Размеры заземляющего контура: Размеры контура заземления для частного дома

Содержание

что это такое, пример выполнения для частного дома

Что такое заземляющее устройство?

Заземляющее устройство (earthing arrangtmtnt), согласно ГОСТ 30331.1-2013 [1], — совокупность заземлителя, заземляющих проводников и главной заземляющей шины. Данный термин имеет жаргонизм «контур заземления», что некорректно.

Пример технологии выполнения для электроустановки индивидуального жилого дома.

На одном из форумов я наткнулся на типовой проект (далее ТП) серии 5.407-155.94, который был утвержден Департаментом электроэнергетики Минтопэнерго РФ и в котором, непосредственно, можно отыскать необходимую информацию о выполнении заземляющего устройства для электроустановки частного дома.

Этот проект не лишен недостатков, например, в плане терминологии, так как был выпущен до появления стандартов комплекса ГОСТ Р 50571, но, тем не менее, в нем можно найти нужную нам реализацию заземляющего устройства для индивидуального жилого дома. Показанные там эскизы схем заземлителей были разработаны и использовались еще со времен СССР, что говорит о достаточной проверке временем на практике и, следовательно, высокой надежности.

Далее, нам нужно знать удельное сопротивление типа почвы, в которой будут находится заземляющие электроды. К примеру, тип почвы – глинистый песок. Расчетное удельное сопротивление глинистого песка — ρ = 220 Ом*м. Тогда согласно 5.407-155.94.1-57 выбираем подходящий эскиз заземлителя (в нашем случае это схема N4). Я немного видоизменил его под стандарт ГОСТ Р 50571.5.54–2013 и получилось следующее:

Реализация заземляющего устройства (ГЗШ не показана на рисунке)

Данное заземляющее устройство, согласно ТП, актуально для типов грунта с расчетным ρ ≤250 Ом*м и должно обеспечивать Rзу ≤ 30 Ом. И состоит оно из:

  • 2 вертикальных заземляющих электродов, длинной 3 метра и расположенных на расстоянии L ≥ 6 м.
  • одного горизонтального заземляющего электрода, соединенного с заземляющим проводником.
  • Главной заземляющей шины (ГЗШ), установленной в здании (на эскизе не показана) и соединенной с заземляющим проводником. Саму ГЗШ подключают защитным проводником к защитной шине ВРУ, от которой «начинаются» все защитные проводники. К последним присоединяют открытые проводящие части (ОПЧ) электрооборудования.

Некоторые технические подробности:

  • Заземляющие электроды углубляют так, чтобы верхняя их часть была на 0.5 метра ниже поверхности грунта.
  • Минимальные размеры проложенных в земле электродов и заземляющего проводника можно найти в таблице 54.1 ГОСТ Р 50571.5.54–2013. К примеру, для круглого вертикального заземляющего электрода, выполненного в виде стержня из стали горячего цинкования минимальный диаметр составит – 16 мм. А для горизонтального заземляющего электрода и заземляющего проводника, выполненного в виде круглой проволоки из той же стали, минимальный диаметр составит – 10 мм.
  • Части заземлителя, которые находятся в земле, cогласно ТП, следует соединять между собой посредством электросварки двойным швом. Длина сварочного шва, при этом, больше либо равна 6 наибольшим диаметрам при круглом сечении. То есть, если нам нужно сварить между собой два электрода диаметром 20 и 16 мм, то длина сварочного шва должна составить минимум 6*20=120 мм
  • ГЗШ должна иметь зажимы для подключения защитных проводников и защитных проводников уравнивания потенциалов. Эти зажимы должны допускать подключение проводников сечением ≥ 16 кв.мм. ГЗШ должна иметь один или два зажима для подключения заземляющих проводников диаметром ≥ 10 мм.
  • Число вертикальных электродов зависит от удельного сопротивления грунта и максимально допустимого сопротивления заземляющего устройства (ЗУ). Если электроустановка здания имеет тип заземления системы TN-C-S, сопротивление ЗУ не влияет на защиту от поражения электрическим током. Здесь необходимо обеспечить непрерывность электрической цепи PEN-проводник — защитный проводник. Поэтому сопротивление ЗУ может быть нормировано, например, требованиями к защите дома от молний.

Типовые часто задаваемые вопросы от читателей

Как проверить заземление выполненное для индивидуального жилого дома?

Начать нужно с того, что заземление, согласно его определения, представляет собой действие, а именно – выполнение электрического присоединения проводящих частей к локальной земле. Поэтому, если ориентироваться на ваш вопрос и дословно отвечать на него, то да — вам нужно проверить все электрические соединения проводящих частей соответствующего электрооборудования к локальной земле.

В ходе проверки, доступной в домашних условиях, могу порекомендовать вам лишь такие базовые мероприятия:

Произведите визуальный осмотр – целью данного действия является выявление видимого разрыва или повреждения каких-либо электрических цепей защитных проводников. Как правило, проверке подлежат видимые открытые участки защитного проводника, места его подключения и соединения с главной заземляющей шиной (ГЗШ) (у вас она должна быть если мы говорим о правильной реализации заземляющего устройства) и далее непосредственно с самим заземляющим устройством.

Нужно проверить заземляющий проводник, посредством которого ГЗШ соединяют с заземлителем;

Нужно проверить защитный проводник, посредством которого к ГЗШ присоединяют защитную шину вводно-распределительного устройства (ВРУ).

При отсутствии видимого разрыва, необходимо проверить «наличие цепи» между защитным проводником (ами) и ГЗШ. Для «прозвонки цепи» вам достаточно подключить выводы мультиметра, в соответствующем режиме, к защитному проводнику и к главной заземляющей шине. Также можно проверить цепь между защитным проводником и заземляющим устройством.

Наиболее эффективным вариантом, на мой взгляд, является измерение переходного сопротивления между заземляющими электродами и локальной землей. Но для этого вам понадобиться специальный прибор — «измеритель сопротивления заземлений», который подключается определенным образом. Но эту работу может выполнить только квалифицированное или обученное лицо — поэтому я не буду расписывать как это делать в пределах данного ответа.

Однако, даже при наличии сопротивления токам растекания в земле не более 4 Ом нельзя дать гарантию, что вы будете в безопасности. Так как никакие электрические приборы не должны подавать опасный потенциал на корпус при нормальных условиях эксплуатации. Поэтому помимо проверки заземляющего устройства я бы рекомендовал вам также проверить состояние изоляции самого используемого электрооборудования. Как правило, повреждение или дефект изоляции в самом электрооборудовании или цепи его питания могут приводить к появлению потенциала на на его корпусе.

Список использованной литературы

  1. ГОСТ 30331.1-2013
  2. Типовой проект серии 5.407-155.94
  3. ГОСТ Р 50571.5.54–2013

Контур заземления — его конструкция и выбор заземлителя





Устройство так называемого заглубленного контура заземления внешне представляет собой электроды — металлические стержни, которые забиты в землю и соединены меж собой. Наиболее эффективной считается конструкция, в которой электроды располагаются в одну линию. Однако при благоприятных условиях вполне сгодится и конструкция, в которой стержни располагаются треугольником.

Устройство заземления в случае расположения штырей в одну линию


Устройство заземления в случае расположения штырей в виде треугольника

Расположение треугольником несколько хуже, поскольку электроды гораздо больше друг друга экранируют, а это значит, расход материала при организации такой конструкции при остальных равных условиях станет больше. С иной стороны на небольшом расстоянии треугольное расположение значительно уменьшает число земляных работ, и между собой соединять штыри с шиной значительно удобнее в яме треугольной формы, нежели в узкой траншее.

Конструкция контура глубинного заземления с помощью уголка: 1. Уголок из стали 50 на 50 на 5 миллиметров, 2. соединительная полоска из стали 50 на 5 миллиметров, 3. Стальная шина заземления 50 на 5 миллиметров.

Расстояние заземлительного контура от домовых стен должно быть не менее 1-ного метра.
Электроды заземления следует закопать на приличную глубину возможного промерзания грунта. Всё дело в том, что будучи замерзшим грунт весьма плохо проводит электрический ток. В частности, при замерзании самого верхнего грунтового слоя высотой полметра, сопротивление его увеличивается приблизительно в десять раз, а на глубине около метра — раза в три. Летом же поверхностные слои грунта (примерно до метра глубиной) заметно высыхают, что довольно резко повышает показатели его сопротивления. Потому и необходимо поглубже закапывать электроды в так называемые стабильные почвенные слои, которые залегают на глубине 1-2 метров. На подобной глубине грунтовые параметры грунта почти не меняются в течение всего года.

Конечно, вполне можно взять и более длинные электроды из металла, однако это увеличит материальный расход. Расчет заземлительного контура приведен в статье под названием «Расчёт заземления» на нашем ресурсе. Кроме того, стоит отметить, что забить вручную в землю стержни заземлителя свыше 2,5 метров длиной бывает довольно-таки проблематично.

Таблица 1-вая Коэффициенты применения 3-ёх электродов, которые размещены в ряд

Отношение расстояния между 3 стержнями

Коэффициент использования, η

Отношение расстояния между 3 стержнями

Коэффициент использования, η

0,5

0,62-0,68

2

0,85-0,88

1

0,76-0,8

3

0,9-0,92



Арматура Строительная не подходит для заземлительных стержней

В таблице 1-вой видно, каким образом расстояние меж 3-емя стержнями оказывает влияние на коэффициент их применения. Отношение расстояния меж стержнями является отношением используемой стержневой длинны к расстоянию меж ними. К примеру, если взять пару электродов длинной 2,5 метра, полностью углублённых в землю на необходимую глубину промерзания (используется вся их длина) и расположить их на расстоянии два с половиной метра от друг друга, то отношение их будет равно 1=2,5/2,5.

Глядя на таблицу, можно сделать такой вывод, что самое оптимальное расстояние меж стержнями заземлительного контура бывает равно обычно их длине. При увеличенном расстоянии эффективностный прирост будет небольшим при довольно большом объёме работ на земле и расходе материала на проведение соединения стержней шиной.

Для производства глубинных электродов использовать можно любые материалы, имеющие минимальные размеры, указанные в таблице 2.

Следует обратить внимание, что в таблице 2 не присутствует арматуры с так называемым периодическим профилем, которую обычно применяют для выполнения армирования бетона. Стержни такого рода арматуры совершенно не подходят для глубинного заземления, поскольку при вбивании в землю они разрыхляют её возле себя, что ведет к повышению сопротивления.
Таблица 2-рая Минимальные размеры электродов заземляющих с точки зрения механической и коррозионной стойкости

Материал

Поверхность

Профиль

Минимальный размер

Диаметр, мм

Площадь сечения, мм2

Толщина, мм

Толщина покрытия, мк

Сталь

Черный1 металл без антикоррозионного покрытия

Прямоугольный2

 

150

5

 

Угловой

 

150

5

 

Круглые стержни для заглублённых электродов3

18

 

 

 

Круглая проволока для поверхностных электродов4

12

 

 

 

Трубный

32

 

3. 5

 

Горячего цинкования5 или нержавеющая сталь5,6

Прямоугольный

 

90

3

70

Угловой

 

90

3

70

Круглые стержни для заглублённых электродов3

16

 

 

70

Круглая проволока для поверхностных электродов4

10

 

 

507

Трубный

25

 

2

55

В медной оболочке

Круглые стержни для заглублённых электродов3

15

 

 

2000

С гальваническим медным покрытием

Круглые стержни для заглублённых электродов3

14

 

 

100

Медь

Без покрытия5

Прямоугольный

 

50

2

 

Круглый провод

Для поверхностных электродов4

 

258

 

 

Трос

1,8

каждой проволоки

25

 

5

Трубный

20

 

2

 

Луженная

Трос

1,8

каждой проволоки

25

 

5

Оцинкованная

Прямоугольный9

 

50

2

40

1 Срок службы 25-30 лет при скорости коррозии в нормальных грунтах 0,06 мм/год.

2 Прокат или нарезанная полоса со скругленными краями.

3 Заземляющие электроды рассматриваются как заглублённые, когда они установлены на глубине более 0,5 м.

4 Заземляющие электроды рассматриваются как поверхностные, когда они установлены на глубине не более 0,5 м.

5 Может так же использоваться для электродов, уложенных (заделанных) в бетоне.

6 Применяется без покрытия.

7 В случае использования проволоки, изготовленной методом непрерывного горячего цинкования, толщина покрытия в 50 мк принята в соответствии с настоящими техническими возможностями.

8 Если экспериментально доказано, что вероятность повреждения от коррозии и механических воздействий мала, то может использоваться сечение 16 мм2.

9 Нарезанная полоса со скруглёнными краями.

Очевидно, что самыми дешевыми являются те электроды, что состоят из круглых, прошедших оцинковку стержней диаметром шестнадцать миллиметров. Но поскольку найти и приобрести их бывает довольно накладно, то зачастую контур заземления изготавливают из стандартного черного уголка из стали 50 на 50 на 5 миллиметров. Соединять уголок вместе следует стальной полосой, чьи размеры не менее 50 на 5 миллиметров.

Хомуты оцинкованные для проведения скрепления заземлителей


Осуществление соединения оцинкованного стержня с также оцинкованной полосой с помощью хомута на болтах

С целью соединения контурных стержней с шиной заземления и соединителями используются два способа:

— в случае использования оцинкованного проката можно применять соединение без применения сварки, при помощи обжимных резьбовых хомутов. Причём место соединения обязательно должно быть защищенным от коррозии при помощи антикоррозийного бинта, либо обмазки горячим битумом;

— при применении проката из черной стали без каких-либо покрытий он соединяется с помощью использования дуговой электросварки.


Проведение антикоррозийной обработки соединения на хомутах

Касаемо провода (так называемый защитный проводник), что подключают непосредственно к заземляющей конструкции (то есть к шине заземления), лучше всего применять провод из меди. Размер минимального сечения заземляющего провода следует выбирать по таблице 3. К примеру, если попросту подключить провод из меди к стальной шине при помощи резьбового оцинкованного соединения, причём соединение находится в распределительной пластиковой коробке, сам же провод скрыт в пластиковой гофре, то такого рода подключение надо считать плохо защищённым от коррозийного воздействия, поскольку оно напрямую контактирует с воздухом. Однако соединение заземлительного контура такого рода и проводника защищено механически, а значит минимально возможное сечение провода из меди будет равным 10 миллиметрам2. Детали по обустройству защитного домового заземления собственноручно приведены в статье под названием «Монтаж контура заземления самостоятельно».

Наличие защиты

Сечение провода мм2

Механически защищенные

Механически незащищённые

Защищённые от коррозии

6

16

Незащищённые от коррозии

10

25




Всего комментариев: 0


Почему заземление треугольником устарело?

03.11.16

Треугольный контур заземления принято считать традиционным для небольших объектов, таких как: частный дом, дача или офис. При этом нет ни одного нормативного документа, обязывающего монтировать заземление именно таким способом. Тем не менее, на протяжении многих лет сложился определённый порядок при установке заземляющего устройства. Чем полюбился монтаж заземлителей треугольником? И почему стоит отказаться от наследия предшествующего поколения? Попробуем разобраться.

Зарождение традиционного заземления

Традиция выполнять заземление в виде треугольника, безусловно, не любовь, а вынужденное решение. Требования к заземлению в России регламентировалось всегда правилами устройств электроустановок, первое издание которого вышло аж в 1949! Следовательно, необходимость в заземлении объектов появилась, как минимум, с этого времени. Наиболее популярным токопроводящим металлом на тот момент и последующие десятилетия стала угловая чёрная сталь. Без использования специальных инструментов заглубить её можно не больше, чем на глубину промерзания грунта, т.к. проблематично забить уголок длиной более 2-2,5 м. Поэтому, чтобы добиться нужного значения сопротивления, увеличивали площадь, с которой растекается ток, дополнительными заземлителями. Форма контура может быть квадратной, прямоугольной или располагаться вдоль периметра дома, но любой собственник, выбирая между вариантами, укажет на наиболее простой. Так и зародилась традиция выполнять контур заземления треугольником.

Так ли хорош метод заземления треугольником?

Если раньше электрооборудование в частном доме или даче состояло только из телевизора и холодильника, то сейчас вопрос защиты имущества стоит остро. Современный дом — умный дом, он автоматизирован и наполнен технологическими устройствами. Здесь уровень комфорта напрямую зависит от электробезопасности, поэтому и подходить к выбору заземления стоит ответственно. Раньше рынок заземления не мог предложить другого решения, но сейчас выбор есть. Производители современного заземления учли все недостатки чёрной стали и поменяли не только материал заземлителя, но и сам подход к монтажу. Монтаж заземления из чёрной стали включал в себя: раскопку траншей, заколачивание заземлителей, сваривание уголков, но сейчас современная установка выглядит в виде одного глубинного электрода.

Преимущества глубинного заземления

Прежде всего современное заземление это:

  • Быстрый монтаж. На установку классического комплекта «Заземление в частном доме ZANDZ ZZ-6» уходит в среднем 30 минут!
  • Стабильное сопротивление заземления. Основная длина электрода находится ниже глубины промерзания, сопротивление грунта не сильно увеличивается в зимнее время и остается в предельных значениях.
  • Долгий срок службы. Великолепная коррозиестойкость некоторых материалов позволяет обеспечить срок службы заземлителю до 100 лет.

Очевидно, что некоторые традиции следует нарушать. Для чего использовать устаревший подход, если новый позволит сэкономить время, трудозатраты, деньги и будет служить ещё век? Возникли вопросы по заземлению? Обратитесь в Технический центр за консультацией!


Смотрите также::


Хотите получать избранные новости о молниезащите и заземлению раз в 3-4 недели?
Зарегистрируйтесь и автоматически получайте email-рассылку с подборкой.

Все новости публикуются в наших группах в мессенджерах и в социальных сетях.
[ Новостной канал в Telegram ]



Смотрите также:

Контур заземления в частном доме по нормам ПУЭ своими руками (нормы и замеры)

Чтобы контур заземления эффективно выполнял свои функции, необходимо использование норм, которые приведены в «Правилах устройства электроустановок». Они утверждены Министерством энергетики России, приказом от 08. 07. 2002 г. Сейчас действительной является седьмая редакция. Но перед реализацией конкретного проекта необходимо уточнить новейшие изменения. Так как далее в статье есть ссылки на этот документ, будут применяться следующие сокращения: «ПУЭ», или «Правила».

Типовые схемы контуров заземления дома

Для чего выполнять требования

Может показаться, что неукоснительное соблюдение Правил избыточно, необходимо только для прохождения официальных проверок, ввода в действие объекта недвижимости. Конечно, это не так.

Нормативы созданы на основе научных знаний и практического опыта. В ПУЭ есть следующие сведения:

  • Формулы для расчетов отдельных параметров защитной системы.
  • Таблицы с коэффициентами, которые помогают учесть электротехнические характеристики разных проводников.
  • Порядок проведения испытаний и проверок.
  • Специализированные организационные мероприятия.

Применение на практике этих нормативов позволит предотвратить поражение электрическим током людей и животных. Создание контура должно быть безупречным, в точном соответствии с Правилами. Это снизит вероятность возгораний при авариях, поможет исключить развитие негативных процессов, способных нанести ущерб имуществу.

В данной статье рассматриваются вопросы защиты частного дома. Таким образом, будут изучаться те разделы ПУЭ, которые относятся к работе с напряжением до 1 000 V.

Составные части системы

Ключевым параметром данной системы является сопротивление заземления. Сопротивление заземления должно быть настолько малым, чтобы именно по такому пути шел ток при возникновении аварийной ситуации. Это обеспечит защиту при случайном прикосновении человека к поверхности, на которую подано напряжение.

Специалисты рекомендуют подключать бытовую технику к системе заземления

Для получения необходимого результата шасси и корпуса бытовых устройств дома соединяют с главной шиной заземляющего устройства,  создается внутренний контур. К нему же подключают металлические элементы конструкции здания, трубы водопровода. Подробно состав такой системы выравнивания потенциалов описан в ПУЭ (п.1.7.82). Снаружи строения устанавливается другая часть защиты, внешний контур. Его также подключают к главной шине. Для оснащения частного дома можно использовать разные схемы. Но проще всего заглубить в землю металлические стержни.

В следующем списке приведены отдельные компоненты системы и требования к ним:

  • Провода, которыми подсоединяются утюги, стиральные машины и другие конечные потребители. Они находятся внутри сетевого кабеля, поэтому необходимо только наличие соответствующей линии заземления, подключенной к розетке. В некоторых ситуациях, при установке варочных панелей, духовых шкафов, иного встроенного в мебель оборудования, требуется подсоединение корпусов отдельным проводом.
  • В качестве общей шины можно использовать не только специальный провод, но и «естественные» проводники такие, как металлические каркасы зданий. Исключения и точные правила будут рассмотрены ниже. Здесь же надо отметить, что этот участок прохождения тока надо создавать так, чтобы предотвратить механические повреждения в процессе эксплуатации.
  • Наружный контур частного дома создают из металлических элементов без изоляции. Это увеличивает вероятность разрушения процессом коррозии. Для снижения этого негативного воздействия используют цветные металлы. Места сварных соединений стальных деталей покрывают битумными смесями и другими составами аналогичного назначения.
  • Реальное сопротивление заземляющего устройства такого типа будет зависеть от характеристик грунта. Глина и сланцы хорошо удерживают влагу, а песок – плохо. В каменистых грунтах сопротивление слишком велико, поэтому понадобится искать другое место для установки, или погружать заземлитель еще глубже. В особо засушливые периоды, чтобы сохранить функциональность устройства рекомендуется регулярный полив почвы.

Почвы обладают разной проводимостью

Проводники системы заземления

Частью внутреннего контура являются изолированные провода. Их оболочки делают цветными (чередующиеся зеленые и желтые продольные полосы). Такое решение уменьшает ошибочные действия при выполнении монтажных операций. Подробно требования изложены в разделе «Защитные проводники» Правил, начиная с раздела 1.7.121.

В частности, там приведена методика простого расчета допустимой площади изолированного проводника в сечении (без поверхностного слоя). Если фазный провод меньше, или не превышает 16 мм2, то выбирают равные диаметры. При увеличении размеров применяют иные пропорции.

Для точных расчетов используется формула из пункта 1.7.126 ПУЭ:     

 /k    , где:

  • S – сечение проводника заземления в мм2;
  • I – ток, проходящий по нему при коротком замыкании;
  • t – это время в секундах, за которое автомат разорвет цепь питания;
  • k – специальный комплексный коэффициент.

Величина тока должна быть достаточной для срабатывания автомата за время, не превышающее пяти секунд. Чтобы система была рассчитана с определенным запасом, выбирают ближайшее большее по типоразмеру изделие. Специальный коэффициент берут из таблиц 1.7.6., 1.7.7., 1.7.8. и 1.7.9. Правил.

Если планируется использовать многожильный алюминиевый кабель, в котором один из проводников – защитный, то применяют следующие коэффициенты с учетом разных изоляционных оболочек.

Таблица коэффициентов с учетом типа изоляционных оболочек

 Темп. нач., °CТемп. кон., °CКомплексный коэффициент k
ПВХ7016076
Резина (бутиловая)8522089
Сшитый полиэтилен9025094

В качестве следующих элементов внутреннего контура частного дома допустимо применение конструкционных деталей. Подойдет металлическая арматура, которая находится внутри железобетонных изделий.

При использовании такого варианта обеспечивается непрерывность цепи, предпринимаются дополнительные меры для защиты от механических воздействий. Учитываются особенности конкретного строения, структурные деформации, которые возникают в процессе усадки.

Не разрешается использовать:

  • Части трубопроводных систем газоснабжения, канализации, отопления, газоснабжения.
  • Трубы водоснабжения из металла, если они соединяются с применением прокладок, изготовленных из полимеров,  иных диэлектрических материалов.
  • Стальные струны, использующиеся для крепления светильников, гофрированные оболочки, иные недостаточно прочные проводники, либо изделия, находящиеся под относительно большой для их параметров загрузкой.

Если используется отдельный медный проводник, не входящий в состав кабеля цепи питания, или он находится не в общей изоляционной, защитной оболочке с фазными проводами, допустимо следующее минимальное сечение в мм2:

  • при дополнительной защите от механических воздействий – 2,5;
  • в случае отсутствия таких предохранительных средств – 4.

Этот медный проводник не защищен от случайного механического повреждения

Алюминий менее прочен по сравнению с медью. Поэтому сечение проводника из такого металла (вариант – отдельная прокладка) должно быть равно, или более следующей нормы: 16 мм2.

Какое должно быть сечение проводников внешнего контура заземления дома можно посмотреть в таблице ниже.

Сечение проводников внешнего контура заземления

Материал проводникаПлощадь сечения в мм2
Медь10
Алюминий16
Сталь75

Здесь приведены минимально допустимые нормы. Определенная величина проводника установлена с учетом большей устойчивости цветных металлов к процессам окисления, относительно небольшой механической прочности алюминия, других важных факторов.

При проходе через внешнюю толстую стену дома проще просверлить тонкое отверстие. Его изнутри  можно укрепить трубкой подходящих размеров. Медный провод не сложно будет согнуть под углом для присоединения к стальной шине внешнего контура.

Допустимое сопротивление заземляющего устройства определено в п. 1.7.101 ПУЭ. Сводные нормы приведены в таблице ниже.

Нормы допустимого сопротивления заземляющего устройства

При подсоединении заземлителя к нейтрали генератора, или другого источника
Сопротивление заземляющего устройства, Ом248
Напряжения (V) в сети однофазного тока380220127
Напряжения (V) в сети трехфазного тока660380220
На близком расстоянии от заземлителя до источника тока
Сопротивление заземляющего устройства, Ом153060
Напряжения (V) в сети однофазного тока380220127
Напряжения (V) в сети трехфазного тока660380220

Приведенные выше нормы справедливы для случаев, когда сопротивление грунта (удельное) не превышает порог R=100 Ом на метр. В противном случае допустимо увеличение сопротивления с умножением исходного значения на R*0,01. Итоговое сопротивление заземлителя не должно быть больше, чем в 10 раз исходного значения.

За городом для подключения дома часто используют воздушные линии электропередачи. Поэтому уместно упомянуть нормы ПУЭ, относящиеся к соответствующей ситуации. Если проводник одновременно выполняет функции защитного и нулевого (PEN-типа),  то на концах таких линий, участках подключения потребителей устанавливают устройство повторного  заземления. Как правило,  такие действия обязана выполнить энергетическая компания, но хозяину дома следует сделать соответствующую проверку. В качестве заземлителя используют металлические части опор, заглубленные в грунт.

Заземление воздушной линии электропередачи

При выборе комплектующих элементов личного внешнего контура, который будет установлен в земле, используют следующие нормы ПУЭ.

Параметры комплектующих элементов внешнего контура заземления по нормам ПУЭ

Профиль
изделия в
сечении
Круглый (для
вертикальных
элементов
системы
заземления)
Круглый (для горизонтальных
элементов
системы
заземления)
ПрямоугольныйУгловойКоль-
цевой
(труб-
ный)
Сталь черная
Диаметр, мм161032
Площадь сечения в поперечнике, мм2100100
Толщина стенки, мм443,5
Сталь оцинкованная
Диаметр, мм121025
Площадь сечения в поперечнике, мм275
Толщина стенки, мм32
Медь
Диаметр, мм1220
Площадь сечения в поперечнике, мм250
Толщина стенки, мм22

Если повышен риск повреждения горизонтальных участков окислительными процессами, применяют следующие решения:

  • Увеличивают площадь сечения проводников выше нормы, указанной в ПУЭ.
  • Применяют изделия с гальваническим поверхностным слоем, либо изготовленные из меди.

Траншеи с горизонтальными заземлителями засыпают грунтом с однородной структурой, без мусора. Повысить сопротивление способно чрезмерное осушение грунта, поэтому в летние периоды, когда долго нет дождей, специально поливают соответствующие участки.

При прокладке контура заземления избегают соседства с трубопроводами, повышающими искусственно температуру почвы.

Какое должно быть сопротивление

Прочность металлических проводников, их электрическое сопротивление определить несложно. Если должно быть определенное сопротивление по ПУЭ, то соблюдение правил не будет чрезмерно сложным. Так, например, для заземления опор воздушных линий установлен максимально допустимый норматив 10 Ом, если эквивалентное сопротивление грунта не превышает 100 Ом*м (Таблица 2.5.19.).  Целостность сварных соединений обеспечивают дополнительной защитой антикоррозийным слоем. При риске разрыва в процессе сдвижек почвы, или деформации строения, соответствующий участок делают из гибкого кабеля.

Но гораздо больше проблем возникает с землей. В этой неоднородной среде, подверженной самым разным внешним воздействиям, одинаковая величина  проводимости в течение длительного времени невозможна. Именно поэтому в ПУЭ отдельный раздел посвящен устройствам заземления, которые устанавливаются в почвах с большим удельным сопротивлением (нормы по пунктам 1.7.105. – 1.7.108.).

Ниже перечислены основные рекомендации для таких случаев:

  • Используются металлические элементы (заземлители вертикального типа) увеличенной длины. В частности, допустимо подсоединение к трубам, установленным в артезианские скважины.
  • Заземлители переносят на большое расстояние от дома (не более 2000 м), туда, где сопротивление почвы (Ом) меньше.
  • В скальных и других «сложных» породах прокладывают траншеи, в которые засыпают глину или другой подходящий грунт. Туда, в свою очередь, устанавливают элементы системы заземления горизонтального типа.

Горизонтальные заземлители в системе заземления

Если удельное сопротивление грунта превышает 500 Ом на м, а создание заземлителя сопряжено с чрезмерными затратами,  разрешено превышение нормы заземляющих устройств не более чем в 10 раз. Используется следующая формула для вычисления. Точное значение должно быть: R * 0,002. Здесь величина R – это удельное эквивалентное сопротивление грунта, в Ом на м.

Внутренний и внешний контур

Как правило, главную шину внутри здания устанавливают внутри устройства ввода. Ее допустимо изготавливать только из стали или из меди. Применение алюминия в данном случае не разрешено. Предпринимают меры, предотвращающие свободный доступ к ней посторонних людей. Шина размещается в запирающемся шкафчике, или в отдельном помещении.

К ней подключают:

  • металлические элементы конструкции здания;
  • проводник внешнего контура заземления;
  • проводники РE и PEN типов;
  • металлические трубопроводы и проводящие части систем водоснабжения, кондиционирования и вентиляции.

Внешний контур дома создают, учитывая перечисленные выше нормы ПУЭ по отдельным частям системы. Это позволит получить необходимое минимальное сопротивление системы заземления (Ом), которое достаточно для надежной защиты. Для повторного заземления рекомендуется использовать заземлители естественного типа.

Сопротивление (Ом) повторного заземлителя не определено четко положениями ПУЭ.

Ниже приведены некоторые важные особенности стандартного заземлителя частного дома:

  • Основную часть, вертикальные элементы, устанавливают на небольшом удалении от дома, с учетом параметров грунтов.
  • К ним прокладывают траншею глубиной до 0,8 м и не менее 0,4 м шириной, в которой устанавливаются горизонтальные участки цепи. Точной нормы нет, но размеры траншеи должны быть достаточными для беспрепятственного монтажа элементов.
  • Вертикальные заземлители длиной до 3 м устанавливают в углах равностороннего (по 3 м) треугольника. Эти размеры приведены в качестве примера. Точных нормативов по длине нет. Есть нормы только по максимально допустимому сопротивлению защитной системы.
  • Чтобы проще было забивать их в грунт, концы заостряют.
  • К выступающим частям сварным соединением крепят полосы.
  • Траншеи засыпают равномерным по структуре грунтом, не содержащим щебня.

Монтаж внешнего контура заземления частного дома

Если в цепи заземления применяются болтовые соединения, предпринимают меры против их раскручивания. Как правило, соответствующие узлы приваривают.

Видео. Заземление своими руками

Нормы для испытательных процедур изложены в главе 1.8 ПУЭ, а также в «Правилах технической эксплуатации электроустановок потребителей» (ПТЭЭП, пр. 3.1), действующих с 1.07.2003 г. на основании решения Министерства энергетики России (приказ от 13. 01. 2003 г.). Выполняется визуальный контроль, проверяется целостность соединений. По специальной методике выясняется сопротивление контура системы заземления. Измеренное значение не должно быть выше нормы (Ом). Если такое условие не выполнено, используют заземлитель большей длины или иные технологии, приведенные в данной статье.

Оцените статью:

Контур заземления

Конструкции и размеры контура заземления дома:

Контур заземления представляет собой конструкцию, состоящую из соединённых друг с другом и проложенных в земле заземлителей.

Ориентировочные размеры при устновке в грунт вертикального заземлителя.


Заземлители, выполняя монтаж, устанавливают в ряд или в виде тругольника, квадрата, прямоугольника и т.п., исходя из требований и наличия площади для монтажа. В грунтах с большим удельным сопротивлением один заземлитель [даже глубинный] — может имеет большое сопротивление и для получения требуемой меньшей величины сопротивления растеканию тока приходится устраивать заземление из нескольких, соединённых между собой, единичных заземлителей, включенных параллельно. Такой контур заземления называется многоэлектродным.

Токи, растекающиеся с параллельно соединенных одиночных заземлителей, оказывают взаимное влияние, возрастает общее сопротивление заземляющего контура, которое тем больше, чем ближе расположены вертикальные заземлители друг к другу. Поэтому расстояние между вертикальными заземлителями должно быть не менее их длины.

Верхние слои грунта подвержены значительным изменениям влажности. Вследствие этого сопротивление контура будет тем стабильнее, чем глубже он расположен в грунте.
Для уменьшения влияния климатических условий на сопротивление заземления верхнюю часть заземлителя размещают в грунте на глубину не менее 0,7 метра. Контур устанавливается с меньшими затратами, где грунт имеет низкое удельное сопротивление, эффективность заземления при правильном расчёте выборе его расположения может быть повышена в несколько раз.

Материалы для заземления:

Материалы для контура заземления должны выбираться с учетом защиты от коррозии, соответствующих термических и механических воздействий, эти значения указаны в нормативных документах

Заземлители и проводники, проложенные в земле, должны иметь размеры не менее приведенных в табл. 1.7.4.(ПУЭ)


Дополнения к ПУЭ — это перечень и требования для материалов с антикоррозионными покрытиями ( для омеднённой и нержавеющей стали) — Указаны в ГОСТ Р 50571.5.54-2013 «Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов.»

Виды контуров заземления:

В зависимости от назначения контура заземления, используемой площади и удельного сопротивленя грунта — заземлители, для контура, могут устанавливаться различных видов — некоторые из них:
— Кольцевой контур заземления — чаще всего монтаж производится плоским проводником(полоса). Важный момент — полоса в траншее должна укладываться на ребро. Кольцевой заземлитель является заземлителем поверхности, который должен быть проложен в виде замкнутого кольца на расстоянии 1,0 м и на глубине 0,5/0,7 м в земле вокруг фундамента дома.
— Многоэлектродный контур заземления — это совмещённый монтаж горизонтального и вертикальных заземлителей, чаще всего выполняется в виде треугольника, а при необходимости — с большим количеством электродов.

Для монтажа «треугольника» или контура с большим числом вертикальных заземлителей, могут использоваться модульные электроды — установка выполняется сборным вертикальным стержнем, который поэтапно наращивается и забивается электроинстументом с большой ударной силой на требуемую глубину с одной точки. Такие заземлители в зависимости от вида почвы могут прокладываться в земле вручную или с помощью соответствующих электрических, бензиновых или пневматических молотов.

Сопротивление контура заземления частного дома:

Электросеть загородного частного дома относится к электроустановкам напряжением до 1кВ (1000 Вольт), соответственно сопротивление заземляющего контура не должно превышать допустимые параметры.

Значения сопротивления заземляющих устройств для каждого вида электроустановок должны удовлетворять значениям, приведенным в соответствующих главах Правил(ПУЭ) и таблице 1.8.38.

Наибольшие допустимые значения сопротивлений заземляющих устройств(ПУЭ)

Расчёт контура заземления:

Чтобы правильно произвести расчет- длину и количество заземлителей, входящих в будущую конструкцию контура, нужно знать знать максимальное значение удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Это значение определяется путем измерений удельного сопротивления грунта в месте устройства заземления с учетом коэффициентов влажности.
Если взять значение удельного сопротивления грунта из таблиц(как чаще всего это делают при проектировании в офисе и не выезжая на место строительства), то после монтажа такого контура заземления — расчетное значение может не совпасть с измеренным после выполнения работ..
Поэтому часто в проектах заземления указывают, что если значение сопротивления установленного контура будет превышать допустимое, следует увеличить количество заземлителей, т.е. увеличить объём работ, соответсвенно увеличивается заложенная в смете цена.
Для заземления газового котла расчетное сопротивление не должно превышать 10 Ом.

Подключение контура заземления к электросети дома:

Следует иметь в виду, что только монтажа и подключения контура заземления — не достаточно для обеспечения электробезопасности, например дачи или частного дома и т.п. Для этого, должны быть соблюдены требования к электроустановкам указанные в гавах ПУЭ:
Глава 1.7. «Заземление и защитные меры электробезопасности»
Глава 7.1. «Электроустановки жилых, общественных, административных и бытовых зданий»
Эти требования являются взаимосвязанными и их частичное выполнение может привести к непредсказуемым последствиям, как для электро, так и пожарной безопасности..

Чтобы произвести монтаж и подключение заземления, нужно обладать знаниями по устройству электроустановок и нормативных документов.
Если при монтаже самой конструкции контура своими руками проблем особо не возникает, то при проверке сопротивления и подключении заземляющего устройства в электросеть дома, часто совершаются ошибки.
Когда нет ответа на часть из многих существенных вопросов, неоходимых для монтажа и подключения контура заземления — например:
— Чем отличается система заземления ТТ от системы заземления TN(три типа)?
— Почему эксплуатация электросети дома с системой заземления ТТ без УЗО — запрещена?
— Какая система заземления будет применяться в вашем доме?
— Почему сопротивление растеканиЮ тока является основным показателем качества контура заземления и как оно проверяется во время монтажа?
— и т.п.

В этом случае, чтобы не совершать ошибок, следует изучить правила.

Проверка:

Основной критерий качества установленного контура заземления для частного дома (и не только) — это сопротивление растеканию тока, точное значение которого возможно узнать только после поверки измерительным прибором.

Производить замеры нужно в обязательном порядке и сопротивление заземления должно соответствовать нормативам. Но чаще всего владельцы загородных частных домов при самостоятельном монтаже(или нанятые работники), пренебрегают замерами, без которых нельзя оценить в полной мере качество установленного заземляющего устройства.
При профессиональном монтаже, после установки выполняются приемо-сдаточные испытания согласно ПУЭ и выдаётся электроизмерительной лабораторией протокол. В дальнейшем, измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные ПТЭЭП, а также после каждого капитального ремонта.
Периодичность проверки в полном объеме производится не реже 1 раза в 12 лет.
Проверка коррозионного состояния элементов, находящихся в земле:
Локальные коррозионные повреждения в земле выявляются при осмотрах со вскрытием грунта. Если элементы конструкции выполнены из чёрного металла (уголков, труб, полосы и т.п.), то самыми уязвимыми для коррозии являются сварные соединения и такие места проверяются в первую очередь.

Контур заземления для молниезащиты III Категории.

Молниезащита III Категории (РД 34.21.122-87)
2.26…..каждый токоотвод молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

…….Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.
Из этого следует, что для электорустановки и молниезащиты дома устанавливается общий контур заземления.

Стальная полоса как элемент заземляющего контура

С ростом количества разнообразной потребительской электроники в каждом доме все большее значение начинает обретать система заземления, призванная защитить устройства и их пользователей от неприятных последствий повреждения электросети. В создании подобной системы в большинстве случаев используется стальная полоса, причем далеко не любая. О том, в каких случаях необходимо заземление и какие металлоизделия стоит использовать, мы и поговорим.

Когда нужно заземление?

Большинство маломощных приборов не требует специального заземления, однако определенная бытовая техника без него может быть опасна. В первую очередь к ней относятся:

  • Стиральные машины – отсутствие заземления и постоянный контакт с водой при повреждении цепей питания приводят к пробою на корпус, проявляющимся пощипыванием, покалыванием или даже сильным ударом тока при касании металлических частей.
  • Водонагреватели – ситуация абсолютно аналогична предыдущему примеру, но опасна еще и тем, что человек напрямую контактирует с проводящим электричество потоком воды.
  • Микроволновки – при нагреве пищи происходит выделение пара и разбрызгивание жидкости, что при оголении питающего провода внутри блока управления также может приводить к пробою на корпус.
  • Компьютеры – здесь необходимость заземления обусловлена защитой не пользователя, а самой дорогостоящей техники. При носке синтетических вещей при контакте с металлическим корпусом системного блока между ним и кончиком пальца может пробегать искра статического электричества. При отсутствии заземления ее вполне достаточно для того, чтобы вывести из строя один или несколько чипов на материнской плате. Замене они обычно не подлежат.

Из чего производится заземляющий контур

В большинстве случаев, в том числе и на крупных промышленных предприятиях, используется контур заземления стальной полосой с вертикальными электродами из стального уголка. В качестве опорной точки при расчетах используется общая потребляемая мощность электроприборов, от которой зависит площадь поперечного сечения полосы. Обычно для изготовления контура берется полоса с толщиной и шириной 5х50 мм соответственно.

Кроме того, материал должен обладать хорошей пластичностью, чтобы не ломаться при изгибе, и свариваемостью, так как ей достигается наилучший контакт между отдельными элементами всей конструкции. В связи с этими требованиями, лучше всего себя показывают полосы из низкоуглеродных сталей: ст1/ст1пс, ст2/ст2пс и ст3/ст3пс.

Защита от коррозии

Поскольку полоса стальная для заземления будет непрерывно контактировать с влагой и почвой, то есть, в неблагоприятной среде, для предотвращения преждевременного разрушение принимаются меры для защиты стали от коррозии. Так как нанести защитный слой краски в данном случае не представляется возможным из-за того, что она будет выступать изолятором, применяется предварительное цинкование полосы. Также могут использоваться полосы из меди, которая по своим токопроводящим характеристикам превышают сталь, но из-за дороговизны и сложности в сварке, применяются они существенно реже.

Цинкование в этом случае оказывается «золотой серединой»: с одной стороны оно предлагает действительно надежную защиту, особенно при отсутствии механических воздействий, а с другой – оказывается достаточно дешевым и практичным способом.

Методы цинкования

Наиболее эффективным и удобным является метод горячего цинкования, при котором стальную деталь на короткое время опускают в ванну с расплавленным цинком. В результате под действием высокой температуры на поверхности появляется тонкая феррум-цинковая пленка. А так как цинк устойчив к воздействию влаги, его свойства (при равномерном и непрерывном распределении по всей поверхности) распространяются и на всю стальную деталь.

Дополнительный плюс заключается в том, что горячее цинкование не обязательно должно производиться сразу после изготовления полосы. Для него могут применять уже имеющиеся в запасе металлоизделия и даже целые сварные конструкции, при условии, что их возможно опустить в емкость с цинком.

Главный недостаток подобного метода защиты – усложнение монтажа, так как сварить отдельные оцинкованные детали без повреждения защитного слоя невозможно. Поврежденные участки, в свою очередь, станут очагами для возникновения коррозии. Единственными методами для монтажа контура заземления из стальной полосы в этом случае является:

  • дополнительная защита областей с поврежденным цинковым слоем методом холодного цинкования – нанесением цинксодержащего состава кистью или распылителем;
  • использование болтового соединения элементов.

Минимальные размеры контура заземления. Контур заземления: нормы ПУЭ

В современном мире практически невозможно представить жизнь без техники, работающие с помощью электричества. Можно сказать, что она довольно прочно вошла в жизнь многих и без нее трудно представить «нормальную» жизнь. Но бывает такое что любимое и такое нужно оборудование может внезапно превратиться в источник опасности для жизни. Именно, чтобы избежать таких ситуаций и нужно использовать контур заземления.(рис.1)

Почти все современные дома оснащены всевозможной электротехникой, которая является частью нашей повседневной жизни. Но в случае нарушения изоляции она может превратиться из незаменимого помощника в оборудование, представляющее реальную угрозу для жизни. Чтобы она не возникала, в домах устраивают контур заземления.

Для чего нужен контур заземления?

Заземление – это устройство специальной конструкции, которое будет соединяться с землей (грунтом). В таком случае в такое соединение включают электрические приборы, которые в нормальном своем состоянии не находятся под напряжением. А вот при нарушении условий эксплуатации или иных причин приведших к повреждению изоляции – оно может возникнуть. Поэтому так важно соблюдать нормы заземления контура заземления.

Все дело заключается в следующем – ток всегда стремиться туда, где находиться наименьшее сопротивление. Так при нарушении в оборудование происходит выход тока на корпус изделия. Техника начинает работать с перебоями и постепенно приходить в негодность. Но намного страшнее другое – при прикосновении к такой поверхности, человек получает такой разряд, что просто погибает.

Но при использовании – контура заземления будет происходить следующие. Напряжение будет распределяться между существующим контуром и человеком. Вот только контур заземления в данном случае будет обладать меньшим сопротивлением. И это значит, что человек хоть и почувствует неудобство, но все же весь основной ток уйдет через контур в грунт.

Важно! При устройстве контура заземления важным будет помнить, и соблюдать все необходимое для устройства его с минимальным сопротивлением.

Контур заземления – виды и его устройство

В основном для заземления используются металлические стрежни, которые играют роль электродов. Они соединяются между собой и углубляются на достаточное расстояние в землю. Такая конструкция соединяется с щитом, установленным в доме. Для этого используется полоса из металла нужной толщины. (рис.2)

Само расстояние, на которое погружают электрод, напрямую зависит от высоты расположения грунтовых вод. Чем их залегание выше, тем и выше система заземления. Но при всем этом удаление ее от нужного объекта составляет от одного метра до десяти метров. Это расстояние является важным условием и должно строго соблюдаться.

Расположение электродов зачастую носить форму геометрической фигуры. Зачастую – это треугольник, линия или квадрат. На форму влияет площадь, которую следует обязательно обхватить и удобство монтажа.

Важно! Система заземления в обязательном порядке располагается ниже уровня промерзания грунта, которое существует в конкретном месте.

Основные типы контуров заземления

Так существуют два основных типа технологических решений. Это контуры заземления – глубинный и традиционный.

Так при традиционном способе расположение электродов следующие – одни располагается горизонтально, а остальные вертикально. Первым электродом является стальная полоса, а вторыми являются соответственно стрежни из металла. Все они должны иметь допустимые значения по своему размеру.

Необходимо учитывать, что место для устройства конура необходимо подбирать из того, что он должно быть мало людным. Наилучшим для этого будет подходить теневая сторона с постоянной влажностью почвы.

Но у данного контура заземления существуют и свои минусы:

  • довольно трудное и физически тяжелое его устройство;
  • металлические изделия, из которой состоит контур подвержено коррозии, что не только его разрушает, но им ожжет служить причиной ухудшения проводимости;
  • так как он расположен в верхней части земли, то очень сильно зависит от параметров окружающей среды, которые могут изменить его проводимые характеристики.

Глубинный способ намного эффективнее традиционного. Его изготавливают специализированные производства. И он обладает рядом достоинств:

  • соответствует всем установленным нормам;
  • срок службы значительно продолжительный;
  • не зависит от окружающей среды, благодаря глубине залегания;
  • монтаж довольно прост.

Необходимо учитывать, что после устройства любого из типов контура заземления, необходимо проверить его соответствие на все требования и надежность. Для этого необходимо пригласить специализированных экспертов. У них должна быть лицензия на проведения такой деятельности. После проверки выдается соответствующие заключение. На контур заземления необходимо завести паспорт к нему приложить протокол об проводимых испытаниях и разрешение на использование.(рис. 3)

Важно! Нельзя экономить на материалах при устройстве контура заземления (рис. 4). Иначе его работа будет полностью сведена к нулю.

Контур наружного заземления

Эта система служит для подстанции трансформатора и является замкнутой. Состоит из небольшого количества электродов. Они располагаются по вертикали. Заземлитель по горизонтали, он изготавливается, и полос стали 4*40 мм.

Контур заземления должен обладать сопротивление в 40 м, не как не больше, а земля максимально – 1000 м/м. В настоящее время согласно правилам можно увеличить значения, но не более чем в десять раз для грунта. Из этого можно сделать вывод, что для достижения значения в 40 м нужно произвести вертикальную установку восьми электродов по пять метровых. Они должны быть изготовлены из круга при его диаметре 16 мм. Или можно использовать десять трех метровых, при использовании уголка из стали 50*50 мм.

Наружный контур отводиться от края здания больше чем на метр. Элементы располагающиеся горизонтально закапываются в траншею на расстояние 700 мм от уровня поверхности почвы. Полоску располагают ребром.

Таким образом понятно, что следует четко руководствоваться существующими нормами. Так контур заземления ПУЭ отражен в главе 1.7. Н так же необходимо следить за всеми изменениями в требованиях, которые могут случаться довольно часто.

Чтобы контур заземления эффективно выполнял свои функции, необходимо использование норм, которые приведены в «Правилах устройства электроустановок». Они утверждены Министерством энергетики России, приказом от 08. 07. 2002 г. Сейчас действительной является седьмая редакция. Но перед реализацией конкретного проекта необходимо уточнить новейшие изменения. Так как далее в статье есть ссылки на этот документ, будут применяться следующие сокращения: «ПУЭ», или «Правила».

Типовые схемы контуров заземления дома

Для чего выполнять требования

Может показаться, что неукоснительное соблюдение Правил избыточно, необходимо только для прохождения официальных проверок, ввода в действие объекта недвижимости. Конечно, это не так.

Нормативы созданы на основе научных знаний и практического опыта. В ПУЭ есть следующие сведения:

  • Формулы для расчетов отдельных параметров защитной системы.
  • Таблицы с коэффициентами, которые помогают учесть электротехнические характеристики разных проводников.
  • Порядок проведения испытаний и проверок.
  • Специализированные организационные мероприятия.

Применение на практике этих нормативов позволит предотвратить поражение электрическим током людей и животных. Создание контура должно быть безупречным, в точном соответствии с Правилами. Это снизит вероятность возгораний при авариях, поможет исключить развитие негативных процессов, способных нанести ущерб имуществу.

В данной статье рассматриваются вопросы защиты частного дома. Таким образом, будут изучаться те разделы ПУЭ, которые относятся к работе с напряжением до 1 000 V.

Составные части системы

Ключевым параметром данной системы является сопротивление заземления. Сопротивление заземления должно быть настолько малым, чтобы именно по такому пути шел ток при возникновении аварийной ситуации. Это обеспечит защиту при случайном прикосновении человека к поверхности, на которую подано напряжение.

Для получения необходимого результата шасси и корпуса бытовых устройств дома соединяют с главной шиной заземляющего устройства, создается внутренний контур. К нему же подключают металлические элементы конструкции здания, трубы водопровода. Подробно состав такой системы выравнивания потенциалов описан в ПУЭ (п.1.7.82). Снаружи строения устанавливается другая часть защиты, внешний контур. Его также подключают к главной шине. Для оснащения частного дома можно использовать разные схемы. Но проще всего заглубить в землю металлические стержни.

В следующем списке приведены отдельные компоненты системы и требования к ним:

  • Провода, которыми подсоединяются утюги, стиральные машины и другие конечные потребители. Они находятся внутри сетевого кабеля, поэтому необходимо только наличие соответствующей линии заземления, подключенной к розетке. В некоторых ситуациях, при установке варочных панелей, духовых шкафов, иного встроенного в мебель оборудования, требуется подсоединение корпусов отдельным проводом.
  • В качестве общей шины можно использовать не только специальный провод, но и «естественные» проводники такие, как металлические каркасы зданий. Исключения и точные правила будут рассмотрены ниже. Здесь же надо отметить, что этот участок прохождения тока надо создавать так, чтобы предотвратить механические повреждения в процессе эксплуатации.
  • Наружный контур частного дома создают из металлических элементов без изоляции. Это увеличивает вероятность разрушения процессом коррозии. Для снижения этого негативного воздействия используют цветные металлы. Места сварных соединений стальных деталей покрывают битумными смесями и другими составами аналогичного назначения.
  • Реальное сопротивление заземляющего устройства такого типа будет зависеть от характеристик грунта. Глина и сланцы хорошо удерживают влагу, а песок – плохо. В каменистых грунтах сопротивление слишком велико, поэтому понадобится искать другое место для установки, или погружать заземлитель еще глубже. В особо засушливые периоды, чтобы сохранить функциональность устройства рекомендуется регулярный полив почвы.

Почвы обладают разной проводимостью

Проводники системы заземления

Частью внутреннего контура являются изолированные провода. Их оболочки делают цветными (чередующиеся зеленые и желтые продольные полосы). Такое решение уменьшает ошибочные действия при выполнении монтажных операций. Подробно требования изложены в разделе «Защитные проводники» Правил, начиная с раздела 1.7.121.

В частности, там приведена методика простого расчета допустимой площади изолированного проводника в сечении (без поверхностного слоя). Если фазный провод меньше, или не превышает 16 мм 2 , то выбирают равные диаметры. При увеличении размеров применяют иные пропорции.

Для точных расчетов используется формула из пункта 1.7.126 ПУЭ:

/ k , где:

  • S – сечение проводника заземления в мм 2 ;
  • I – ток, проходящий по нему при коротком замыкании;
  • t – это время в секундах, за которое автомат разорвет цепь питания;
  • k – специальный комплексный коэффициент.

Величина тока должна быть достаточной для срабатывания автомата за время, не превышающее пяти секунд. Чтобы система была рассчитана с определенным запасом, выбирают ближайшее большее по типоразмеру изделие. Специальный коэффициент берут из таблиц 1.7.6., 1.7.7., 1.7.8. и 1.7.9. Правил.

Если планируется использовать многожильный алюминиевый кабель, в котором один из проводников – защитный, то применяют следующие коэффициенты с учетом разных изоляционных оболочек.

Таблица коэффициентов с учетом типа изоляционных оболочек

В качестве следующих элементов внутреннего контура частного дома допустимо применение конструкционных деталей. Подойдет металлическая арматура, которая находится внутри железобетонных изделий.

При использовании такого варианта обеспечивается непрерывность цепи, предпринимаются дополнительные меры для защиты от механических воздействий. Учитываются особенности конкретного строения, структурные деформации, которые возникают в процессе усадки.

Не разрешается использовать:

  • Части трубопроводных систем газоснабжения, канализации, отопления, газоснабжения.
  • Трубы водоснабжения из металла, если они соединяются с применением прокладок, изготовленных из полимеров, иных диэлектрических материалов.
  • Стальные струны, использующиеся для крепления светильников, гофрированные оболочки, иные недостаточно прочные проводники, либо изделия, находящиеся под относительно большой для их параметров загрузкой.

Если используется отдельный медный проводник, не входящий в состав кабеля цепи питания, или он находится не в общей изоляционной, защитной оболочке с фазными проводами, допустимо следующее минимальное сечение в мм 2:

  • при дополнительной защите от механических воздействий – 2,5;
  • в случае отсутствия таких предохранительных средств – 4.

Этот медный проводник не защищен от случайного механического повреждения

Алюминий менее прочен по сравнению с медью. Поэтому сечение проводника из такого металла (вариант – отдельная прокладка) должно быть равно, или более следующей нормы: 16 мм 2 .

Какое должно быть сечение проводников внешнего контура заземления дома можно посмотреть в таблице ниже.

Сечение проводников внешнего контура заземления

При проходе через внешнюю толстую стену дома проще просверлить тонкое отверстие. Его изнутри можно укрепить трубкой подходящих размеров. Медный провод не сложно будет согнуть под углом для присоединения к стальной шине внешнего контура.

Допустимое сопротивление заземляющего устройства определено в п. 1.7.101 ПУЭ. Сводные нормы приведены в таблице ниже.

Нормы допустимого сопротивления заземляющего устройства

При подсоединении заземлителя к нейтрали генератора, или другого источника
2 4 8
380 220 127
660 380 220
На близком расстоянии от заземлителя до источника тока
Сопротивление заземляющего устройства, Ом 15 30 60
Напряжения (V) в сети однофазного тока 380 220 127
Напряжения (V) в сети трехфазного тока 660 380 220

Приведенные выше нормы справедливы для случаев, когда сопротивление грунта (удельное) не превышает порог R=100 Ом на метр. В противном случае допустимо увеличение сопротивления с умножением исходного значения на R*0,01. Итоговое сопротивление заземлителя не должно быть больше, чем в 10 раз исходного значения.

За городом для подключения дома часто используют воздушные линии электропередачи. Поэтому уместно упомянуть нормы ПУЭ, относящиеся к соответствующей ситуации. Если проводник одновременно выполняет функции защитного и нулевого (PEN-типа), то на концах таких линий, участках подключения потребителей устанавливают устройство повторного заземления. Как правило, такие действия обязана выполнить энергетическая компания, но хозяину дома следует сделать соответствующую проверку. В качестве заземлителя используют металлические части опор, заглубленные в грунт.

Заземление воздушной линии электропередачи

При выборе комплектующих элементов личного внешнего контура, который будет установлен в земле, используют следующие нормы ПУЭ.

Параметры комплектующих элементов внешнего контура заземления по нормам ПУЭ

Профиль
изделия в
сечении
Круглый (для
вертикальных
элементов
системы
заземления)
Круглый (для горизонтальных
элементов
системы
заземления)
Прямоугольный Угловой Коль-
цевой
(труб-
ный)
Сталь черная
Диаметр, мм 16 10 32
100 100
Толщина стенки, мм 4 4 3,5
Сталь оцинкованная
Диаметр, мм 12 10 25
Площадь сечения в поперечнике, мм 2 75
Толщина стенки, мм 3 2
Медь
Диаметр, мм 12 20
Площадь сечения в поперечнике, мм 2 50
Толщина стенки, мм 2 2

Если повышен риск повреждения горизонтальных участков окислительными процессами, применяют следующие решения:

  • Увеличивают площадь сечения проводников выше нормы, указанной в ПУЭ.
  • Применяют изделия с гальваническим поверхностным слоем, либо изготовленные из меди.

Траншеи с горизонтальными заземлителями засыпают грунтом с однородной структурой, без мусора. Повысить сопротивление способно чрезмерное осушение грунта, поэтому в летние периоды, когда долго нет дождей, специально поливают соответствующие участки.

При прокладке контура заземления избегают соседства с трубопроводами, повышающими искусственно температуру почвы.

Какое должно быть сопротивление

Прочность металлических проводников, их электрическое сопротивление определить несложно. Если должно быть определенное сопротивление по ПУЭ, то соблюдение правил не будет чрезмерно сложным. Так, например, для заземления опор воздушных линий установлен максимально допустимый норматив 10 Ом, если эквивалентное сопротивление грунта не превышает 100 Ом*м (Таблица 2.5.19.). Целостность сварных соединений обеспечивают дополнительной защитой антикоррозийным слоем. При риске разрыва в процессе сдвижек почвы, или деформации строения, соответствующий участок делают из гибкого кабеля.

Но гораздо больше проблем возникает с землей. В этой неоднородной среде, подверженной самым разным внешним воздействиям, одинаковая величина проводимости в течение длительного времени невозможна. Именно поэтому в ПУЭ отдельный раздел посвящен устройствам заземления, которые устанавливаются в почвах с большим удельным сопротивлением (нормы по пунктам 1.7.105. – 1.7.108.).

  • Используются металлические элементы (заземлители вертикального типа) увеличенной длины. В частности, допустимо подсоединение к трубам, установленным в артезианские скважины.
  • Заземлители переносят на большое расстояние от дома (не более 2000 м), туда, где сопротивление почвы (Ом) меньше.
  • В скальных и других «сложных» породах прокладывают траншеи, в которые засыпают глину или другой подходящий грунт. Туда, в свою очередь, устанавливают элементы системы заземления горизонтального типа.

Горизонтальные заземлители в системе заземления

Если удельное сопротивление грунта превышает 500 Ом на м, а создание заземлителя сопряжено с чрезмерными затратами, разрешено превышение нормы заземляющих устройств не более чем в 10 раз. Используется следующая формула для вычисления. Точное значение должно быть: R * 0,002. Здесь величина R – это удельное эквивалентное сопротивление грунта, в Ом на м.

Внутренний и внешний контур

Как правило, главную шину внутри здания устанавливают внутри устройства ввода. Ее допустимо изготавливать только из стали или из меди. Применение алюминия в данном случае не разрешено. Предпринимают меры, предотвращающие свободный доступ к ней посторонних людей. Шина размещается в запирающемся шкафчике, или в отдельном помещении.

К ней подключают:

  • металлические элементы конструкции здания;
  • проводник внешнего контура заземления;
  • проводники РE и PEN типов;
  • металлические трубопроводы и проводящие части систем водоснабжения, кондиционирования и вентиляции.

Внешний контур дома создают, учитывая перечисленные выше нормы ПУЭ по отдельным частям системы. Это позволит получить необходимое минимальное сопротивление системы заземления (Ом), которое достаточно для надежной защиты. Для повторного заземления рекомендуется использовать заземлители естественного типа.

Сопротивление (Ом) повторного заземлителя не определено четко положениями ПУЭ.

Ниже приведены некоторые важные особенности стандартного заземлителя частного дома:

  • Основную часть, вертикальные элементы, устанавливают на небольшом удалении от дома, с учетом параметров грунтов.
  • К ним прокладывают траншею глубиной до 0,8 м и не менее 0,4 м шириной, в которой устанавливаются горизонтальные участки цепи. Точной нормы нет, но размеры траншеи должны быть достаточными для беспрепятственного монтажа элементов.
  • Вертикальные заземлители длиной до 3 м устанавливают в углах равностороннего (по 3 м) треугольника. Эти размеры приведены в качестве примера. Точных нормативов по длине нет. Есть нормы только по максимально допустимому сопротивлению защитной системы.
  • Чтобы проще было забивать их в грунт, концы заостряют.
  • К выступающим частям сварным соединением крепят полосы.
  • Траншеи засыпают равномерным по структуре грунтом, не содержащим щебня.

Монтаж внешнего контура заземления частного дома

Если в цепи заземления применяются болтовые соединения, предпринимают меры против их раскручивания. Как правило, соответствующие узлы приваривают.

Видео. Заземление своими руками

Нормы для испытательных процедур изложены в главе 1.8 ПУЭ, а также в «Правилах технической эксплуатации электроустановок потребителей» (ПТЭЭП, пр. 3.1), действующих с 1.07.2003 г. на основании решения Министерства энергетики России (приказ от 13. 01. 2003 г.). Выполняется визуальный контроль, проверяется целостность соединений. По специальной методике выясняется сопротивление контура системы заземления. Измеренное значение не должно быть выше нормы (Ом). Если такое условие не выполнено, используют заземлитель большей длины или иные технологии, приведенные в данной статье.

(сопротивление растеканию электрического тока) — величина «противодействия» растеканию электрического тока, поступающего в землю через заземлитель.

Величина измерения сопротивления заземления — Ом и оно должно быть минимально низким по значению. Идеальным случаем считается, если величина будет нулевая, это означает при пропускании «вредных» электротоков какое-либо сопротивление отсутствует, что гарантирует ПОЛНОЕ поглощение их землей. Так как достигнуть идеала практически невозможно, то вся электроника и электрооборудование создаются на основе некоторых нормированных величин сопротивления заземления равно 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

С подключением к электросетям имеющим 220 Вольт / 380 Вольт, заземление необходимо иметь для частных домов с рекомендованным сопротивлением не больше, чем 30 Ом.

Согласно ПУЭ 1.7.101, не должно превышать 4 Ом при подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора). Без проведения каких-либо дополнительных мероприятий выполняется данное условие, при правильном заземлении источника тока (генератора или трансформатора).

Выполняться должно стандартное требование для заземления дома при выполнении подключения к дому газопровода, но необходимо выполнять локальное заземление с сопротивлением не более 10 Ом, из-за использования опасного типа оборудования (для всех повторных заземлений ПУЭ 1.7.103).

Быть должно не больше чем 10 Ом (РД 34.21.122-87, п. 8) для заземления, которое используется при подключении молниеприемников.

Исходя из ПУЭ 1.7.101, требуется не более чем 2, 4 и 8 Ом сопротивление заземления для источника тока (генератора или трансформатора), соответственно при линейных напряжениях источника трехфазного тока: 660, 380 и 220 В или источника однофазного тока: 380, 220 и 127 В.

В устройствах защиты воздушных линий связи (например, радиочастотный кабель или локальная сеть на основе медного кабеля) сопротивление заземления к которому подключаются газовые разрядники должно быть не более 2 Ом, это необходимо для уверенного их срабатывания. Также встречаются экземпляры и с требованием значения в 4 Ом.

Заземление при выполнении подключения телекоммуникационного оборудования, иметь сопротивление должно не больше 2 или 4 Ом.

Сопротивление растеканию токов для подстанции не должно превышать 0,5 Ом (ПУЭ 1.7.90).

Но справедливы приведенные выше нормы сопротивления заземления только для нормальных грунтов, имеющих удельное электрическое сопротивление не превышающее 100 Ом*м (глина или суглинки).

Однако, если грунт обладает более высоким удельным электрическим сопротивлением, то очень часто (но не всегда) повышается минимальное значение сопротивление заземления на величину равную 0,01 от удельного сопротивления грунта.

Например, с удельным сопротивлением в 500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S при песчаных грунтах, повышается в 5 раз, вместо 30 Ом, оно становится 150 Ом.

Для произведения расчета сопротивления заземления были разработаны специальные методики и формулы, которые описывают зависимости от приведенных факторов.

Основным качественным показателем заземлителя является сопротивление заземления и зависит оно напрямую от следующих факторов:

1. Удельного сопротивления грунта

2. Конфигурации заземлителя, в частности от площади электрического контакта электродов заземлителя с грунтом

Удельное сопротивление грунта.

Определяет собой удельное сопротивление грунта уровень «электропроводности» земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. тем меньшее значение будет иметь, чем у этой величины будет меньший размер.

Удельное электрическое сопротивление грунта (Ом*м) — измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин — «удельное сопротивление грунта».

Конфигурация заземлителя.

Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

  • Увеличить длину (глубину) электрода.
  • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

Площади единичных электродов в таком случае просто складываются вместе.

Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.

Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:

  1. Каркасы зданий (железобетонные или металлические), которые соединены с землей.
  2. Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
  3. Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
  4. Опоры высоковольтных линий электропередач
  5. Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)

Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.
Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.

Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.

Классификация систем заземления

Различают следующие системы заземления:

  • Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
  • Система TT
  • Система IT

Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.

Система ТN

Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.

Система TT

Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.

Система IT

Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом с контуром заземления здания, выполненного из полосы металла при помощи сварки.


Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм 2 Наименьшее сечение защитных проводников, мм 2
S≤16 S
16 16
S>35 S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.


Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

При строительстве нового жилого здания хозяева недвижимости стараются обеспечить его различными средствами защиты, в том числе и от удара молнии. Для этого обязательно нужно сделать правильный контур заземления по всем стандартам, так как в противном случае он не гарантирует надежную защиту. В связи с этим возникает потребность в тщательном изучении правил и норм ПУЭ.

Нормы ПУЭ являются собирательной группой специальных нормативных правовых актов, которые были написаны при СССР Министерством энергетики – правила устройства энергоустановок. Данные правила устройства электроустановок содержат описание того, как правильно следует создавать электропроводку в жилых домах, заводских помещениях и других структурах, они имеют описание различных устройств, а также принцип их построения. ПУЭ включают в себя условия прокладывания коммуникаций электроустановок, узлов, требования к определенным системам и их отдельным элементам.

Очень часто нормы ПУЭ используются при установке электрического освещения зданий, различных помещений, а также улиц, поселков, территорий определенных учреждений или предприятий. В них есть содержание условий по монтажу ультрафиолетового облучения в оздоровительных структурах, рекламы с осветительными приборами и другое. При укладывании проводки в зданиях обращаются к конкретному разделу норм ПУЭ.

В отдельных разделах можно найти рекомендации по тому, как сделать контур заземления, как установить защитные устройства электросети, и другие правила по эксплуатации различного электрооборудования. Более подробно и точно об условиях использования такого оборудования написано в Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП).

На сегодняшний день, если соблюдать все правила ПУЭ по монтажу и соединению проводки разного типа, прокладыванию контур заземленияа заземления или других технических решений, стоимость таких работ будет очень высокой. По этой причиной этими нормами руководствуются поверхностно, соблюдая лишь самые важные указания, а для других стараются найти альтернативное решение. Несмотря на дороговизну, данные правила позволяют обеспечить эффективную защиту здания любого типа от различных негативных факторов.

Видео “Делаем контур и разметку. Часть 1”

Нормы относительно контур заземленияа

Монтаж контура заземления настоятельно рекомендуется делать со ссылкой на нормы ПУЭ. Такой подход позволит сделать все необходимые соединения и подключение контура правильно с соблюдением всех стандартов. Это обеспечит надежную работу системы защиты в здании, предотвратив негативные последствия природных или антропогенных факторов. Чтобы сделать контур заземления своими руками следует иметь некоторые познания в сфере электротехники. Перед работой рекомендуется прочитать необходимую литературу, а также разделы ПУЭ, которые ссылаются на монтаж контура заземления.

Согласно действующим Правилам устройств электроустановок повторный контур обязательно должен размещаться в местах выхода из любого типа здания. На места повторного контура заземления следует устанавливать естественные заземлители. В правилах указаны некоторые триммеры металлоконструкций, которые подходят под контур заземления. Среди них можно встретить железобетонные конструкции, металлические массивные детали, которые должны соприкасаться с землей болей частью свое поверхности. Если контур подключен в агрессивной среде, то такие конструкции должны иметь особое защитное покрытие. Также для заземляющего элемента подойдет водопроводная металлическая труба, которая вкапывается глубоко в землю, или длинные рельсы с не электрифицированных железных дорог.

Обязательно нужно обратить внимание на пункт ПУЭ, где указываются элементы, которые нельзя использовать в качестве контура заземления. К ним относятся железобетонные конструкции с металлическими элементами, которые находятся под напряжением, а также трубопроводы с горючими веществами, отопительные и канализационные трубы. Если контур должен быть сделан с использованием естественного заземлителя (грунт, фундамент под зданием), то предварительно нужно сделать теоретические расчеты и схему подключения.

Обычно во время строительства нового здания контур заземления изготавливается искусственно, закапывая под землю опоры. Данный способ считается более универсальным и на практике применяется гораздо чаще. Это продиктовано тем, что далеко не во всех местах есть подходящие условия для естественного заземления.

Очень важным фактором, которые оказывает влияние на контур, является сопротивление грунта. Так в местах с высокой влажностью грунтов сопротивление будет низким. Значительные проблемы при монтаже возникают на сухой почве. Например, песчаные грунты, скалистые или каменные породы совершенно не подходят для таких работ.
В нормативных документах указано точное значение сопротивления, определяющего уровень растекания тока, а также какое сопротивление должен иметь контур.

В бытовых электроустановках используется два типа заземления.

Традиционный контур заземления. В данном случае основной элемент заземления должен быть изготовлен из нескольких вертикальных опор и одного горизонтального. Они должны иметь круглое сечение и быть ровными. Для этого можно использовать стальные прутья, трубы или толстую арматуру. Для обычных частных домов желательно использовать опоры крупных размеров. Если используется стальная арматура, то можно взять 3 таких элемента размерами от 2 метров. Они выставляются так, чтобы образовался равносторонний треугольник, если место установки арматуры буду вершины условной фигуры. Перед тем как начать установку опор, нужно измерить расстояние между ними. Чем больше между ними пространства, тем лучше. Желательно, чтобы размеры дистанции между заземляющими элементами были не менее 1,5 метра. Убедившись, что измерения соответствуют норме, можно приступить к монтажу контура.

Когда элементы будут забиты в грунт, следует сделать надежное соединение между ними. Присоединить можно отдельными крепежами на одинаковой высоте. Соединение всех опор делается при помощи горизонтальных заземлителей ближе к верхней части электродов. По нормам ПУЭ соединения должны быть изготовлены из стали или меди. Присоединить каждый элемент к поперечному электроду можно при помощи сварки. Такой способ более надежный, чем подвижные крепления (гайки, болты). Что касается размеров этих электродов, то они имеют нормированные наименьшие значения. При установке следует отдавать предпочтение более длинным опорам. Их толщина регламентирована правилами устройства электроустановок в таблице 1.7.4.

Например, если контур изготовлен из медного проводника, то он должен быть размерами не менее 1,2 сантиметров в сечении. Если он изготовлен из листа черной стали, тогда его толщина должна быть больше 4 сантиметров, а длинна сечения более 10.

Когда контур заземления рассматривается для жилых зданий, то его нужно размещаться в том месте, где люди бывают редко. Желательно выбрать северную сторону. Так как эта часть освещается реже, то земля сохраняет больше влаги.
Расстояние до стен здания должно быть больше 1 метра.

Глубинный контур заземления. Такой тип исключает большую часть недостатков, которые присутствуют в традиционном способе. Этот метод подразумевает модульно-штыревую систему. Данная конструкция делается на специализированных заводах и имеет сертификат. Модульно-штыревая система имеет ряд преимуществ. В первую очередь, это соответствие всем техническим нормам и стандартам. Она имеет высокий срок эксплуатации, более 30 лет. У этой конструкции всегда стабильное сопротивление растекания электрического заряда при любых погодных условиях. Опоры загоняются в землю на 25-30 метров вглубь, что обеспечивает надежное заземление крупных зданий.

Такую систему не нужно постоянно проверять, так как она достаточно простая и надежная. Схема и расчет заземлителей модульно-штыревой системы проще, чем сделанная своими руками система защиты.

Когда частный дом или отдельное помещение было оборудовано, то перед его подключением следует провести измерение фактических показаний всей системы. Если после измерений показатели соответствуют нормативным данным, то установка и присоединение контура были сделаны правильно. Измерения подобного рода, а также проверку подключения и схему установки, проверяет специальная сертифицированная электролаборатория. После проверки она выдает экспертное техническое заключение с отдельным номером, а затем вносится в реестр. Сделав измерения в основных местах соединения, а также сопротивление, заполняют технический паспорт для контуров заземления, оформляют протокол испытательных работ и подписывают акт приема в эксплуатацию соответствующей системы.

В помещениях должны быть установлены специальные розетки, которые рассчитаны на подключения провода с заземление. Чтобы сделать подключение, заранее нужно прокладывать трехжильный силовой кабель с заземляющим проводом. Кроме фазы и «ноля», провод с «землей» также присоединяется к розетке. Его нужно подключить к клемме, которая расположена между гнездами розетки.

Перед началом работ нужно сделать схему контура заземления, а также необходимо провести соответствующие измерения. Для каждого помещения или целого дома существуют правила для расчетов. Схема конкретного здания выполняется отдельно. К примеру, возьмем во внимание небольшой загородный дом. Для расчетов контура заземления нужно иметь исходные данные:

  • грунт. Глиняная почва с сопротивлением в 60 Ом*м.
  • элементы заземления. Металлический уголок с размерами: толщина – 50 мм, длина – 2,5 м, ширина – 5 см.
  • расстояние между опорами – 2,5 м.
  • глубина траншеи для конструкции – 0,7 м.
  • нужен показатель сопротивления для заземления в размере 10 Ом.

Для расчетов все данные должны быть преобразованы к одной единицы измерений (для длины в метрах). Из таблиц ПУЭ определяются коэффициенты для конкретных климатических условий и длинны вертикальных опор. Фактическое значение сопротивление почвы будет отличаться от теоретического, так как на расчеты влияет погода в регионе. С данными измерений используем 2-ю климатическую зону.

Используя эти измерения и данные, при расчетах по основной формуле получим значение R=27, 58 Ом. После того как было определено значение сопротивление единичной опоры заземления, оно используется при расчете количества необходимых заземляющих элементов в конструкции. В данном случае их должно быть 3. После того как были получены результаты расчетов, нужно составить условную схему. Это позволяет упростить понимание конструкции, и записать значения всех ее элементов отдельно. Схему желательно сохранить после монтажа на случай необходимости повторных работ с заземляющим контуром. Так как делать расчеты и схему самостоятельно трудно, то можно воспользоваться приведенными значениями. Но нужно учитывать почву, на которой расположен дом.

Определение размеров контуров заземления

Термин «контур заземления» часто используется в проектной литературе в качестве заменителя любой цепи, вызывающей шум заземления.

По правде говоря, контур заземления — одна из многих проблем электрической конструкции, которые могут вызывать или усиливать существующий шум заземления. Как в печатных платах, так и в проводных системах контур заземления по определению представляет собой любую законченную цепь заземления с низким сопротивлением. Это может быть очевидно, как в случае с заземляющим экраном с воздушным зазором внутри:

Рисунок 1: Контур заземления в медной плоскости.

Это явление также может быть более абстрактным, например, в схемах связи:

Рисунок 2: Цепь связи (слева) с выделенным контуром заземления (справа)

Цепи заземления

обычно вызывают проблемы из-за одного из трех событий:

  1. Магнитные поля переменного тока проходят через контур (или магнитные поля постоянного тока, если контуры заземления перемещаются относительно них). Изменяющийся поток индуцирует ток в контуре. Это единственный способ, которым контур заземления сам по себе может генерировать зашумленный ток.

    Рисунок 3: Ток, индуцированный магнитным потоком.

  2. Две или более цепи, соединяющиеся с контуром заземления, индуцируют разные уровни напряжения на их соответствующих заземлениях.

    Рисунок 4: Множественный опорный ток заземления.

  3. Две или более цепи присоединяются к контуру заземления на значительном расстоянии друг от друга, создавая радиочастотный шум. Высокочастотные сигналы могут вызывать шум в цепях значительной длины (цепи с длиной более 1/20 длины волны)

Важно помнить, что шум земли может существовать без контура заземления.Например, внешняя цепь может сама создавать шум земли:

Рисунок 5: Шум от земли от внешней цепи.

В компании Ball Systems мы склонны использовать следующие три метода для устранения шума из-за контуров заземления. Эти методы являются отраслевым стандартом рентабельности и надежности.

  1. Уменьшение площади контура: это помогает снизить эффективный магнитный поток переменного тока. Если площадь воздушного зазора в медной плоскости или площадь между проводами в системе уменьшится, через контур заземления будет проходить меньший поток, и наведенный ток будет меньше.

    Рисунок 6: Уменьшение площади петли.

  2. Изолируйте путь заземления: этот метод предотвращает прохождение тока через контур заземления с помощью трансформаторов или оптоизоляторов, которые будут поддерживать уровни напряжения между путями сигнала и заземления. Возникнут такие осложнения, как паразитная емкость и затухание постоянного тока.

    Рисунок 7: Размещение трансформатора и оптоизолятора

  3. Используйте синфазный дроссель: это отличный метод ослабления высокочастотного синфазного шума.

    Рисунок 8: Синфазный дроссель.

Есть несколько способов устранить контуры заземления, но следует обратить внимание на то, чтобы не жертвовать безопасностью, нарушая любые необходимые заземляющие соединения. Доступны несколько вариантов, позволяющих сбалансировать доступность места, стоимость и эффективность, и важно определиться, на каком именно треугольнике сосредоточены ваши интересы.

Если вы заинтересованы в сотрудничестве с нами над вашим следующим проектом, свяжитесь с нами по телефону (317) 804-2330.

Длина петли, подземные питатели и др.

Если у вас есть проблема, связанная с Национальным электротехническим кодексом (NEC), вы испытываете трудности с пониманием требований Кодекса или задаетесь вопросом, почему или существует ли такое требование, спросите Чарли, и он предоставит решение Кодексу.Вопросы можно отправлять на [email protected] Ответы основаны на NEC 2011 года.

Длина контура
В ноябрьском выпуске вы заявляете, что «NEC 314.16 (B) (1) позволяет один раз подсчитать каждый проводник, который проходит через коробку без заделки или стыка, но не ограничивает длину контура проводника. . » Длина петли не ограничена; однако есть ограничение. «Каждая петля или катушка непрерывного проводника не менее чем в два раза превышает минимальную длину, требуемую для свободных проводников в 300.14 должно быть пересчитано дважды ». Это позволяет в будущем сращивать провод без нарушения требований к заполнению коробки или добавления удлинительного кольца.
Да, спасибо за дополнительные разъяснения. Заливку проводника следует рассчитать по Таблице 314.16 (B) (1). Кроме того, проводник, у которого нет части, выходящей из коробки, не учитывается. Это относится к проводникам, подключенным к устройствам, прикрепленным к коробке.

Проводники для подземных фидеров
При определении размеров проводов для подземных фидеров подстанции, предоставляют ли таблицы достаточно данных для правильного определения размеров проводников, или следует использовать расчеты для обеспечения правильного размера? НЭК 310.60 (B), кажется, говорит то же самое, но не одно над другим. Моя интерпретация такова, что таблицы и коэффициенты снижения характеристик охватывают все, а затем некоторые для правильного определения размеров. Когда я ссылаюсь на 310.60 (D), я понимаю, что этот раздел является средством для фактического уменьшения размеров проводников, как показано в таблицах, может быть, на целых два размера проводников. Если вы размер по таблицам, нужно ли вам проверять с помощью расчета и / или тепловизора?
NEC не предназначен для использования в качестве руководства по проектированию (90.1С). Проверка конструкции посредством расчетов, безусловно, является минимальным требованием для любого дизайнера.

Место отключения фотоэлектрических модулей
Что касается запроса об определении места отключения фотоэлектрических (PV), хотя это и не является требованием NEC как таковое, коммунальные предприятия, похоже, повсеместно настаивают на местоположении по счетчику, чтобы, если счетчик должен быть заменен или удален, обслуживающий персонал, выполняющий это изменение, может отключить питание фотоэлектрической системы, чтобы исключить возможность обратной подачи от фотоэлектрической системы к счетчику.Мы выполнили множество фотоэлектрических установок и обнаруживаем, что это требуется почти каждый раз.
NEC 690.14 (C) (1) показывает требования к расположению средств отключения фотоэлектрических систем. Он должен быть установлен в легкодоступном месте за пределами здания или внутри, ближайшем к точке входа системных проводников. Коммунальное предприятие или уполномоченный орган могут потребовать определенные местоположения средств отключения фотоэлектрических систем.

Непрерывность пути заземления
В недавнем вопросе по Кодексу вы заявили, что независимо от того, к какой стороне водомера вы подключены, вы должны быть связаны вокруг него.В нашем районе счетчики находятся недалеко от ул. Перед тем, как войти в дом, в земле проложено более 10 футов трубы. Почему требуется залог?
Непрерывность пути заземления не должна зависеть от счетчиков воды. Эту информацию можно найти в NEC 250.53. Чтобы его можно было использовать в качестве заземляющего электрода, для заземляющего пути требуется не менее 10 футов подземной металлической водопроводной трубы, непосредственно контактирующей с землей. Итак, в вашем районе в доме нет счетчиков воды.Что ж, вам не нужно связываться вокруг чего-то, чего нет. NEC 250.50 описывает систему заземления — электродов. В вашем вопросе металлическая подземная водопроводная труба квалифицируется как заземляющий электрод и должна быть дополнена дополнительным электродом, который обычно соответствует требуемому электроду в бетонном корпусе.

Высота розетки
У NEC нет минимальной высоты для розеток. Закон об американцах с ограниченными возможностями требует, чтобы в коммерческих помещениях все розетки располагались на высоте 18 дюймов или выше над полом, а все переключатели — на высоте 48 дюймов или ниже.Эти требования распространяются на места проживания инвалидов в жилых домах.
У NEC есть исключение из 210.52 (C) (5), в котором указаны места расположения розеток на столешнице в строительстве для людей с ограниченными физическими возможностями.

Джемперы установлены или сняты?
Я получил трансформаторы тока для фитинга трансформатора тока, который я установил, и на вторичных клеммах были установлены перемычки. Служба под напряжением. Я собирался снять перемычки, но мне сказали не делать этого.Я думал, закоротив их, трансформаторы сгорят. Вы можете это объяснить?
Когда первичная обмотка находится под напряжением, а вторичная обмотка разомкнута (перемычки сняты и вторичная нагрузка отсутствует), нет противодействующей магнитной силы, ограничивающей магнитный поток сердечника. Небольшой первичный ток вызовет очень высокое напряжение на вторичной обмотке. Это напряжение в этих условиях может достигать значения, которое может повредить изоляцию и быть опасным для жизни. Например, если линейное напряжение составляет 120 вольт (В), а соотношение витков составляет 120 к 1, напряжение обмотки составляет 120 120 или 14 400 В.Есть много других применений трансформаторов тока, помимо измерения трансформаторов. Измерительные приборы, такие как амперметры, релейное оборудование и другие, используют трансформаторы тока. Большинство этих инструментов оснащены короткозамыкающим переключателем, когда счетчик не подключен. В стандарте NEC 110.23 «Трансформаторы тока» говорится: «Неиспользуемые трансформаторы тока, связанные с цепями, потенциально находящимися под напряжением, должны быть замкнуты накоротко».

75 ° C по сравнению с 90 ° C
Если мы подключаемся к оборудованию с номинальными клеммами 75 ° C и внутренней проводкой, можем ли мы использовать проводники с номиналом 90 ° C при сопоставимой силе тока? Например, провод 500 MCM при 75 ° C составляет 380 ампер (A) по сравнению с проводом 400 MCM при 90 ° C, равным 380 A, или мы используем провод 500 MCM при 90 ° C со снижением до 75 ° C? Почему или почему нет? Какая логика за этим?
Если у вас есть оборудование, рассчитанное на температуру 75 ° C, вам разрешается использовать проводники с номиналом 90 ° C при условии, что допустимая токовая нагрузка проводников основана на допустимой токовой нагрузке 75 ° C для используемого сечения проводника.Логика заключается в том, что номинальная температура, связанная с допустимой токовой нагрузкой проводника, должна выбираться так, чтобы не превышать номинальную температуру подключенного вывода. Эту информацию можно найти в 110.14 (C) (1) (a) (3) или 110.14 (C) (1) (b) (2).

Защита компрессора от замыкания на землю
Я предлагаю реконструкцию, а заказчик добавляет кондиционер. В статье 440.22 (A) Кодекса, номинальной мощности или настройке для отдельного мотор-компрессора, говорится: «Устройство защиты от короткого замыкания и замыкания на землю в ответвленной цепи мотор-компрессор должно выдерживать пусковой ток двигателя.«Можете ли вы сказать мне, когда нам пришлось начинать установку защиты от замыканий на землю на компрессорах? Это даже озадачило моих инспекторов.
Не путайте устройство защиты от короткого замыкания и замыкания на землю с устройством защиты персонала от замыкания на землю (GFCI). Защита от параллельного замыкания, короткого замыкания и замыкания на землю, к которой относится 440,22 (A), является защитой проводников ответвленной цепи моторного компрессора, то есть предохранителей или прерывателя цепи в переключателе или панели, которая обслуживает мотор-компрессор.

Цепи управления двигателем
Требуется ли максимальная токовая защита в цепях управления двигателем, питающих устройства дистанционного управления?
Защита от перегрузки по току для цепей управления двигателем рассматривается в 430.72 (B). Требования к проводникам, выходящим за пределы корпуса (удаленного), можно найти в столбце C таблицы 430.72 (B). Например, если ваше защитное устройство ответвленной цепи двигателя рассчитано на 60 А и вы используете медные проводники цепи управления, то вы найдете 60 в медном столбце и переместитесь влево, чтобы выбрать размер проводника цепи управления, где вы найдете 12.В результате вам необходимо установить проводники цепи управления не менее 12 AWG меди. Если вы используете проводники меньшего диаметра, они потребуют дополнительной защиты от сверхтока.

Розетка на 20 А в цепи 15 А
Можно ли использовать розетки на 20 А в цепях 15 А или можно использовать розетки на 15 А в цепях 20 А? Я знаю, что Кодекс говорит в таблицах 210.21 (b) (2) и 210.21 (b) (3), но почему вы не можете подключить розетку 20 А к цепи 15 А?
Розетка на 125 В, 20 А имеет другую конфигурацию, чем розетка на 15 А.Гнездо для заземленного провода — это Т-образный паз на розетке на 20 А. Если бы эта розетка использовалась в цепи 15 А, она показалась бы пользователю как цепь с номиналом 20 А, и пользователь может предположить, что могут использоваться нагрузки, превышающие 12 А.

Двухполюсный / однопозиционный переключатель
Я постоянно обсуждал вопрос о правильном использовании двухполюсных / однопозиционных переключателей для одновременного переключения как цепи 277 В, так и цепи 120 В. Некоторые говорят, что Раздел 404.8 (B), в котором говорится, что между соседними устройствами необходим делитель, если они превышают 300 В, не позволяет этого.Я не думаю, что это применимо, потому что нет двух устройств. Другие утверждают, что 210,4 (B) отрицает использование. В нем указано, что если многопроволочная ответвленная цепь питает более одного устройства или оборудования на одном ярме, все цепи должны быть отключены одновременно. Я не думаю, что это применимо, поскольку это не многопроволочная ответвленная цепь, а две цепи. Я чувствую, что эта практика может не соответствовать Кодексу, но не могу найти, где она запрещает эту практику.
Отъезд 404,8 (C). Многополюсный переключатель мгновенного действия не может питаться более чем от одной цепи, если переключатель не отмечен как двухконтурный переключатель или если его номинальное напряжение не меньше номинального линейного напряжения системы, питающей переключатель. .


TROUT отвечает на кодовый вопрос дня на веб-сайте NECA-NEIS. С ним можно связаться по адресу [email protected]

Контуры индуктивности

Правильное размещение и размер

Контуры индуктивности

: правильное размещение и размер
Используйте контуры правильного размера для всех ваших приложений
Брайан Диксон

Миссис Джонс ехала на работу в своем новеньком роскошном автомобиле. Она нажимает на пульт для своих качающихся ворот, и они послушно открываются.Когда она начинает расчищать подъездную дорожку, она вспоминает, что забыла свой портфель, который ей нужен для важной встречи. Миссис Джонс ставит машину на стоянку и выскакивает, чтобы забрать портфель из кухни. По пути к дому она слышит громкие хрустящие звуки — ее новую машину врезают задвижные ворота!

Миссис Джонс была явно расстроена. Как это можно было предотвратить? Помимо запоминания ее портфеля в первую очередь, можно было установить петли, чтобы определить, что ее машина находилась на пути к воротам.Петли — это самый безопасный метод обнаружения транспортных средств на пути к воротам, поскольку на них не влияют погодные условия или препятствия, как это могут быть фото-глаза. Дилеры и установщики должны понимать, сколько петель необходимо разместить в различных системах ворот и где. Чтобы лучше понять это, мы рассмотрим три типа распространенных систем ворот: откатные ворота, распашные ворота и двустворчатые распашные ворота.

Сколько петель и какой размер мне использовать?


В приведенном выше примере показаны рекомендации по размещению петли для 16-футовых раздвижных ворот.


Откатным воротам требуются две обратные петли, по одной с каждой стороны ворот — в двух футах от каждого бордюра и в четырех футах от ворот — чтобы полностью закрыть путь к воротам. Вы можете подойти к воротам на расстоянии не более двух футов, если петли правильно расставлены. Используя правильную планировку и зная ширину проезжей части, вы можете определить размер необходимых петель. Два измерения, которые вам нужно найти, — это короткая и длинная части петли. Чтобы найти длинную часть петли (z), вычтите ширину проезжей части (x) на четыре фута, представленные этой формулой: x — 4 = z.Короткий этап определяется тем, какие автомобили проезжают через ворота. Это важно, потому что короткая полоса петель определяет высоту обнаружения. Если проезжают только жилые (низко расположенные к земле) транспортные средства, рекомендуется использовать четыре фута. Если будут проезжать коммерческие автомобили (например, грузовики UPS), требуется более высокая степень обнаружения и рекомендуется 6 футов. Выходная петля в этой системе ворот является необязательной и следует тем же формулам, что и обратные петли.Выходные петли могут быть расположены на расстоянии до 1000 футов от ворот. Преимущество более длительного захода на выходную петлю состоит в том, чтобы минимизировать время ожидания открытия ворот.


В приведенном выше примере показаны рекомендации по размещению петли на 16-футовых распашных воротах.

Распашные ворота требуют в общей сложности трех петель: двух обратных петель с каждой стороны ворот и теневой петли. Обратные петли, устанавливаемые на распашных воротах, необходимо размещать с каждой стороны ворот, в двух футах от каждого бордюра и в четырех футах от ворот в открытом положении.Их размер определяется по той же формуле, что и скользящие ворота: x — 4 = z. Отличие этой системы ворот — добавление теневого контура. Эта петля размещается под траекторией открывания ворот, на расстоянии двух футов от бордюра, четырех футов от ворот в закрытом положении и четырех футов от ворот в открытом положении. Чтобы определить отрезок петли, параллельный воротам в их закрытом положении (y), вычтите ширину проезжей части (x) на 6 футов, представленных следующей формулой: x — 6 = y.Чтобы найти отрезок петли, параллельный бордюру (a), вычтите ширину проезжей части (x) на четыре фута, представленные этой формулой: x — 4 = a. Выходная петля в этой системе ворот является необязательной и может быть обратной петлей внутри собственности (для чего потребуется отдельный детектор) или другая петля может быть расположена на расстоянии не менее четырех футов от обратной петли на внутренней стороне собственности.


В приведенном выше примере показаны рекомендации по размещению петель на 16-футовых воротах с двойным распашным механизмом.

Двойные распашные ворота требуют всего трех петель: двух обратных петель с каждой стороны ворот и теневой петли. Обратные петли устанавливаются по тому же методу, что и распашные ворота; в двух футах от каждого бордюра и в четырех футах от ворот в открытом положении. Их размер определяется по той же формуле, что и откатные и распашные ворота (x — 4 = z). Чтобы найти ножку теневой петли, которая параллельна воротам в закрытом положении (b), вам нужно вычесть ширину проезжей части (x) на восемь; представлен этой формулой: x — 8 = b.Чтобы найти ножку теневой петли, которая параллельна воротам в ее открытом положении (c), вам нужно разделить ширину проезжей части (x) на два, а затем вычесть это количество на четыре фута, представленных этой формулой: (x / 2) — 4 = с. Выходная петля в этой системе ворот является необязательной и может быть обратной петлей внутри собственности (для чего потребуется отдельный детектор), или другая петля может быть расположена на расстоянии минимум четырех футов от обратной петли на внутренней стороне собственности.

Вертикальные двери — Скоро секция.

Дорожные полосы — например, в зоне парковки или проезжей части в заведении быстрого питания. Секция
скоро откроется.

По возможности следует использовать установку прямых погребальных петель вместо пропилов. Петли прослужат дольше, чтобы избежать распиловки, из-за которой на подъездной дорожке миссис Джонс останется татуировка с бороздками.

Количество материалов!
Теперь, когда вы понимаете правильное расположение и размер петель, мы подробно рассмотрим материал, который вы используете.Проволока лучшего качества, которую вы должны использовать, должна быть около 14AWG или около того, так как проволока более высокого калибра имеет меньшее сопротивление и гораздо более высокую прочность на разрыв. Петли никогда не должны иметь воздушных карманов внутри петли, потому что колебания земли могут вызывать ложные срабатывания, что приводит к повторным обращениям в службу поддержки. Это означает, что петли никогда не должны находиться внутри кабелепровода. Входная часть петли должна находиться внутри пластиковой / ПВХ трубы.

BD Loops Loopalator
Loopalator — это бесплатный калькулятор компоновки петель.Компьютерная программа может рассчитать, где ваши петли должны быть размещены и какого размера, просто зная ширину проезжей части. Программа даже сгенерирует подробное изображение того, где ваши петли должны быть размещены и какого размера. Это изображение может быть подробными инструкциями, которые вы можете передать своей монтажной бригаде, или может быть включено в тендерные предложения в качестве рекомендаций непосредственно от производителя. Для работы Loopalator требуется любая версия Mircrosoft Excel. Если вы не можете запустить Loopalator, мы будем рады сгенерировать для вас диаграммы и отправить их вам по факсу или электронной почте.

Брайан Диксон — генеральный директор BD Loops, сборщика предварительно отформованных индуктивных петель прямого закапывания и пропила для ворот, дверей и парковок. За более чем 10 лет работы качество наших петель не имеет себе равных. Продукция BD Loops доступна более чем у 220 дистрибьюторов по всей стране. BD Loops предлагает 45 стандартных размеров предварительно отформованных петель, все стандартные и нестандартные размеры петель готовы к отправке в тот же день. Компания имеет несколько рекомендательных писем, свидетельствующих об их профессионализме и дизайне, и является членом следующих ассоциаций: AFA, IDA, NOMMA, IPI, CODA и IMSA.Посетите сайт www.bdloops.com и воспользуйтесь функцией поиска дистрибьюторов, чтобы найти ближайшего к вам дистрибьютора. Если вы хотите поговорить с Брайаном Диксоном, позвоните в BD Loops по телефону 714-890-1604.

Обеспечение заземления на землю

Неужели бесчисленные правила заземления иногда кажутся слишком сложными? Проблемы с реализацией заземления иногда оставляют вас в недоумении и замешательстве, а правильное решение кажется немного выше вашей головы? Если так, не чувствуй себя одиноким.

Несмотря на обширную литературу по заземлению, некоторые из его важных концепций, похоже, отсутствуют в устных традициях и регулярной практике электротехнической промышленности, а некоторые заблуждения относительно заземления, похоже, прочно укоренились на их месте.Следовательно, многие конструкции и установки не так надежны или безопасны, как могли бы быть.

Но вы можете избежать путаницы, если поймете концепции, лежащие в основе правил. Обладая лучшим пониманием, вы можете быть уверены в том, что ваша система заземления будет работать так, как вы предполагали.

Вернуться к основам. Первое, что нужно понять, это то, что ток замыкания на землю, как и все электричество, стремится вернуться к своему источнику питания. Этот принцип — то, что в первую очередь заставляет электрические цепи работать.Что является источником тока замыкания на землю? Он исходит не из земли, а из сетевого трансформатора.

Закон Кирхгофа гласит, что ток будет течь обратно пропорционально импедансу представленных ему путей. Таким образом, относительные импедансы различных путей определяют, как ток короткого замыкания возвращается к своему источнику.

Полное сопротивление пути между заземляющим электродом и источником почти всегда значительно выше, чем полное сопротивление пути через заземляющий / заземленный провод.

Если вы не уверены в этом на своем предприятии, измерьте импеданс медного провода от электрода до источника и сравните его с импедансом через землю.

Эта разница в импедансе означает, что через заземляющий электрод протекает лишь незначительный ток короткого замыкания. Повреждение обычно распространяется по заземлению оборудования (проводники и системы металлических кабельных каналов) через соединение нейтраль-земля и обратно к источнику через заземленный (нейтральный) провод.Срабатывание устройства защиты от сверхтока вызывает высокий ток короткого замыкания в цепи с низким сопротивлением, а не пренебрежимо малая величина тока, протекающего через грязь через заземляющий стержень ( Рис. 1 ).

В таком случае какова функция заземляющего электрода? Вы не поверите, но их несколько, в том числе следующие:

  • Ограничение напряжения от молнии, скачков или случайного контакта с линиями высокого напряжения.

  • Стабилизация напряжения относительно земли во время нормальной работы, помогающая поддерживать напряжение в предсказуемых пределах.

  • Помощь коммунальному предприятию в устранении его собственных неисправностей, по сути, становясь частью многоточечной системы заземления коммунального предприятия.

  • Обеспечивает путь к земле для рассеивания статического электричества.

Расстояние между стержнями заземления. Предположим, вы вбиваете первый стержень заземления для системы. Если сопротивление заземления составляет 25 Ом или более, 250,56 NEC 2005 года требует, чтобы вы управляли вторым стержнем. Но многие подрядчики не утруждают себя измерением сопротивления заземления.Они просто планируют управлять двумя стержнями, потому что это будет соответствовать требованиям 250,56, независимо от фактического сопротивления заземления. Таким образом, двухстержневые установки распространены, но обязательно ли они правильны?

Кодекс требует, чтобы вы располагали стержни на расстоянии не менее 6 футов [250,53 (B)]. Однако этот интервал минимален и далек от идеала. При использовании обычных 8-футовых или 10-футовых заземляющих стержней вы получите наилучшие результаты, если расположите стержни на расстоянии не менее 16 или 20 футов соответственно. Это намного больше, чем минимальный 6-футовый интервал, установленный Кодексом.

Заземляющие стержни, расположенные на расстоянии менее двух длин стержней друг от друга, будут мешать друг другу, потому что их эффективные площади сопротивления будут перекрываться ( Рис. 2a выше). Для справки см. IEEE-142 и книгу Soares по заземлению. Перекрытие увеличивает общее сопротивление каждого стержня, делая систему заземляющих электродов менее эффективной, чем если бы стержни были разнесены дальше друг от друга ( Рис. 2b, выше).

Перемычка основного соединения. Основная перемычка заземления — это перемычка между нейтралью и шинами заземления оборудования в пределах обслуживания.Это жизненно важное соединение позволяет току замыкания на землю возвращаться к источнику. Без основной перемычки соединение должно проходить через землю с высоким сопротивлением, а не через медь с низким сопротивлением. Этот путь с высоким импедансом, скорее всего, ограничит ток и предотвратит отключение автоматических выключателей — или, по крайней мере, предотвратит их срабатывание достаточно быстро, чтобы избежать повреждения оборудования.

Выберите размер основной перемычки в соответствии с Таблицей 250.66. Многие люди предполагают, что в этой таблице указан максимальный размер основной перемычки 3/0 AWG, но это еще одно распространенное заблуждение.Соединительная перемычка должна составлять не менее 12,5% эквивалентной площади фазных проводов [250,28 (D)]. Если вы используете 11 комплектов проводов по 500 тыс. Куб. М (например, при токе 4 000 А), длина основной перемычки должна быть не менее 700 тыс. Куб. М, а не 3/0 AWG.

Эта проблема не так важна для перемычек для вторичных производных систем, таких как трансформаторы и генераторы, поскольку токи короткого замыкания в таких системах обычно намного ниже.

Калибровка заземляющих проводов оборудования. Разработчики обычно используют Таблицу 250.122 при выборе размеров заземляющих проводов оборудования. В большинстве случаев размер будет достаточным, особенно для небольших ответвлений. Но когда доступный ток короткого замыкания велик — скажем, 100000 А — и когда автоматический выключатель установлен на задержку срабатывания на несколько циклов, вы должны более тщательно рассчитать заземляющие проводники.

Металлические кабельные каналы, которые обычно пропускают больший ток, чем заземляющие провода оборудования, могут быть установлены неправильно или со временем могут разрушиться.Следовательно, заземляющий провод оборудования может быть единственным доступным путем заземления. Заземляющие проводники с недостаточным сечением могут расплавиться во время короткого замыкания, прежде чем они послужат своей цели — обеспечить непрерывный путь тока с низким сопротивлением обратно к источнику во время замыкания.

Важно понимать, что проводники имеют допустимые характеристики. Ассоциация инженеров по изолированному кабелю предоставляет стандарт под названием Характеристики короткого замыкания изолированного кабеля , номер P 32-382 (1994).Этот стандарт гласит, что в течение 5-секундного периода номинальная прочность проводника составляет 1 А на 42,25 круглого мил.

Например, провод 3/0 AWG может безопасно выдерживать ток 3972 А в течение 5 секунд. Таким образом, рейтинг I 2 T, 5-секундная выдержка составляет 78 883 920 A. Теперь предположим, что автоматический выключатель настроен на размыкание за 30 циклов — задержку, которую вы можете увидеть во время обслуживания. Вы можете быстро определить, что максимальный ток, который может выдерживать 3/0 AWG в течение 30 циклов (0,5 с), составляет:

I 2 T = 78,883,920

I = √ (78,883,920 ÷ T)

I = √ (78,883,920 ÷ 0.5)

I = 12,560 А

Но если доступный ток короткого замыкания составляет 65 000 A или 100 000 A на стороне нагрузки заземляющего проводника, заземляющий провод будет быстро разрушен в случае неисправности, если для размыкания выключателя потребуется 30 циклов. Вы должны помнить о доступном токе короткого замыкания и учитывать время отключения автоматических выключателей, особенно главного выключателя и выключателя фидера в главном распределительном щите. Выполните расчеты I 2 T, как описано выше, особенно при высоком доступном токе короткого замыкания.Вы можете видеть, что правильно определить размеры заземляющих проводов оборудования не так просто, как применить минимумы NEC.

Токи системы заземления. Ток присутствует в системе заземления при нормальных рабочих условиях, а не только при неисправности. Это, вероятно, объясняет, почему Кодекс разрешает устанавливать датчики замыкания на землю на 1,200 А для предотвращения ложных срабатываний [230,95 (A)].

Помимо замыканий на землю, в системе заземления могут возникать некоторые факторы, в том числе следующие:

  • Наведенные токи от соседних токоведущих проводов.

  • Наведенные токи от двигателей (особенно однофазных).

  • Емкостная связь между фазным и нулевым проводами и заземляющими проводами. Известно, что это явление вызывает неприятное отключение GFCI в длинных цепях.

  • Электростатический разряд от оборудования.

Контуры заземления. Вы можете формировать контуры заземления за счет взаимодействия силового заземления и низковольтных кабелей. Низковольтные кабели часто содержат сигнальный заземляющий провод, который может по существу связывать внутренние сигнальные заземления между различными частями электронного оборудования.Если также существует внутренняя связь между заземлением источника питания и заземлением сигнала внутри электронного оборудования, ток может протекать через этот контур. Хотя экранированные низковольтные кабели обычно заземляются только на одном конце, чтобы предотвратить образование контуров заземления, отдельный сигнальный заземляющий провод внутри экрана все же может создавать связь.

В качестве примера того, где это обычно происходит, представьте компьютерную сеть и экраны на таких устройствах, как принтеры, маршрутизаторы и рабочие станции. Если вы соединяете разные части оборудования вместе, вы соединяете устройства, у которых есть потенциал между соответствующими контактами заземления ( Рис.3 ). Если у вас есть полная цепь через сигнальные провода, у вас есть контур заземления. Из-за этого потенциала будут протекать заземляющие токи, которые будут создавать электрические помехи, которые могут мешать работе системы. Электромагнитные поля, проходящие через этот контур, также могут вызывать протекание тока.

Чтобы свести к минимуму это явление, необходимо ограничить потенциал между этими различными точками заземления. TIA / EIA J-STD-607-A рекомендует максимальный потенциал 1 В между точками заземления.Интересно, что он также рекомендует один большой контур заземления для заземления многоэтажных зданий ( Рис. 4 ). В компьютерных сетях ограничение потенциала между точками заземления явно имеет приоритет над проблемами циркуляции контуров заземляющих токов. Однако аудиовизуальное оборудование гораздо более чувствительно.

В любом здании есть сотни, если не тысячи низковольтных кабелей, и каждый может образовывать свой собственный контур заземления в сочетании с системой заземления питания. К сожалению, в стандартном здании нет практического способа гарантировать равномерное заземление повсюду.

Лучшее, что вы можете сделать, — это правильно заземлить основные части оборудования. Это означает установку заземляющих шин во всех телекоммуникационных и аудио / видео комнатах, а также обеспечение того, чтобы каждое оборудование в этих комнатах было привязано к этим заземляющим шинам. Это обеспечивает достаточно ровную поверхность заземления в комнате — по крайней мере, в нижнем диапазоне частот.

Обычно прописываемое лекарство от такого рода проблем с заземлением — обеспечение эквипотенциальных заземляющих поверхностей в широком диапазоне частот.Методы включают использование сеток грунта внутри плит и опорных сеток сигналов под фальшполами. Учитывая стоимость таких мер, эти методы обычно используются для наиболее чувствительных средств связи, а не для типичных коммерческих или институциональных объектов. Однако эквипотенциальная заземляющая плоскость — это всего лишь одна ступенька. Это не панацея для контуров заземления, потому что токи всегда могут быть вызваны электромагнитными полями, проходящими через проводники.

Не обращайте внимания на огромное количество мелочей, связанных с заземлением.Знание нескольких основных концепций заземления должно помочь вам во всем разобраться. Хорошее заземление является ключом к успеху в эксплуатации любого объекта, поэтому чем более продуманы ваши проекты, тем надежнее будет установка и тем меньше проблем с качеством электроэнергии возникнет.

Яноф, П.Е., является младшим и старшим менеджером проектов в Sparling, консультационной фирме по электротехнике и технологиям с офисами в Сиэтле и Портленде .

Бесстержневой метод заземления

Тестер заземления Fluke 1625 может измерять сопротивление контура заземления для многозаземленных систем с использованием только токовых клещей.Этот метод тестирования исключает опасные и трудоемкие операции по отключению параллельных заземлений, а также процесс поиска подходящих мест для дополнительных заземляющих стержней. Вы также можете выполнить наземные испытания в местах, о которых вы раньше не думали: внутри зданий, на опорах электропередач или в любом другом месте, где нет доступа к почве.

В этом методе тестирования два зажима помещаются вокруг стержня заземления или соединительного кабеля, и каждый из них подключается к тестеру. Земляные колья вообще не используются.Известное напряжение индуцируется одним зажимом, а ток измеряется вторым зажимом. Тестер автоматически определяет сопротивление контура заземления на этом стержне заземления. Если есть только один путь к земле, как во многих жилых помещениях, метод без колебаний не даст приемлемого значения, и необходимо использовать метод испытания на падение потенциала.

Fluke 1625 работает по принципу, согласно которому в параллельных / многозаземленных системах общее сопротивление всех путей заземления будет чрезвычайно низким по сравнению с любым одиночным трактом (тестируемым).Таким образом, полное сопротивление всех сопротивлений параллельного обратного пути фактически равно нулю. Бесстоечное измерение измеряет только сопротивление отдельных заземляющих стержней параллельно системам заземления. Если система заземления не параллельна земле, тогда у вас будет либо разрыв цепи, либо измерение сопротивления контура заземления.

Измерение импеданса заземления

При попытке рассчитать возможные токи короткого замыкания на электростанциях и в других ситуациях с высоким напряжением / током важно определить комплексное полное сопротивление заземления, поскольку полное сопротивление будет состоять из индуктивных и емкостных элементов.Поскольку в большинстве случаев индуктивность и удельное сопротивление известны, фактическое сопротивление можно определить с помощью сложных вычислений.

Поскольку импеданс зависит от частоты, Fluke 1625 использует сигнал 55 Гц для этого расчета, чтобы максимально приблизить его к рабочей частоте напряжения. Это гарантирует, что измерение будет близко к значению на истинной рабочей частоте. Используя эту функцию Fluke 1625, возможно точное прямое измерение импеданса заземления.

Техников-энергетиков, тестирующих высоковольтные линии электропередач, интересуют две вещи.Сопротивление заземления в случае удара молнии и полное сопротивление всей системы в случае короткого замыкания в определенной точке линии. Короткое замыкание в данном случае означает, что активный провод рвется и касается металлической сетки башни.

Двухполюсное сопротивление заземления

В ситуациях, когда установка столбов заземления нецелесообразна и невозможна, тестеры Fluke 1623 и 1625 дают вам возможность выполнять измерения сопротивления / целостности двухполюсного заземления, как показано ниже.

Для выполнения этого теста техник должен иметь доступ к хорошо известному заземлению, например, к полностью металлической водопроводной трубе. Водопроводная труба должна быть достаточно длинной и металлической по всей длине, без каких-либо изолирующих муфт или фланцев. В отличие от многих тестеров, Fluke 1623 и 1625 проводят тест при относительно высоком токе (ток короткого замыкания> 250 мА), обеспечивая стабильные результаты.

Использование заземления для управления EMI

Медицинское оборудование и диагностическая промышленность Журнал | Указатель статей MDDI

Первоначально опубликовано в августе 1996 г.

Уильям Д.Киммел и Дэрил Д. Герке

Электромагнитная совместимость является важным фактором при проектировании и эксплуатации современного сложного медицинского электронного оборудования, особенно по мере распространения портативных систем. Электронные устройства могут как излучать, так и быть поврежденными электромагнитными помехами (EMI) и должны быть защищены от их вредного воздействия. Также необходимо решить вопросы безопасности пациента и оператора. В предыдущих статьях рассматривались такие средства обеспечения контроля электромагнитных помех, как фильтрация, экранирование кабелей и экранирование корпуса (MD&DI, февраль, июль и ноябрь 1995 г., соответственно).Эта статья посвящена заземлению.

Возможно, ни одна тема в электронике не понимается так неправильно, как заземление, которое обычно вызывает образ длинной косы, извивающейся к столбу заземления, вставленному в бетонный пол. Как ясно из следующего обсуждения, заземление не является существенным для контроля электромагнитных помех и почти никогда не требуется. В подавляющем большинстве приложений медицинской электроники хорошее заземление включает в себя получение обратного тракта с достаточно низким импедансом для наивысшей интересующей частоты помех.Если бы можно было достичь нулевого импеданса, все остальные проблемы с заземлением потеряли бы смысл. Поскольку это не так, разработчикам устройств необходимо искать способы максимизировать эффективность оснований, которые могут быть реализованы.

ЧТО ТАКОЕ ЗЕМЛЯ?

Короче говоря, земля — ​​это обратный путь для тока. Его цель — замкнуть токовую петлю, а не увести ее в землю. Если ток помехи успешно отведен на землю, он просто выйдет в другом месте, чтобы вернуться к своему источнику.Единственный раз, когда необходимо заземление, это для молнии.

Путаница возникает из-за того, что термин «земля» используется для множества приложений и означает разные вещи для разных людей. Например, инженеры-производственники рассматривают землю как отражение ударов молнии. В этом случае заземление должно выдерживать токи до 100 000 А в течение нескольких миллисекунд. Поскольку время нарастания примерно в 1 микросекунду создает значительные частотные составляющие Фурье вплоть до примерно 300 кГц, индуктивность может стать серьезной проблемой.Напротив, электрики рассматривают землю как обратный путь для токов короткого замыкания, которые могут составлять десятки или сотни ампер при 50 или 60 Гц. На этом уровне частоты индуктивность не важна, поэтому длина провода 4/0, подключенного к ближайшему строительному сталелитейному заводу, очень хороша — заземление может присутствовать, но оно не требуется для электробезопасности.

Эти два случая являются наиболее широко известными применениями заземления, но требования к заземлению для контроля электромагнитных помех в приложениях для медицинских устройств сильно различаются.EMI может охватывать очень широкий диапазон: токи от микроампер до ампер и частоты от постоянного тока до дневного света. Продолжительность события может варьироваться от наносекунд в случае переходного процесса до лет в случае непрерывной волны. Для конкретного случая электростатического разряда (ESD) переходные процессы измеряются в наносекундах (что дает частотные составляющие Фурье до 300 МГц), а токи находятся в диапазоне до 10 А или даже выше. Частота фронтов и величины тока таковы, что значительный скачок напряжения будет происходить даже на самой маленькой длине провода или дорожки на печатной плате.Однако в любом случае разработчики устройств должны обеспечивать возможность возврата мешающего тока к своему источнику, и это редко связано с заземлением.

КОНТУРЫ ЗАЗЕМЛЕНИЯ И ОДНОТОЧЕЧНЫЕ ЗАЗЕМЛЕНИЯ

Когда возникает проблема с заземлением, инженеры-проектировщики неизбежно обращаются к контурам заземления и одноточечным заземлениям. Что означают эти термины и когда используются подходящие методы?

Контур заземления существует всякий раз, когда между двумя точками существует более одного токопроводящего пути.Это условие позволяет токам помех смешиваться с токами сигналов, что может привести к помехам от земли. На рисунке 1 (а) показаны эффекты контура заземления, когда токи паразитных помех делятся и протекают через заземление сигнала. Эта проблема может быть устранена за счет заземления с нулевым сопротивлением. При отсутствии такого заземления можно предусмотреть отдельные заземляющие пути. Как показано на рисунке 1 (b), разорвав контур заземления, разработчик устройства создал одноточечное заземление. Потребность в одноточечном заземлении возникла в телефонии, где было практически невозможно получить достаточно низкие импедансы, чтобы предотвратить появление гула от частот линий электропередач, и этот метод все еще полезен в ряде низкоуровневых низкочастотных аналоговые приложения.

Однако одноточечное заземление не подходит для работы с более высокими частотами, которые встречаются в современных вычислительных устройствах. На рис. 2 показано влияние стоячей волны на экран кабеля, который был заземлен на корпус в одной точке. Если на экран воздействуют падающие помехи с частотой 150 МГц (популярная частота наземной мобильной радиосвязи) с длиной волны 2 м, кабель, который здесь представлен как имеющий 1/4 длины волны частоты помехи, или 0.5 м, будет действовать как эффективная антенна с напряжением стоячей волны на экране, как показано на рисунке. В непосредственной близости от заземляющего соединения напряжение экрана близко к нулю, но на незаземленном конце напряжение максимальное, а паразитная емкость обеспечивает достаточную связь с сигнальными линиями.

Фундаментальное предположение, лежащее в основе принципа одноточечного заземления, заключается в том, что скорость света бесконечна. Каждый раз, когда дизайнерам нужно учитывать скорость света, особенно при компьютерных скоростях, метод одноточечного заземления не работает.Полезное эмпирическое правило состоит в том, что одноточечное заземление подходит, если наиболее длинное интересующее измерение меньше 1/20 длины волны самой высокочастотной угрозы. Таким образом, одноточечные заземления подходят для обработки электромагнитных помех со звуковыми частотами в большинстве случаев, но не подходят и недостижимы для радиочастот, используемых в цифровой электронике.

Рассмотрим, например, случай дизайнера, который хотел использовать одноточечное заземление для двух отдельно стоящих шкафов, расположенных на расстоянии около 10 футов друг от друга.Исходя из общепринятого предположения, что индуктивность провода составляет 20 нГн / дюйм, минимальная индуктивность для одноточечного заземляющего тракта будет около 2,5 мкГн. Используя формулу для импеданса

Z = 2¼fL

где f — частота в мегагерцах, L — индуктивность в микрогенри, а Z — в омах, полное сопротивление на 100 МГц будет 1600 ‡, что вряд ли является коротким замыканием. Используя практическое правило, емкость между отдельно стоящим оборудованием и землей составляет ~ 100 пФ и формулу

где C — емкость в микрофарадах, полное сопротивление между двумя конденсаторами емкостью 100 пФ, соединенными последовательно с заземляющей пластиной, составляет 30 ‡.Это тоже не короткое замыкание, но оно, безусловно, намного ниже, чем у предполагаемого одноточечного заземления.

ДОСТИЖЕНИЕ ХОРОШИХ ПОВЕРХНОСТЕЙ

Заземление с низким сопротивлением для медицинского электронного устройства легко реализовать — используйте заземляющий провод. При 50/60 Гц сопротивление заземляющего провода будет в первую очередь резистивным, но выше звуковых частот начинает преобладать индуктивность, а на радиочастотах индуктивного сопротивления даже короткого провода или дорожки на печатной плате достаточно, чтобы вызвать проблемы.Чтобы определить требования конкретного приложения, разработчику необходимо знать, какое напряжение может выдерживать устройство, величину и частоту ожидаемого тока помех, а также полное сопротивление тракта. Учитывая эти данные, можно применить закон Ома, чтобы узнать, когда возникнут проблемы.

Например, при ударе молнии по двутавровому пучку может протекать ток 10000 А с переходными процессами 10 В даже на короткие отрезки. Два соединенных между собой устройства, заземленных на двутавровую балку в разных точках, могут легко выйти из строя.Или предположим, что 1 дюйм. длина провода или дорожки на печатной плате подвергалась воздействию электростатического разряда 10 А. Предполагая, что индуктивность составляет около 20 нГн, падение напряжения на проводе или дорожке можно рассчитать с помощью уравнения

где E — падение напряжения на проводе, L — индуктивность в наногенри, di — величина переходного тока (предполагается, что она равна 10 А), а dt — время нарастания (предполагается, что составляет 1 наносекунду). Для этих типичных условий E = 200 В. Таким образом, можно видеть, что длина провода всего 1 дюйм.является плохой почвой для целей ESD.

Поскольку во многих случаях обычный провод не является подходящим заземлением, принято использовать вместо него плоский ремешок. Этот подход действительно уместен, но его обоснование широко неправильно понимается. Для достижения низкой индуктивности ключевым фактором является не плоскостность ремешка, а его отношение длины к ширине. Чтобы обеспечить достаточно низкую индуктивность заземляющей ленты, ее ширина должна составлять не менее одной пятой, а еще лучше — одной трети ее длины.Если разработчик не может достичь этого отношения, не будет удовлетворительного пути возврата высокочастотного тока.

Заземление монтажной платы. Получить хорошие низкоомные заземления на двухсторонних платах практически невозможно, поэтому это критично. для защиты таких плат от электростатических разрядов и высокоуровневых радиопомех. С другой стороны, на многослойных платах легко добиться низкого импеданса, если заземляющий слой находится под дорожками. Цепи, построенные непосредственно над землей, хорошо защищены, независимо от угрозы.По нашим наблюдениям, контроль электромагнитных помех всегда проблематичен для двусторонних плат, в то время как электронные устройства с многослойными платами редко повреждаются. Если производитель непреклонен в использовании двусторонних плат, бюджет разработки продукта должен включать дополнительные средства, а в график тестирования и модернизации следует добавить три месяца. Даже в этом случае высока вероятность того, что контроль электромагнитных помех не будет достигнут.

Наверное, нигде в электронике конструкторы не сталкиваются с такой сложной задачей, как проблема чувствительных аналоговых входных цепей.Цепи могут быть достаточно хорошо защищены изолированной заземляющей пластиной; проблема связана с подключением к неизолированной земле или к проводам и кабелям, соединяющим датчик с другим оборудованием. Для изолированного заземления важно минимизировать количество внешних токов электромагнитных помех, которые достигают плоскости заземления. Как только чувствительный входной сигнал будет захвачен и усилен, или, возможно, оцифрованный, переход границы к неизолированным цепям — это остающаяся проблема проектирования. Любые токи помех, которые отводятся на изолированную землю, становятся синфазными помехами и должны обрабатываться изолирующим компонентом любого типа.Хотя доступны некоторые довольно эффективные изоляторы, у них есть свои пределы, поэтому в первую очередь стоит минимизировать синфазные токи.

Межблочное заземление. После того, как разработчик справился с заземлением печатной платы, следующим соображением будут межсоединения внутри оборудования, такие как соединения между материнской и дочерней платами и ленточные кабели между модулями. Проблемы EMI часто являются результатом межсоединений с высоким импедансом.Опять же, разработчикам необходимо поддерживать низкий импеданс заземления, либо путем подключения печатных плат или модулей к общей заземляющей пластине, либо путем обеспечения межсоединения заземления с очень низким импедансом через кабель, обычно путем выделения как можно большего количества контактов разъема для заземления. . Хотя пространство для разъема является важной проблемой, функциональность тоже. Для высокоскоростных (100 МГц) межкомпонентных соединений должна быть одна линия заземления для каждой сигнальной линии. Для более низких скоростей (~ 10 МГц) может быть достаточно одной линии заземления на каждые пять сигнальных линий.Все, что меньше, навлекает неприятности.

Внешнее заземление. Наконец, проектировщикам необходимо учитывать взаимосвязи между различными частями оборудования. Если между корпусами может быть реализована заземляющая пластина с низким сопротивлением, а для экранов кабелей используется многоточечное заземление, проблемы должны быть минимальными. Однако, если кабели проложены на большие расстояния или передаются чувствительные низкочастотные аналоговые сигналы, могут возникнуть помехи на звуковых частотах. В таких случаях может потребоваться одноточечное заземление, а также многоточечное заземление, необходимое для управления высокочастотными помехами.Гибридное заземление с конденсаторной нагрузкой на одном конце, обычно 0,010,1 мкФ, и жесткой нагрузкой на другом конце может обеспечить разрыв цепи на звуковых частотах и ​​короткое замыкание на радиочастотах, объединяя, таким образом, лучшее из обоих миров.

ВЫВОД

Разработчики медицинской электроники могут основывать свои решения о том, как реализовать заземление для контроля электромагнитных помех, на трех принципах:

* Заземление не требуется для контроля электромагнитных помех (хотя оно может быть необходимо для безопасности).Что необходимо, так это обратный путь с низким импедансом, обычно это токопроводящая плоскость или экран.

* Одноточечное заземление обычно подходит только для обработки звуковых помех и недостижимо на радиочастотах. Критерий длины волны 1/20 может применяться для определения приемлемости одноточечного заземления.

* Сопротивление заземления должно поддерживаться на приемлемо низком уровне при текущей частоте ожидаемых помех.На высоких частотах индуктивность приводит к высокому импедансу, поэтому использование заземляющих проводов, как правило, неприемлемо. Для уменьшения импеданса можно использовать широкую перемычку или плоскость заземления.

Уильям Д. Киммел и Дэрил Д. Герке — руководители консалтинговой фирмы EMI Kimmel Gerke Associates, Ltd., расположенной в Сент-Поле, Миннесота.

Рисунок 1. Схема, показывающая токи контура заземления: (а) непрерывный и (б) разомкнутый (тем самым обеспечивая одноточечное заземление).

Рис. 2. Воздействие стоячей волны на экран кабеля с одноточечным заземлением.

Как исправить контур заземления

Написано Доном Шульцем, техническим торговым представителем trueCABLE и сертифицированным техником Fluke Networks

Довольно часто мне задают вопросы о том, как избежать или исправить ситуацию с контуром заземления при использовании кабеля Ethernet.Замечательно, что люди читают экранированные и неэкранированные кабели. Это отправная точка. Знание, что вы можете столкнуться с этой проблемой, — полдела. Другая половина — это исправить или избежать этого.

Однако в этом блоге я не стал подробно рассказывать о том, как вообще избежать замыкания на землю. Я обещал, что сделаю это, и вот оно.

Что такое контур заземления?

Контуры заземления могут возникать при использовании экранированного кабеля Ethernet в следующих сценариях:

● Экранированный участок проходит между двумя зданиями, подключенными к собственной сети переменного тока (счетчики) или имеющим две или более различных субпанелей, заземленных по отдельности. .
● Экранированный участок находится внутри того же здания, в котором есть несколько субпанелей переменного тока (отличный пример — завод), и эти субпанели используют разные заземления.
● Экранированный участок подключается к точке доступа WiFi или внешней камере, а также используется грозозащита, использующая собственную точку заземления. Затем этот же участок снова заземляется на заземление переменного тока внутри вашего дома / здания.

Домашний установщик, скорее всего, столкнется с третьим сценарием. Профессиональные установщики наверняка столкнутся со всеми тремя.

Вы видите преобладающий шаблон? В каждой установке имеется несколько точек заземления. Это может (без каламбура) создать ситуацию, которая приведет к следующим результатам:

● Необъяснимые битовые ошибки / ошибки передачи в вашей сети. Что еще хуже, эти ошибки обычно носят временный характер.
● Повреждение оборудования (гораздо менее вероятно, но возможно).
● Травмы (крайне маловероятно, но маловероятно в экстремальных сценариях, когда задействованы очень высокие напряжения переменного или постоянного тока).К счастью, проводники внутри кабеля Ethernet довольно тонкие по сравнению с электрическим проводом. Проводники, скорее всего, станут вишнево-красными и расплавятся, прежде чем вы превратитесь в угольный брикет. Тем не менее, вы можете получить неприятный ожог или толчок.


Как и почему это происходит?


Электричество — ваш друг, но оно также может навредить вам. По причинам, которые может полностью объяснить только инженер-электрик, наличие нескольких точек заземления может вызвать разность потенциалов заземления в вашей кабельной системе.Эти разности потенциалов земли затем буквально возвращаются в виде синфазного напряжения и передаются через ваш кабель Ethernet. Вам нужно не напряжение — в данном случае мы не говорим о PoE.


Какое решение?


Никогда не прокладывайте экранированный кабель? Нет, это не решение. В моем блоге, ссылка на который приведена выше, есть сценарии, когда вы должны использовать экранированный кабель. Основной из них, который я считаю неприкосновенным, — это когда вы используете кабель Ethernet на улице в сценариях на открытом воздухе.Движение воздуха вызывает накопление электростатического разряда (ESD) на вашем кабеле, особенно в засушливое время года. Этому электростатическому разряду нужен способ отвода, и это будет через экран кабеля / дренажный провод и вашу землю. Я узнал об этом на собственном горьком опыте. Цена? Мертвый открытый Wi-Fi AP Ubiquiti за 200 долларов.

Вы можете обойтись без неэкранированного наружного кабеля CMX в сценариях прямого захоронения, предполагая, что кабель зарыт в землю и контактирует с грязью, и этот кабель не находится в непосредственной близости от подземной линии переменного тока.

Решение состоит в том, чтобы знать, что такая ситуация может возникнуть, и смягчить ее, прежде чем у вас возникнут проблемы. Вот две инфографики, показывающие распространенные сценарии и способы подключения:

Сценарий №1. Вы прокладываете экранированный кабель Ethernet между двумя зданиями с несколькими субпанелями или сетью переменного тока.

Обратите внимание на в приведенном выше сценарии, здание A. Патч-панель должна быть экранированной коммутационной панелью, если она используется.Если на экранированной коммутационной панели есть дополнительный провод заземления (в большинстве случаев), то либо НЕ подключайте его, либо к заземляющему проводу переменного тока вашего здания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *