www.newcom.cv.ua — Маркировка SMD-компонентов
Маркировка SMD-компонентовКомпоненты для поверхностного монтажа [SMD] слишком малы, чтобы на их корпусе была нанесена стандартная маркировка. Поэтому существует специальная система обозначения таких компонентов: на корпус прибора нанесен код, состоящий из двух или трех символов. В справочном материале, приведена информация о более чем 1500 кодах.
Типы корпусов и цоколевка
Наиболее распространенным миниатюрным корпусом для маломощных диодов, диодных сборок и транзисторов является, вероятно, трехвыводной SOT23, выполненный из пластмассы. Для диодов часто используются двухвыводные корпуса SOD123, SOD323 и сверхминиатюрный керамический SOD110; на них иногда не наносится буквенно-цифровая маркировка, тогда тип прибора можно определить по цвету полоски у вывода катода. Транзисторы, диодные и варикапные сборки размещают в трехвыводных корпусах SOT323, SOT346, SOT416, SOT490, сверхминиатюрном SOT663, а также в четырехвыводных корпусах SOT223, SOT143, SOT343 и SOT103. Применяются и пятивыводные корпуса, например, SOT551A и SOT680-1, в которых для удобства разводки печатных плат продублированы выводы коллектора и/или эмиттера. В миниатюрных шестивыводных корпусах, например SOT26A, размещают транзисторные сборки и диодные матрицы. Чертежи наиболее распространенных SMD-корпусов приведены на рисунке.
Некоторые приборы имеют разновидность с реверсивной цоколевкой и, соответственно, букву «R» (Reveres) в маркировке. Их выводы соответствуют выводам обычного прибора, перевернутого вверх ногами, т.е. зеркально отображенного. Индентификация обычно осуществляется по коду, но некоторые производители используют одинаковый код. В этом случае потребуется сильное увеличительное стекло. Обычно выводы корпусов (например, таких как SC 59, SC-70, SOT-323) выходят наружу ближе к лицевой поверхности, а у приборов перевернутого типа выводы расположены ближе к нижней стороне корпуса прибора. Исключение составляют корпуса SO-8, SOT-23, SOT-143 и SOT-223, у них все наоборот.
Как пользоваться представленной информацией
Чтобы идентифицировать SMD-компонент, нужно определить тип корпуса и прочитать идентификационный код, нанесенный на него. Далее следует найти обозначение в алфавитном списке кодов. К сожалению, некоторые коды не являются уникальными. Например, компонент с маркировкой 1А может быть как ВС846А, так и FMMT3904. Даже один и тот же производитель может использовать одинаковые коды для обозначения разных компонентов. В таких случаях следует учитывать тип корпуса для более точной идентификации.
Различные варианты кодировки
Многие производители используют дополнительные символы в качестве своего собственного идентификационного кода. Так, например, компоненты от Philips обычно (но, к сожалению, не всегда) имеют строчную букву «р» в дополнение к коду; компоненты от Siemens обычно имеют дополнительную строчную
букву «s». К примеру, если на компонент нанесен код 1 Ар, следует искать в таблице код 1 А. В соответствии с таблицей 1, имеется четыре разных варианта.
Но поскольку компонент имеет суффикс «р», то он произведен фирмой Philips, а значит, это — ВС846А.
Многие новые компоненты фирмы Motorola имеют после кода верхний индекс — небольшие буквы, например SAC. Эти буквы — всего лишь месяц изготовления прибора. Многие приборы от Rohm Semiconductors, начинающиеся на букву G, эквивалентны приборам с маркировкой, равной оставшейся части кода. Например, GD1 — то же самое, что и 01, то есть BCW31.
Некоторые приборы имеют единственную цветную букву (обычно это диоды в миниатюрных корпусах). Цвет, если он имеет значение, указан в таблице в скобках после кода или отдельно — вместо кода. Некоторую сложность может представить идентификация различных типов корпусов для одного и того же прибора. К примеру, 1К в корпусе SOT23 — это ВС848В (мощностью 250 мВт), а 1К в корпусе SOT323 — это BC848BW (мощностью 200 мВт). В представленных таблицах такие приборы обычно рассматриваются как эквивалентные.
Суффикс «L» обычно указывает на низкопрофильный корпус, например, SOT323 или SC70, «W» — признак уменьшенного варианта корпуса, в частности SOT343.
Приборы-аналоги и дополнительная информация
Там, где возможно, в списке указан тип обычного (не SMD) прибора, имеющего эквивалентные характеристики. Если такой прибор общеизвестен, то другой информации не дается. Для менее распространенных приборов приведены дополнительные сведения. Если аналогичного прибора не существует, приведено краткое описание прибора, которое может иметь значение при выборе замены.
При описании свойств компонента используются некоторые параметры, характерные для конкретного прибора. Так, напряжение, указанное для выпрямляющего диода, — это чаще всего максимальное пиковое обратное напряжение диода, а для стабилитронов дается напряжение стабилизации. Обычно, если указаны величины напряжений, токов или мощностей — это предельные значения. Для транзисторов указана область применения, рабочий диапазон или граничная частота. Для импульсных диодов — время переключения. Для варикапов — рабочий диапазон и/или пределы изменения емкости.
Некоторые типы транзисторов (т.н. «цифровые») имеют встроенные резисторы. В этом случае со знаком «+» указан резистор, включенный последовательно с базой; без знака «+» — резистор, шунтирующий переход база-эмиттер. Когда указано два сопротивления (через косую черту], то первое из них -это сопротивление базового резистора, второе — сопротивление резистора между базой и эмиттером.
Таблица 1. Различные варианты кодировки
Код |
Прибор |
Фирма |
Описание и/или аналог |
1А |
ВС846А |
Phi ITT |
ВС546А |
1А |
FMMT3904 |
Zet |
2N3904 |
1А |
ММВТ3904 |
Mot |
2N3904 |
1А |
IRLML2402 |
IR |
п-МОП,20В,0,9А |
Коды SMD компонентов, начинающиеся на цифру — 0
Коды SMD компонентов, начинающиеся на цифру — 1
Коды SMD компонентов, начинающиеся на цифру — 2
Коды SMD компонентов, начинающиеся на цифру — 3
Коды SMD компонентов, начинающиеся на цифру — 5
Коды SMD компонентов, начинающиеся на цифру — 6
newcom.cv.ua
Smd код микросхем расшифровка таблица. Справочник на SMD компоненты
Справочники по SMD
SMD — Абривиатура из английского языка, от Surface Mounted Device — Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности. Применение SMD компонентов позволяет существенно уменьшить габаритыи массу любой радиолюбительской конструкции.
В справочнике находится информация на расшифровку кодов более 34 тысяч микросхем, диодов и транзисторов, даны схемы включения и реализована удобная система поиска информации
Крайне полезный справочник в библиотеке радиолюбителя, с очень понятным поиском, содержит информацию почти по всем активным радиокомпонентам микросхемам, транзисторам, диодам и другим, включая SMD.
Из-за своих очень маленьких габоритов у многих начинающих радиолюбителей возникает вопрос «Как паять SMD ?». В этой небольшой статье мы постпрались ответить на этот вопрос на практическом примере.
О SMDНо есть и недостатки, во первых пайка SMDкомпонентов, процесс интересный и требует базовых навыков и опыта. Во вторых, если SMD используемое в многослойных печатных платах, и расположенное внутри последних, выходит из строя поменять его просто не возможно. А при демонтаже и замене поверхностных радиокомпонентов, необходимо строго соблюдать температурный режим, иначе повреждения внутренней структуры не избежать.
Внешне SMD радиоэлементы выглядят как маленькие прямоугольники с кодовым или цифровым обозначением. И только по ним и можно понять, что это: резистор, конденсатор,транзистор или микросхема. SMD компонентом в современной электроники может быть любой радиоэлемент. На очень маленьких SMD кодовое обозначение может и вовсе отсутствовать, в этом случае индифицировать элемент поможет только схема или сервисный мануал. Внеший вид печатной платы с различными SMD радиокомпонентами, представлен на рисунке ниже:
SMD (S urface M ounted D evice ), что в переводе с английского означает как «прибор, монтируемый на поверхность». В нашем случае поверхностью является печатная плата.
Вот на такие печатные платы устанавливаются SMD компоненты. SMD компоненты не вставляются в отверстия плат, они запаиваются на контактные дорожки (я их называю пятачками), которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, после того, как убраны все SMD компоненты.
В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского — удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа — SMT технологии (S urface M ount T echnology ), и конечно же без SMD компонентов. Но почему? Давайте подробнее рассмотрим этот вопрос.
Самыми важными преимуществами SMD компонентов являются, конечно же, их маленькие габариты. На фото ниже простые резисторы и SMD резисторы.
Благодаря малым габаритам, можно размещать больше SMD компонентов на единицу площади, чем простых. Следовательно возрастает плотность монтажа и в результате этого уменьшаются габариты электронного устройства. А так как вес SMD компонента в разы легче, чем вес того же самого простого компонента, то и масса радиоаппаратуры будет также во много раз легче.
SMD компоненты намного проще выпаивать, для этого нам нужна паяльная станция с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье Как правильно паять SMD . Запаивать их намного труднее, в производстве их располагают на печатной плате специальные роботы. Вручную в производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.
Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Но дорожки не влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и очень большая плотность монтажа компонентов, то и следовательно в плате будет больше слоев. Это как многослойный торт из коржей. Это означает, что печатные дорожки, связывающие SMD компоненты находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат — платы мобильных телефонов и платы компьютера или ноутбука (материнка, видеокарта, оператива). На фото ниже синяя плата — Iphone 3g, зеленая плата — материнка компа.
Все ремонтники радиоаппаратуры знают, что если перегреть плату, то она вздувается пузырем. При этом межслойное связи рвутся и плате приходит полная жопа без какого-либо восстановления. Поэтому главным козырем при замене SMD компонентов является правильно подобранная температура.
На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится,в прямом смысле, в копейки. Короче говоря, одни плюсы:-). Но, раз есть плюсы, то должны быть и минусы… Но они очень незначительные, и нас с Вами собственно не касаются. Это дорогое оборудование и технологии при производстве и разработке SMD компонентов, а также точность температуры пайки.
Что же все таки использовать в своих конструкциях? Если у вас не дрожат руки, и
electricianprof.ru
Как пользоваться табл. расшифровки SMD компонентов
- Подробности
- Опубликовано 25.09.2012 15:46
Как пользоваться таблицами расшифровки SMD компонентов
Код |
Типономинал |
Фирма |
Функция |
Особенности |
Цоколевка |
||
1 |
2 |
3 |
|||||
WXs |
BCR196W |
SIEM |
PNP |
Ucb0= 50 B; Ic=70мA; PD=250мВт; h21>50; fT>150МГц |
B |
E |
C |
ZR |
MSD1819A-RT1 |
MOT |
NPN |
Ucb0= 60 B; Ic=100мA; PD=150мВт; h21=210-340; |
E |
B |
C |
E2 |
HSMP-381C |
HP |
FP |
Два; IF<1A; VBR>100B; RT<3.0 Ом; СT<0.35 пФ; RH>1500Ом; RL<10Ом |
A1 |
K2 A2 |
K1 |
JF |
BAL99W |
PHIL |
FD |
VR>70B; IF<150A; VF (IF=50мА)<1.0B; СD<1.5 пФ; TRR<4 нс |
nc |
K |
A |
G0 |
HSMP-389B |
HP |
PIN |
IF<1A; VBR>100B; RS<2.5 Ом; СT<0.30 пФ |
A |
nc |
K |
63 |
BAS40W |
PHIL |
SHD |
VR>40B; IF<120A; VF (IF=1мА)<380B; СD<5 пФ; TRR<0.1 нс |
A |
nc |
K |
5 |
6 |
7 |
8 |
9 |
10 |
1 - название корпуса SMD компонента.
2 - общий вид
3 - код, нанесенный на корпус производителем
4 - габаритный чертеж с указанием цоколевки
5 - возможные варианты кодов.
Возможны ситуации, когда совпадают код и тип корпуса, а приборы разные. Например, на корпусе типа
SOT323 нанесен код 6Н. У фирмы PHILIPS это NPN - транзистор типа BC818W, а у фирмы MOTOROLA – это
PNP - транзистор типа MUN5131T1 с совершенно другими параметрами.
6 - типономинал (полное название прибора)
7 ,8 - сокращенное название фирмы производителя. Например, SIEM – фирма SIEMENS, - HP – Hewlett - Packard и т. д.
Для расшифровки необходимо воспользоваться списком на стр. 155
9 - функциональное назначение прибора. Например, NPN – транзистор с указанной проводимостью,
SHD – диод Шоттки и т. д. Для расшифровки необходимо воспользоваться списком на стр. 159
10 - цоколевка (см. габаритный). Для расшифровки необходимо воспользоваться списком на стр. 158
Добавить комментарий
newcom.cv.ua
SMD маркировка: чип диодов, расшифровка
Работу и комфортные условия для современного человека сложно представить без правильно организованного освещения. Раньше источниками этой энергии были лампы накаливания, потом появились другие решения, более современные. Для современных приборов применяют специальную маркировку, чтобы проще было получить представление о свойствах. SMD маркировка будет полезной для любых покупателей.
Что это такое
SMD — сокращённое сочетание трёх терминов из английского языка — Surface Mounted Device. Расшифровывается понятие как «прибор, устанавливающийся на поверхности».
Различные элементы
Интересно. Например, у обычных радиодеталей ножки вставляются в отверстия на печатной плате. Потом с другой стороны проходит припой. SMD приборы отличаются тем, что просто накладываются на специальные контактные площадки, предусмотренные для этого. Припой организуют с этой же стороны.
Благодаря такому поверхностному монтажу появилась возможность уменьшить габариты и плотность элементов, расположенных на плате. Сама установка тоже стала проще. С такими технологиями легко справляются даже автоматизированные роботы. Автомат сам легко определяет, на каком месте расположить элемент. После этого происходят к разогреву площади посредством ИК. Либо поверхность обрабатывают лазером, пока не достигается температура плавления. После использования специальной монтажной пены процесс можно считать завершённым. С работой поможет и существующее обозначение СМД диодов.
Резисторы
Программа для расшифровки SMD деталей
Благодаря специальным программам для техников и профессионалов проще определить, что за деталь находится перед специалистом. Приложение расшифровывает элементы маркировки, присутствующие на корпусе. После нажатия кнопки проверки легко получить краткую расшифровку основных характеристик. Некоторые решения поддерживают поиск информации на дополнительных сайтах.
- Сначала вводят код SMD с упаковки.
- Потом указывают наименование прибора.
- Следующими используются кнопки для поиска относительно той или иной модели.
- Пользователь может увидеть собранные данные, сохранить их и присвоить файлу определённое название.
- Далее идёт выборка из базы компонентов, дающая описание производителя, типа корпуса, функционального назначения.
- Если есть — отображается чертёж.
- Назначение выводов компонента располагается в отдельной строке программы для расшифровки обозначений SMD деталей.
Возможные обозначения
Маркировка для полупроводников
На корпус прибора наносят точные сведения, чтобы покупатель мог сразу определить, какое приспособление перед ним. Это важно, учитывая, что внутри одного корпуса могут находиться мелкие детали, обладающие разными параметрами. Поэтому уделяют внимание определению SMD компонентов по их маркировке.
Диоды
Обычное они снабжаются цветной маркировкой. По крайней мере, если корпус — цилиндрической формы. Изделия помечаются при помощи цветных полосок, в количестве одной или двух штук. Полоски легко отыскать у вывода катода, которым снабжаются диоды.
В прямоугольном корпусе устройства снабжаются примерно такими же обозначениями. Некоторые производители включают разные символы и цифры в свои обозначения.
Стабилитроны
Маркировка у них бывает как цветовой, так и символьной. Полоски для маркировки тоже располагаются ближе к выводам стабилитронов.
Предохранители
Светодиоды
Обычно SMD светодиоды не снабжаются дополнительной маркировкой. Исключение — для товаров-подделок с низким качеством. На них часто наносят разные символы, чтобы изделие смотрелось убедительнее. Есть цифровые обозначения, но они нужны, только чтобы увидеть размер прибора. Вся остальная информация размещается в сопроводительных документах. Немного по-другому выставлены требования к маркировке зарубежных смд диодов.
Главное — учесть, что некоторые приборы могут выпускаться в разных модификациях, с некоторыми отличиями по основным характеристикам. Даже при одном типоразмере разные светодиоды отличаются по цвету, цветовой температуре.
Онлайн-калькуляторы
Калькуляторы нужны для поиска величины сопротивления. Они подходят не только для источника освещения, но и для разных резисторов. Достаточно вписать обозначение в одну из специальных форм. Спустя некоторое время перед пользователем появляется ответ.
Стабилитроны
О корпусах чип-компонентов
По количеству выводов и размерным характеристикам корпусов все устройства можно разделить на такие группы:
- 2 вывода.
- 3 вывода.
- 4-5.
- 6-8.
- 8 и больше.
Реальная промышленность выпускает корпуса несколько быстрее по сравнению с тем, как обновляется статистика. Органы стандартизации часто не успевают за этим процессом, поэтому некоторые обновления могут запаздывать по отношению к элементам.
Интересно. На корпусе SMD устройств выводы присутствуют, либо отсутствуют. Если выводов нет — остаются одни контактные площадки. Либо применяют шарики припоя небольшого размера. Маркировка и габариты у деталей бывают разными в зависимости от производителя. Пример — конденсаторы с разными показателями высоты.
Монтаж с применением специального оборудование — главное назначение большей части корпусов и самого оборудования. Это связано с тем, что компоненты требуют специальные технологии по пайке.
Немного о типоразмерах
Даже с одним номиналом у компонентов могут быть разные размеры. Габариты определяются по так называемому «типоразмеру». Четыре цифры используют для шифровки длины чип-резистора, ширины той же детали.
Поиск на микросхемах
О многослойных платах
Монтаж в аппаратуре с SMD компонентами часто бывает достаточно плотным. Поэтому и дорожек самим платам надо больше, чтобы при дальнейшей эксплуатации не возникало проблем. На одну поверхность все дорожки влезть не могут, потому и был разработан многослойный вариант плат.
В плате будет больше слоёв, если само оборудование применяют достаточно сложное. Прямо внутри платы размещаются сами дорожки, увидеть их практически невозможно. Платы компьютеров и мобильных телефонов — пример использования подобных технологий на практике.
Обратите внимание! При перегреве многослойных плат они просто вздуваются, как пузырь. Межслойные связи начинают рваться, из-за чего главный компонент выходит из строя. Правильно подобранная температура — самый важный фактор при любом ремонте.
Иногда применяют обе стороны печатной платы для работы. Из-за этого плотность монтажа становится в два раза больше. Ещё одно преимущество современных SMT технологий. Материала для производства таких компонентов тоже уходит в несколько раз меньше. Себестоимость благодаря такой конструкции уменьшают.
Допустимые схемы
Дополнительно о маркировке SMD разных компонентов
Конденсаторы с SMD-маркировкой выпускаются с разными корпусами:
- Металлические.
- Пластиковые.
- Керамические, со своей микросхемой.
Важно. Неполярные разновидности техники выпускаются вообще без маркировки. 1 пф — 10 мкф — в таких пределах находится ёмкость у этих устройств. Обычно электролитические разновидности конденсаторов имеют вид бочонков, в алюминиевых корпусах с маркировкой. Их используют для поверхностного монтажа.
Танталовые устройства обычно располагаются внутри корпусов прямоугольной формы. Они отличаются не только цветовым исполнением, но и расцветкой.
Электролитические и танталовые устройства обозначаются примерно так же, как и резисторы.
Интересно. Малогабаритные конденсаторы тем и отличается, что площадь для нанесения обозначений слишком маленькая. Поэтому выбирают буквенное или числовое обозначение, из двух-трёх символов.
Если символов в маркировке 3 — то первая буква всегда связана с производителем. Второй символ нужен для указания на ёмкость.
Третий символ — обозначение множителя.
Сплошная полоса или чёрточка на корпусе чаще снабжает танталовые разновидности приборов. Она связана с положительным выводом. Главное — не перепутать с выводными электролитическими. У них минусовой контакт, который маркируется с помощью чёрточки или полоски.
Диоды и корпуса
SMD маркировка облегчает поиск компонентов при конструировании тех или иных электронных изделий. Достаточно изучить буквы и цифры, чтобы понять, какая деталь необходима для достижения максимального результата. Многие сайты содержат специальные таблицы, со всеми символами всех моделей. Для пользователей это тоже один из самых удобных вариантов. Он позволяет сразу записать все необходимые характеристики, чтобы точнее оформлять заказы в интернет-магазинах, либо при обращении к обычным торговым точкам.
rusenergetics.ru
SMD компоненты — обзор элементов и особенностей поверхностного монтажа
Прошли времена вводных радиодеталей, при помощи которых радиолюбитель ремонтировал ламповые телевизоры и старые радиоприемники. В нашу жизнь прочно вошли SMD-элементы, намного более компактные и высокотехнологичные. Что же представляет из себя этот SMD-компонент? Если говорить словами тех, кто начинал сборку и ремонт приборов во времена транзисторных приемников – это «мелкие темные штучки с надписями, которые совсем не понять». А если серьезно, то расшифровав термин «SMD-component» и переведя его на русский язык, мы получим «монтирующиеся на поверхности».
Что же это означает? Поверхностный монтаж (планарный монтаж) – это такой способ изготовления, при котором детали размещены на печатной плате с одной стороны с контактными дорожками. Для расположения радиодеталей не требуется высверливаний. Такой способ в наши дни наиболее распространен и считается самым оптимальным. В промышленных масштабах печатные платы на основе SMD-компонентов с большой скоростью «штампуются» роботами. Человеку остается лишь то, что машине пока не под силу. Необходимо разобраться, чем же так хороши SMD-компоненты и есть ли у них минусы.
Преимущества монтажа
Пример платы с SMD-компонентамиЕстественно, что при невероятно малых размерах, которые имеют SMD-элементы, готовые печатные платы очень компактны, из чего можно сделать вывод, что готовый прибор на основе такой платформы будет очень небольшого размера. При печати требуется меньшее количество стеклотекстолита и хлорного железа, что существенно повышает экономию. К тому же времени на изготовление требуется значительно меньше, т. к. не нужно высверливать отверстия под ножки различных элементов.
По этой же причине такие платы легче поддаются ремонту, замене радиодеталей. Возможно даже изготовление печатной платы при установке SMD-элементов с двух сторон, чего нельзя было даже представить раньше. И, естественно, намного более низка цена чип-компонентов.
Конечно, имеются кроме преимуществ и недостатки (куда уж без них). Платформы на SMD-компонентах не переносят перегибов и даже небольших механических воздействий (таких, как удары). От них, как и при перегреве в процессе пайки, могут образоваться микротрещины на резисторах и конденсаторах. Сразу такие проблемы не дают о себе знать, а проявляются уже в процессе работы.
Ну и, конечно, тем, кто в первый раз сталкивается с чипами, непонятно, как же можно их различить. Какой из них является резистором, а какой конденсатором или транзистором, или какие размеры могут быть у SMD-компонентов? Во всем этом предстоит разобраться.
Виды корпусов SMD-элементов
Все подобные элементы можно разделить по группам на основании количества выводов на корпусе. Их может быть два, три, четыре-пять, шесть-восемь. И последняя группа – более восьми. Но существуют чипы без видимых ножек-выводов. Тогда на корпусе будут либо контакты, либо припой в виде маленьких шишек. Еще различаться SMD-компоненты могут размерами (к примеру, высотой).
Виды SMD-элементовВообще маркировка проставляется только на более крупных чипах, да и то ее очень трудно разглядеть. В остальных же случаях без схемы разобраться, что за элемент перед глазами, невозможно. Размеры SMD-компонентов бывают разными. Все зависит от их производительности. Чаще всего, чем больше размер чипа, тем выше его номинал.
SMD-дроссели
Такие дроссели могут встретиться в разных видах корпуса, но типоразмеры их будут подобны. Делается это для облегчения автоматического монтажа. Да и простому радиолюбителю так проще разобраться. Любой дроссель или катушка индуктивности называется «моточным изделием». Возможно, для более старого оборудования такой элемент схемы можно было намотать и своими руками, но с SMD-компонентом такой номер не пройдет. Тем более что чипы оборудованы магнитным экранированием, они компактны и обладают большим диапазоном рабочей температуры.
Подобрать подобный чип можно по каталогу на основании необходимого типоразмера. Задан этот параметр при помощи 4 цифр (к примеру, 0805), где 08 – длина чипа, а 05 – его ширина в дюймах. Следовательно, размер SMD-катушки составит 0.08 × 0.05 дюймов.
SMD-диоды и SMD-транзисторы
SMD-диодыSMD-диоды бывают либо в форме цилиндра, либо прямоугольными. Распределение типоразмеров такое же, как и у дросселей.
Мощность SMD-транзисторов бывает малая, средняя и большая, разница в корпусах зависит как раз от этого параметра. Из них выделяют две группы – это SOT и DPAK. Интересно, что в одном корпусе может быть несколько компонентов, к примеру – диодная сборка.
Вообще сами по себе SMD-детали представляют огромный интерес не только для профессиональных радиолюбителей, но и для начинающих. Ведь если разобраться, то пайка таких печатных плат – дело не из легких. Тем приятнее научиться разбираться во всех маркировках чипов и научиться, четко следуя схеме, заменять перегоревшие SMD-детали на новые или демонтированные с другой платформы. К тому же многократно повысится и уровень владения паяльником, ведь при работе с чипами необходимо учитывать множество нюансов и соблюдать предельную осторожность.
Нюансы при пайке чипов
Пайку SMD-компонентов оптимальнее осуществлять при помощи специальной станции, температура которой стабилизирована. Но в ее отсутствие остается, естественно, только паяльник. Его необходимо запитать через реостат, т. к. температура нагрева жала таких приборов от 350 до 400 градусов, что неприемлемо для чип-компонентов и может их повредить. Необходимый уровень – от 240 до 280 градусов.
Нельзя не только перегревать SMD-элементы, но и передерживать жало паяльника на контактах. Использовать лучше припои, не содержащие в своем составе свинца, т. к. они тугоплавки и при рекомендованной температуре работать ими проблематично.
Пайка печатной чип-платыВ местах пайки требуется обязательное лужение дорожек. SMD-элемент лучше придерживать при помощи пинцета, а длительность прикосновения жала паяльника к ножке чипа не должна превышать полторы-две секунды. С микросхемами нужно работать еще более аккуратно.
Для начала припаиваются крайние ножки (предварительно необходимо точно совместить все выводы с контактами), а после уже все остальные. В случае если припой попал на две ножки и выводы слиплись между собой, можно использовать заточенную спичку. Ее нужно проложить между контактами и прикоснуться паяльником к одному из них.
Частые ошибки при пайке
Зачастую при пайке SMD-компонентов допускается 3 основных ошибки. Но они не критичны и вполне подлежат исправлению.
- Прикосновение к контакту самым концом жала из опасения перегрева. При таком условии температура будет недостаточной, так что нужно стараться паять таким образом, чтобы была максимальная поверхность соприкосновения, только в этом случае получится качественно смонтированная плата.
- Использование слишком малого количества припоя, при этом пайка длится очень продолжительное время. В этом случае происходит испарение части флюса. На припое не образуется достаточного защитного слоя, а в результате происходит окисление. Идеальный вариант – одновременное соприкосновение с контактом и паяльника, и припоя.
- Очень раннее отведение паяльника от контакта. Хотя и следует действовать аккуратно и не перегревать чипы, все же время прогрева должно быть достаточным для качественной пайки.
Для тренировки имеет смысл взять любую ненужную печатную плату и поучиться пайке.
Пайка чип-платы
Итак, не прилагая чрезмерных усилий, можно начинать пайку печатных плат. Отверстия, которые присутствуют на ней, прекрасно выполняют работу по фиксированию элементов. Немного опыта, конечно, тут не повредит, ведь именно для этого производилась тренировка на ненужной платформе. Изначально к контактам подводится помимо жала еще и припой, и сделать это нужно так, чтобы был равномерный прогрев и вывода, и платформы (места контакта).
Убирать припой следует после того, как контактная точка полностью и равномерно им покрылась. Далее нужно отвести паяльник, а после ждать, пока олово остынет. И только после этого можно производить монтаж SMD-компонентов. После обязательно нужно проверить качество пропаянных контактов при помощи пинцета. Конечно, при первых попытках платформа не будет выглядеть как с завода, а даже наоборот, но со временем, набравшись опыта, появится возможность даже посоревноваться с роботами.
lampagid.ru
Справочник. КОРПУСА и МАРКИРОВКА компонентов (SMD).
Справочник. Корпуса и маркировка компонентов (SMD).
Корпуса и маркировка компонентов для поверхностного монтажа
Несмотря на большое количество стандартов, регламентирующих требования к корпусам
электронных компонентов, многие фирмы выпускают элементы в корпусах не соответствующих международным стандартам. Также встречаются ситуации, когда корпус, имеющий стандартные размеры у фирмы имеет другое название.
Внешне многие корпуса очень похожи друг на друга, а для идентификации прибора необходимо знать не только маркировку, но и тип корпуса.
Возможны ситуации, когда в один и тот же корпус фирмы-производители под одной и той же маркировкой помещают разные приборы
Путаница существует не только с маркировкой, но и цоколевкой корпусов.
Не лучше ситуация и с пассивными компонентами для поверхностного монтажа. Если на корпусе, стоит маркировка 103, то это может быть резистор номиналом 10 кОм, конденсатор – емкостью 10 нФ или индуктивность на 10 мГн.
Если на корпусе стоит маркировка 2R2, то это может быть и резистор с номиналом 2.2 Ома, и конденсатор с емкостью 2.2 пФ. Код 107 может означать 0.1 Ома (Philips) или 100 мкФ (Panasonic).
В корпусах типа 0603, 0805 и т. п. Без маркировки могут находиться конденсатор, индуктивность или резистор-перемычка (Zero-Ohm, jumper).
Цветная полоса или выемка-ключ на корпусах типа SOD123, DO215 может указывать на катод диода или вывод «плюс» у электролитического конденсатора.
По внешнему виду очень трудно отличить друг от друга R, C и L, если они находятся в цилиндрических корпусах с выводами и маркируются цветными кольцами. Сложности могут возникнуть, и после идентификации элемента с определением его параметров.
Например, на практике для цветовой маркировки постоянных конденсаторов (smd компоненты) используются несколько методик маркировки
В совершенно одинаковых корпусах с одинаковым цветовым кодом может выпускаться целая серия приборов с совершенно разными параметрами.
Черное кольцо посередине корпуса могут иметь не только резисторы-перемычки (Zero-Ohm, jumper), но и другие приборы.
Корпуса типа SOT (SOD) – Small Outline Transistor (Diode) — в дословном переводе означают «транзистор (диод) с маленькими выводами». На современном этапе в корпуса типа SOT помещают не только транзисторы и диоды, но и транзисторы с резисторами,
стабилитроны напряжения на базе операционного усилителя и многое другое и количество выводов бывает более трех.
РЕЗИСТОРЫ. ЦВЕТОВАЯ МАРКИРОВКА
Цветовая маркировка наносится в виде 4,5 или 6 цветовых колец. Маркировочные кольца должны быть сдвинуты к одному из выводов или ширина кольца первого знака должна быть в два раза больше других, что на практике выдерживается не всегда.
Вместо цветовых колец могут встречаться цветовые точки.
Принцип маркировки тот же.
Цветовая маркировка резисторов
ПЕРЕМЫЧКИ И РЕЗИСТОРЫ С «НУЛЕВЫМ» СОПРОТИВЛЕНИЕМ.
Многие фирмы выпускается в качестве плавких вставок или перемычек специальные провода –Jumper Wire – с нормированным сопротивлением и диаметром (0,6 мм , 08 мм )
и резисторы с «нулевым» сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления
таких резисторов лежат в диапазоне единиц или десятков миллиом ( — 0,005…0,05 Ом). В цилиндрических корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603,0805,1206…), обычно маркировка отсутствует, либо наносится код «000».
РЕЗИСТОРЫ. КОДОВАЯ МАРКИРОВКА
Фирма PHILIPS кодирует номинал резисторов в соответствии с общепринятыми стандартами, т.е. первые две или три цифры указывают номинал в омах, а последняя – количество нулей (множитель).
В зависимости от точности резистора номинал кодируется в виде 3 или 4-х символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8, 9 в последнем символе.
Буква R выполняет роль десятичной запятой, или, если она стоит в конце, то указывает на диапазон.
если на резисторе вы увидите код 107 – это 10 с семью нулями (100 МОм), а всего лишь 0.1 Ом
- А. Маркировка 3-мя цифрами. Первые две цифры указывают значение в омах последняя – количество нулей. Распространяется на резисторы из ряда Е-24, допуском 1 и 5%, типоразмеров 0603,0805 и 1206.
( 103 = 10 000 = 10 кОм ) - В. Маркировка 4-мя цифрами. Первые три цифры указывают значения в омах последняя – количество нулей. Распространяется на резисторы из ряда Е-96, допуском 1% , типоразмеров 0805 и 1206. Буква R играет роль децимальной запятой.
( 4422 = 442 00 = 44.2 кОм ) - С. Маркировка 3-мя символами.
Первые два символа – цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы последний символ — буква, указывающая значение множителя:
S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105.
Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603. ( 10C = 124 x 102 = 12.4 кОм )
Примечание. Маркировки А и В – стандартные, маркировка С – внутрифирменная.
КОНДЕНСАТОРЫ. КОДОВАЯ МАРКИРОВКА
Применяется четыре способа кодировки номинальной емкости.
Определение номинала конденсатора.
- А. КОДИРОВКА 3-МЯ ЦИФРАМИ.
Первые две цифры указывают значение емкости в пикофарадах (пФ), последняя- количество нулей. Когда конденсатор имеет емкость менее 10пФ, то последняя цифра может быть «9».
При емкостях меньше 1.0 пФ первая цифра «0».
Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5- 0.5 пФ. - В. КОДИРОВКА 4-МЯ ЦИФРАМИ.
Возможны варианты кодирования 4-х значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три-емкость в пикофарадах (pF). - С. МАРКИРОВКА ЁМКОСТИ В МИКРОФАРАДАХ.
Вместо десятичной точки может ставиться буква R. - D. СМЕШАННАЯ БУКВЕННО-ЦИФРОВАЯ МАРКИРОВКА ЁМКОСТИ, ДОПУСКА, ТКЕ, РАБОЧЕГО НАПРЯЖЕНИЯ.
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
- КОНДЕНСАТОРЫ. ЦВЕТОВАЯ МАРКИРОВКА ЭЛЕКТРОЛИТИЧЕСКИХ КОНДЕНСАТОРОВ ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА (SMD).
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.
- А. Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Конденсаторы обозначение SMD.
- В. Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки – емкость в пикофарадах (пФ), а последняя цифра – количество нулей. Возможны 2 варианта кодировки емкости:
а) первые две цифры указывают номинал в пФ, третья – количество нулей; б) емкость указывают в микрофарадах, знак ? выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4,7мкФ и рабочим напряжением 10В. - С. Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке – рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пФ) с указанием количества нулей
(см. способ В). Например, первая строка – 15, вторая строка 35V означает, что конденсатор имеет емкость 15мкФ и рабочее напряжение 35 В.
- В. Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки – емкость в пикофарадах (пФ), а последняя цифра – количество нулей. Возможны 2 варианта кодировки емкости:
ИНДУКТИВНОСТИ. ЦВЕТОВАЯ МАРКИРОВКА.
Для индуктивностей кодируется номинальное значение индуктивности и допуск, т. е. Допускаемое отклонение от указанного номинала. Наиболее часто
применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн, ?Н),
третья метка – множитель, четвертая – допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала может быть шире, чем все остальное.
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск – буквами.
Применяется два вида кодирования.
Первые две цифры указывают значение в микрогенри (мкГн, ?Н), последняя – количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает
100 мкГн + 5%. Исключение является случаи, когда индуктивность меньше 10 мкГн. В таких случаях роль десятичной запятой выполняют буквы R или N — для индуктивностей меньше 1мкГн. В случаях, когда буква не указывается – допуск 20%.
ДОПУСК: D = + 0.3 нГн J = + 5% K = + 10 % M = + 20 %
ПРИМЕРЫ ОБОЗНАЧЕНИЙ:
2N2D –2.2 нГн + 0.3 нГн 1R0K– 1.2 мкГн +10% 1470K– 47 мкГн +10%
22N – 22 нГн 2R2K– 2.2 мкГн +10% 680K– 68 мкГн
R10M – 0.10 мкГн + 20% 3R0K– 3.3 мкГн +10% 101K– 100 мкГн +10%
R15M– 0.15 мкГн + 20% 4R7K– 4.7 мкГн +10% 151K– 150 мкГн +10%
1R0K– 1.2 мкГн +10% 330K – 33 мкГн +10% 102 – 1000 мкГн
Индуктивности маркируются непосредственно в микрогенри (мкГн, mН). В таких случаях маркировка 680К будет означать не 68 мкГн ± 10 , как в случае А, а 680 мкГн ± 10
ДИОДЫ. КОДОВАЯ МАРКИРОВКА.
Первый вывод полярных приборов маркируется точкой, выемкой или полосой у катода
ТРАНЗИСТОРЫ. КОДОВАЯ МАРКИРОВКА.
Цоколевка: 1-С,2-E,3-B,4-E
Цоколевка: 1-B,2-E,3-C
Цоколевка: 1-B,2-E,3-C
Цоколевка: 1-B,2-E,3-C,4-E
Цоколевка: 1-B,2-E,3-C
Данная страничка не позволяет полностью описать развитие электронной базы у всех производителей но возможно поможет создать представление о элементной базе smd.
lcdbloki.ru
Расшифровки обозначений и маркировок диодов СМД: типоразмеры компонентов
Маркировка smd элементов печатной платы помогает радиотехнику получить информацию о характеристиках того или иного компонента печатной платы, а также подобрать деталь, подходящую для конкретного случая. Разные типы элементов отличаются между собой по параметрам, указываемым в маркировке.
Электронные элементы платы
Что такое SMD
Расшифровка smd – Surface Mounted Device. Это означает «устройство поверхностного монтажа». Если более ранние типы радиодеталей требовали для размещения на плате проделывания очень большого числа отверстий и припаивания проволокой, то smd чип размещается на поверхность области контакта и спаивается с той же стороны (без проволоки). Использование таких деталей обладает рядом преимуществ:
- отсутствует необходимость в проделывании большого количества дырочек и в обрезании выводов;
- технология позволяет сделать элементы более компактными, поместить на плату большее их число (к тому же есть возможность размещать их на обеих сторонах платы), таким образом, менее крупногабаритными становятся и сами изделия;
- сборка плат реализуется роботами, что освобождает людей от рутинного труда;
- уменьшение искажающих работу устройства явлений, связанных с паразитной индуктивностью (у данных компонентов она небольшая благодаря их размерам), это улучшает качество работы с высокочастотными или трудноуловимыми сигналами;
- за счет уменьшения числа технологических операций снижается стоимость готовой продукции.
В качестве минуса можно обозначить только то, что для автоматизации сборки плат потребуется приобретение специального оборудования.
Корпуса чип-компонентов
Корпуса для компонентов делают из различных типов материалов. В наибольшем ходу – корпуса в форме цилиндра из стекла и металла и прямоугольные коробки из керамики или пластика. Есть приборы относительно сложной конструкции, например, вертикальные розетки-коннекторы, ответственные за соединение с локальной сетью Ethernet.
Элементы монтажа можно квалифицировать по сочетанию двух параметров: габаритов и числа выводов. Наименьшее количество выводов (при их наличии), встречающееся у этих изделий, – 2. Иногда встречаются приборы с многочисленными выводами, даже более 8, это может сочетаться с очень мелким размером. Есть детали совсем без выводов, тогда припаивание осуществляется через контактные площади или специальные шарики. У разных отечественных и зарубежных производителей есть некоторые отличия в обозначениях маркировки и в размерах производимых изделий (к примеру, конденсаторы отличаются параметром высоты). Существует классификация корпусов, в которой каждому виду присваивается код из 3-5 латинских букв (например, SOT – маленький транзистор с тремя выводами).
Размеры корпусов SMD
Типоразмеры SMD-компонентов
Маркировка смд, информирующая о габаритах, называется типоразмером. Это цифровой код, в котором первые два символа показывают ширину элемента (в дюймах или миллиметрах), следующие два – длину. Причем компоненты с одинаковыми рабочими характеристиками могут отличаться по размерам.
SMD резисторы
В зависимости от производителя, резисторы могут иметь маркировку, состоящую из одних цифр или их сочетания с буквами. Когда она состоит из 3 или 4 цифр, последняя из них обозначает число нулей, соответствующее сопротивлению элемента. Например, код 7502 обозначает, что цифра, показывающая сопротивление, – 75000 Ом. В смешанных кодах буква отделяет дробную часть от целой: 5R7 = 5,7 Ом.
Важно! Среди smd-деталей есть резисторные элементы с сопротивлением, равным нулю. Обычно они применяются в предохранительных целях.
SMD конденсаторы
Внешний вид и маркировка этого типа компонентов отличаются между собой, в зависимости от материала конденсатора. Изделия из керамики по форме схожи с резисторами и имеют аналогичную структуру типоразмеров. Для продукции из тантала коды отличаются – ставится одна из латинских букв от А до Е, показывающая размер элемента (Е – наибольший). У электролитических изделий полоса на корпусе помечает минусовой вывод, из показателей проставляются напряжение и емкость. Это единственный тип smd конденсаторов, который имеет цилиндрическую форму, и у которого на корпусе указываются сведения о емкости. У остальных типов для ее определения нужно воспользоваться мультиметром.
SMD катушки индуктивности и дроссели
У изделий, содержащих намотку, типоразмеры имеют вид четверки чисел, где первые два показывают длину в сотых долях дюйма, другие два – ширину, например: 0905 – 0,09х0,05 дюйма.
SMD диоды и стабилитроны
Диоды smd снабжены цветной полоской: одиночной (например, желтой или красной) или парой полос разного цвета. Они находятся возле вывода катода. У светодиодов обозначение полярности вариабельно в зависимости от изготовителя (это указывают в заводской документации). Один из вариантов – пометка в виде точки. Зачастую это единственная отметка на корпусе данного компонента.
Маркировка диодов smd с корпусом в виде цилиндра в отношении типоразмеров имеет такой же вид, как у резисторных и катушечных элементов. Корпуса у них, как и у стабилитронов, имеют определенный цифробуквенный код. В целом, метки на данной категории элементов зачастую не отличаются высокой информативностью, так как проектировщики не рассчитывают, что ремонт печатной платы будет производиться радиолюбителем или самим пользователем прибора. Работники сервисных центров ориентируются на заводскую документацию, в ней указывается положение разных компонентов на плате.
Важно! Иногда изготовители выпускают сборки – серии диодов, вмонтированных в один корпус. В таком элементе могут располагаться десятки диодов, однако чаще их количество невелико – 2-4. Такие компактные конструкции размещаются на плате легче и занимают меньше места, чем отдельные компоненты.
Диоды и стабилитроны
SMD транзисторы
Как и предыдущая категория деталей, транзисторы имеют скупую маркировку, в данном случае это связано с очень мелкими размерами. Указывают лишь коды, причем в их отношении отсутствуют унифицированные международные нормы. Один и тот же код может использоваться разными производителями для разных типов элемента. Не имея на руках документации на плату, порой бывает очень тяжело определить тип используемого транзистора. Детали отличаются также по степени мощности.
Корпуса транзисторов разных размеров
Маркировка SMD-компонентов
В силу того, что монтаж данных конструкций выполняется роботами (в отличие от электронных деталей советских времен, монтировавшихся специалистами по радиотехнике), кодировки на корпусах не всегда имеют вид, легко считываемый человеком. Смысл маркировки – помочь тому, кто осуществляет монтажные или ремонтные работы, определить, что за модель перед ним. Роботу маркировка безразлична, ее непонятность не сказывается на качестве сборки, однако радиотехнику-любителю при ремонте платы порой приходится поработать со справочной литературой, чтобы разобраться, какая это деталь.
Пайка чип-компонентов
Проводить домашнюю пайку можно только в случае крупных элементов. Те детали, чей типоразмер меньше 0805, вручную монтировать затруднительно, тут для спаивания используется специальная печь. Пропайка smd в домашних условиях – дело, требующее внимания и соблюдения множества нюансов, радиолюбители берутся за него нечасто.
Технология монтажа элементов на поверхность платы существенно упростила процедуру сборки, поспособствовав ее автоматизации. Также она позволила удешевить производство и более плотно размещать электронные компоненты.
Видео
amperof.ru