Расчет заземлителя – Расчет заземления. Пример расчета защитного заземления

Содержание

Примеры расчёта заземляющего устройства | энергетик

Привёдем несколько примеров для расчёта заземления:

   Любой предварительный расчёт заземления сводится к определению сопротивления растекания тока заземлителя в соответствие с требованием ПУЭ, как уже отмечалось ранее, а также на количество требуемых материалов и затрат на изготовления заземляющего устройства (бурение, ручная забивка заземлителей, сварочные работы, электромонтажные работы).

  Так же отметим, что любой расчёт начинается с расчёта одиночного заземлителя, одиночный заземлитель применяется в  основном  для повторного заземления ВЛ опор, где требования ПУЭ (п. 1.7.103.) общее сопротивление растеканию заземлителей должно быть  не более 15, 30 и 60 Ом соответственно при тех же напряжениях: 660, 380 и 220 В.
1.
 Пример расчёта одиночного заземлителя для опоры ВЛ 380 В:

 Примеры расчёта заземляющего устройства     Выбираем арматуру из таблицы 1 для вертикальных заземлителей — круглую сталь ø 16 мм., длиной L — 2,5 м.В качестве грунта примем глину полутвердую (см.  таблицу 5) с удельным сопротивлением ρ — 60 Ом·м. Глубина траншеи равна 0,5 м. Из таблицы 6 возьмем повышающий коэффициент для третей климатической зоны и длине заземлителей до 2,5 м. с коэффициентом промерзания грунта для вертикальных электродов  ψ — 1,45. Нормированное сопротивление заземляющего устройства равно 30 Ом. Фактическое удельное сопротивление почвы вычислим по формуле: ρфакт = ψ·ρ = 1.45 · 60 = 87 Ом·м. Примечание: расчёт одиночного заземлителя проводим без учёта горизонтального сопротивления заземления.

Расчет:

а)  заглубление равно (рис. 2):  h = 0,5l + t = 0,5 · 2,5 + 0,5 = 1,75 м.;

б) сопротивление одного заземлителя вычислим по формуле, (ρэкв =  ρфакт):

Примеры расчёта заземляющего устройства

прим. автора, где ln — логарифм, смотри  ⇒  формулы    на Рис. 4

  Нормируемое сопротивления для нашего примера должно быть не больше 30 Ом., поэтому принимается равным R1 ≈ 28 Ом., что соответствует ПУЭ для одиночного вертикального заземлителя (электрода)  заземления опоры ВЛ  — U ∼ 380 В.

Если недостаточно одного заземлителя для опоры, то можно добавить второй или третий, в этом случае для двух заземлителей расчёт выполняется как для заземлителей в ряд, для трёх заземлителей (треугольником) по контуру, при этом надо иметь в виду, что расчёт треугольником малоэффективный, из-за взаимного влияния электродов друг к другу. 

2.  Пример расчёта заземления с расположением заземлителей в ряд:

 Воспользуемся данными из примера 1 , где R = 27,58 Ом·м для расчёт вторичного заземления электроустановок (ЭУ), где нормативное сопротивление требуется не более Rн = 10 Ом, на вводе в здания, при напряжении 380 В  и каждого повторного заземлителя не более Rн = 30 (см. ПУЭ п.1.7.103 см.  Заземлители) . 

Расчет:

а) для расчёта заземления с расположением в ряд заземлителей, как уже отмечалось выше, возьмем данные из примера 1, где  R1 = 27,58 Ом·м  одиночного заземлителя и Ψ — 1,45 для третей климатической зоне;

б)   предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле 4.3 (см. Расчёт заземления):

Примеры расчёта заземляющего устройстваn0 = 27,58 / 10 = 3,54 шт, где коэффициент спроса (использования) примем η = 1; далее по таблице 3 выберем число электродов n = 3 в ряд при отношение расстояние между электродами к их длине a = 1хL и коэффициент спроса  η = 0,78, далее уточняем число электродов:

Примеры расчёта заземляющего устройстваn = 27,58 / (10 · 0,78) = 3,26 шт; где потребуется увеличить число электродов или изменить расстояние к их длине a = 3хL, для экономии материалов примем отношение a = 3хL  и количество вертикальных электродов равным —  n =  3 шт. с коэффициентом спроса η = 0,91: n = 27,58 / (10 · 0,91) = 3,03 шт; т.к. общее сопротивление заземлителя уменьшиться за счёт горизонтального заземлителя;

в) длину самого горизонтального заземлителя найдем исходя из количества заземлителей  расположенных в ряд, где а = 3· L = 3 · 2 = 6 м;   Lг = 6 · (3 — 1) = 12 м;

г) сопротивление растекания тока для горизонтального заземлителя находим по формуле 5 (см. Расчёт заземления), где в качестве верхнего грунта принято глина полутвердая с удельным сопротивлением 60 Ом·м., до глубины верхнего слоя нашей траншеи t = 0,5 м. см. пример 1; выберем  полосу заземлителя 40 х 4 мм., где коэффициент III климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 2,2  и коэффициент спроса примем η = 1, т.к. расстояние  между электродами более 5 м., что исключает влияние около электродной зоны, по количеству принятых электродов, их длине и отношению расстояния между ними (см. таблицу 3  Расчёт заземления) :

ширина полки для полосы b = 0,04 м.

Примеры расчёта заземляющего устройстваRг = 0,366 · (100 · 2,2 / 12 · 1) · lg (2 · 122 /0,04 · 0,5) = 27,90 Ом·м, примем сопротивление горизонтального заземлителя — Rг = 27,9 Ом·м;

где,  lg- десятичный логарифм (смотри   формулы   формулы для расчёта рис. 4), b — 0,04 м. ширина полосы, t — 0,5 м. глубина траншеи.

д) Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Примеры расчёта заземляющего устройстваRоб =  (27,9 · 27,58) / (27,58 · 1) + (27,9 · 0,91 ·3) = 7,42 Ом·м 

где Rоб общее сопротивление заземлителей; RВ вертикального; RГ — горизонтальногоηВ и ηГ коэффициенты использования вертикального и горизонтального заземлителя, n —  шт количество вертикальных заземлителей.

Rоб = 7,42  Ом·м соответствует норме при напряжении U — 380 В  для ввода в здание, где нормированное  сопротивление не более Rн = 10 Ом (Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В., ПУЭ п.1.7.103.) 

3.  Пример расчёта заземления с расположением заземлителей по контуру:

     В качестве грунта примем сугли́нок — почва с преимущественным содержанием глины и значительным количеством песка с удельным сопротивлением ρ — 100 Ом·м. Вертикальный заземлитель из стальной трубы с наружным диаметром d — 32 мм., толщена стенки  S — 4 мм.,  длиной электрода L — 2,2 м и расстоянием между ними 2,2 м (a = 1хL). Заземлители расположены по контуру. Глубина траншеи равна t = 0,7 м. Из таблицы 6 возьмем повышающий коэффициент для второй климатической зоны и длине заземлителей до 5 м, его сезонное климатическое значение сопротивление составит Ψ — 1,5. Нормированное сопротивление заземляющего устройства равно Rн10 Ом·м. Фактическое удельное сопротивление почвы вычислим по формуле: ρэкв = Ψρ = 1.5 · 100 = 150 Ом·м.

а) вычислим сопротивление растекания тока одного вертикального заземлителя (стержня) по формуле 2 см.  Расчёт заземления:

Примеры расчёта заземляющего устройства

RО  = 150 / (2π · 2,2) · (ln (2 · 2,2 / 0,032) + 0,5 · ln (4 · 1,8 + 2,2) / (4 · 1,8 — 2,2)) = 10,85 · (ln 137,5 + 0,5 · ln 1,88) = 56,845 Ом·м., где T = 0,5 · L + t = 0,5 · 2,2 + 0,7 = 1,8 м.  Примем RО = RВ = 56,85 Ом·м.,

б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находим по формуле  (см. Расчёт заземления):

Примеры расчёта заземляющего устройстваn = 56,85 /10 = 5,685 шт., округляем по таблице 3 до ближайшего значения, где n = 4 шт., далее по таблице 3 выберем число электродов n = 6 шт по контуру при отношение расстояние между электродами к их длине a = 1хL, где коэффициент спроса  η = 0,62 и уточним количество
стержней с коэффициентом использования вертикальных заземлителей:   n = 56,85 /10 · 0,62  = 9,17 шт., т.е требуется увеличить количество Примеры расчёта заземляющего устройстваэлектродов до  n = 10 шт., где коэффициент спроса  ηВ = 0,55 ;  

в) находим длину горизонтального заземлителя исходя из количества заземлителей  расположенных по контуру:  LГ = а · n , LГ = 2,2 · 10 = 22 м., где а = 1 · L = 1 · 2,2 = 2,2 м;

г)  находим сопротивление растекания тока для горизонтального заземлителя  по формуле 5 (см. Расчёт заземления), где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5, коэффициент спроса примем по таблице 3 — ηГ = 0,34, ширина полосы горизонтального заземлителя b — 40 мм, (если из той же трубы d = 32 мм, то тогда ширина b полосы   будет равна — b = 2 · d = 2 · 32 = 64 мм, b = 0,064 м.) и удельное сопротивление грунта — ρ = 100 Ом.м, по формуле 6:

Примеры расчёта заземляющего устройстваRГ = 0,366 · (100 · 3,5 / 22 · 0,34) · lg (2 · 222 /0,040 · 0,7) = 17,126 · lg 34571,428 = 77,73 Ом·м, примем сопротивление горизонтального заземлителя — RГ = 77,73 Ом·м;

д) Определим полное сопротивление вертикального заземлителя с учетом сопротивления растекания тока горизонтальных заземлителей по формуле 6:

Примеры расчёта заземляющего устройстваRоб =  (77,73 · 56,85) / (56,85 · 0,34) + (77,73 · 0,55 ·10) = 9,89 Ом·м , что соответствует заданной норме сопротивления не более Rн = 10 Ом·м.

         Перейти далее:    ⇒           Продолжение примеров расчёта заземления

Данный расчет следует применять как оценочный. После окончания монтажа заземляющего устройства необходимо пригласить специалистов электролаборатории для проведения электроизмерений (для ООО и ИП обязательно).

Вернутся:

на страницу     Заземляющие устройства

на страницу     Заземлители заземляющего устройства 

на страницу     Расчет заземляющего устройства

Перейти в раздел:  Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ

Примечание: данный раздел пока находится в разработке, могут быть опечатки. 

energetik.com.ru

программы расчета защитного контура, допустимого сопротивления

Заземление необходимо для обеспечения безопасности в случае повреждения электроустройств, изоляции силовой проводки, замыкания проводников. Суть заземления сводится к снижению потенциала в месте прикосновения к заземлённой электроустановке до максимально допустимых значений.

Заземление предприятия

Заземление предприятия

Снижение потенциала выполняется двумя способами:

  • Зануление – соединение корпуса устройства с нулевым проводником, идущим к подстанции;
  • Заземление – подсоединение корпуса к заземляющему контуру, расположенному в грунте за пределами здания.

Первый вариант осуществляется проще, но в случае повреждения нулевого проводника перестает выполнять свои функции, а это опасно. Поэтому наличие контура заземления является обязательным условием обеспечения безопасности.

Расчет заземления предполагает определение сопротивления заземляющего устройства, которое не должно быть больше заданного техническими нормами.

Заземляющий контур

Конструкция контура заземления, виды используемых материалов, ограничены условиями, которые содержатся в документах, к примеру, в ПУЭ, правилах устройства электроустановок.

Заземляться должны все без исключения электроустановки, как на подстанции, так и на предприятии или в быту.

Наиболее распространенной конструкцией заземляющего контура является один или несколько металлических штырей (заземлителей), заглубленных в землю и соединенных между собой сварным соединением. При помощи металлического проводника контур заземления соединяется с заземляемыми устройствами.

Контур заземления

Контур заземления

В качестве заземлителей используются неокрашенные стальные или стальные обмедненные материалы, размеры которых не должны быть меньше приведенных ниже:

  • Прокат круглый – диаметр не менее 12 мм;
  • Уголок – не менее 50х50х4 мм;
  • Трубы – диаметром не менее 25 мм с толщиной стенок не менее 4 мм.

Чем лучше проводимость заземлителей, тем эффективнее работает заземление, поэтому самый предпочтительный вариант – использование медных электродов, но на практике это не встречается, ввиду высокой стоимости меди.

Ничем не покрытая сталь имеет высокую коррозионную способность, особенно на границе влажного грунта и воздуха, поэтому определена минимальная толщина стенок металла (4 мм).

Оцинкованный металл хорошо сопротивляется коррозии, но не в случае протекания токов. Даже самый минимальный ток вызовет электрохимический процесс, в результате чего тонкий слой цинка прослужит минимальное время.

Современные системы заземления выполняются на основе обмедненной стали. Поскольку количество меди для изготовления невысоко, то стоимость готовых материалов ненамного превышает стальные, а срок службы многократно возрастает.

Заземлитель из уголка

Заземлитель из уголка

Наиболее распространенными конструкциями контуров заземления являются треугольное или рядное размещение электродов. Расстояние между соседними электродами должно составлять 1.2-2 м, а глубина закладки – 2-3 м. Глубина закладки (длина электродов) во многом зависит от характеристик грунта. Чем выше его электрическое сопротивление, тем глубже должны залегать электроды. В любом случае эта глубина должна превышать глубину промерзания грунта, поскольку замерзший грунт имеет высокое омическое сопротивление. То же самое относится и к участкам земли с низкой влажностью.

Там, где возможно протекание токов высокого значения, к примеру, на подстанции или предприятии с мощным оборудованием, подход к выбору конструкции контура заземления и его расчет имеют очень большое значение для безопасности.

Факторы сопротивления заземления

Расчет защитного заземляющего устройства зависит от многих условий, среди которых можно выделить основные, которые используются при дальнейших расчетах:

  • Сопротивление грунта;
  • Материал электродов;
  • Глубина закладки электродов;
  • Расположение заземлителей относительно друг друга;
  • Погодные условия.

Сопротивление грунта

Сам по себе грунт, за несколькими исключениями, обладает низкой электропроводностью. Данная характеристика меняется, в зависимости от содержания влаги, поскольку вода с растворенными в ней солями является хорошим проводником. Таким образом, электрические свойства грунта зависят от количества содержащейся влаги, солевого состава и свойств грунта удерживать в себе влагу.

Структура грунта

Структура грунта

Распространенные типы грунта и их характеристики

Тип грунтаУдельное сопротивление ρ, Ом•м
Скала4000
Суглинок100
Чернозем30
Песок500
Супесь300
Известняк2000
Садовая земля50
Глина70

Из таблицы видно, что удельное сопротивление может отличаться на несколько порядков. В реальных условиях ситуация осложняется тем, что на разных глубинах тип грунта может быть различным и без четко выраженных границ между слоями.

Материал электродов

Эта часть расчетов наиболее проста, поскольку при изготовлении заземления используется только несколько разновидностей материалов:

  • Сталь;
  • Медь;
  • Обмедненная сталь;
  • Оцинкованная сталь.

Медь в чистом виде не используется по причине высокой стоимости, наиболее часто применяемые материалы – это чистая и оцинкованная сталь. В последнее время все чаще стали встречаться системы заземления, в которых используется сталь, покрытая слоем меди. Такие электроды имеют наименьшее сопротивление, которое имеет хорошую стабильность во времени, поскольку медный слой хорошо сопротивляется коррозии.

Наихудшие характеристики имеет ничем не покрытая сталь, поскольку слой коррозии (ржавчина) увеличивает переходное сопротивление на границе электрод-грунт.

Обмедненные электроды

Обмедненные электроды

Глубина закладки

От глубины закладки электродов зависят линейная протяженность границы касания электрода и грунта и величина слоя земли, который участвует в цепи протекания тока. Чем больше этот слой, тем меньшее значение сопротивления он будет иметь.

На заметку. Кроме этого при установке электродов следует иметь в виду, что чем глубже они располагаются, тем ближе будут находиться к водоносному слою.

Расположение электродов

Данная характеристика наименее очевидна и трудна для понимания. Следует знать, что каждый электрод заземления имеет некоторое влияние на соседние, и чем ближе они будут расположены, тем меньше будет их эффективность. Точное обоснование эффекта довольно сложное, просто следует его учитывать при расчетах и строительстве.

Проще объяснить зависимость эффективности от количества электродов. Здесь можно привести аналогию с параллельно соединенными резисторами. Чем их больше, тем меньше суммарное сопротивление.

Расположение заземлителей в один ряд

Расположение заземлителей в один ряд

Погодные условия

Наилучшие параметры заземляющее устройство имеет при повышенной влажности грунта. В сухую и морозную погоду сопротивление грунта резко возрастает и при достижении некоторых условий (полное высыхание или промерзание) принимает максимальное значение.

Обратите внимание! Для того чтобы минимизировать влияние погодных условий, глубина закладки электродов должна быть ниже максимальной глубины промерзания зимой или доходить до водоносного слоя для исключения пересыхания.

Важно! Последующие расчеты необходимо производить для наихудших условий эксплуатации, поскольку во всех иных случаях сопротивление заземления будет снижаться.

Методика расчета

Основным параметром расчета является необходимое значение сопротивления заземления, которое регламентируется нормативными документами, в зависимости от величины напряжения питания, типа электроустановок, условий их использования.

Строгий расчет защитного заземления, который дает значения количества и длины электродов, не существует, поэтому он выполняется на основе некоторых приближенных данных и допусков.

Для начала учитывается тип грунта, и определяется примерная длина электродов заземления, их материал и количество. Далее выполняется расчет, порядок которого следующий:

  • Определяется сопротивление растекания тока для одного электрода;
  • Рассчитывается количество вертикальных заземлителей с учетом их взаимного расположения.

Одиночный заземлитель

Сопротивление растекания тока рассчитаем, согласно формуле:

Формула 1

Формула 1

В данном выражении:

ρ – удельное эквивалентное сопротивление грунта;

l – длина электрода;

d – диаметр;

t – расстояние от поверхности земли до центра электрода.

При использовании уголка вместо трубы или проката принимают:

d = b·0.95, где b – ширина полки уголка.

Эквивалентное сопротивление многослойного грунта:

Формула 2

Формула 2

где:

  • ρ1 и ρ2 – удельные сопротивления слоев грунта;
  • Н – толщина верхнего слоя;
  • Ψ – сезонный коэффициент.

Сезонный коэффициент зависит от климатической зоны. Также в него вносятся поправки, в зависимости от количества использованных электродов. Ориентировочные значения сезонного коэффициента составляют от 1.0 до 1.5.

Количество электродов

Необходимое количество электродов определяется из выражения:

n = Rз/(К·R), где:

  • Rз – допустимое максимальное сопротивление заземляющего устройства;
  • К – коэффициент использования.

Коэффициент использования выбирается. в соответствии с выбранным количеством заземлителей, их взаимного расположения и расстояния между ними.

Рядное расположение электродов

Отношение расстояния между электродами к их длинеКоличество
электродов
Коэффициент
14
6
10
0,66-0,72
0,58-0,65
0,52-0,58
24
6
10
0,76-0,8
0,71-0,75
0,66-0,71
34
6
10
0,84-0,86
0,78-0,82
0,74-0,78

Контурное размещение электродов

Отношение расстояния между электродами к их длинеКоличество
электродов
Коэффициент
14
6
10
0,84-0,87
0,76-0,80
0,67-0,72
24
6
10
0,90-0,92
0,85-0,88
0,79-0,83
34
6
10
0,93-0,95
0,90-0,92
0,85-0,88

Не всегда расчет контура заземления выдает необходимое значение, поэтому, возможно, его потребуется произвести несколько раз, изменяя количество и геометрические размеры заземляющих электродов.

Измерение заземления

Для измерения сопротивления заземления используются специальные измерительные приборы. Правом измерения заземления обладают организации с соответствующим разрешением. Обычно это энергетические организации и лаборатории. Измеренные параметры вносятся в протокол измерения и хранятся на предприятии (в цеху, на подстанции).

Прибор для измерения заземления

Прибор для измерения заземления

Расчет сопротивления заземления представляет сложную задачу, в которой необходимо учитывать множество условий, поэтому рациональнее воспользоваться помощью организаций, которые специализируются в данной области. Для решения задачи можно произвести расчеты на он-лайн калькуляторе, пример которых можно найти в интернете в свободном доступе. Программа калькулятора сама подскажет, какие данные необходимо учитывать при вычислениях.

Видео

amperof.ru

инструкция, таблицы и формулы для просчитывания сопротивления заземляющего устройства, пример вычисления и онлайн-калькулятор

Защита от статического электричества устанавливается в случаях работы оборудования из материалов, проводящих ток. Расчет контура заземления выполняется с учетом принятых стандартов.

Содержание

Открытьполное содержание

[ Скрыть]

Принципы и правила вычислений согласно ПУЭ

Перед рассчетом параметров заземления электрических проводников, а также их размеров, надо определить тип грунта. Рекомендуется использовать собранную установщиком информацию и постоянные значения, указанные в таблицах. При выполнении подсчетов нужно руководствоваться требованиями ГОСТа и Правилами устройства электроустановок (ПУЭ).

Порядок расчета и исходные данные

Для определения допустимого вертикального или горизонтального заземления следует:

  1. Рассчитать контур.
  2. Подготовить заземляющие электроды и проводники.
  3. Воспользоваться формулами для расчета.

Определение оптимального контура защитного заземления

Для получения оптимального растекания напряжения подбирается форма контура. Устройство представляет собой прямую линию либо геометрическую фигуру.

Менее затратным вариантом при определении необходимого контура заземления будет использование линейной схемы, в соответствии с которой нужно только выкопать одну траншею.

В процессе эксплуатации показатели напряжения и формы растекания могут измениться, потому при расчетах используется поправочный коэффициент. Подходящим вариантом будет применение треугольной формы контура: монтаж электродных элементов выполняется по вершинам геометрической фигуры. Для частного домовладения достаточно будет использовать три электрода.

Алекс Жук подробно рассказал о вычислении параметров заземления, а также количества проводников и электродов.

Электроды и проводники — выбор и расчет

Вертикальные электродные элементы являются основными составляющими, которые учитываются при расчете контура заземления. Длина приспособлений определяется расстоянием между ними. Непосредственно от размера электродов зависит и величина сопротивления. Значение сечения определяется в соответствии с ПУЭ, в связи с этим необходимо создать максимально износостойкую систему.

При выборе нужных размеров нужно иметь ввиду, что чем бо́льшая часть электрода погружается в землю, тем более эффективным получится контур. Для увеличения метража повышается количество самих стержней или берутся элементы с более высокими показателями длины. Здесь потребитель выбирает самостоятельно, что ему сделать проще: установить много электродов в землю или забивать каждый из них максимально глубоко.

Правила выбора и расчета:

  1. Длина электродных элементов выбирается с учетом того, что заземляться они должны не менее, чем на 0,5 м (среднее значение сезонного промерзания грунта). Установка стержня ниже этого показателя обеспечит корректную работу всех электрических приборов независимо от погодных условий.
  2. Расстояние между вертикальными элементами. Показатель определяется конфигурацией контура, а также длиной составляющих.

Трехметровые электроды устанавливать сложнее. Оптимальным считается использование двухметровых элементов с небольшим отклонением в большую либо меньшую сторону.

Канал «Дни Решений» рассказал о теоретических особенностях определения параметров необходимого защитного заземления и нюансах создания контура.

Размеры материала для заземления

Подбор материалов начинается с расчета минимальной длины.

МатериалПрофиль сеченияДиаметр, ммПлощадь поперечного сечения, ммТолщина стенки, мм
Черная стальКруглый
Для заземлителей вертикального типа16
Для горизонтальных устройств10
В форме прямоугольника1004
В виде угла1004
Трубный323,5
Оцинкованная стальКруглый
Для заземлителей вертикального класса12
Для горизонтальных элементов10
Для устройств с прямоугольным профилем753
Трубный252

Формулы расчета

Для вычислений применяются формулы, исходя из характеристик заземлителя. Необходимо будет посчитать величину сопротивлений растекания тока, а также вертикального стержня.

Как определить сопротивление растеканию тока

Пример расчета приведен на изображении. Выбор формул зависит от расположения стержня электрода. Роль играет и вид логарифма.

Универсальная формула расчета сопротивления вертикального стержня

Обозначение символов:

  • Рэкв — параметр эквивалентного сопротивления почвы, измеряющийся в Ом/м;
  • d — диаметр изделия, мм;
  • L — размер непосредственно стержня, измеряется в метрах;
  • Т — значение расстояния от середины изделия до поверхности земли.
Таблицы вспомогательной информации для расчета заземления

Значение удельного сопротивления почвы зависит от степени влажности грунта. Для обеспечения максимальной стабильности заземлителя, а также предотвращения негативного воздействия погодных условий, его нужно установить на глубине 0,7 м.

Показатели для различных видов почвы.

Тип грунтаЗначение удельного сопротивления, Ом
Торф20
Земля, чернозем50
Глинистый грунт60
Супесь150
Песок, если грунтовые воды находятся на расстоянии 5 метров500
Песчаный, когда подземное течение расположено на глубине более 5 м1000

Установку системы заземления необходимо производить так, чтобы стержень полностью проходил верхний слой почвы, а также часть нижнего. При этом надо учитывать сезонный климатический коэффициент.

Величина сопротивления грунта.

Разновидность электродаКлиматическая зона местности
1234
Вертикальный1,8/21,5/1,81,4/1,61,2/1,4
Горизонтальный4,5/73,5/4,52/2,51,5
Климатические признаки зон, в градусах
Среднее значение самой низкой температуры в январеВ диапазоне от -20 до +15От -14 до +10От -10 до 0От 0 до +5
Величина самой высокой точки температуры, измеряется в июлеВ диапазоне от +16 до +1818-2222-2424-26
Расчет вертикальных заземлителей – таблица и формула

Расчет производится по формуле N=(R1*X)/R2. R2 представляет собой нормируемую величину сопротивления растекания тока электрода, который определяется стандартом ПТЭЭП (Правила технической эксплуатации установок потребителя).

Нормы, которых следует придерживаться.

Свойства электрооборудованияВеличина удельного сопротивления почвы, ОмЗначение сопротивления заземляющего электрода, Ом
Искусственное заземляющее устройство, к которому подключаются генераторные и трансформаторные установки
660/380максимум 10015
больше 1000,5*р
380/220не более 10030
больше 1000,3*р
220/127максимум 10060
больше 1000,6*р
Формула расчета горизонтального проводника

Коэффициенты использования заземлителей.

ГоризонтальныеВертикальные
Расположение по контуру
Количество

Сотношение расстояний между электродами и их длиной, м

Число элементовЧисленность стержней и длина, м
40,450,550,6540,690,780,85
50,40,480,6460,620,730,8
80,360,430,6100,550,690,76
100,340,40,56200,470,640,71
200,270,320,45400,410,580,67
300,240,30,41600,390,550,65
500,210,280,371000,360,520,62
700,20,260,35
1000,190,240,33
Размещение в один ряд
КоличествоСоотношение расстояния и длины, мКоличествоПараметры соотношения расстояний между устройствами и их длиной, м
40,770,890,9220,860,910,94
50,740,860,930,780,870,91
80,670,790,8550,70,810,87
100,620,750,82100,590,750,81
200,420,560,68150,540,710,78
300,310,460,58200,490,680,77
500,210,360,49
650,20,340,47

Канал «Не только СТРОЙКА» рассказал о методике ведения расчетов параметров заземления с помощью специальной программы индивидуально для каждого жилого дома.

Пример расчета контура заземления

Для изготовления заземлителя обычно используется металлический уголок длиной 2,5-3 метра и размером 50х50 мм. При установке расстояние между элементами должно соответствовать их длине, или 2,5-3 метра. Показатель сопротивления для глиняного грунта будет 60 Ом*м. Согласно таблице климатических зон, значение сезонности для средней полосы составит около 1,45. Сопротивление будет равно: 60*1,45=87 Ом*м.

Пошаговый алгоритм монтажа заземления:

  1. Выкопать возле дома траншею по контуру глубиной 0,5 м.
  2. Забить в ее дно металлический уголок. Габариты его полки подобрать с учетом условного диаметра электродного элемента, который вычисляется по формуле d=0.95*p=0.995*0.05=87 Ом*м.
  3. Определить глубину залегания средней точки уголка: h=0.5*l+t=0,5*2,5*0,5=1,75 м.
  4. Подставить данное значение в ранее описанную формулу для расчета величины сопротивления одного заземлителя. Полученный параметр в итоге составит 27,58 Ом.

Необходимое число электродов можно определить по формуле N=R1/(Kисп*Rнорм). В результате получится 7. Изначально в качестве Кисп применяется цифра 1. В соответствии с табличными данными, для семи заземлительных устройств значение составит 0,59. Подставив полученную величину в формулу расчета, получаем результат: для дачного участка необходимо использовать 12 электродных элементов.

Соответственно, производится новый перерасчет с учетом этого параметра. Кисп по таблице теперь составит 0,54. Если использовать это значение в формуле, то в результате получится 13 штук. Тогда величина сопротивления электродов будет равна 4 Ома.

Расчет заземляющего устройства в режиме онлайн

Ускорить расчетный процесс помогает применение онлайн-калькулятора.

Алгоритм работы:

  1. Вычислить удельное сопротивление грунта ρ (1), учитывая его неоднородность. Для этого выбирать состав верхнего и нижнего слоя земли. Калькулятор сам подбирает необходимые значения для ρ1 и ρ2.
  2. Указать климатическую зону (коэффициент k1) и ввести остальные параметры. R1 (2) и R2 (3) определяют сопротивление заземлителей — горизонтального и вертикального.
  3. Провести расчет R (4) на основании полученных результатов.
  4. Ознакомиться с итогом.

Рекомендуется проверить, соответствует ли нормам (ПУЭ 1.7.101) сопротивление заземляющих устройств. Если оно превышает допустимое значение, надо изменить исходные параметры. В частности, уменьшить или увеличить количество вертикальных заземлителей.

Видео

Канал «Pro Дом» рассказал об алгоритме проведения расчетов для установки заземлительных электродов в бумажном формате и выборе резисторов.

razvodka.net

2.3. Расчет заземляющих устройств

Для обеспечения безопасности эксплуатации электрооборудования производят расчет заземляющих устройств уже на стадии проектирования. Электроустановки напряжением до 1000 В при изолированной нейтрали и мощности трансформатора более 100 кВА должны иметь сопротивление защитного заземления не более 4 Ом. При мощности

Рис. 1. Схема контурного заземления электрооборудования:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземляющий магистральный проводник; 7 – заземлитель

Рис. 2. Схема выносного очагового заземления

электрооборудования:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземлитель

Рис. 3. Схема выносного заземления электрооборудования при расположении электродов в ряд:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземлитель

трансформатора менее 100 кВА сопротивление заземления не должно превышать 10 Ом.

Сопротивление заземлителей растеканию тока зависит от их числа, размеров, удельного сопротивления грунта. Сопротивление одиночного стержневого заземлителя (электрода) определяется по формуле, Ом

(1)

где ρ – удельное сопротивление грунта, Ом·м; d – диаметр стержневого заземлителя, м; l – длина стержневого заземлителя, м; h – глубина размещения заземлителя, м

h = 0,5l + h0, (2)

где h0 – расстояние от поверхности грунта до начала одиночного заземлителя, от 0,5 до 0,8 м.

Для заземлителей из угловой стали предварительно определяют эквивалентный диаметр по формуле

d = 0,96C, (3)

где С – ширина полок уголка, м.

Необходимые для расчета значения удельных сопротивлений грунтов приведены в табл. 1.

Таблица 1

Вид грунта

Пределы колебаний

величины удельных

сопротивлений грунтов, Ом·м

Рекомендуемые для

расчетов удельные

сопротивления грунтов, Ом·м

Песок

400 – 700

500

Супесь

150 – 400

300

Суглинок

40 – 150

100

Глина

8 – 70

40

Садовая земля

40 – 60

50

Чернозем

9 – 530

200

Торф

20 – 60

40

Руда

2 – 20

10

Речная вода

10 – 80

50

Морская

0,2 – 1

0,6

Уголь

40000 – 45000

43000

Скала

4·108

4·108

Количество стержневых заземлителей, необходимых для достижения нормативного сопротивления заземляющего устройства, определяется по формуле

(4)

где RD – допустимое (нормативное) сопротивление заземления, Ом; ηC – коэффициент сезонности; ηI – коэффициент использования (экранирования) в вертикальных заземлителях.

Забитые электроды соединяются металлической полосой сечением не менее 48 мм2. Длина полосы для контура равна

Ln = 1,05a(N – 1), (5)

а при расположении электродов в ряд

Lp = aN, (6)

где a – расстояние между электродами, м; N – число электродов, шт.

Численные значения коэффициента сезонности в основном определяются колебанием влажности почвы в течение года и заданы в табл. 2.

Таблица 2

Месяц

Глубина размещения (заложения), м

Месяц

Глубина размещения (заложения), м

менее 0,8

более 0,8

менее 0,8

более 0,8

Январь

1,05

1,2

Июль

2,2

1,75

Февраль

1,05

1,1

Август

1,55

1,55

Март

1,0

1,1

Сентябрь

1,6

1,7

Апрель

1,6

1,2

Октябрь

1,55

1,5

Май

1,95

1,3

Ноябрь

1,65

1,35

Июнь

2,0

1,55

Декабрь

1,65

1,35

Численные значения коэффициента использования (экранирования) для вертикальных заземлителей (электродов) при их размещении по контуру и в ряд (выносная схема) приведены в табл. 3.

Таблица 3

Число

заземлителей

Отношение расстояния между электродами к их длине

1

2

3

1

2

3

размещение в ряд

размещение по контуру

2

0,85

0,91

0,94

4

0,73

0,83

0,89

0,69

0,78

0,85

6

0,65

0,77

0,85

0,61

0,73

0,80

10

0,59

0,74

081

0,56

0,68

0,76

20

0,48

0,57

0,76

0,47

0,63

0,71

40

0,41

0,58

0,66

60

0,39

0,55

0,64

Сопротивление растеканию электрического тока соединяющей полосы, уложенной в земле, определяется по формуле, Ом

(7)

где L – длина полосы, м; b – ширина полосы, м; h – глубина заложения полосы от поверхности земли, м.

Результирующее сопротивление растеканию электрического тока всего заземляющего устройства определяется по формуле

(8)

где ηp – коэффициент использования (экранирования) горизонтальной соединительной полосы.

Численные значения коэффициента использования горизонтального полосового электрода в зависимости от числа вертикальных электродов, соединяемых им, приведены в табл. 4.

Таблица 4

Отношение расстояния между вертикальными электродами к их длине

Число вертикальных электродов

2

4

6

10

20

40

60

размещение в ряд

1

0,85

0,77

0,72

0,62

0,42

2

0,94

0,89

0,84

0,75

0,56

3

0,96

0,92

0,88

0,82

0,68

размещение по контуру

1

0,45

0,40

0,34

0,27

0,22

0,20

2

0,55

0,48

0,40

0,32

0,29

0,27

3

0,70

0,64

0,56

0,45

0,39

0,36

studfile.net

Расчет заземления для частного дома: формулы, схемы, видео

Чтобы обеспечить частный дом необходимыми конструкциями по электробезопасностям, используют такой важный элемент, как защитное заземление. Оно необходимо для того чтобы отвести электрический ток в грунт по системе заземлителей, состоящей из горизонтальных и вертикальных электродов. В этой статье мы расскажем, как выполнить расчет заземления для частного дома, предоставив все необходимые формулы.

Что важно знать

Заземление дома необходимо для того чтобы снизить напряжение соприкосновения до неопасного показателя. Благодаря ему потенциал направляется в землю и защищает человека от поражения электрическим током. В ПУЭ (Глава 1.7, п. 1.7.62.) указывается, что частный дом должен иметь сопротивление растекания при трехфазном питании 4 и 8 Ом (первое значение при 380 В, второе – 220 В), а при однофазном – 2 и 4 Ом.

Количество заземлителей необходимо выбрать таким образом, чтобы обеспечить нормативное сопротивление растеканию электрического тока. Чем меньше сопротивление — тем лучше, таким образом обеспечивается эффективность действия заземляющего устройства при выполнении функций защиты от действия электрического тока.

Электроды изготавливаются из меди, оцинкованной и черной стали. Профили сечения указаны на рисунке ниже:

Поперечные сечения заземляющих электродов

Методика расчета

Расчет делается исходя от того, какое заземление используется. В формуле указывается количество используемых заземлителей, их длину и толщину. Также все зависит и от параметров грунта, который окружает частный дом.

Существует несколько вариантов установки заземлителей. Это такие методы, как:

  1. Вертикальный. Делиться на два подвида: тот, что устанавливают у поверхности и тот, что монтируют с заглублением (предпочтительно на 70 см).
  2. Горизонтальный. Делиться на два подвида: с установкой по поверхности грунта и в траншее (предпочтительно 50 – 70 см).

Заземление включает в себя горизонтальные и вертикальные стержни, расчет которых осуществляется отдельно. В зависимости от длинны стержня, берется дистанция между ними, т. е. размер а должен быть кратен размеру L. Пример: а = 1xL; а = 2xL.

Длина и расстояние между стержнями

Формула, по которой делается расчет одиночного вертикального стержня, который не закапывается в почву, выглядит следующим образом:

Rв

где:

  • p – удельное сопротивление почвы;
  • l – длина заземлителя;
  • D – диаметр электрода.

Примечание: если заземление имеет угловой профиль с шириной b, то d = 0.95b.

Расчет заземлителя, который монтируют с углублением на 70 см (h = 0,7 м) в землю, производится по следующей формуле:

Rв2

Горизонтальное заземление у поверхности рассчитывается по формуле:

Rг

Примечание: формула предоставлена для прямоугольного и трубного профиля с шириной полки b, для полосы считать нужно с учетом d= 0.5b.

Расчет электрода, который располагается в траншее 70 см (h = 0,7 м), производится по следующей формуле:

Rг2

Для полосы шириной b необходимо считать d =0,5 b.

Схема заземлителя

Расчет суммарного сопротивления заземлителя осуществляется следующим образом:

Суммарное сопротивление формула

где:

  • n – численность вертикальных заземлителей;
  • Rв и Rг – сопротивления заземленных элементов;
  • nв – коэффициент употребления заземлителей.

Этот коэффициент берется из таблицы:

Коэффициент употребления заземлителей

Методом коэффициента использования можно определить, какое воздействие проявляют друг на друга токи растекания с заземлителей при их разнообразном размещении. Например, если их объединить параллельно, то токи растекания электродов имеют взаимное действие на каждый элемент. Поэтому при минимальной дистанции между элементами, сопротивление заземленного контура будет значительно больше.

Заземление происходит по нескольким схемам расположения электродов. Самой распространенной считается схема в виде треугольника. Но это не обязательная конфигурация электродов. Также их можно разместить в одну линию или последовательно по контуру. Такой вариант удобен в том случае, когда для обустройства системы был выделен небольшой узкий участок на земле.

Дополнительно вы можете проверить результат, воспользовавшись онлайн-калькулятором для расчета заземления!

Заземляющий проводник соединяет с электрическим щитом сам контур конструкции. Ниже приведены схемы:

Формы заземляющих контуров

При проведении расчетов заземления важно обеспечить точность, чтобы не допустить ухудшения электробезопасности. Чтобы не допустить ошибки в расчетах, вы можете воспользоваться специальными программами для расчета заземления в интернете, с помощью которых можно точно и быстро рассчитать нужные значения!

На видео ниже наглядно демонстрируется пример расчетных работ в программе Электрик:

Вот по такой методике производится расчет заземления для частного дома. Надеемся, предоставленные формулы, таблицы и схемы помогли вам самостоятельно справиться с работой!

Наверняка вам будет интересно:

samelectrik.ru

Расчет заземляющего устройства контура заземления

Защитный контур, созданный вокруг любого объекта, который снабжается электроэнергией, обеспечит стекание высокого напряжения в землю по специально установленным электродам. Такие конструкции защищают дорогостоящее оборудование от короткого замыкания и перегорания из-за скачков напряжения. Установку конструкции необходимо проводить в соответствии с результатами проведенных вычислений уровня электропроводности проводников.

Контуры заземления

Предназначение расчёта

Прежде чем установить систему заземления на жилом или ином объекте, необходимо провести расчет заземляющего устройства, его типоразмеров. Такая конструкция состоит из:

  • элементов, установленных вертикально к поверхности земли;
  • проводника;
  • полос, соединяющих контур в горизонтальной плоскости.

Электроды вкапываются и соединяются между собой с помощью горизонтального заземлителя. После этого созданную систему защиты подсоединяют к электрическому щитку.

Используют такие искусственные конструкции в силовых сетях с разными показателями напряжения:

  1. переменным от 380 В;
  2. постоянным от 440 В;

на опасных производственных объектах.

Схема группового контура заземления

Защитные системы устанавливают в разных местах оборудования. В зависимости от места установки они бывают выносными или контурными. В открытых конструкциях подсоединение элементов проводится сразу к заземляющему элементу. В контурных устройствах размещение идет по внешнему периметру или внутри устройства. Для каждого вида защитных установок необходимо провести расчет, чтобы установить величину сопротивления вертикальных заземлителей, количество необходимых стержней и длину полос для их соединения.

Кроме специальных устройств могут использоваться естественные системы:

  • коммуникации из металлических труб;
  • металлоконструкции;
  • подстанции;
  • опоры;
  • металлическая оболочка кабеля;
  • обсадные трубы.

Расчеты токопроводимости делают для искусственных конструкций. Обустройство их на месте использования силовых установок обеспечивает отвод электрического тока в землю, защищая человека и оборудование от разрядов большой величины в результате скачка напряжения. Чем меньше электропроводность, тем уровень силы электротока, уходящего через защитную конструкцию, будет более низким.

Расчёт контура заземления

Пошаговый расчет контура заземления

Вычисления должны проводиться с учетом количества элементов, удаленности их друг от друга, токопроводимости почвы и глубины вкапывания вертикального заземлителя. Используя эти параметры, получится провести точный расчет защитного заземления.

Сначала следует по таблице определить вид почвы. После этого выбрать подходящие материалы для конструкции. Затем проводятся вычисления по специальным формулам, определяющим число всех элементов, а также их способности к электропроводности.

На основании полученных результатов проводится установка всей системы, после чего проводят контрольные замеры на ее токопроводимость.

Исходные данные

При вычислении силового значения контура заземления, следует составить соотношение их количества, длины соединительных полосок и расстояния, на котором проводится вкапывание.

Правильный расчет контура заземления

Кроме этого нужно будет учесть удельное сопротивление грунта, которое определяется уровнем его влажности. Чтобы добиться стабильной величины, необходимо заглублять электроды в почву на глубину не менее 0,7 метра. Также важно не отходить от установленного ГОСТом размера самого защитного устройства.При проведении расчет нужно использовать готовые таблицы с уже имеющимися показателями для используемых материалов и электропроводности определенных видов почв.

Таблица показателей токопроводимости различных грунтов

Название вида почвыПоказатели электропроводности в Ом·м
Торф20
Черноземы и почвогрунты50
Песок с залеганием грунтовых вод не глубже 5 м500
Глина60
Песок с грунтовыми водами, расположенными ниже 5 м1000
супеси150
Морские воды0,2-1
Речная вода10-100
Садовая земля40
Крупнозернистый песок с большим количеством валунов1000-2000
Скальная порода2000-4000
Глина или гравий70

Таблица классификаций удельного сопротивления разных грунтов

Нужную глубину, на которую закапывают в землю вертикальный электрод, рассчитывают по формуле:
Таблица классификаций удельного сопротивления разных грунтов
При монтаже защитной конструкции нужно следить за тем, чтобы металлические стержни полностью входили в верхний слой земли и частично в нижние его уровни. Во время расчетов потребуется использовать средние коэффициенты уровня электропроводимости грунта в разные сезоны в тех или иных климатических зонах, представленные в данной таблице:

Сопротивление грунтов в разных климатических зонах

Виды электродовКлиматические зоны
IIIIIIIV
Вертикального типа1,8 ÷ 21,5 ÷ 1,81,4 ÷ 1,61,2 ÷ 1,4
В виде полос4,5 ÷ 73,5 ÷ 4,52 ÷ 2,51,5

Модель ЗУ для расчета неэквипотенциальности

Чтобы точно определить количество вертикальных элементов в собираемой конструкции, не учитывая показатели для узких полосок, их соединяющих, нужно использовать формулу:

Модель ЗУ для расчета неэквипотенциальности

В ней Rн, обозначающий силу тока, растекающегося по почве определенного типа, коэффициент сопротивления для которого берется из таблицы.

Для вычисления физических параметров материала следует учитывать размеры используемых элементов системы:

  • у полосок 12х4 – 48 мм2;
  • у уголков 4х4 мм;
  • у стального круга– 10 мм2;
  • у труб, стенки которых имеют толщину 3,5 мм.

Пример расчета заземления

Заземление из нержавеющей стали

Проводить вычисления проводимости используемых проводников с учетом особенностей почвогрунта нужно для каждого электрода в отдельности по формуле:

Заземление из нержавеющей стали

В которой:

  • Ψ — климатический коэффициент, который берется из справочной литературы;
  • ρ1, ρ2 –величина проводимости верхнего и нижнего слоя земли;
  • Н – толщина верхнего слоя грунта;
  • t –глубина расположения вертикального элемента в траншеи.

Стержни для таких конструкций закапывают на уровень не менее, чем на 0.7 метра, согласно действующим нормативам.

Что мы должны иметь по окончанию расчета

После проведения вычислений по используемым формулам удается получить точное сопротивление заземляющего устройства искусственного типа. Измерить данные показатели у естественных систем часто не удается из-за невозможности получить точные типоразмеры закопанных коммуникаций, колей, кабеля или уже установленных металлических конструкций.

Расчёт защитного заземления формула

По окончании расчетов удается получить точное количество стержней и полос для контура, которые помогут создать надежную систему защиты для используемого оборудования и всего объекта в целом. Расчеты помогут также установить точную длину соединяющих стержни полосок. Основным результатом всех проведенных вычислений станет получение итогового значения свойств используемых в созданном контуре проводников, которое определяет силу проходящего по ним электрического тока. Это важнейший норматив ПЭУ, который имеет определенные значения для сетей с разными показателями напряжения.

Допускаемые значения сопротивления заземления, согласно нормативам

Существуют единые нормативные значения, по которым сопротивление растекания тока для электросети с определенным значением напряжения не должно превышать установленных стандартов ГОСТа. В сетях с напряжением в 220 В оно не должно быть больше 8 Ом. При напряжении в 380 В его значение должно быть не выше 4 Ом.

Расчет заземляющего устройства

Для расчета показателей всего контура можно использовать формулу R= R0/ ηв*N, в которой:

  • R0 уровень токопроводимости для одного электрода;
  • R —показание уровня препятствования прохождению тока для всей системы;
  • ηв — коэффициент использования защитного устройства;
  • N — количество электродов во всем контуре.

Материал, требуемый для устройства контура

Собирать контур можно из металлического материала:

  1. уголка,
  2. полосок, имеющих определенные размеры.

После установки заземления его обязательно должен проверить эксперт из независимой измерительной лаборатории. Строительную арматуру можно использовать в качестве естественного контура при наличии ее в несущих конструкциях здания. ПЭУ содержит специальный список конструкций, которые можно использовать в качестве естественного контура при создании защитных систем.

Для проверки работы всей конструкции необходимо общее значение и сопротивление вертикальных заземлителей и всей системы проверить специальными приборами. Доверить эту работу нужно независимым экспертам из электролаборатории. Чтобы конструкция надежно защищала весь объект, следует регулярно проводить замеры, проверяя их значение установленным нормативам.

pauk.top

правила и алгоритм вычислений + формулы и примеры

Заземление — ценное сооружение, защищающее владельцев домашней техники от непосредственного контакта с весьма полезным, но крайне ретивым потоком электроэнергии. Заземляющее устройство обеспечит безопасность при «отгорании» нуля, что нередко случается на загородных ЛЭП при шквальном ветре. Оно исключит риски поражений при утечках на нетоковедущие металлические детали и корпус из-за прохудившейся изоляции. Сооружение защитной системы – мероприятие, не требующее сверх усилий и супер вложений, если грамотно сделан расчет заземления. Благодаря предварительным вычислениям будущий исполнитель сможет определиться с предстоящими расходами и с целесообразностью предстоящего дела.

Строить или не строить?

В уже изрядно забытую пору скудного количества бытовых электроприборов владельцы частных домов редко «баловались» устройством заземления. Считалось, что с задачей отведения утечки электричества превосходно справятся естественные заземлители, такие как:

  • стальные или чугунные трубопроводы, если вокруг них не уложена изоляция, т.е. имеется непосредственный плотный контакт с почвой;
  • стальная обсадка водяной скважины;
  • металлические опоры оград, фонарей;
  • свинцовая оплетка подземных кабельных сетей;
  • арматура фундаментов, колонн, ферм, заглубленных ниже горизонта сезонного промерзания.

Обратите внимание, что алюминиевая оболочка подземных кабельных коммуникаций не может использоваться в качестве элемента заземления, т.к. покрыта антикоррозионным слоем. Защитное покрытие препятствует рассеиванию тока в грунте.

Устройство и расчет заземления

Устройство и расчет заземления

Оптимальным естественным заземлителем признан стальной водопровод, проложенный без изоляции. Благодаря значительной протяженности минимизируется сопротивление току растекания. К тому же наружный водопровод укладывают ниже отметки уровня сезонного промерзания. Значит, на параметры сопротивления не будут влиять морозы и засушливая летняя погода. В эти периоды уменьшается влажность грунта, и, как следствие, увеличивается сопротивление.

Стальной каркас подземных железобетонных конструкций может служить элементом системы заземления, если:

  • с глинистым, суглинистым, супесчаным и влажным песчаным грунтом контактирует достаточная по нормам ПУЭ площадь;
  • в период сооружения фундамента арматура в двух или более местах была выведена на дневную поверхность;
  • стальные элементы данного естественного заземления были соединены между собой сваркой, а не проволочной связкой;
  • сопротивление арматуры, играющей роль электродов, рассчитано согласно требованиям ПУЭ;
  • установлена электрическая связь с заземляющей шиной.

Без соблюдения перечисленных условий подземные ж/б сооружения не смогут выполнить функцию надежного заземления.

Расчеты для выбора схемы заземления

Расчеты для выбора схемы заземления

Из всего набора вышеперечисленных естественных заземлителей расчетам подлежат только подземные ж/б конструкции. Точно вычислить сопротивление растеканию тока трубопроводов, металлической брони и каналов подземных силовых сетей не представляется возможным. Особенно если их прокладка осуществлялась пару десятилетий назад, и поверхность существенно изъедена коррозией.

Эффективность естественных заземлителей определяется путем банальных измерений, для производства чего нужно вызвать сотрудника местной энергослужбы. Показания его прибора подскажут, нужен или нет владельцу загородной собственности повторный заземляющий контур в качестве дополнения к существующим мерам заземления, выполненным компанией-поставщиком электроэнергии.

Уравнивание потенциалов - дополнение к защитному заземлению

Уравнивание потенциалов - дополнение к защитному заземлению

При наличии на участке естественных заземлителей с соответствующими нормам ПУЭ значениями сопротивления, устраивать защитное заземление нецелесообразно. Т.е. если прибор «агента» энергоуправления показал меньше 4 Ом, организацию контура заземления можно отложить «на потом». Однако лучше перестраховаться и предупредить вероятные риски, для чего и сооружается искусственное заземляющее устройство.

Расчеты для устройства искусственного заземления

Нужно признаться, что досконально рассчитать устройство заземления сложно, практически невозможно. Даже в среде профессиональных электриков практикуется метод приблизительного подбора количества электродов и расстояний между ними. Слишком много природных факторов влияет на результат работы. Уровень влажности нестабилен, зачастую доподлинно не исследована фактическая плотность и удельное сопротивление грунта и т.д. Из-за чего в конечном итоге сопротивление устроенного контура или единичного заземлителя отличается от расчетного значения.

Эту разницу выявляют посредством тех же измерений и корректируют путем установки дополнительных электродов или путем наращивания длины единичного стержня. Однако от предварительных расчетов отказываться не стоит, потому что они помогут:

  • исключить или сократить дополнительные затраты на приобретение материала и рытье ответвлений траншей;
  • выбрать оптимальную конфигурацию системы заземления;
  • составить план действий.

Для облегчения непростых и довольно запутанных расчетов разработано несколько программ, но для того чтобы грамотно ими воспользоваться пригодятся знания о принципе и порядке вычислений.

Автоматизированный расчет заземления

Автоматизированный расчет заземления

Составляющие защитной системы

Система защитного заземления представляет собой комплекс заглубленных в грунт электродов, соединенных электрической связью с заземляющей шиной. Основными ее составляющими являются:

  • один или несколько металлических стержней, передающих ток растекания земле. Чаще всего в качестве их применяются вертикально забитые в грунт отрезки длинномерного металлопроката: трубы, равнополочного уголка, круглой стали. Реже функцию электродов выполняют горизонтально зарытые в траншею трубы или листовая сталь;
  • металлическая связь, соединяющая группу заземлителей в функциональную систему. Зачастую это горизонтально расположенный заземляющий проводник из полосы, уголка или прутка. Его приваривают к верхушкам заглубленных в грунт электродов;
  • проводник, соединяющий расположенное в земле заземляющее устройство с шиной, а через нее с защищаемой техникой.

Две последних составляющих носят общее название – «заземляющий проводник» и, по сути, выполняют одну и ту же функцию. Разница заключается в том, что металлическая связь между электродами расположена в земле, а проводник, подключающий заземление к шине, находится на дневной поверхности. Отсюда разные требования к материалам и коррозионной устойчивости, а также разброс в их стоимости.

Схема и расчет для устройства защитного заземления

Схема и расчет для устройства защитного заземления

Принципы и правила вычислений

Совокупность электродов и проводников, именуемая заземлением, устанавливается в грунт, который является непосредственным компонентом системы. Потому в расчетах его характеристики принимают непосредственное участие наравне с подбором длины элементов искусственного заземления.

Алгоритм расчетов прост. Производятся они согласно имеющимся в ПУЭ формулам, в которых есть переменные единицы, зависящие от решения самостоятельного мастера, и постоянные табличные значения. Например, приблизительная величина сопротивления грунта.

Определение оптимального контура

Грамотный расчет защитного заземления начинается с выбора контура, который может повторять любую из геометрических фигур или обычную линию. Выбор этот зависит формы и размеров площадки, имеющейся в распоряжении мастера. Удобней и проще соорудить линейную систему, потому что для установки электродов потребуется вырыть только одну прямую траншею. Но расположенные в один ряд электроды будут экранировать, что неизбежно отразиться на токе растекания. Потому при расчетах линейного заземления в формулы вводится поправочный коэффициент.

Самой востребованной схемой для самостоятельного сооружения защитного заземления признают треугольник. Расположенные в вершинах его электроды при достаточном удалении друг от друга не мешают принятому каждым из них току свободно рассеиваться в земле. Трех металлических стержней для устройства защиты частного дома считают вполне достаточным количеством. Главное их правильно расположить: забить в грунт металлические стержни нужной длины на эффективном для работы расстоянии.

Расстояния между вертикальными электродами должны быть равными, независимо от конфигурации системы заземления. Расстояние между двумя соседними стержнями не должно быть равно их длине.

Специфика расчета заземления линейного типа

Специфика расчета заземления линейного типа

Выбор и расчет параметров электродов и проводников

Основными рабочими элементами защитного заземления являются вертикальные электроды, потому что рассеивать утечки тока придется именно им. Длина металлических стержней интересна, как с точки зрения эффективности защитной системы, так и с точки зрения металлоемкости и цены материала. Расстояние между ними определяет длину компонентов металлической связи: опять же расход материала для создания заземляющих проводников.

Обратите внимание, что сопротивление вертикальных заземлителей зависит преимущественно от их длины. Поперечные размеры несущественно влияют на эффективность. Однако величина сечения нормируется ПУЭ ввиду необходимости создать износостойкую защитную систему, элементы которой не менее 5-10 лет будут постепенно разрушаться коррозией.

Выбираем оптимальные параметры, учитывая, что лишние расходы нам вовсе не к чему. Не забываем, что чем больше метров металлопроката мы загоним в землю, тем больше пользы мы получим от контура. Метры «набрать» можно либо увеличивая длину стержней, либо увеличивая их количество. Дилемма: установка многократных заземлителей заставит изрядно потрудиться на поприще землекопа, а забивание длинных электродов кувалдой вручную превратит в крепкого молотобойца.

Что лучше: численность или длина, выберет непосредственный исполнитель, но существуют правила, согласно которым определяется:

  • длина электродов, потому что заглубить их нужно ниже горизонта сезонного промерзания как минимум на полметра. Так нужно, чтобы работоспособность системы не слишком страдала сезонных факторов, а также от засух и дождей;
  • расстояние между вертикальными заземлителями. Оно зависит от конфигурации контура и от длины электродов. Определить его можно по таблицам.

Отрезки металлопроката по 2,5-3 метра забивать кувалдой в землю трудно и неудобно даже с учетом того, что их 70 см будет погружено в заранее вырытую траншею. Рациональной длинной заземлителей считают 2,0м с вариациями вокруг этой цифры. Не забудьте, что длинные отрезки металлопроката нелегко и весьма накладно будет доставить на объект.

Как правильно рассчитать защитное заземление и выбрать оптимальную схему

Как правильно рассчитать защитное заземление и выбрать оптимальную схему

Грамотно экономим на материале

Уже упоминалось, что от сечения металлопроката мало что зависит, кроме цены материала. Разумней купить материал с наименьшей возможной площадью сечения. Без длительных рассуждений приведем наиболее экономичные и устойчивые к ударам кувалды варианты, это:

  • трубы с внутренним диаметром 32 мм и толщиной стенки 3 и более мм;
  • равнополочный уголок со стороной 50 или 60 мм и толщиной 4-5 мм;
  • круглая сталь с диаметром 12-16 мм.

Для создания подземной металлической связи лучше всего подойдет стальная полоса толщиной 4 мм или 6миллиметровый пруток. Не забываем, что горизонтальные проводники нужно приварить к вершинам электродов, потому к выбранному нами расстоянию между стержнями прибавим еще по 20 см. Надземный участок заземляющего проводника можно сделать из 4миллиметровой стальной полосы шириной 12 мм. Вывести на щиток его можно от ближайшего электрода: так и копать меньше придется, и материал сэкономим.

Как расчитать расход материала для заземления

Как расчитать расход материала для заземления

А вот теперь непосредственно формулы

С формой контура и с размерами элементов мы определились. Теперь можно загнать требующиеся параметры в специальную программу для электриков или воспользоваться приведенными ниже формулами. В соответствии с типом заземлителей выбираем формулу для производства расчетов:

Правила ПУЭ и нормы расчетов для организации заземления

Правила ПУЭ и нормы расчетов для организации заземления

Или воспользуемся универсальной формулой для расчета сопротивление одного вертикального стержня:

Универсальные расчеты заземляющего контура для дома

Универсальные расчеты заземляющего контура для дома

Для вычислений потребуются вспомогательные таблицы с приблизительными значениями, зависящими от состава грунта, его усредненной плотности, способности удерживать влагу и от климатической зоны:

Таблицы с постоянными значениями для расчета заземления

Таблицы с постоянными значениями для расчета заземления

Рассчитаем количество электродов, не учитывая значение сопротивления заземляющего горизонтального проводника:

Расчет параметров электродов для устройства заземления

Расчет параметров электродов для устройства заземления

Вычислим параметры горизонтального элемента системы заземления – горизонтального проводника:

Расчеты сопротивления горизонтального заземлителя

Расчеты сопротивления горизонтального заземлителя

Подсчитаем сопротивление вертикального электрода с учетом значения сопротивления горизонтального заземлителя:

Алгоритм расчета защитного заземления

Алгоритм расчета защитного заземления

Таблица нормативных значений для расчета заземления

Таблица нормативных значений для расчета заземления

Согласно результатам, полученным в результате усердных вычислений, запасаемся материалом и планируем время для устройства заземления.

Ввиду того что наибольшим сопротивлением наше защитное заземление будет обладать в засушливый и морозный период, его сооружением желательно заняться именно в это время. На строительство контура при правильной организации потратить нужно будет пару дней. Перед засыпкой траншеи надо будет проверить работоспособность системы. Это лучше сделать, когда в почве меньше всего содержится влаги. Правда, зима не слишком располагает к труду на открытых площадках, и земляные работы осложняет замерзший грунт. Значит, займемся строительством системы заземления в июле или в начале августа.

stroy-banya.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *