для того или иного двигателя может быть использована только одна схема, указанная в паспорте. Пренебрежение этим требованием может привести к сгоранию мотора.
Соединение обмоток в клеммной коробке производится так же, как на схемах из предыдущего способа. Изменение рабочих характеристик так же закономерно: треугольник выдает практически в полтора раза большую мощность, а звезда, в свою очередь, мягче функционирует и управляется.
В отличие от моделей с короткозамкнутым ротором, асинхронный двигатель с трехфазным ротором имеет более сложную конструкцию, но это позволяет получать улучшенные пусковые характеристики и обеспечивать плавную регулировку вращения. Используются такие машины в оборудовании, требуемом регулировки частоты вращения и запускаемом под нагрузкой, к примеру, в крановых механизмах.
О том, как осуществить реверс электродвигателя. | Uninterest
Заранее извиняюсь перед моими читателями, возможно материал будет слишком примитивный для некоторых. Просто ну нет сил смотреть, как некоторые издеваюсь над элементарными цепями релейной автоматики. Придумывая всякие странные подключения и выкладывая это в статьях.
И так реверс двигателя постоянного тока.
Для того, чтобы изменить направление вращения двигателя постоянного тока, необходимо изменить полярность питания. Это, наверное, знают все, кто когда-либо держал мотор постоянного тока в руках.
Меня удивляет другое почему возникают вопросы с его реверсом.
Ведь самая простая и элементарная схема это:
Управление двигателем с помощью двух тумблеровУправление двигателем с помощью двух тумблеров
Используется два тумблера с перекидывающими контактами. В одном положении получается полюс подключен к одному контакту двигателя, а во втором положении, что подключен к другому.
Модификация данной схемы заключается в том, что можно использовать один тумблер с двумя перекидывающимися контактами и средним положением. И тогда средние положение будет выключено, а два остальных вращение в одну или другую сторону.
Управление двигателем с помощью одного тумблераУправление двигателем с помощью одного тумблера
Хорошо мощности тумблера не хватает для реверса, как в этом случае поступить? А для этого можно использовать реле, контактор, любое устройство с силовыми контактами. В общем виде схема показана ниже. Единственная оговорка в такой схеме — это использование перекидных контактов, которых, как правило нет в контакторах. Вместо которых бывает 2 нормально открытых и 2 нормально закрытых (кривое название, но он вошло в обиход тех, кто занимается автоматикой).
И схемы будут выглядеть, как показано ниже:
Управление с помощью релеУправление с помощью реле
Управление с помощью контактора типа LC1D с 2 нормально разомкнутыми и 2 нормально замкнутыми контактамиУправление с помощью контактора типа LC1D с 2 нормально разомкнутыми и 2 нормально замкнутыми контактами
NB! На этой схеме я ошибся, вернее не посмотрел у контакторов не встречается цепей управления на 12В. Минимально напряжение 24В.
Эти схемы достаточно банальны. А теперь можно их модифицировать и использовать для управления реверсом двигателя с помощью кнопок.
Чтоб не было необходимости удерживать кнопку для вращения двигателя. Для этого используем, наверное, самую банальную схему пускателя, которая существует в мире электротехники со времен царя гороха. Схема показана ниже:
Управление с помощью схемы пускателя.Управление с помощью схемы пускателя.
Так же добавив механический концовки крайнего положения можно еще устроить ему остановку в крайних положениях, схема представлена ниже:
Схема управления с добавленными концевыми выключателямиСхема управления с добавленными концевыми выключателями
S3 и S4 это концевые выключатели размыкающиеся в крайних положениях.
Естественно, дальше если использовать концевые выключатели с нормально разомкнутым контактом можно добавить и индикацию, что механизм дошел до крайнего положения.
И дополнив весь этот ансамбль банальных схем лампочками, можно еще и добавить индикацию крайних положений. Как на схеме ниже:
Схема управления с концевыми выключателями и свистелкамиСхема управления с концевыми выключателями и свистелками
На этом моменте я хотел уже прекратить парад банальных схем. Я думаю, они известны многим, кто занимается электротехникой и электроникой. Да и весь интернет завален ими в разных модификациях.
Также справедливости ради необходимо упомянуть, что схемы управления для однофазных и трехфазных двигателей практически ничем не отличаются. Основное отличие в том, как реализуется сам реверс.
Однофазный двигатель
Для однофазных двигателей с пусковым конденсатором это делается путем переключения концов пусковой обмотки на конденсаторе. То есть:
Реверс однофазного двигателя с пусковой обмоткой.Реверс однофазного двигателя с пусковой обмоткой.
Трехфазный асинхронный двигатель
А для трехфазных асинхронных двигателей реверс можно осуществить переключением двух из трехфазных проводов, то есть изменением порядка чередования фаз.
То есть как на схеме ниже:
Реверс трехфазного двигателяРеверс трехфазного двигателя
Итог
Выше я постарался в рамках релейных схем раскрыть тему реверса двигателей. Надеюсь, получилось это сделать более подробно, чем то, что я увидел в блогах дзена. Я вообще не совсем понял зачем делают статьи на эту тему. А если уж коснулись данной темы я считаю необходимо раскрывать ее более подробно.
PS: Я специально не раскрывал тему про H-мост и так далее. Эта статья больше посвящена электротехнике, чем электронике. Возможно со временем рассмотрим и их.
Двигатель разрезДвигатель разрез
Мгновенный прямой / обратный ход с трехфазными асинхронными двигателями переменного тока
Различия между однофазными и трехфазными асинхронными двигателями переменного тока не ограничиваются входным источником питания. Есть несколько вещей, которые вам нужно знать при использовании трехфазных асинхронных двигателей переменного тока в мгновенном прямом / обратном режиме.
Что такое мгновенная работа в прямом / обратном направлении?
Мгновенная операция вперед / назад описывает двигатель, который постоянно вращается вперед и назад между двумя положениями.Примером применения может быть приспособление для тестирования соединителей, которое вставляет и втягивает соединитель для проверки его надежности. Это можно сделать с помощью двигателей переменного тока, бесщеточных двигателей, серводвигателей или шаговых двигателей. Все они могут изменить направление. Решающим фактором является то, насколько быстро и точно вы хотите, чтобы двигатель останавливался при получении команды на останов.
Кредит: Mathworks
В чем разница между однофазными и трехфазными асинхронными двигателями переменного тока?
1.Обмотки
Во-первых, другая конструкция обмотки. Первичная и вторичная обмотки у трехфазных двигателей более сбалансированы, чем у однофазных двигателей. В данном случае мы имеем в виду электрические характеристики обмотки. См. Пример в таблице ниже.
Источник питания (В перем. Тока) | Двигатель | Первичная обмотка | Вторичная обмотка | |
Фаза U (Ом) | Фаза V (Ом) | Фаза Вт (Ом) | ||
Однофазный 200/220/230 | 4IK25A-CW | 157.6 | 157,1 | н / д |
Трехфазный 200/220/230 | 4IK25A-SW | 179,9 | 179,9 | 179,9 |
2. Производительность
Различные характеристики обмотки влияют на характеристики скорости и момента двигателя. На изображении ниже мы сравниваем кривые скорость-крутящий момент для однофазного и трехфазного двигателей.
Благодаря большему доступному крутящему моменту в области низких скоростей трехфазные двигатели обеспечивают больший пусковой крутящий момент и лучше подходят для мгновенной работы вперед / назад.Когда однофазный двигатель останавливается и реверсирует, более низкий крутящий момент может привести к замедлению разгона двигателя до его номинальной скорости. Когда трехфазный двигатель останавливается и реверсирует, более высокий крутящий момент позволяет ему быстрее разгоняться до номинальной скорости.
3. Пусковой момент
Однофазные двигателиFYI не останавливаются немедленно. Если они не используются с каким-либо типом фрикционного, электромагнитного, тормозного механизма сцепления или электронного тормозного блока, они будут останавливаться по инерции. Расстояние выбега или выбег зависит от трения и инерционной нагрузки, но может достигать 30 оборотов (на валу двигателя; кратно передаточному отношению).Этот перебег не очень хорошо работает с «мгновенной» частью мгновенного движения вперед / назад, так как двигателю теперь нужно время, чтобы разогнаться до номинальной скорости каждый раз, когда он запускается. Если вы измените направление слишком быстро, не дожидаясь, пока двигатель не остановится, он может продолжать вращаться в том же направлении.
Перебег одинаков для однофазных и трехфазных асинхронных двигателей переменного тока после отключения питания, хотя более высокий пусковой момент у трехфазных двигателей делает их более идеальными для мгновенных операций вперед / назад.
СОВЕТ № 1: Остановите трехфазный двигатель перед изменением направления |
Если вы хотите, чтобы двигатель продолжал работать, вот две причины, по которым вам следует сначала остановить двигатель, прежде чем менять его направление. Лучший способ — дать двигателю полностью остановиться перед переключением направления. В противном случае рекомендуется тестирование.
Повреждение шестерни В некоторых случаях шестерни мотор-редуктора могут быть повреждены в момент реверсирования.Если направление двигателя переключается слишком быстро, нагрузка может продолжать вращаться в том же направлении, но на самом деле двигатель пытается вращаться в противоположном направлении. Поскольку крутящий момент работает в обоих направлениях, шестерни могут быть повреждены. Сведение к минимуму сил удара для шестерен внутри редуктора двигателя может продлить срок его службы. Более высокий пусковой момент трехфазных двигателей усугубляет проблему. Риск короткого замыкания питания Внутренняя разводка обмоток однофазного двигателя и трехфазного двигателя отличается.Поэтому метод внешней проводки и тип переключателя различаются. На приведенной ниже схеме показаны схемы подключения однофазного и трехфазного двигателей. Различия в подключении: Первое, что вы, вероятно, заметили, — это конденсатор, показанный на схеме подключения однофазного двигателя. Конденсатор превращает однофазный источник питания в многофазный. Многофазный источник питания необходим для создания вращающегося магнитного поля внутри двигателя. Второе, что вы, вероятно, заметили, — это количество проводов, которые нам нужно переключить, чтобы реверсировать трехфазный двигатель (MC). С однофазным двигателем эту работу может выполнять однополюсный двухпозиционный переключатель. Однако для трехфазного двигателя требуется электромагнитный переключатель без потерь, который предлагает структуру блокировки. Этот тип переключателя не позволяет одновременно включать два контакта. Если на любой из двух проводов подается питание одновременно, это может вызвать короткое замыкание в цепи питания, а затем автоматический выключатель может остановить двигатель.Однофазные двигатели не представляют опасности, так как переключаются только один полюс. |
СОВЕТ № 2: Используйте инвертор |
Другой способ управления направлением трехфазных двигателей — использование инвертора или частотно-регулируемого привода. ЧРП разработан для управления направлением и скоростью трехфазных двигателей (и многим другим), поэтому мгновенные операции вперед / назад могут быть выполнены намного проще.В дополнение к популярной серии стандартных двигателей переменного тока World K, новая серия трехфазных двигателей переменного тока с высоким крутящим моментом KIIS компании Oriental Motor была разработана для работы с частотно-регулируемыми приводами. |
Предлагаются кривые «скорость-крутящий момент», отображающие ожидаемые характеристики двигателя и комбинации частотно-регулируемого привода. Другие будут добавляться по мере их появления.
Не стесняйтесь нажимать на данные кривой выше, чтобы узнать больше об этих двигателях.
Последние мысли
Помните , мгновенная работа вперед / назад не ограничивается только трехфазными двигателями. Любой двигатель может работать в прямом / обратном направлении, решающим фактором является то, насколько «мгновенно» и насколько «точным» вы хотите добиться этого. Всегда есть компромиссы.
Различные двигатели имеют разные способы выполнения операций вперед / назад. Поэтому для продуктов предлагаются разные характеристики перебега и частоты торможения.Например, в однофазном реверсивном двигателе используется фрикционный тормоз, чтобы резко снизить его выбег для мгновенных операций вперед / назад. В то время как перебег на валу двигателя снижен до 2 оборотов, тепло, выделяемое фрикционным тормозом, ограничивает рабочий цикл до 30 минут за раз. Этот двигатель идеально подходит для машин, которые допускают перебег на 2 оборота для точности остановки и работают только 30 минут за раз. Для приложений, требующих мгновенных остановов, но не определенного значения точности останова, может быть достаточно системы бесщеточного двигателя с системой динамического торможения.Шаговые двигатели или серводвигатели на самом деле предлагают лучшую точность остановки, пусковой момент и точность остановки для мгновенных операций вперед / назад, но для управления этими двигателями требуется больше, чем для реверсивного двигателя переменного тока.
Вот некоторые сравнительные данные между всеми двигателями, которые могут выполнять операции вперед / назад. Помните, что эти значения перебега относятся к двигателю. Если вы добавляете редуктор, разделите перебег на передаточное число. Это только справочные значения.
Oriental Motor предлагает полную линейку асинхронных двигателей переменного тока от 1 Вт (1/750 л.с.) до 2237 Вт (3 л.с.).В дополнение к асинхронным двигателям также доступны реверсивные двигатели, двигатели с электромагнитным тормозом, двигатели сцепления / тормоза и промывочные двигатели. Для приложений с высоким крутящим моментом могут быть добавлены различные типы редукторов. Группы серий продуктов различаются в зависимости от типа (-ов) двигателя и функций. Например, серия World K — это наша стандартная серия двигателей переменного тока, в которую входят многие типы двигателей, от асинхронных до электромагнитных тормозов. Серия KIIS — это трехфазная часть серии KII, которая сохраняет характеристики высокого крутящего момента серии KII, а также новые функции трехфазного управления скоростью.
При таком широком ассортименте продукции рекомендуется проконсультироваться по выбору двигателя с нашими инженерами службы технической поддержки, чтобы сузить выбор продуктов.
Вот разбивка всей нашей линейки трехфазных двигателей переменного тока.
- World K Series (1 ~ 150 Вт): однофазный и трехфазный; стандартный тип
- K2S Series (30 ~ 200 Вт): трехфазный; оптимизирован для VFD
- Brother Mid G3 Series (1/2 ~ 3 л.с.): трехфазный; высокая мощность
На нашем веб-сайте мы разбиваем их на двигатели переменного тока « с постоянной скоростью » и « с регулировкой скорости ».В то время как двигатели переменного тока с постоянной скоростью включают как однофазные, так и трехфазные типы, трехфазные двигатели переменного тока для частотно-регулируемых приводов ориентированы только на трехфазные двигатели, предназначенные для управления скоростью.
Пожалуйста, подпишитесь на этот блог в правом верхнем углу страницы.
РЕШЕНО: Обратное направление века электрический 3/4
Обратить вращение электродвигателей можно легко с помощью 3-фазных электродвигателей.Этого легко добиться, поменяв местами любые два провода двигателя. Но трехфазные двигатели обычно находят и используют в промышленных целях. Те, которые используются в наших домах, от водяных насосов до электрических вентиляторов, представляют собой однофазные двигатели с конденсаторным пуском. В отличие от трехфазных двигателей, изменение направления вращения однофазных электродвигателей — непростая задача. Обмен любыми двумя выводами двигателя не приведет к изменению направления вращения двигателя. Прежде чем вносить какие-либо изменения для достижения желаемого результата, необходим анализ обмоток и соединений двигателя.В качестве примера возьмем трехскоростной однофазный электродвигатель с конденсаторным пуском, электрическая схема которого приведена ниже. Прежде чем следовать этому совету, убедитесь, что двигатель отключен от источника питания. Этот совет предназначен только для лиц, обладающих электрическими знаниями, необходимыми инструментами и понимающих риски, связанные с обращением с электрическим оборудованием и устройствами.Первым шагом в процессе является определение пусковой обмотки, которая подключена к линии (белый переменный ток) и к одной стороне пускового конденсатора.Чтобы точно определить пусковую обмотку, отсоедините все провода двигателя от пускового конденсатора и переключателя скорости для многоскоростных двигателей, а затем установите омметр на самую низкую шкалу (R x 1), измерьте сопротивление между белой линией переменного тока и каждым из провода двигателя подключаются к пусковому конденсатору. Тот, у которого наименьшее сопротивление, — это провод пусковой обмотки.
После определения провода пусковой обмотки, идущего к конденсатору, снова подключите конденсатор, затем подключите черную линию переменного тока к найденному выводу пусковой обмотки (помечено X).Подключите белую линию переменного тока к L переключателя скорости, провод двигателя, ранее подключенный к переменному току, белый к 3, красный к 2 и белый к 1, как показано ниже. Оставьте соединение зеленого / желтого провода заземления как есть.
Ниже представлены модификации схемы подключения двухскоростных и односкоростных однофазных электродвигателей с конденсаторным пуском.
Садовые путеводители | Как перевернуть трехфазный двигатель
Большой электродвигатель в мраморном карьере. Алентежу, Португалия, изображение mrfotos_fotolia из Fotolia.comТрехфазные двигатели используют многофазную систему для подачи постоянного переменного тока. Вместо одного провода питания, используемого в однофазных электрических системах, в трехфазных системах используются три провода питания. Каждый вывод питания фазирован на 120 градусов относительно двух других выводов, что делает их идеально сбалансированными. Когда каждая фаза трехфазной системы подключена к соответствующей клемме в трехфазном двигателе, двигатель вращается вперед, как и было задумано. Однако, при желании, двигатель можно реверсировать, поменяв порядок фаз.
Выключите прерыватель, который подает питание на трехфазный двигатель, затем заблокируйте прерыватель с помощью висячего замка, чтобы предотвратить включение прерывателя во время работы с двигателем.
Отвинтите и снимите крышку двигателя с помощью отвертки с плоским жалом и определите две из трех фаз с помощью отвертки с плоским шлицем. Неважно, какие две фазы удаляются: T1, T2 или T3.
- Трехфазные двигатели используют многофазную систему для подачи постоянного переменного тока.
- Каждый вывод питания фазирован на 120 градусов относительно двух других выводов, что делает их идеально сбалансированными.
Поменяйте местами две фазы и снова закрепите их с помощью отвертки с плоским шлицем. Установите крышку на место.
Восстановить питание. Двигатель теперь работает в обратном направлении, потому что две фазы поменялись местами.
Поиск и устранение неисправностей трехфазного электродвигателя
Трехфазные двигатели обычно используются в коммерческих операциях. Эти двигатели состоят из меньшего количества деталей и имеют более прочную конструкцию, чем их однофазные аналоги.Измерьте входное напряжение двигателя с помощью вольт-омметра. Указанное для двигателя напряжение должно присутствовать на всех трех фазах. Осмотрите электрические соединения и клеммы двигателя. Отключите питание двигателя и отремонтируйте все поврежденные или ослабленные соединения. Снимите напряжение с двигателя и отсоедините двигатель от машины, на которой он работает. Если это так, проверьте машину на исправность. Замените двигатель, если он не запускается.
- Поменяйте местами две фазы и снова закрепите их с помощью отвертки с плоским шлицем.
- Измерьте входное напряжение двигателя с помощью вольт-омметра.
Нужна помощь в реверсировании моего двигателя
Я новичок в этом. Мне удалось спасти мотор стиральной машины. Как я узнаю, могу ли я отменить его вращение? И как я смогу это исправить, если это произойдет?
Также как я узнаю, что это асинхронный двигатель? Однофазный или трехфазный?
Ничего подобного на заводской табличке не написано.
Вот подробности на заводской табличке.
Веллинг YXB170-4B RMOTS0007PLZZ
220 ~ 240 В 50/60 Гц
170 Вт $ P
1.4A CL E
FOSHAN WELLING WASHER MOTOR MANUFACTURING CO LTD.
Справа есть какая-то диаграмма.
11 мкФ / 450 В, затем СИНИЙ (CCW), ЧЕРНЫЙ, КРАСНЫЙ (CW)
ОБНОВЛЕНИЕ:
Я открыл коробку, куда идут провода, и вот как это выглядит внутри.
К сожалению, когда я его открыл, там выскочила пружина и что-то испортила внутри.Я пытался собрать все вместе как можно лучше, но не совсем уверен, все ли я сделал правильно. На данный момент я бы не осмелился воткнуть его в электрическую розетку, потому что не хочу, чтобы он взорвался мне в лицо или что-то в этом роде: D.
А есть ли вообще хоть как-то запустить от батареи? Надеюсь, так будет безопаснее.
Спасибо, если кто-нибудь проведет меня через это.
ОБНОВЛЕНИЕ 2018/05/19:
После того, как я испортил коробку со всеми шестернями, я немного боюсь подключать ее к питанию, так как не уверен, что будет.В любом случае, я хотел бы попросить о помощи. Вот еще пара изображений, которые я надеюсь помочь мне объяснить, что мне нужно делать.
Рисунок 1.0
На изображении выше я пометил объекты, исходя из своего понимания.
A — Мотор
B — Это была коробка с ручкой для включения стиральной машины.
C — Конденсатор. На этикетке написано «SH КОНДЕНСАТОР. SH.M 400 В переменного тока, 50/60 Гц, 11 мкФ (-5 / + 10%) NUINTEK / KOREA».
Рисунок 2.0
Изображение выше — это крупный план коробки (B на Рисунке 1.0). Я обозначил то, что меня беспокоит.
A — Металл, который подключается к белому проводу, который подключается к источнику питания (не уверен, положительный или отрицательный).
B — Металл, который подключается к синему проводу, который соединяется с двигателем.
C — Металл, который соединяется с красным проводом, соединяющим конденсатор и двигатель. Затем черный провод подключает конденсатор к источнику питания.
Мои вопросы:
Металлы (Рисунок 2.0) B и C в настоящее время не соединены с металлом A.Я еще не пробовал, но предполагаю, что если я подключу его к источнику питания, ничего не произойдет, поскольку эти металлы (B, C) не соединены с металлом (A). Если я хочу включить двигатель, должен ли я соединить металл (B, C) с металлом (A)? Если да, могу ли я их подключить постоянно?
Если я хочу изменить направление вращения, следует ли подключить к конденсатору синий провод вместо красного?
Спасибо.
|
|
|
|
Двигатель конденсатора работает в обратном направлении
Двигатель конденсатора работает в обратном направлении
Я столкнулся с проводным, может быть, один из вас сможет объяснить мне причину этого.Электродвигатель конденсатора вращается в обратном направлении. Провод к герметичной крышке используется в качестве обычного вентилятора для герметичного вентилятора. На самом деле все работало, только вентилятор конденсатора в обратном направленииОтправлено с моего GM1915 с использованием Tapatalk
Публикация лайков — 1 лайков, 0 не лайков
Проверьте, подключен ли он к низкому напряжению, когда должно быть высокое напряжение, или наоборот.Иногда это помогает.Отправлено с моего SM-N975U с помощью Tapatalk
Сообщение от dkalasz Я столкнулся с проводным, может быть, один из вас сможет объяснить мне причину этого. Электродвигатель конденсатора вращается в обратном направлении. Провод к герметичной крышке используется в качестве обычного вентилятора для герметичного вентилятора.На самом деле все работало только вентилятором конденсации назадОтправлено с моего GM1915 с использованием Tapatalk
Я не совсем понимаю, что вы говорите, но да, если вы перевернете провода на двигателе, который использует колпачок, он будет двигаться в обратном направлении!Отправлено с моего SM-G960U с помощью Tapatalk
«Я думаю, квантовое туннелирование отлично подойдет …»«Ради бога, вызовите техника. Или увидимся в новостях или Темной стороне Луны».
Публикация лайков — 2 лайков, 0 не лайков
По сути, тот, кто устанавливал крышку, считал, что c означает компрессор, а Herm должен быть тем, что осталось, поэтому Herm и c изменили догадку, что немного проще.Отправлено с моего GM1915 через Tapatalk
Я видел, как если конденсатор подключен неправильно, вентилятор будет работать в обратном направлении. Однако у меня НЕТ ИДЕИ, ПОЧЕМУ он это делает. Я ТАКЖЕ хотел бы знать, почему.Однажды я слышал, что конденсатор дает вентилятор «толчок» в правильном направлении … так что, я полагаю, он может дать ему толчок в неправильном направлении, если это не тот толчок?
Вытягивал ли компрессор нормальные токи на конденсаторе с переключенными клеммами c и herm? Мне просто интересно.
Сообщение от LordoftheFreonВытягивал ли компрессор нормальные токи от конденсатора с переключенными клеммами c и herm? Мне просто интересно.
Не знаю, я только что починил и вернулся в грузовик, чтобы поиграть для толстого человекаОтправлено с моего GM1915 с помощью Tapatalk
Публикация лайков — 1 лайков, 0 не лайков
Не знаю, смогу ли я это объяснить или нет, но шапка чередуется с синусоидой переменного тока, но отстает.Представьте, что ведро наполняется, а затем выливается. Фаза ограничения сдвигает синусоидальную волну. На колпачке hp нет полярности. Важно то, какая нога мотора подключена к общей. Фаза конденсатора сдвигается относительно общей, поэтому полярность, которую испытывают обмотки двигателя относительно друг друга, будет меняться в зависимости от того, как двигатель подключен к конденсатору / L1 / L2.Отправлено с моего SM-G960U с помощью Tapatalk
«Я думаю, квантовое туннелирование отлично подойдет… «» Ради бога, вызовите техника. Или увидимся в новостях или Темной стороне Луны ».
Публикация лайков — 1 лайков, 0 не лайков
Сообщение от LordoftheFreonВытягивал ли компрессор нормальные токи от конденсатора с переключенными клеммами c и herm? Мне просто интересно.
Компрессоры не работают в обратном направленииОтправлено с моего SM-G960U с помощью Tapatalk
«Я думаю, квантовое туннелирование отлично подойдет …»«Ради бога, вызовите техника. Или увидимся в новостях или Темной стороне Луны».
Публикация лайков — 1 лайков, 0 не лайков
Круто…просто прочитал о том, что двигатели компрессора и вентилятора являются асинхронными двигателями, поэтому они сдвигают фазу (или синхронизацию), поэтому напряжение не совпадает по фазе с током, и конденсатор исправляет это, чтобы получить полную мощность двигателя. Конденсатор делает это, сдвигая фазу (или синхронизацию) (фаза — это то же самое, что и синхронизация?) Напряжения / тока в направлении, противоположном индуктивному двигателю. Таким образом, двигатель и конденсатор (оба не совпадают по фазе / по времени) «нейтрализуют друг друга» и возвращают все в фазу, чтобы двигатель мог получить максимальную мощность.Поэтому, если вы подключили индукционный двигатель к конденсатору в неправильном направлении, поскольку он не имеет полярности, он все равно будет работать, но фаза / синхронизация будут отключены … Я предполагаю, что он получит меньше мощности и направления тока что было бы «отменено», если бы проводилось правильно, теперь вступает в игру и поворачивает двигатель в другую сторону?
Зачем вообще нужны асинхронные двигатели? !! Привет, кроличья нора, я хотел посмотреть телевизор, что я делаю?
Публикация лайков — 1 лайков, 0 не лайков
Компрессор будет работать нормально и потреблять правильный ток, если провода C & Herm перепутаны, потому что он по-прежнему получает полное напряжение питания конденсатора.Однако в этом случае вентиляторная часть крышки будет подключена последовательно с герметичной стороной, поэтому она не получит полную емкость, а также должна иметь дело с фазовым сдвигом компрессора, о котором я не знаю. Если вы протестируете двойную крышку от Herm до Fan, вы увидите разницу в показаниях.
Это не будет намного ниже, но всегда будет ниже.
Публикация лайков — 1 лайков, 0 не лайков
Я видел, что плохие крышки / недооценка uf также заставляют CFM вращаться в обратном направлении… рядом с установленной неверной лопастью вентилятора .. если двигатель был недавно заменен ..
Обычно это вызвано коротким замыканием рабочего конденсатора вентилятора конденсатора.PHM
Сообщение от dkalasz Я столкнулся с проводным, может быть, один из вас сможет объяснить мне причину этого. Электродвигатель конденсатора вращается в обратном направлении. Провод к герметичной крышке используется в качестве обычного вентилятора для герметичного вентилятора. На самом деле все работало только вентилятором конденсации назад
———Отправлено с моего GM1915 с использованием Tapatalk
PHM
———
Традиционный взгляд защищает нас от мучительной работы мышления
Так я получил свой конденсаторный агрегат за 200 долларов в 1988 году.Кто-то на заводе наклеил наклейку для запуска и запустил крылья задом наперед, вентилятор работал в любом направлении в зависимости от того, где он остановился. Подайте сопротивление клеммам вентилятора для определения запуска и работы, после этого исправьте правильное подключение к конденсатору.
Сообщение от LordoftheFreonВытягивал ли компрессор нормальные токи от конденсатора с переключенными клеммами c и herm? Мне просто интересно.
кнопочный тест; ответ, который вы ищете, — да, как типичный двухконтактный конденсатор
Некоторые из этих «послушайте эту историю» заставляют меня задуматься о том, как я понимаю свое мнение о 240 В переменного тока, однофазном, электроснабжении от Res с ограничениями по времени работы.Я буду созерцать свой мыслительный процесс все время, пока я должен работать. «Основная внутренняя разница электрических характеристик между пусковой и пусковой обмотками» почему-то приходит мне в голову.
Публикация лайков — 1 лайков, 0 не лайков
Изобразите синусоидальную волну с периодом 60 циклов так, как она отображается на осциллографе.Линия «нулевого напряжения» проходит слева направо через центр, и положительные волны поднимаются вверх, а отрицательные волны спускаются вниз — одна за другой.Здесь я всегда рекомендую людям физически нарисовать это на бумаге.
На нулевой линии двигатель, использующий такой ток, выдает нулевую мощность — и он выдает максимальную мощность на пиках «неровностей» вверх и вниз. Так выглядит однофазное питание.
Теперь изобразите три такие синусоидальные кривые, равномерно распределенные, каждая из которых перекрывает последнюю на 33%, на одном и том же фоне кривой.Так выглядит трехфазное питание.
Итак, снова изобразите однофазный график. За исключением того, что с рабочим конденсатором в цепи (который не будет иметь начального заряда — он будет «пустым») на левой стороне каждой восходящей и нисходящей части каждого «горба» — конденсатор заряжается электричеством. Это связано с тем, что мощность схемы выше, чем мощность конденсатора, поэтому она «выравнивается», принимая возрастающее электричество в подключенной цепи. На пике кривых мощность в цепи и мощность в конденсаторе «равны».Затем после пика «горба» следует нисходящая сторона волны. Внутренние части конденсатора диэлектрические, поэтому они не хотят отказываться от накопленной энергии. Но в какой-то момент на стороне спада напряжения — заряд конденсатора настолько выше, что его сопротивление разряду преодолевается, и он внезапно высвобождает накопленный заряд обратно в цепь — в попытке уравновесить различия. . Противоположность процессу его изменения.
Теперь вернемся к трехфазному графику перекрывающихся «импульсов» мощности.Обратите внимание на тот факт, что их перекрытие устраняет эффект нулевой линии — вот почему три фазы намного более эффективны при выработке мощности, чем однофазные.
Итак, теперь представьте, что на синусоиде «однофазный с рабочим конденсатором» промежутки между выступами заполнены перемычкой, которая показывает, что рабочий конденсатор разряжает накопленный заряд обратно в цепь из сторона падения напряжения каждого «горба». Таким образом, рабочий конденсатор на самом деле создает вторую фазу питания — и таким образом покрывает линию нулевого напряжения — что устраняет проблему «нулевого производства HP».Вот как / почему двигатель PSC намного эффективнее простого однофазного двигателя.
Это не на 100% технически «согласно Хойлу» в каждой мельчайшей детали, но я считаю его достаточно точным, чтобы дать понимание того, что происходит на нашем уровне необходимого понимания.
PHM
Сообщение от TechmanTerry
———Некоторые из этих «послушайте эту историю» заставили меня задуматься о том, как я понимаю свое мнение о 240 В переменного тока, однофазном, электроснабжении от Res с ограничителями хода.Я буду созерцать свой мыслительный процесс все время, пока я должен работать. «Основная внутренняя разница электрических характеристик между пусковой и пусковой обмотками» почему-то приходит мне в голову.
PHM
———
Традиционный взгляд защищает нас от мучительной работы мышления
Публикация лайков — 4 лайков, 0 не лайков
Вау: Я понимаю, что пытался остановить протечку в крыше до и после того, как это написал, но, черт возьми! Даже сама проверка орфографии не могла вызвать столько ошибок!Я исправлю их здесь —
Сообщение от Poodle Head Майки Изобразите синусоидальную волну с периодом 60 циклов так, как она отображается на осциллографе.Есть линия «нулевого напряжения», которая проходит слева направо через центр, и положительные волны поднимаются вверх, а отрицательные волны спускаются вниз — одна за другой.Здесь я всегда рекомендую людям физически нарисовать это изображение на бумаге.
На нулевой линии двигатель, использующий такую мощность, выдает нулевую мощность — и он развивает максимальную мощность на пиках «неровностей» вверх и вниз. Так выглядит однофазное питание.
Теперь изобразите три такие синусоидальные кривые, равномерно распределенные, каждая из которых перекрывает последнюю на 33%, на одном и том же фоне кривой.Так выглядит трехфазное питание.
Итак, снова изобразите однофазный график. За исключением того, что с рабочим конденсатором в цепи (который не будет иметь начального заряда — он будет «пустым») на левой стороне каждой восходящей и нисходящей части каждого «горба» — конденсатор заряжается электричеством. Это связано с тем, что мощность схемы выше, чем мощность конденсатора, поэтому она «уравновешивает», принимая увеличивающееся электричество в себя из подключенной схемы. На пике кривых мощность в цепи и мощность в конденсаторе «равны».Но после пика «горба» наступает нисходящая сторона волны. Внутренние части конденсатора диэлектрические, поэтому они не хотят отказываться от накопленной энергии. Но в какой-то момент на стороне спада напряжения волны — заряд конденсатора настолько выше, чем в цепи, что « сопротивление разрядке » рабочего конденсатора преодолевается, и он внезапно высвобождает накопленный заряд обратно в цепь — в результате попытаться уравновесить различия. Это противоположно процессу зарядки конденсатора.
Теперь вернемся к трехфазному графику перекрывающихся «импульсов» мощности. Обратите внимание на тот факт, что их перекрытие устраняет эффект линии нулевого напряжения / нулевой мощности — вот почему трехфазный двигатель намного более эффективен при выработке мощности, чем однофазный: в его производстве HP нет «мертвой зоны».
Итак, теперь представьте, что на синусоиде «однофазный с рабочим конденсатором» промежутки между выступами заполнены перемычкой, которая показывает, что рабочий конденсатор разряжает накопленный заряд обратно в цепь из сторона падения напряжения каждого «горба».Таким образом, рабочий конденсатор на самом деле создает вторую фазу мощности — и таким образом покрывает линию нулевого напряжения — что устраняет проблему «нулевого производства л.с.». Вот как / почему двигатель PSC намного эффективнее простого однофазного двигателя.
Это не на 100% технически «согласно Хойлу» в каждой мельчайшей детали, но я считаю его достаточно точным, чтобы дать понимание того, что происходит на нашем уровне необходимого понимания.
PHM
———
PHM
———
Традиционный взгляд защищает нас от мучительной работы мышления
Я однажды столкнулся с этим.Я поменял местами 220vac ноги, и тогда он побежал в правильном направлении. Я проехал на нем несколько раз, и каждый раз он начинал в правильном направлении. Конденсатор был хорошим и подходящим для этого двигателя. Я так и не понял, как он работает в неправильном направлении.
КОНДЕНСАТОР ЗАПУСК ДВИГАТЕЛЯ ОСНОВЫ И РУКОВОДСТВА | ПРОЕКТИРОВАНИЕ ТРАНСМИССИОННЫХ ЛИНИЙ и СТУПИЦА ЭЛЕКТРОТЕХНИКИ
Конденсаторный двигатель немного отличается от двигателя с расщепленной фазой.Конденсатор помещается на пути электрического тока в пусковой обмотке (см. Рис. 12-13).(A) Однофазная схема кондиционера AH и компрессора теплового насоса. (Tecumseh) (B) Клеммная коробка, показывающая положение клемм на компрессорах серии AH. (Предоставлено Tecumseh) |
За исключением конденсатора, который представляет собой электрический компонент, замедляющий любое быстрое изменение тока, два двигателя электрически одинаковы.
Конденсаторный двигатель обычно можно распознать по емкости или корпусу конденсатора, установленному на статоре (см. Рис. 12-14).
Добавление конденсатора к пусковой обмотке увеличивает эффект двухфазного поля, описанного в связи с двигателем с расщепленной фазой. Конденсатор означает, что двигатель может создавать гораздо большую крутящую силу при запуске. Это также снижает количество электрического тока, необходимого во время пуска, примерно в 1,5 раза по сравнению с током, необходимым после того, как двигатель наберет нужную скорость.Электродвигателям с расщепленной фазой при запуске требуется в три или четыре раза больший ток, чем во время работы.
Обратимость . Асинхронный двигатель не всегда будет реверсировать во время работы. Он может продолжать движение в том же направлении, но с меньшей эффективностью. Нагрузку инерционного типа трудно обратить вспять.
Большинство двигателей, которые классифицируются как реверсивные во время работы, реверсируют при неинерциальной нагрузке. Они не могут двигаться в обратном направлении, если они находятся в режиме холостого хода, имеют световод или инерционную нагрузку.
Одна проблема, связанная с реверсированием двигателя, когда он все еще работает, — это повреждение системы передачи, подключенной к нагрузке. В некоторых случаях возможно повреждение груза. Один из способов избежать этого — убедиться, что правильный двигатель подключен к нагрузке.
Реверс (при остановке) двигателя конденсаторного пуска можно выполнить, поменяв местами соединения его пусковой обмотки. Обычно это единственный раз, когда полевой техник работает с двигателем.
Доступный на замену электродвигатель может не вращаться в желаемом направлении, поэтому техническому специалисту придется найти клеммы пусковой обмотки и поменять их местами, чтобы электродвигатель запустился в желаемом направлении.
Использует . Конденсаторные двигатели доступны в размерах от 1/6 до 20 лошадиных сил. Они используются при довольно жестких пусковых нагрузках, которые можно довести до рабочей скорости менее чем за 3 секунды. Их можно использовать в промышленных станках, насосах, кондиционерах, воздушных компрессорах, конвейерах и подъемниках.
На Рисунке 12-15 показан асинхронный двигатель с конденсаторным пуском, используемый в компрессоре. В этом типе используется реле для включения и выключения конденсатора в цепи.
На Рис. 12-16 показано, как конденсатор расположен вне компрессора.
.