Реле защиты – » :

Содержание

Релейная защита. Виды и устройство. Работа и особенности

Согласно правилам эксплуатации электроустановок силовые устройства электрических сетей и электростанций должны быть обеспечены защитой от сбоев в эксплуатации и токов короткого замыкания. Средствами защиты являются специальные устройства, выполненные на основе реле, что оправдывает их название релейная защита и автоматика (РЗА). В настоящее время существует много различных устройств, способных в короткие сроки блокировать возникшую аварию в электрической сети, либо подать предупредительный сигнал о возникновении аварийного режима.

Релейная защита работает чаще всего совместно с автоматикой, и их устройство взаимосвязано со специфическими видами аварийных режимов сети:

  • Уменьшение частоты тока, возникающей при внезапной перегрузке генераторов вследствие короткого замыкания, либо отключения части других источников из сети.
  • Повышенное напряжение. Увеличение этого параметра на 10% уменьшает срок службы ламп освещения в два раза. Такой режим возникает при внезапной разгрузке сети.
  • Токовая перегрузка способствует излишнему нагреванию изоляции проводников и кабелей, создает искрообразование в контактных соединениях.
Виды релейной защиты
Реле классифицируются по определенным признакам:
  • Методу подключения: первичные, которые подключаются непосредственно в цепь устройства, и вторичные, которые подключаются посредством трансформатора.
  • Типу исполнения: электромеханические, состоящие из подвижных контактов, отключающих цепь, и электронные, обесточивающие цепь с использованием полупроводниковых элементов.
  • Назначению: измерительные, которые выполняют измерение параметров, и логические, которые подают сигналы и команды другим устройствам, выполняют задержку по времени.
  • Методу работы: прямого действия, которые связаны с устройством отключения механическим путем, и косвенного действия, которые управляют электрической цепью электромагнита, обесточивающего сеть питания.
Релейная защита и автоматика бывают различных видов:
  • Максимальная токовая защита, включается при достижении определенной величины тока, заданной при настройке.
  • Направленная наибольшая токовая защита, кроме настройки тока учитывает направление мощности.
  • Дифференциальная, применяется для защиты сборки генераторов, трансформаторов, шин путем сравнения величин токов на выходе и входе. При разнице, превышающей заданное значение, срабатывает релейная защита.
  • Газовая и струйная, применяется для обесточивания трансформатора и других устройств, работающих в емкостях с маслом. При возникновении неисправностей образуется повышенная температура, и из масла выделяются газы, снижается диэлектрическое свойство масла и разлагается его химический состав. На такие аварийные режимы срабатывают механические реле, которые действуют с учетом возникновения газа в емкости, а также веществ, образующихся при разложении масла. При срабатывании защиты подается команда на действие логической схемы.
  • Логическая, защищает шины, применяется для определения места короткого замыкания на питающих линиях, которые отходят от шин электростанции, и на шинах.
  • Дистанционная, имеющая блокировку по оптическому каналу, является более надежным способом защиты, в отличие от дистанционной защиты с ВЧ блокировкой, так как электрические помехи не оказывают большого влияния на оптический канал.
  • Дистанционная с ВЧ блокировкой, применяется для обесточивания воздушных линий при возникновении коротких замыканий.

  • Удаленная защита используется в сложных схемах сетей, где из-за чувствительности и быстродействия не могут применяться простые виды защит. Защита выявляет расстояние до места аварии или короткого замыкания, и в зависимости от расстояния срабатывает с большей или меньшей задержкой по времени. Современные новые системы защит обладают ступенчатыми свойствами времени. Они каждый раз не измеряют величину сопротивления для определения расстояния до аварийного участка, а только осуществляют контроль участка, на котором выявлена неисправность.
  • Дифференциально-фазная, используется для контроля фаз по концам линии питания. При превышении настроенного значения тока, реле обесточивает линию.
  • Защита минимального напряжения. В аварийных режимах, особенно при коротком замыкании, возможна просадка напряжения. Для обеспечения отключения электрооборудования при снижении напряжения ниже критического значения предназначена защита минимального напряжения. Такая защита в свою очередь делится на групповую и индивидуальную.
    — Групповая защита отключает группу потребителей с помощью реле минимального напряжения. Которое работает совместно с промежуточным реле, отключающим своими силовыми контактами целую группу потребителей нагрузки. Такая релейная защита используется чаще всего на электростанциях для создания надежности функционирования наиболее ответственного оборудования при кратковременном резком снижении напряжения. Она отключает на время падения напряжения менее ответственное оборудование, для создания более благоприятных условий ответственных электрических устройств.
    — Индивидуальная защита работает аналогичным образом, но отключает только один потребитель.
  • Защита максимального напряжения. Имеется два вида реле, защищающих потребители от повышенного напряжения. Первый вид – это защита, действующая по принципу отвода удара молнии по молниеотводу на контур заземления. Второй вид – это устройства, компенсирующие энергию рассеянным теплом во внешнюю среду. Они не применяют релейную основу, а действуют сразу в силовой схеме. Защита максимального напряжения проектируется по принципу минимальных, с такими же измерительными элементами. Реле настраивается на срабатывание по уставке повышения напряжения, превосходящей некоторый допустимый предел напряжения эксплуатации цепи.
Некоторые виды автоматики предназначены для подачи электроэнергии, в отличие от релейной защиты:
  • Автоматическая частотная разгрузка, выключает электрические устройства при снижении частоты тока в сети.
  • Автоматическое повторное включение, используется на линиях электропередач выше 1000 вольт, а также в сборках трансформаторов, электродвигателей и шин подстанций.
  • Автоматический ввод резерва, применяется при коммутации генератора в сеть в качестве резервного источника питания электроэнергией.
Релейная защита. Устройство

Электромеханические конструкции релейной защиты постоянно модернизируются и совершенствуются. Внедряются инновационные технологические разработки и проекты. В новейших энергетических системах объединены статические, индукционные, электромагнитные устройства с микропроцессорными и полупроводниковыми элементами.

Однако основной смысл и порядок работы релейной защиты для всех новых устройств остается неизменным. Схема структуры релейной защиты показана на рисунке.

1 — Электрический сигнал
2 — Блок наблюдения электрических процессов
3 — Блок логики и анализа
4 — Исполнительный блок
5 — Сигнальный блок

Блок наблюдения

Главной функцией этого блока является мониторинг электрических процессов, происходящих в электрической системе, путем измерений такими устройствами, как трансформаторы напряжения и тока.

Сигналы выхода на блоке могут передаваться непосредственно логическому блоку для сравнения параметров с настроенными пользователем значениями отклонений от нормальных значений, которые называются уставками. Также сигналы блока наблюдения могут сначала преобразовываться в цифровой вид, а затем передаваться дальше.

Блок логики

В этом блоке выполняется сравнение поступивших сигналов с предельными значениями уставок. Даже незначительное совпадение этих параметров между собой приводит к возникновению команды на срабатывание защиты.

Исполнительный блок

Этот блок все время находится в состоянии, готовом к срабатыванию, при поступлении команды от блока логики. При срабатывании осуществляются переключения цепи электроустановки по запланированному алгоритму, который составлен по принципу недопущения неисправностей электрооборудования и удара электрическим током работников.

Сигнальный блок

В электрической системе все процессы происходят очень быстро, поэтому человек не в состоянии воспринимать их. Чтобы сохранить происходящие в системе события, применяют специальные сигнальные устройства. Которые работают путем звукового и визуального оповещения, а также сохраняют все происходящие события в памяти устройства.

Все виды устройств после их срабатывания переводятся в исходное состояние оператором вручную. Это позволяет гарантированно сохранить информацию о действии автоматики и релейной защиты.

Принципы работы
Релейная защита может иметь нарушения в своей работоспособности, которые выражаются следующими факторами:
  • Ложные срабатывания при исправной электрической системе и отсутствии каких-либо повреждений.
  • Излишние сработки, когда не требуется работа исполнительного блока.
  • Повреждения внутри устройства защит.
Чтобы исключить отказы при функционировании релейной защиты, вырабатываются специальные требования к ней при проектировании, установке, настройки с запуском в работу, и техническом обслуживании:
  • Надежность функционирования.
  • Чувствительность к моменту запуска оборудования.
  • Быстродействие (время сработки).
  • Селективность.
Принцип надежности
Этот принцип определяется:
  • Безотказностью в эксплуатации.
  • Пригодностью к ремонту.
  • Долгим сроком службы.
  • Сохраняемостью.

Каждый из этих факторов имеет свою оценку.

Обслуживание и эксплуатация релейной защиты имеет три варианта надежности по срабатыванию при:
  1. Внутренних КЗ в рабочей зоне.
  2. Возникновении внешних КЗ за границей рабочей зоны.
  3. Работе без неисправностей.
Надежность устройств защиты бывает:
  • Эксплуатационная.
  • Аппаратная.
Принцип чувствительности

Этот принцип дает возможность определить виды предполагаемых расчетных повреждений и ненормальных режимов энергетической системы в рабочей зоне защиты.

Кч = Iкз min/Iсз

Чтобы определить его числовое значение, используется коэффициент Кч. Коэффициент рассчитывается отношением наименьшего тока короткого замыкания рабочей зоны к величине тока срабатывания. Релейная защита работает в нормальном режиме при:

Iсз < Iкз min

Наиболее приемлемая величина коэффициента чувствительности находится в диапазоне 1,5-2.

Принцип быстродействия
Время обесточивания поврежденного участка состоит из двух составляющих:
  1. Сработки защиты.
  2. Действия привода выключателя.

Первую составляющую можно отрегулировать, начиная от наименьшего значения, которое зависит от устройства защиты и числа применяемых элементов. Задержка по времени на сработку формируется, путем внедрения в схему специальных реле, имеющих возможность регулировки. Она применяется для наиболее удаленных защит.

Устройства, находящиеся рядом с местом неисправности, должны настраиваться на действие с наименьшими возможными диапазонами времени на срабатывание.

Принцип селективности

Этот принцип по-другому называется избирательностью. С помощью нее можно найти и локализовать место возникшего повреждения в структуре сети любой сложности.

Например, генератор вырабатывает и подает электроэнергию различным потребителям, находящимся на участках 1, 2, 3, которые оснащены каждый своей защитой. При коротком замыкании внутри устройства потребителя на 3-м участке, ток будет протекать по всем устройствам защиты, начиная от источника питания.

Но в таком случае целесообразно будет отключить цепь участка, имеющего неисправность электродвигателя, при этом оставляя в работе остальные исправные потребители. Для этого существуют уставки релейной защиты, отдельно для каждой цепи, еще на стадии проектирования схемы защиты.

Устройства защиты 5, 3-го участка должны обнаружить ток неисправности раньше, и оперативнее сработать, отключив поврежденный участок от цепи генератора. Поэтому значения токовых и временных уставок на каждом участке снижаются от генератора к потребителю, по принципу: чем дальше от неисправного места, тем ниже чувствительность.

В результате исполняется принцип резервирования. Который учитывает возможность поломки любых устройств, включая системы защиты более низкого уровня. Это означает, что при повреждении защиты 5 участка №3, при возникновении аварии должны сработать устройства защиты 3 или 4 участка 2. А эти участки в свою очередь подстрахованы устройствами защиты участка 1.

Особенности управления релейной защитой

Релейная защита как отдельный блок является самостоятельной схемой. Он входит в общие комплексы, которые составляют систему противоаварийного управления энергетической системы. В такой системе все элементы взаимосвязаны между собой и выполняют поставленные задачи в комплексе.

Коротко перечень защитных функций и работа автоматики изображены на схеме.

Изучив особенности эксплуатации автоматики и релейной защиты, можно сказать, что необходимо постоянно совершенствовать знания и практические навыки, которые требуются при поступлении в работу нового оборудования для защиты.

Похожие темы:

electrosam.ru

Релейная защита: назначение, виды, устройство

В соответствии с требованиями правил технической эксплуатации электроустановок (сокращенно ПТЭ) силовое оборудование электросетей, подстанций и самих электрических станций должно быть обязательно защищено от токов КЗ и сбоев нормального режима работы. В качестве средств защиты используются специальные устройства, основным элементом которых является реле. Собственно, поэтому они так и называются – устройства релейной защиты и электроавтоматики (РЗА). На сегодняшний день существует множество аппаратов, способных в кратчайшие сроки предотвратить аварию на обслуживаемом участке электросети или в крайнем случае предупредить персонал о нарушении рабочего режима. В этой статье мы рассмотрим назначение релейной защиты, а также ее виды и устройство.

Для чего она нужна?

Первым делом расскажем о том, зачем нужно использовать РЗА. Дело в том, что существует такая опасность, как возникновение тока КЗ в цепи. В результате КЗ очень быстро разрушаются токопроводящие части, изоляторы и само оборудование, что влечет за собой не только возникновение аварии, но и несчастного случая на производстве.

Защитные устройства на подстанции

Помимо короткого замыкания может возникнуть перенапряжение, утечка тока, выделение газа при разложении масла внутри трансформатора и т.д. Для того чтобы своевременно обнаружить опасность и предотвратить ее, используются специальные реле, которые сигнализируют (если сбой в работе оборудования не представляет угрозы) либо мгновенно отключают питание на неисправном участке. В этом и заключается основное назначение релейной защиты и автоматики.

Основные требования к защитным устройствам

Итак, по отношению к РЗА предъявляются следующие требования:

  1. Селективность. При возникновении аварийной ситуации должен быть отключен только тот участок, на котором обнаружен ненормальный режим работы. Все остальное электрооборудование должно работать.
  2. Чувствительность. Релейная защита должна реагировать даже на самые минимальные значения аварийных параметров (заданы уставкой срабатывания).
  3. Быстродействие. Не менее важное требование к РЗА, т.к. чем быстрее реле сработает, тем меньше шанс повреждения электрооборудования, а также возникновения опасности.
  4. Надежность. Само собой аппараты должны выполнять свои защитные функции в заданных условиях эксплуатации.

Простыми словами назначение релейной защиты и требования, предъявляемые к ней, заключаются в том, что устройства должны контролировать работу электрооборудования, своевременно реагировать на изменения рабочего режима, мгновенно отключать поврежденный участок сети и сигнализировать персонал об аварии.

Классификация реле

При рассмотрении данной темы нельзя не остановиться на видах релейной защиты. Классификация реле представлена следующим образом:

  • Способ подключения: первичные (включаются в цепь оборудования напрямую) и вторичные (подключение осуществляется через трансформаторы).
  • Вариант исполнения: электромеханические (система подвижных контактов расцепляет схему) и электронные (отключение происходит с помощью электроники).
  • Назначение: измерительные (осуществляют замер напряжения, силы тока, температуры и других параметров) и логические (передают команды другим устройствам, осуществляют выдержку времени и т.д.).
  • Способ воздействия: релейная защита прямого воздействия (связана механически с отключающим аппаратом) и косвенного воздействия (осуществляют управление цепью электромагнита, который отключает питание).

Что касается самих видов РЗА, их множество. Сразу же рассмотрим, какие бывают разновидности реле и для чего они используются.

  1. Максимальная токовая защита (МТЗ), срабатывает если ток достигает заданной производителем уставки.
  2. Направленная максимальная токовая защита, помимо уставки осуществляется контроль направления мощности.
  3. Газовая защита (ГЗ), используется для того, чтобы отключать питание трансформатора в результате выделения газа.
  4. Дифференциальная, область применения – защита сборных шин, трансформаторов, а также генераторов за счет сравнения значений токов на входе и выходе. Если разница больше заданной уставки, релейная защита срабатывает.
  5. Дистанционная (ДЗ), отключает питание, если обнаружит уменьшение сопротивления в цепи, что происходит в том случае, если возникает ток КЗ.
  6. Дистанционная защита с высокочастотной блокировкой, используется для отключения ВЛ при обнаружении короткого замыкания.
  7. Дистанционная с блокировкой по оптическому каналу, более надежный вариант исполнения предыдущего вида защиты, т.к. влияние электрических помех на оптический канал не такое значительное .
  8. Логическая защита шин (ЛЗШ), также используется для выявления КЗ, только в этом случае на шинах и фидерах (питающих линиях, отходящих от шин подстанции).
  9. Дуговая. Назначение – защита комплектных распределительных устройств (КРУ) и комплектных трансформаторных подстанций (КТП) от возгорания. Принцип работы основан на срабатывании оптических датчиков в результате повышения освещенности, а также датчиков давления при повышении давления.
  10. Дифференциально-фазная (ДФЗ). Применяются для контроля фаз на двух концах питающей линии. Если ток превышает уставку, реле срабатывает.

Отдельно хотелось бы также рассмотреть виды электроавтоматики, назначение которой в отличие от релейной защиты наоборот включать питание обратно. Итак, в современных РЗА используют автоматику следующего вида:

  1. Автоматический ввод резерва (АВР). Такую автоматику часто используют при подключении генератора к сети, как резервного источника электроснабжения.
  2. Автоматическое повторное включение (АПВ). Область применения – ЛЭП напряжением 1 кВ и выше, а также сборные шины подстанций, электродвигатели и трансформаторы.
  3. Автоматическая частотная разгрузка, которая отключает сторонние приборы при понижении частоты в сети.

Помимо этого существуют следующие виды автоматики:

Разновидности автоматики

Вот мы и рассмотрели назначение и области применения релейной защиты. Последнее, о чем хотелось бы рассказать – из чего состоит РЗА.

Конструкция РЗА

Устройство релейной защиты представляет собой схему из следующих частей:

  1. Пусковые органы – реле напряжения, тока, мощности. Предназначены для контроля режима работы электрооборудования, а также обнаружения нарушений в цепи.
  2. Измерительные органы – могут также находиться в пусковых органах (реле тока, напряжения). Основное назначение – запуск других устройств, подача сигнала в результате обнаружения ненормального режима работы, а также мгновенное отключение приборов или с задержкой по времени.
  3. Логическая часть. Представлена таймерами, а также промежуточными и указательными реле.
  4. Исполнительная часть. Отвечает непосредственно за отключение или же включение коммутационных аппаратов.
  5. Передающая часть. Может быть использована в дифференциально-фазной защите.

Схема работы

Напоследок рекомендуем вам просмотреть полезное видео по теме:

РЗА в энергетике для новичков

Это и все, что мы хотели рассказать вам о назначении релейной защиты и требованиях, предъявляемых к ней. Надеемся, теперь вы знаете, что такое РЗА, какая у нее область применения и из чего она состоит.

Будет полезно прочитать:

samelectrik.ru

Релейная защита и автоматика электроснабжения, устройство, виды и принцип работы систем

Устройство релейной защиты

Термин «релейная защита» относится к очень широкому кругу устройств, применяемых в электроэнергетике.

К основным функциям защитных релейных устройств (РЗ), относятся:

  • выявление повреждений элементов систем электроснабжения;
  • локализация и отключение повреждённого участка или электроустановки для сохранения работоспособности остальной части системы;
  • определение отклонений от нормального режима отдельных электроустановок и частей энергосистемы, в результате которых может произойти повреждение оборудования или потеря устойчивости системы электроснабжения;
  • автоматическое выполнение действий, направленных на восстановление нормального режима (отключение части электрооборудования, включение устройств компенсации).

Таким образом, в одних случаях защитная аппаратура на основе реле способна предотвратить опасность выхода из строя установок и элементов энергосистем, в других – среагировать на факт повреждения и остановить дальнейшее развитие аварийной ситуации.

Эти действия релейной автоматики позволяют минимизировать ущерб, нанесённый в результате повреждения оборудования и ущерб от недоотпуска электрической энергии потребителям.

Необходимый уровень укомплектованности сетей и систем электроснабжения устройствами релейной защиты и автоматики (УРЗА) определён действующими нормативными документами в области энергетики.

Ни одна электроустановка не может быть введена в работу, не будучи укомплектованной защитными устройствами в минимальном объёме, определённом действующими правилами.

На каждом предприятии, имеющем на балансе электрооборудование, оснащённое защитными релейными устройствами, должен быть составлен график регулярной проверки и обслуживания релейной автоматики. Контроль выполнения плановых работ по проверке, испытаниям и обслуживанию релейной защиты осуществляется органами государственного энергетического надзора.

ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ

Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.

Общим для всех устройств релейной защиты является наличие одних и тех же функциональных блоков:

  • измерительных органов;
  • логики;
  • исполнительных устройств;
  • сигнализации.

Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.

Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.

В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.

Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.

Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.

Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.

Селективность.

Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.

Различают системы защитной автоматики с абсолютной и относительной селективностью. К первому типу относятся устройства, реагирующие только на нарушения режима строго в пределах защищаемого участка.

Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.

Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.

Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).

Быстродействие.

Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.

Главным показателем быстродействия служит время срабатывания защищающего устройства, которое отсчитывается от момента возникновения аварийного режима до момента подачи защитой сигнала на отключение выключателя.

Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя. Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.

То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).

Чувствительность.

Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.

Надёжность.

Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.

ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.

Токовые защиты.

Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.

Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.

Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.

В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.

К разновидности токовых защит относятся дифференциальные защиты, реле которых включается на разность токов. Дифференциальные токовые реле входят в комплект релейной защиты трансформаторов и шин подстанций.

Защиты по напряжению.

Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.

Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.

Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.

При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.

За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.

Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.

Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе.

Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).

© 2012-2019 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Релейная защита: определение, функции и принципы работы

Определение понятия Релейная защита

Релейная защита (РЗ) — это важнейший вид электрической автоматики, которая необходима для обеспечения бесперебойной работы энергосистемы, предотвращении повреждения силового оборудования, либо минимизации последствий при повреждениях. РЗ представляет собой комплекс автоматических устройств, которые при аварийной ситуации выявляют неисправный участок и отключают данный элемент от энергосистемы.

Во время работы РЗ постоянно контролирует защищаемые элементы, чтобы своевременно зафиксировать возникшее повреждение (или отклонение в работе энергосистемы) и должным образом отреагировать на случившееся.

При аварийных ситуациях релейная защита должна выявить и выделить неисправный участок, воздействуя на силовые коммутационные аппараты, предназначенные для размыкания токов повреждения (короткого замыкания, замыкания на землю и т.д.).

Релейная защита сопряжена с иными видами электрической автоматики, которые позволяют сохранять бесперебойную работы энергосистемы и электроснабжения потребителей.

На данный момент отрасль релейной защиты активно развивается и расширяется, уже сейчас используется микропроцессорная аппаратура и компьютерные программы не только для защиты, но и для комплексного управления оборудованием и системой в целом.

Функции релейной защиты

Главной задачей устройств РЗ является выявление ненормальных и аварийных режимов работы первичного (силового) оборудования, а именно фиксация следующих видов повреждений:

  • перегрузка электрооборудования;
  • двух и трех-фазных короткие замыкания;
  • замыкания на землю, включая двух и трех-фазные;
  • внутренние повреждения в обмотках двигателей, генераторов и трансформаторов;
  • защита от затянувшегося пуска;
  • асинхронный режим работы синхронных двигателей.

Принципы построения релейной защиты

Существует несколько видов реле, каждый из которых соответствует характеристикам электроэнергии (в данном случае – реле тока, напряжения, частоты, мощности и т.д.). Такая система отслеживает несколько показателей, выполняя непрерывное сравнение величин с ранее определенными диапазонами, которые называются уставки.

В том случае, когда контролируемая величина превышает установленную норму, соответствующее реле срабатывает: тем самым осуществляя коммутацию цепи путем переключения контактов. В первую очередь, такие действия касаются подключенной логической части цепи. В соответствии с выполняемыми задачами эта логика настраивается на определенный алгоритм действий, оказывающих влияние на коммутационную аппаратуру. Возникшая неисправность окончательно ликвидируется силовым выключателем, прерывающим питание аварийной схемы. В любой релейной защите и автоматике настройка измерительного органа выполняется с учетом определенной уставки, разграничивающей зону охвата и срабатывания защитных устройств. Сюда может входить только один участков или сразу несколько, состоящих из основного и резервных.

Реакция защиты может проявляться на все повреждения, которые могут возникнуть в защищаемой зоне или только на отдельно взятые отклонения от нормального режима работы.

В связи с этим, защищаемый участок оснащен не одной защитой, а сразу несколькими, дополняющими и резервирующими друг друга. Основные защиты должны воздействовать на все неисправности, возникающие в рабочей зоне или охватывать их значительную часть. Они обеспечивают полную защиту всего участка, находящегося под контролем и должны очень быстро срабатывать при возникновении неисправностей. Все остальные защиты, не подходящие под основные условия, считаются резервными, выполняющими ближнее и дальнее резервирование. В первом случае резервируются основные защиты, работающие в закрепленной зоне. Второй вариант дополняет первый и резервирует смежные рабочие зоны на случай отказа их собственных защит.
 

Принципы построения схемы защитных устройств

Несмотря на то, что в данный момент рынок предлагает большое количество разнообразных устройств РЗ, базовый алгоритм процессов остается прежним, только модернизируется для каждого конкретного случая. Основные функции защиты демонстрирует структурная схема.

Более подробно ознакомиться со структурной схемой защит и другими органами РЗ можно в нашей статье Основные органы релейной защиты.

Шкафы РЗА

Современные микропроцессорные устройства РЗА выполняют не только свою прямые задачи защиты, но и другие смежные функции. Таким образом, сегодня большое количество устройств можно укомплектовать в одном шкафу, что значительно упрощает монтаж оборудования, непосредственную эксплуатацию, а также значительно освобождает пространство.

Типовые шкафы защиты имеют еще ряд дополнительных преимуществ: так как шкафы выполняются по стандартным схемам, проверенным в эксплуатации, вероятность ошибок в работе значительно снижается, а удобство в наладке и монтаже возрастает. Узнайте еще больше о РЗА и типовых решениях на нашем сайте.

 

www.i-mt.net

Назначение релейной защиты | Заметки электрика

Добрый день.

Сегодня я расскажу Вам о назначении релейной защиты.

Иногда при нормальной работе потребителей электроэнергии могут возникать различные виды повреждений и ненормальные режимы работы.

В месте возникновения повреждения электрический ток и дуга разрушают электрооборудование, а снижение напряжения менее допустимого — приводят к выходу из нормальной работы электроприемников.

Чтобы обеспечить надежность электроснабжения и предотвратить разрушение электрооборудования, нужно мгновенно обесточивать поврежденный участок.

Разрушения электрооборудования

В этом и заключается назначение релейной защиты, т.е. защищать электрооборудование от повреждений (разрушений) и ненормальных режимов работы с помощью реле.

Реле — автоматическое защитное устройство.

Раньше вместо реле использовали предохранители с плавкой вставкой, но по причине развития и усложнения схем вторичной коммутации, а также из-за увеличения мощностей и напряжения электроприемников, использовать предохранители стало нецелесообразно.

Релейная защита должна:

  • контролировать работу всей электроустановки
  • реагировать при изменении нормальных режимов работы
  • отключать с помощью выключателей поврежденный участок сети (короткое замыкание)
  • выдавать информацию — сигнал о возникновении ненормального режима

В современных схемах релейной защиты используются следующие виды автоматики:

1. Автоматический ввод резерва (АВР) — это автоматическое включение электрооборудования от резервного источника питания.

2. Автоматическое повторное включение (АПВ) — это автоматическое включение электрооборудования при отключении одного из элементов сети.

3. Автоматическая частотная разгрузка (АЧР) — это автоматическое отключение сторонних электроприемников при понижении частоты питающей сети.

 P.S. С уважением, Дмитрий, автор сайта заметки электрика.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Устройство защиты от перенапряжения с реле РКН

5 лет назад был случай. Электрик ЖКХ шабашил в нашей девятиэтажке. Сосед врач был на работе. Его жена включила стиралку, готовила обед, смотрела телевизор. Дочка сидела за компьютером.

Электрик по ошибке снял не тот провод и оборвал общий ноль на вводе в подъезд. На стояке соседа во всех квартирах погорели бытовые приборы.

Его потери: морозильник, холодильник с загруженными продуктами, стиральная машина, телевизор, компьютер, радиотелефон и пяток лампочек освещения. Часть денег ему удалось вернуть через суд, но сколько нервов и времени ушло на это…

Вот и делайте вывод: нужно ли устройство защиты от перенапряжения в квартире на простом реле РКН или не стоит обращать на него внимание.

Содержание статьи

Современная промышленность выпускает различные защиты от перенапряжения со множеством функций при появлении аварийной ситуации в виде:

  1. Простого снятия питания с подключенной нагрузки и автоматического ввода ее в работу при восстановлении параметров питающей сети.
  2. Исправления уровня напряжения за счет подключения к цепям автотрансформатора дополнительных обмоток с разными схемами управления (сервопривод с электромеханическим приводом, релейная схема, электронные ключи на тиристорах или симисторах).
  3. Переключения потребителя на альтернативный генератор системой автоматического включения резерва (АВР).

В этой статье я рассказываю о самом простом и доступном для каждого владельца квартиры первом способе: реле РКН. Оно относится к бюджетным защитам, но в то же время обладает высокой степенью надежности.

Перепады напряжения в электросети: как возникают и чем опасны

Современный российский стандарт, изложенный в ПУЭ, определяет уровень напряжения для однофазного электроснабжения при частоте 50 герц, как 230+/-10% вольт. То есть нормой считается 207÷253 вольта.

Именно это значение обязаны обеспечивать и поддерживать все без исключения энергоснабжающие организации. Однако на практике не все так просто.

Стихийные природные явления, ошибки электротехнического персонала, критические условия эксплуатации оборудования энергоснабжающих организаций периодически сказываются на качестве электроэнергии.

Поэтому в бытовой проводке, рассчитанной для надежной эксплуатации при рабочем уровне напряжения, создаются аварийные режимы или перепады напряжения в электросети. Они связаны с тем, что к нам в квартиру вместо заложенной правилами нормы поступает:

  • повышенное напряжение более 253 вольт;
  • или пониженное: менее 207.

Эти процессы происходят очень быстро, за что их называют «скачки напряжения».

Аварийный режим часто связан с искажением формы у стандартной частоты синусоиды, например, при ударе молнии в линию электропередачи.

Внешний импульс энергии накладывается на гармоничную синусоиду. Форма сигнала, принимая суммарное непредвиденное значение, отрицательно сказывается на работе электрических приборов, не приспособленных к таким условиям эксплуатации.

Кроме характерных ударов молний форму синусоиды искажают апериодические составляющие переходных процессов, вызванные переключениями нагрузок больших мощностей или работой сложных защит в энергосистеме.

Переходные процессы

При возникновении коротких замыканий или перегрузок в схеме электроснабжения происходит просадка напряжения или понижение его величины ниже минимально допустимого уровня.

Бытовые приборы в таких ситуациях подвергаются серьезным испытаниям: могут сгореть. Им необходима автоматическая защита от подобных аварийных режимов.

Повышенное напряжение в сети: откуда ждать неприятности в бытовой проводке

Сейчас я намеренно опускаю случаи проникновения импульсов молнии в домашнюю проводку. Эта большая тема раскрыта в очередной статье об ограничителях перенапряжения — УЗИП. Читайте там.

Разбирать будем другие случаи, связанные с ошибочной работой оборудования или электротехнического персонала.

Еще раз приведу схему трехфазного подключения с общей нейтралью, по которой работают все бытовые сети. Я о ней упоминал в статье об вычислениях электрического напряжения.

Между тремя фазами линий создается напряжение 380 вольт, а относительно любой фазы и нуля (нейтрали) — 220. Это упрощенный идеальный случай.

Он не учитывает то, что все потребители, включая провода и кабели, имеют различное электрическое сопротивление. Оно влияет на картину протекания тока и распределение падений напряжений на участках цепи.

Линейные и фазные напряжения на каждом участке немного отличаются друг от друга. Но это не сказывается на качестве работы бытовых электрических приборов.

Аварийный режим и их повреждения происходят по другой причине. Характерный пример — обрыв нуля. Его еще называют отгорание нуля.

Повышенное напряжение в сети происходит не столько из-за старости проводки, хотя она тоже сказывается, сколько за счет плохого монтажа и безобразной эксплуатации электриков ЖКХ.

Приведенная на составной фотографии картинка демонстрирует ужасный способ подключения алюминиевого провода обычной намоткой вокруг контакта предохранителя. Случай-то это не единичный.

Схема трехфазного подключения

Им искусственно создано высокое переходное сопротивление, на котором происходит нагрев изоляции. Она плавится, разрушается.

Под действием возросшего тока нагрузки перегреву будет подвергнут металл токопроводящей жилы: со временем она отгорит и разорвет цепь подключения общей нейтрали.

Подобные случаи, к сожалению, еще встречаются. Часто они заканчиваются аварийными ситуациями.

Обрыв ноля практически не сказывается на работе питающего трансформатора на подстанции: он по-прежнему выдает симметричные линейные напряжения на выходе. Каждое из них начинает работать на подключенную к ним нагрузку.

Поясняю их действие на примере контура АВ. В нем разность линейных потенциалов UАВ приложена к суммарному сопротивлению квартир RА и RВ, подключенным последовательно.

Величина этих сопротивлений носит чисто случайный характер: зависит от количества включенных в работу электроприборов. Например, владелец квартиры A пользуется только холодильником и дома у него сейчас никого нет.

Хозяйка квартиры B в это время стирает белье, у нее работает посудомоечная машина и электрическая плита, освещение. Могут быть включены и другие потребители.

Получается, что один общий ток IAB протекает по цепочкам обеих квартир, но к схеме A приложено довольно маленькое напряжение, а вся остальная часть действует на соседа. На практике эта величина может очень близко подходить к линейному значению 380 вольт.

От него сгорает холодильник и вся включенная в работу бытовая техника.

Однако не стоит забывать о других соседях. Квартира C тоже обладает каким-то случайным сопротивлением. По контурам BC и CA складываются свои падения напряжений.

За счет их взаимовлияния при обрыве нуля смещается нейтральная точка нуля из положения n в другое место n1.

Обрыв нуля в трехфазной сети

На точке n1 появляется опасный потенциал относительно контура земли. Если кто-то из “умных соседей” выполнил зануление своих бытовых приборов, то на их корпусе автоматически оказывается это напряжение: появляется предпосылка получения электротравмы.

Когда «грамотный домашний электрик» ноль своей проводки садит на контур земли через трубопроводы отопления, водопровода, металлоконструкции лифта и подобные магистрали, то все эти части оказываются под опасным напряжением.

Система зануления используется как крайний случай защиты специфичного электроинструмента в промышленных условиях, носит временный характер, требует применения дополнительных защитных средств. В быту она опасна, да и давно потеряла свою актуальность.

Чем опасно повышенное напряжение в сети для потребителей электроэнергии

Давайте вспомним треугольник закона Ома и выразим для него электрический ток по формуле для участка цепи.

Сразу становится понятным, что на одинаковом сопротивлении повышение напряжения вызывает увеличение тока нагрузки. От него создается перегрев:

  • нитей накаливания ламп и они перегорают;
  • изоляции проводов токоведущих частей и особенно — обмоток электродвигателей. Лак плавится, провода слипаются, сгорают;
  • электронных блоков питания сложной бытовой техники. Они выходят из строя.

Пониженное напряжение в сети: что происходит с бытовыми потребителями

Резистивные нагрузки типа ламп накаливания и Тэны просто недополучают питание. Они не справляются со своими задачами. А вот работающие электродвигатели могут сгореть.

Например, электрический двигатель насоса холодильника должен прокачивать хладон по внутренним магистралям. Но пониженное напряжение в сети не позволит обеспечить достаточную мощность для нормальной раскрутки ротора.

Создается большой противодействующий момент сил трения и гидравлического сопротивления среды, тормозящий раскрутку. В обмотках двигателя возникают повышенные токи, разрушающие изоляцию. Холодильник сгорает.

Сгорел холодильник

Аналогичные процессы происходят с электродвигателем стиральной или посудомоечной машины, которые должны насосом прокачать воду.

Обрыв нуля в однофазной сети и две фазы в розетке

Разрыв нулевого потенциала однофазной схемы питания не приносит таких бед, как отгорание нейтрали в сети 380 вольт. Здесь просто обрывается цепь протекания тока, а подключенные приборы перестают работать.

В этой ситуации может проявиться эффект, который принято называть “Две фазы в розетке”: при отключенном нулевом проводе и параллельно включенной нагрузке фазный потенциал присутствует на обоих контактах розетки.

Повреждения бытовых приборов при такой ситуации не происходит, но работать они без нормального питания не могут.

Реле защиты от скачков напряжения: 3 принципа работы

В своей практике релейщика мне пришлось эксплуатировать и налаживать 3 вида реле напряжения:

  1. максимального действия, когда логика защиты контролирует уровень входного сигнала и при превышении заранее заданной уставки отключает питание с подключенной схемы;
  2. минимального действия — контроль понижения установленного уровня;
  3. комбинированного типа, включающего в себя первые 2 действия для поддержания работоспособности оборудования от нижнего до верхнего предела напряжения.

Для бытовых целей производители массово выпускают реле контроля напряжения (РКН), которые выполнены по комбинированному принципу, поддерживая на оборудовании только допустимые уровни.

Современные модули реле контроля напряжения можно условно разделить на два типа отличающихся конструкций:

  1. электромеханические или аналоговые, реагирующие на величину напряжения за счет точно сбалансированной системы усилий пружин и силы притяжения электромагнита;
  2. цифровые модули на микропроцессорах.

Первый тип массово использовался несколько десятилетий назад, а сейчас он постепенно вытесняется современными разработками.

При провалах и перенапряжениях эти типы реле просто отключают питание от нагрузки, выполняя таким способом свою защиту. Когда же уровень сигнала восстанавливается до нормального состояния, то логика устройств вновь замыкает свои контакты.

Здесь может встретиться особенность, когда конструкция выходных контактов реле защиты от скачков напряжения по мощности может не справиться с коммутируемой нагрузкой.

Приведу пример. Эта величина указывается в киловаттах или амперах прямо на корпусе реле РКН либо в сопроводительной технической документации.

Мощность реле напряжения

Делаем пересчет нагрузки подключаемых приборов и по нему анализируем возможности отключающих контактов.

Если их мощности не хватает для надежного разрыва тока, то используем схему реле повторителя или дополнительного контактора, когда:

  • наша защита своей выходной цепью управляет только работой обмотки добавочного модуля;
  • его силовые контакты переключают мощную нагрузку.
Схема подключения реле контроля напряжения

Реле контроля напряжения 1 фазное: виды конструкций для квартиры

Наша бытовая сеть чаще всего работает по однофазной схеме. С нее и начну обзор различных моделей реле РКН. Прежде чем их выбирать рекомендую уточнить технические характеристики оборудования, которое планируете защищать.

Дорогие модели холодильников с высоким классом энергосбережения уже имеют встроенное реле защиты двигателя. Его вполне достаточно для сохранения работоспособности при перепадах напряжения.

Реле защиты двигателя

Основные технические характеристики указаны наклейкой на корпусе и в сопроводительной документации.

Если такая защита уже встроена внутрь дорогого оборудования, то для неответственных потребителей можно приобрести индивидуальные защиты, выполненные в форме переходников:

  • розетки с вилкой, подключаемой в схему питания;
  • или удлинителя.
Реле контроля напряжения

Подобные современные модули имеют:

  1. малогабаритную электронную схему;
  2. табло отслеживания основных электрических параметров;
  3. индикацию режимов срабатывания.

Защита на реле контроля напряжения 1 фазном, устанавливаемая на Din рейку, может использоваться для нескольких потребителей розеточных групп. Они имеют возможность простой настройки ряда характеристик.

Реле на Дин рейку

Любителям мастерить все своими руками рекомендую для сборки простую схему реле напряжения с доступной базой.

Схема реле контроля напряжения своими руками

Нечто подобное я собирал для советского холодильника Атлант после того, как его двигатель сгорел от броска напряжения. Было это очень давно. Уставки тщательно отбил на лабораторном стенде. Но допустил тогда две ошибки. Советую вам их учесть:

  1. Выходное реле, переключающее силовые контакты, у меня было подобрано по мощности номинальной нагрузки с небольшим запасом. Его не хватило на надежное отключение аварийных токов, усиленных переходными процессами.
  2. После проверки на стенде я подключил свою самоделку в схему и забыл о ней. Только где-то года через четыре решил проверить ее работоспособность. Принес на стенд, а она не работает. Вскрыл и увидел спекшиеся контакты.

Если будете собирать подобные схемы, то подбирайте реле по мощным силовым контактам или используйте схему с повторителем на контакторе. Не забываете о сроках периодических проверок.

Кстати, последний пункт рекомендую почаще выполнять даже для заводских модулей любых защит.

Внутри насыщенной электрооборудованием квартиры имеет смысл использовать три реле контроля напряжения:

  • первое осуществляет защиты всех потребителей сети из электрического щитка в пределах 207÷253 вольта как резерв;
  • второе настраивается под электродвигатели;
  • третье защищает всю бытовую электронику.

Реле контроля напряжения 3 фазное для защиты частного дома

Современные производители выпускают большое разнообразие подобных модулей. Принцип работы и подключения их разберем на примере реле напряжения DigiTOP V-protector 380V.

Оно больше всего мне понравилось своими техническим характеристиками, красивым дизайном, прочным корпусом и удобными настройками из всех тех модулей, с которыми я ознакомился.

Реле контроля напряжения 3 фазное ставится на Din рейку. Его внешний вид показан в рабочем положении.

Реле напряжения DigiTOP V-protector 380V

На входные клеммы 5÷8 сверху подаются 3 фазы и ноль прямого чередования, а снизу они снимаются. Цифровой дисплей указывает величину действующего фазного напряжения.

Если цифра мигает, а не постоянно светится, то это указание на то, что выходные цепи разомкнуты.

Светодиодная индикация используется при настройках. Справа на корпусе имеются четыре кнопки управления:

  • 2 верхние предназначены для изменения величины уставки срабатывания вверх или вниз;
  • Кнопка S позволяет выбирать режим симметрии или асимметрии.
  • С помощью кнопки Т выставляют времена срабатывания.

Упрощенная схема реле напряжения DigiTOP V-protector 380V показана на картинке ниже. Я ее взял с сайта производителя и для наглядности дополнил цветовой маркировкой проводов.

Схема подключения трехфазного реле напряжения

Модуль защиты рассчитан на коммутации номинальных токов 63 ампера. Для частного дома это более чем достаточно. Никаких дополнительных контакторов использовать не потребуется.

Внутри компактного корпуса размещены мощные клеммы с толстыми медными токопроводами. Они изолированными от печатного монтажа на платах: излишний нагрев исключен.

Винтовые клеммы

Модульная конструкция каждой фазы имеет свою микросхему управления и может работать автономно на встроенное однофазное реле.

Его мощные переключающие контакты внушают доверие, хорошо экранированы от электрической дуги, сопровождающей разрыв цепи столь большого тока.

Контакты реле
Возможности настроек

Режим асимметрии выбирается для подключения трех независимых однофазных нагрузок. Здесь реле работает как 3 индивидуальных модуля защиты на 220 вольт.

При отклонении напряжения на любой фазе от величины уставки эта неисправность отключается встроенной защитой, а две другие остаются в работе.

После восстановления параметров питающей сети автоматика с установленной задержкой времени включает оборудование в работу.

Если происходит обрыв нуля в трехфазной схеме, то реле защищает оборудование от опасных последствий созданного режима. Оно использует среднюю точку, искусственно созданную на симметричной нагрузке, поддерживая нормальное электроснабжение.

Стоит вывести из работы любой из однофазных потребителей, как реле в этой ситуации автоматически обесточит остальные.

Если при работе происходит нарушение порядка чередования фаз, то реле сразу отключает все потребители. Такая защита в первую очередь необходима для электродвигателей: они сразу меняют направление вращения.

Симметричный режим применяется для питания трехфазного оборудования. Особую актуальность он имеет для асинхронных электродвигателей.

Реле напряжения DigiTOP V-protector 380V имеет возможность настройки уставки отклонения асимметрии от 20 до 80 вольт между любыми фазами. Оно имеет встроенную энергонезависимую память и хранит в ней все введенные параметры.

Подробное объяснение настроек этого реле и его испытание в своем видеоролике показывает Дмитрий электромонтажник Дурнев. Считаю, что его материал полезен для всех специалистов.

Заканчиваю тему про устройство защиты от перенапряжения с реле РКН. Многие вопросы еще могут потребовать дополнительной информации. Спрашивайте в комментариях. Отвечу.

electrikblog.ru

Дистанционная защита линий (ДЗЛ): принцип работы, ступени, схема

Дистанционная защита линий, принцип работы, ступени, формула Для защиты тупиковых кабельных или воздушных линий с односторонним питанием достаточно максимально-токовой защиты или токовой отсечки. Но, если эти линии подключены последовательно друг за другом или соединяют между собой несколько источников питания, невозможно выполнить такие защиты селективными.

Представим, что от шин подстанции №1 отходит линия, питающая другую подстанцию — №2. А с шин этой следующей подстанции уходит еще одна линия.

При использовании МТЗ на подстанции №1 она должна срабатывать при КЗ на первой линии, но давать возможность подействовать защите подстанции №2 при КЗ на следующей.

Но при этом она должна еще и резервировать защиту второй подстанции, для чего должна подействовать и при КЗ на линии 2. Для этого время действия защит нужно установить так, чтобы на первой подстанции выдержка была больше. К тому же придется разделить логику работы МТЗ на две или более ступеней, выставив для первой из них ток срабатывания, равный расчетному току КЗ в конце первой линии.

dz linii 1
А теперь предположим, что с противоположной стороны линию №2 питает еще один источник энергии, не зависимый от первого. Теперь задача усложняется: токи короткого замыкания изменяются. К тому же МТЗ линий потребуется выполнить направленными.

Есть еще один вид защит, который может помочь эффективно отключить именно линию с повреждением – дифференциальная защита. Но для ЛЭП большой протяженности ее выполнить очень непросто.

При использовании же МТЗ и токовых отсечек устройства защиты получаются сложными, к тому же – недостаточно эффективными. Выход из ситуации – применение дистанционных защит.

Принцип действия защиты

Дистанционная защита (ДЗ) – название, говорящее о том, что она реагирует на расстояние до точки короткого замыкания. А если говорить точнее: логика ее работы зависит от места расположения точки замыкания, которое и определяет защита.

Делает она это с помощью устройств, называемых реле сопротивления.

Их задача: косвенным образом измерить сопротивление от места расположения защиты до точки короткого замыкания. А для этого, по закону Ома, ей требуются не только ток, но и напряжение, получаемое от установленного на шинах подстанции трансформатора напряжения.

Реле сопротивления срабатывает при условии:

dz linii 2

Здесь Zуст – уставка сопротивления срабатывания реле. Измеряемая величина является фиктивной, так как в некоторых режимах работы (например, при качаниях) ее физический смысл, как сопротивления, теряется.

Уставок срабатывания, а, следовательно, и реле сопротивления у ДЗ, как правило, не менее трех.

Защищаемая область делится на участки, называемые зонами. Время срабатывания для каждой из зон свое. А уставка реле сопротивления равна сопротивлению до точки КЗ в конце соответствующей зоны. Для пояснения вспомним пример с подстанциями и линиями.

Дистанционная защита линий, принцип работы, ступени, формула

Уставка первой зоны ДЗ

Рассчитывается так, чтобы она защищала только свою отходящую линию. Но не до самого конца, а с учетом погрешности измерения сопротивления – 0,7-0,85 ее длины. При срабатывании первой зоны ДЗ линия отключается с минимально возможной выдержкой времени, так как КЗ находится гарантированно на ней.

Вторая зона ДЗ

Резервирует отказ защиты следующей подстанции. Для чего она реагирует на КЗ в конце линии №2. И первая зона ДЗ для выключателя второй линии от подстанции №2 выставлена на сопротивление до той же самой точки КЗ, но уже от шин этой подстанции. Но выдержка времени 2 зоны ДЗ подстанции №1 больше, чем 1 зоны ДЗ подстанции №2.

Этим обеспечивается требуемая селективность: выключатель второй линии от подстанции №2 отключится раньше, чем отработает реле времени защиты на подстанции №1.

Третья зона ДЗ

Необходима для резервирования защиты следующей линии, если она есть в наличии. Дополнительного количества зон не предусматривается.

Интересное видео о настройке дистанционной защиты смотрите ниже:

Устройство и работа комплекта дистанционной защиты.

Тем не менее, на одних реле сопротивления и реле времени такую защиту не выполнить. На практике она включает в себя несколько функциональных блоков.

Пусковые органы ДЗ

Это токовые реле или реле полного сопротивления. Их задача: определить наличие КЗ в защищаемой цепи и запустить работу остальных устройств защиты.

Дистанционные органы.

Набор реле сопротивления для определения зоны срабатывания и дистанции до места КЗ. Устройство, формирующее выдержки времени для зон защиты. Это – обычные реле времени.

Реле направления мощности

На самом деле он применяется редко, так как реле сопротивления конструктивно обладают собственной диаграммой направленности, не позволяющей срабатывать защите при КЗ «за спиной». В итоге исключается срабатывание защиты при замыканиях в направлении, противоположном защищаемой линии.

Органы блокировок

Одно из которых — защита от исчезновения напряжения. При неисправностях цепей ТН ДЗ выводится из действия. Следующая блокировка работает при качаниях в системе. При их возникновении обычно происходит снижение напряжения на шинах и увеличение тока в защищаемых линиях. Эти изменения воспринимаются дистанционными органами защиты как уменьшение сопротивления, из-за чего также не исключена ложная работа защиты.

Дистанционная защита линий, принцип работы, ступени, формула

Применение дистанционной защиты

Дистанционная защита используется в сетях с питанием от двух и более источников.

Это линии связи напряжением 35, 110 кВ и выше, по которым осуществляется транзит электроэнергии.

Особенно эффективна и незаменима ДЗ в кольцевых схемах энергоснабжения, применение которых очень часто для единой энергетической системы страны.

Для всех сетей, где установлена ДЗ, она является основной защитой.

Конструкция ДЗ на электромеханической базе предполагает наличие большого количества элементов: обычных реле, трансформаторов. Для ее размещения выделяется целая панель. Современные же варианты микропроцессорных защит умещаются в одном терминале, соседствуя с другими их видами, а также – возможностью фиксирования срабатываний защит, работы блокировок, запись осциллограмм аварийных процессов. Совмещением нескольких устройств в одном терминале обеспечивается не только компактность, но и удобство в эксплуатации релейной защиты линии.

Ещё одно интересное короткое видео об анализе работы дистанционной защиты:

pue8.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о