Расчет сопротивления заземления: Калькулятор расчёта заземления онлайн / Калькулятор / Элек.ру – Расчет заземления | Пример расчета заземляющего устройства

Содержание

Расчет заземления | Пример расчета заземляющего устройства

Без грамотно рассчитанного контура заземления (ЗК) надеяться на эффективность работы защитной конструкции было бы большой ошибкой. Только убедившись в том, что для токов стекания подготовлена цепочка с минимальным сопротивлением можно быть уверенным в безопасности людей, работающих на линии. Поэтому так важно сразу же разобраться со всеми тонкостями и особенностями расчета контуров заземления.

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

контурзаземления в виде треугольникаконтурзаземления в виде треугольника

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

линейная схема контура заземлениялинейная схема контура заземленияЛинейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

модульно-штыревое заземлениемодульно-штыревое заземление
Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).
Комплект модульно-штыревого заземления
Комплект модульно-штыревого заземленияКомплект модульно-штыревого заземления

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

одиночный вертикальный заземлительодиночный вертикальный заземлительСхема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Расчет заземления
Расчет заземленияТаблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

сопротивление вертикальных заземлителей

сопротивление вертикальных заземлителей

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

удельное сопротивлениеудельное сопротивление

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:
определение количества стержнейопределение количества стержней

где – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

формула расчета вертикальных штырейформула расчета вертикальных штырей

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Пример расчета заземления

В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.

Расчет одиночного заземляющего элемента для опоры ВЛ 380 Вольт

Согласно оговоренной ранее методике сначала по таблице выбирается тип вертикального штыря со следующими характеристиками:

  • Материал – сталь.
  • Форма – округлый стержень диаметром 16 мм.
  • Длина L — 2,5 метра.

Обратите внимание: В качестве грунта в соответствие с таблицей выбирается полутвердая глина с удельным сопротивлением ρ, равным 60 Ом на•метр.

Глубина траншеи берется равной полметра. Затем из той же таблицы находится поправочный коэффициент, вводимый для средней климатической зоны. Его значение при фактической длине стержней до 2,5 метров с учетом промерзания грунта в данной местности составляет ψ=1,45. Показатель нормированного сопротивления для этого типа ЗУ равен 30 Омам. Следующий показатель – удельное сопротивление грунта находится по формуле:

ρ (по факту) = ψ•ρ = 1.45х60 = 87 Ом•метр

Полученные расчетные данные выглядят так:

  1. заглубление одиночного штыря в грунт составляет h = 0,5l + t = 0,5х2,5 + 0,5 = 1,75 метра;
  2. его сопротивление для нашего примера (смотрите формулы выше) составляет не более 30 Ом, что соответствует требования ПУЭ для данного напряжения.

Когда одного заземляющего штыря для опоры ВЛ недостаточно – допускается добавлять еще один или даже несколько прутьев. В этом случае потребуется другая методика, используемая для линейного контура или треугольной конструкции.

Расчет переносного заземления

Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).

Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.

переносное заземлениепереносное заземлениеУстройство переносного заземления из четырех заземлителей

При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.

В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:

S = ( Iуст √tф ) / 272

где Iуст – это ток короткого замыкания;

– время его действия в секундах;

272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).

В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.

В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.

Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.

Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.

При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).

Расчёт заземления

    

Верхний слой грунта:

Песок сильно увлажненный (60)Песок умеренно увлажненный (130)Песок влажный (400)Песок слегка влажный (1500)Песок сухой (4200)Песчаник (1000)Супесок (300)Супесь влажная (150)Суглинок сильно увлажненный (60)Суглинок полутвердый, лессовидный (100)Суглинок промерзший слой (190)Глина (при t > 0°С) (60)Торф при t = 0°С (50)Торф при t > 0°С (40)Солончаковые почвы (при t > 0°С) (25)Щебень сухой (5000)Щебень мокрый (3000)Дресва (при t > 0°С) (5500)Садовая земля (40)Чернозем (50)Речная вода (1000)Гранитное основание (при t > 0°С) (22500)Песок сильно увлажненный (60)Песок сильно увлажненный (60)Песок сильно увлажненный (60)Песок сильно увлажненный (60)

Климатический коэффициент:

Климатическая зона I (Верт. — 1.9; Горизонт. — 5.75)Климатическая зона II (Верт. — 1.7; Горизонт. — 4.0)Климатическая зона III (Верт. — 1.45; Горизонт. — 2.25)Климатическая зона IV (Верт. — 1.3; Горизонт. — 1.75)Климатическая зона I (Верт. — 1.9; Горизонт. — 5.75)Климатическая зона I (Верт. — 1.9; Горизонт. — 5.75)Климатическая зона I (Верт. — 1.9; Горизонт. — 5.75)Климатическая зона I (Верт. — 1.9; Горизонт. — 5.75)

Нижний слой грунта:

Песок сильно увлажненный (60)Песок умеренно увлажненный (130)Песок влажный (400)Песок слегка влажный (1500)Песок сухой (4200)Песчаник (1000)Супесок (300)Супесь влажная (150)Суглинок сильно увлажненный (60)Суглинок полутвердый, лессовидный (100)Суглинок промерзший слой (190)Глина (при t > 0°С) (60)Торф при t = 0°С (50)Торф при t > 0°С (40)Солончаковые почвы (при t > 0°С) (25)Щебень сухой (5000)Щебень мокрый (3000)Дресва (при t > 0°С) (5500)Садовая земля (40)Чернозем (50)Речная вода (1000)Гранитное основание (при t > 0°С) (22500)Песок сильно увлажненный (60)Песок сильно увлажненный (60)Песок сильно увлажненный (60)Песок сильно увлажненный (60)

Количество верт. заземлителей:

1 вертикальный заземлитель2 вертикальных заземлителя3 вертикальных заземлителя4 вертикальных заземлителя5 вертикальных заземлителей6 вертикальных заземлителей7 вертикальных заземлителей8 вертикальных заземлителей9 вертикальных заземлителей10 вертикальных заземлителей11 вертикальных заземлителей12 вертикальный заземлителей13 вертикальных заземлителей14 вертикальных заземлителей15 вертикальных заземлителей16 вертикальных заземлителей17 вертикальных заземлителей18 вертикальных заземлителей19 вертикальных заземлителей20 вертикальных заземлителей1 вертикальный заземлитель1 вертикальный заземлитель1 вертикальный заземлитель1 вертикальный заземлитель

Глубина верхнего слоя грунта, H (м):

Длина вертикального заземлителя, L1 (м):

Глубина горизонтального заземлителя, h3 (м):

Длина соединительной полосы, L3 (м):

Диаметр вертикального заземлителя, D (м):

Ширина полки горизонтального заземлителя, b (м):

 

Удельное электрическое сопротивление грунта (ом/м):

Сопротивление одиночного верт. заземлителя (ом):

Длина горизонтального заземлителя (м):

Сопротивление горизонтального заземлителя (ом):

Общее сопротивление растеканию электрического тока (ом):

 

*Формат ввода — х.хх (разделитель — точка)

Расчёт сопротивления заземления – это почти просто

Дорогие коллеги, мне не нужно объяснять, как важно уметь правильно и быстро считать сопротивление заземления. Проектировщик очень часто сталкивается с этой работойБазелян Эдуард Меерович. В моей книжке «Практические вопросы молниезащиты» о методике расчета сопротивлений заземления написана целая глава. Казалось, что там рассмотрены все основные вопросы. Часть материала из книги уже потом анализировалась на вебинарах. Тем не менее, от проектировщиков продолжают идти вопросы о коэффициентах использования заземляющих электродов. Надо мол объяснить, откуда эти коэффициенты выплыли и как ими пользоваться в практических расчетах. От таких вопросов мне не по себе. Я затратил много времени и написал, как мне кажется достаточно страниц, чтобы убедить в бессмысленности коэффициентов использования. Их появление связано с очень грубым просчетом в методике вычисления сопротивления заземления. Выбранная там дорога идет в никуда и чем раньше расстанется с ней специалист, тем легче станет его производственная жизнь.

 

Э. М. Базелян, д.т.н., профессор;
Энергетический институт имени Г.М. Кржижановского, г. Москва;
признанный отечественный Эксперт в области заземления и молниезащиты

 

 

 

Представьте себе два вертикальных заземляющих электрода длиной l и радиусом r0. Они связаны горизонтальной шиной. Через нее к электродам подводится ток, растекающийся в грунте. Сама шина находится в воздухе и с грунтом не связана. Кому-то показалось, что вертикальные электроды соединены  параллельно. Сопротивление заземления одиночного вертикального электрода Rg в неограниченном объеме грунта хорошо известно. Его можно найти в любом справочнике.

(читать на отдельной странице)

Тот, кто знаком с  расчетами электростатических полей, знает, что среда там характеризуется диэлектрической проницаемостью, источником поля  является электрический заряд, а основным параметром – потенциал, который создается всей совокупностью электрических зарядов.  Поле постоянного электрического тока полностью аналогично электростатическому.

(читать на отдельной странице)

 

Не знаю почему, но многих смущает вопрос, во сколько раз проводимость самого хорошего грунта меньше проводимости металла, из которого изготовлены заземляющие электроды. Различие здесь колоссальное – примерно в миллиард раз. В таких условиях нет смысла учитывать падение напряжения на заземляющих шинах от растекающегося по ним тока и потому потенциал любой точки на шинах заземляющего устройства при постоянном или медленно меняющемся токе можно считать одинаковым.

 

(читать на отдельной странице)

На деле это самый сложный вопрос в методике расчета сопротивлений заземления. При несимметричном расположении   токи утечки отличаются даже в совершенно одинаковых заземляющих электродах. Для их определения приходится решать систему линейных алгебраических уравнений. Ее размер равен числу электродов в составе контура (вернее, даже на одно уравнение больше).

(читать на отдельной странице)

 

Как любая межгосударственная граница она очень непроста для перехода. Надо помнить, формула (6) для потенциала верна только в грунте неограниченных размеров. А электроды контура заземления  редко заглубляют в грунт больше, чем на 0,5 – 1,0 м. Граница с воздухом от них почти рядом. Конечно, можно махнуть рукой на близость границы и вести расчет, предполагая неограниченность грунта.

(читать на отдельной странице)

Здесь лучше всего рассмотреть конкретные примеры, начиная с простейшего.

 

(читать на отдельной странице)

 

Сопротивление заземления

Сопротивление заземления (сопротивление растеканиЮ электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в нее через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

    При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице «Заземление дома».

  • при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

    Подробнее об этом на странице «Заземление газового котла / газопровода».


  • для заземления, использующегося для подключения молниеприемников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

    Подробнее об этом на странице «Молниезащита и заземление».


  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом

  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

Приведенные выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением
500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

Онлайн калькулятор — расчет сопротивления заземления

Схема электрической цепиСхема электрической цепи

419 просмотров

Любой специалист по электронике должен уметь рассчитать электрическую цепь с учетом всех установленных в

Онлайн калькулятор расчета резисторов для светодиодаОнлайн калькулятор расчета резисторов для светодиода

73 просмотров

Грамотный расчет резистора для светодиода имеет решающее значение в обеспечении надежности и функциональности электронного

Глобальный расчет сечения кабеляГлобальный расчет сечения кабеля

169 просмотров

При выборе сечения кабельной продукции или отдельных проводных изделий традиционно учитываются следующие показатели: Максимально

Онлайн калькулятор перевода ватты в амперыОнлайн калькулятор перевода ватты в амперы

92 просмотров

Означенное преобразование может потребоваться при разработке и расчете блоков питания, а также при проектировании

расчет потери напряжения в кабелерасчет потери напряжения в кабеле

306 просмотров

Калькулятор расчета потери напряжения в кабеле. Расчет потери напряжения в линии для постоянного и

маркировка smd резисторовмаркировка smd резисторов

147 просмотров

SMD резисторы отличаются своими миниатюрными размерами, поскольку предназначены в основном для поверхностного типа монтажа.

Расчет заземления. Как выполнить расчет для контура частного дома

   Существует много полезных фактов о заземлении и операций, которые проводятся по отношении к нему. Одной из важных процедур, является расчет заземления. Это мероприятие необходимо для того, чтобы полностью вычислить сопротивление, которым будет обладать сооруженный контур заземляющего устройства.

   Владельцы отдельных домов и дач все больше начинают понимать, что пользование электроэнергией не только значительно облегчает выполнение повседневных бытовых потребностей, но и представляет определённые риски для человека. В жизни всегда существует возможность возникновения аварийной ситуации, которая может привести к получению электротравмы.

   Электрическая безопасность отдельного здания требует постоянного пристального внимания со стороны владельца. Одним из вопросов ее обеспечения является эксплуатация индивидуального контура заземления, который необходимо не только создать по определённой методике, но и правильно выбрать конструкцию, выполнив надежный расчет всех ее элементов.

   Сразу оговоримся, что осуществить его своими руками может любой человек, знакомый с основами электротехнических расчетов. Для этого ниже приведена методика его выполнения.

   Однако, она носит рекомендательный, ознакомительный характер и требует уточнения полученного результата в специализированной лаборатории, обладающей лицензией на право проведения экспертизы подготовленным персоналом проектировщиков, периодически подтверждающих свою квалификацию сдачей экзаменов в инспектирующих государственных органах.

Выбор конструкции заземления для расчета

   В электрической схеме зданий разного назначения работает большое количество различных видов заземлительных устройств. Среди них для бытовых целей лучше подходят изделия с:

  • одиночным глубинным заземлителем
  • несколькими электродами модульного типа вертикального расположения
  • электролитическим заземлением горизонтальной ориентации

   Последняя конструкция еще не обладает такой широкой известностью, как первые две перечисленные, но вполне может конкурировать с ними, выступать альтернативой.

   Предварительный расчет электрических характеристик каждой модели поможет определиться с наиболее подходящим типом заземления и остановить на нем свой выбор для дальнейшего монтажа, наладки, эксплуатации.

   Кратко на примерах рассмотрим методику их расчета.

Расчет контуров заземлений для жилых зданий

Назначение

   Расчет помогает проанализировать габариты и форму создаваемого контура для обеспечения допустимого электрического сопротивления аварийному току, отводимого от дома на потенциал земли.

   Заземление призвано снизить напряжение прикосновения человека до безопасного значения за счет растекания от него недопустимых токов и перераспределения опасных потенциалов.

   Для жилых зданий сопротивление контура не должно превышать 8 Ом при эксплуатации однофазной сети 220 вольт и 4 Ома — для трехфазной 380.

Факторы, влияющие на расчет контура

   Величина электрического сопротивления заземления зависит от:

  • проводимости грунта
  • применяемого в конструкции металла
  • формы и количества электродов
  • расстояния между заземлителями
  • глубины залегания контура
Характеристики грунтов

   Для учета их влияния на протекание токов используется термин «Удельное сопротивление грунта», единицей которого выбран «Ом∙м». Он обозначается латинской буквой ρ. Этот показатель зависит от многих факторов, включая влажность почвы и ее состав, изменяется в определённых пределах даже с учетом погодных условий.

   Величина удельного сопротивления грунта определяется измерением на местности, а его усредненные значения для предварительных ориентировочных расчетов сведены в таблицы. Электроды заземлителей с целью уменьшения климатического воздействия заглубляют в землю на 0,7 метра или больше.

   Сравнить влияние состава грунтов, влажности, температуры рабочей среды на величину этого показателя можно на основе предлагаемой таблицы.

   Таблица приближенных значений удельного сопротивления для грунтов и воды

№ п/пРабочая среда-20°С-10°С-5°СТалый грунт
1Песок1150080005000500
2Песок глинистый с примесями кварца (пылеватый)30001200110045
3Супесь15001000500800
4Суглинок тяжелый3500120050
5Глина с влажностью от 6% до 40%3000300055070
6Глина каменистая (слой 1÷3 м, а далее гравий)120001000100
7Известняк12600794030002000
8Чернозем1000800500
9Торф100050020
10Вода речная50-400
11Вода озерная50
 
Металл заземлителя

   Для изготовления электродов контура обычно выбирают:

  • нержавеющие легированные сорта стали;
  • обычные стальные сплавы, используемые для изготовления труб, уголков, прутков;
  • омедненные методами гальванопластики стальные сплавы.

   Величину их проводимости легко найти в технических справочниках.

Параметры контура, влияющие на расчет сопротивления заземления R

   Кроме удельного сопротивления грунта ρ, при проведении анализа необходимо учитывать:

  1. длину электрода L
  2. его диаметр D
  3. глубину залегания электрода от поверхности почвы до его середины T
  4. общее количество электродов N
  5. коэффициент использования K1 или Ки
  6. коэффициент содержания электролитов в грунте C

Расчет заземления из одиночного глубинного электрода

   Устройство заземлителя может быть цельным либо создано из сборной конструкции, выполненной сваркой или на основе соединения резьбой рабочих деталей.

Расчет заземления

   Для расчета его электрического сопротивления используют формулу, приведенную ниже.

 

Расчет заземления

где:
ρ – удельное сопротивление грунта (Ом*м)
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T — заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π — математическая константа Пи (3,141592)
ln — натуральный логарифм

   R1 составит 27,8 Ом  (при p = 100 Ом*м, L = 3 м, d = 0.05 м (50 мм; для плоских электродов под диаметром понимается их ширина), T = 2 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода).

Расчет заземления из нескольких заглубленных электродов

   Расчет заземления (расчет сопротивления заземления) для нескольких электродов модульного заземления производится как расчет параллельно-соединенных одиночных заземлителей.

Расчет заземления

   Формула расчета с учетом взаимного влияния электродов — коэффициента использования:

Расчет заземления

где:

R — рассчитываемое сопротивление заземлителя состоящего из нескольких стержней

R₁ — сопротивление одиночного стержня (Ом)

K₁ — коэффициент взаимного влияния электродов

N — количество стержней в заземлителе

   Электроды могут располагаться в линию или образовывать треугольник либо другую симметричную геометрическую фигуру.

Расчет заземления, расчет необходимого количества заземляющих электродов

   Проведя обратное вычисление получим формулу расчета количества электродов для необходимой величины итогового сопротивления сопротивления (R):

Расчет заземления из электролитических заземлителей

   Для его проведения используются те же принципы, что и при вычислении сопротивления горизонтальных электродов, выполненных в форме обычной трубы. Только учитывается влияние электролита на окружающую его почву. Для этого вводится поправка коэффициента С. Она может изменяться в разных условиях от 0,05 до 0,5.

   Формула расчета сопротивления представлена ниже.

Расчет заземления

где:
ρ – удельное сопротивление грунта (Ом*м)
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T — заглубление (расстояние от поверхности земли до заземлителя) (м)
π — математическая константа Пи (3,141592)
ln — натуральный логарифм
С – коэффициент содержания электролита в окружающем грунта

Электролитическое заземление, принцип работы

   Электролитическое заземление изготавливается в виде горизонтального отрезка полой трубы из нержавеющей легированной стали или медных сплавов, устойчивых к процессам коррозии. Через нее происходит насыщение почвы сквозь электроды минеральными солями, обладающими электролитическими свойствами.

Расчет заземления

  Электролитическое заземление

1. Колодец для обслуживания
2. Специальная смесь минеральных солей
3. Заполнитель околоэлектродный
4. Электрод — заземлитель

   Соли, попадая в грунт, преобразуются под действием влаги почвы в электролит, который:

  1. повышает электропроводящие свойства грунта
  2. снижает температуру замерзания почвы около электрода и этим дополнительно уменьшает электрическое сопротивление контура заземления

   Эффективным приемом повышения работоспособности подобных конструкций является использование активаторов — специальных заполнителей с пониженным удельным сопротивлением. Их размещение снаружи электрода уменьшает переходное сопротивление в направлении от заземлителя к грунту и увеличивает площадь поверхности, с которой происходит токоотдача от электрода.

   Характерной особенностью подобных конструкций является то, что коэффициент С с течением времени постепенно уменьшается: сказывается медленное проникновение электролита в толщу грунта и увеличение его объема в нем.

   Электролит постепенно выщелачивает соли электрода даже в плотном грунте и понижает коэффициент С от 0,5 до 0,125 уже через полгода после ввода в эксплуатацию.

   Все эти особенности работы электролитических заземлителей более точно учитываются при расчете специалистами электротехнических лабораторий.

Видео, монтаж электролитического заземления

 

Как проверить качество смонтированного контура заземления

   Правильность отвода опасных токов от здания можно узнать только двумя путями:

  1. возникновением реальной аварийной ситуации и проверкой последствий ее прохождения;
  2. электрическими измерениями.

   Первый способ самый точный и действенный, но он не позволяет устранить неисправности и часто приводит к печальным последствиям при наличии ошибок. На практике применяют второй метод: привлечение специалистов подготовленных электрических подразделений.

Какие измерения выполняет лаборатория

   Среди непосвященных людей часто возникает путаница с основными работами и терминами, выполняемых подобными организациями. Поэтому заострим внимание на их трактовке:

  1. измерение сопротивления заземления;
  2. проверка сопротивления заземления;
  3. измерение сопротивления изоляции.

   Как видим, все три вида работ очень похожи по названию, но они выполняются по разным технологиям, преследуя собственные, уникальные цели.

   Измерения сопротивления заземления предназначены выявить качество связей корпусов металлических приборов, к которым может прикоснуться человек, с потенциалом земли через заземлительное устройство. При этом измеряется электрическое сопротивление этого участка специальными приборами типа М416 или его современными аналогами различных модификаций.

   Проверки сопротивления заземления используются для анализа состояния молниезащиты здания. Ее оценка проводится для определения сопротивления контура при наихудших условиях эксплуатации с целью определения степени износа всей конструкции и предоставления рекомендаций по ее восстановлению.

   Для замера устанавливают штыри-электроды в нескольких точках местности и подают между ними и контуром разность потенциалов.

   Измерения сопротивления изоляции подразумевают:

  1. определения тангенса потерь диэлектрического слоя изоляции путем проведения испытаний повышенным напряжением;
  2. замеры мегаомметром.

   Все эти работы требуют специального дорогостоящего оборудования, которого у обычного электрика нет в пользовании.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Продолжение примеров расчёта заземляющего устройства

Продолжение примеров расчёта заземления  Наиболее востребованным расчёт заземления с сопротивлением не более 4 Ом., которое должно обеспечить надёжное сопротивление заземляющего устройства в любое время года, при линейных напряжениях 380 В., к которому присоединены нейтрали генератора или трансформатора, или выводы источника трёхфазного 380 В, или 220 В однофазного тока.

3.  Пример расчёта заземления с расположением заземлителей в ряд с нормированным сопротивлением ПУЭ до ρн  — 4 Ом·м:

Исходные данные для расчёта:

Почва — глина с удельным сопротивлением ρ — 60 Ом·м., II климатическая зона с ψ — 1,5 для вертикального электрода и ψ — 3,5 для горизонтальной полосы, вертикальные электроды: труба стальная d -50 мм., с толщиной стенки h — 4 мм., длина электрода L — 2,5 м., горизонтальная полоса: сталь шириной b — 60 мм., толщенной h — 4 мм., глубина траншеи равна t = 0,7 м., расстояния между заземляющими стержнями (предварительно) примем из соотношения a = 1хL.

  1. Расчёт одиночного вертикального заземлителя:

где,  ρэкв = Ψ·ρ = 1.5 · 60 = 90 Ом·м;    T = 0,5 · L + t = 0,5 · 2,5 + 0,7 = 1,95 м.

Продолжение примеров расчёта заземленияRО  = 90 / (2π · 2,5) · (ln (2 · 2,5 / 0,050) + 0,5 · ln (4 · 1,95 + 2,5) / (4 · 1,95 — 2,5)) = 5,73 · (ln 100 + 0,5 · ln 1,943) = 28,29 Ом·м.,  примем Ro = Rв = 28,29 Ом·м.

2. Находим предварительное количество стержней вертикального заземления в ряд без учета сопротивления горизонтального заземления:

Продолжение примеров расчёта заземленияn = 28,29 /4 = 7,07 шт., находим по таблице 3 ближайшее значение, где n ≈ 7 шт., далее по таблице 3.2 выберем число электродов n = 6 шт., к их длине a = 1хL коэффициент спроса  ηВ = 0,65, уточняем число электродов:

Продолжение примеров расчёта заземленияn = 28,29 / (4 · 0,65) = 10,88 шт; примем ближайшее значение по таблице 3, где кол. вертикальных электродов n = 10 шт., коэффициент спроса  ηВ = 0,59.

3. Длину горизонтального заземлителя найдем исходя из количества заземлителей  расположенных в ряд, где а = 1 · L = 1 · 2,5 = 2,5 м;  LГ = а · (n — 1) — в ряд, LГ = 2,5 · (10 — 1) = 22,5 м; находим сопротивление растекания тока для горизонтального заземлителя, где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5:

Продолжение примеров расчёта заземления

 RГ = 0,366 · (60 · 3,5 / 22,5 · 0,62) · lg (2 · 22,52 /0,060 · 0,7) = 5,51 · lg 24107,14 = 24,15 Ом·м, где коэффициент спроса по таблице 3 ηГ = 0,62, примем сопротивление горизонтального заземлителя RГ = 24,15 Ом·м.

4.  Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Продолжение примеров расчёта заземленияRоб =  (24,15 · 28,29) / (28,29 · 0,62) + (24,15 · 0,59 ·10) = 4,269 Ом·м, где Rоб = 4,27  Ом·м, что не соответствует норме  сопротивление не более Rн = 4 Ом., учитывая погрешность расчёта можно оставить полученное значение, т.к. данный расчет следует применять как оценочный, для ООО и ИП обязательное проведения электроизмерений после окончания монтажа заземляющего устройства электролабораторией. Для нового устройства заземления рекомендуется развести пачку соли на ведро воды и пролить вертикальные электроды (один раствор на один электрод) до замера сопротивления, старый «дедовский» способ, улучшить растекание тока заземлителя и уменьшить сопротивление почти в два раза. 

 Для экономии места под заземлитель в данном случае воспользуемся расчётом использования параллельно уложенных полосовых заземлителей в ряд с исходными данными выше, где R0 28,29 Ом·м.:

Примем предварительное количество стержней вертикального одного заземления в ряд без учета сопротивления горизонтального заземления:

n = 10 /2 = 5 шт.,  где коэффициент спроса  ηВ = 0,7, длину горизонтального заземлителя найдем исходя из количества заземлителей  расположенных в один ряд, где а = 1 · L = 1 · 2,5 = 2,5 м;  LГ = а · (n — 1) — в ряд, LГ = 2,5· (5 — 1) = 10 м.

Находим сопротивление растекания тока для одного горизонтального заземлителя, где коэффициент спроса  ηГ = 0,74:

Продолжение примеров расчёта заземления

RГ = 0,366 · (60 · 3,5 / 10 · 0,74) · lg (2 · 102 /0,060 · 0,7) = 5,51 · lg 476,19 = 27,81 Ом·м.

Определим общее сопротивление вертикального Продолжение примеров расчёта заземлениязаземлителя с учетом сопротивления растеканию тока одного из горизонтальных заземлителей: 

Rоб =  (27,81 · 28,29) / (28,29 · 0,74) + (27,81 · 0,7 ·5) = 6,65 Ом·м, где Rоб = 6,65 Ом·м., далее опредилим сопротивление одного горизонтального заземлителя проложенного параллельно в  2 ряда, по таблице 9 ниже выбираем коэффициент влияния между полосами длиной 15 м. и расстоянием между ними 5 м.:

Продолжение примеров расчёта заземления

таблица 9         1) данные приближенные

Продолжение примеров расчёта заземления

тогда, заземление Rоб  с двумя горизонтальными полосами проложенных параллельно: Rоб =  6,65  / (2 · 0,83) = 4 Ом·м, что соответствует норме  сопротивление не более Rн = 4 Ом., где η — 0,83 коэффициент влияния.

 4.  Пример расчёта заземления с расположением заземлителей по контуру с нормированным сопротивлением ПУЭ до ρн  — 4 Ом·м. в неоднородном грунте:

В этом примере выбран грунт для расчёта двухслойный.

  Верхний грунт — песок с удельным сопротивлением ρ1 — 500 Ом·м., толщина верхнего слоя грунта Н – 1 м., нижний слой грунта — глина с удельным сопротивлением ρ2 — 60 Ом·м., II климатическая зона с ψ — 1,5 для вертикального электрода и ψ — 3,5 для горизонтальной полосы, вертикальные электроды: уголок b -50 мм. (d = 0.95 · b ≈ 0,05 м), с толщиной стенки h — 4 мм., длина электрода L — 2,5 м., горизонтальная полоса: сталь шириной b — 40 мм.(0,04 м), толщенной h — 4 мм., глубина траншеи равна t = 0,7 м., расстояния между заземляющими стержнями (предварительно) примем из соотношения a = 1хL.

  1. Находим эквивалентное удельное сопротивление в неоднородном грунте (двухслойный) вертикального заземлителя:

Продолжение примеров расчёта заземленияρэкв = (1,5 · 500 · 60 ·  2,5) / (500 · (2,5 — 1 + 0,7) + 60 · (1 — 0,7))  = 100,63 Ом·м.

2. Расчёт одиночного вертикального заземлителя с найденным в двухслойном грунте удельным сопротивлением  ρэкв = 100,63 Ом.:

Продолжение примеров расчёта заземления

RО  = 100.63 / (2π · 2,5) · (ln (2 · 2,5 / 0,05) + 0,5 · ln (4 · 1,95 + 2,5) / (4 · 1,95 — 2,5)) = 6,41 · (ln 100 + 0,5 · ln 1,943) = 31,648 Ом·м., где T = 0,5 · L + t = 0,5 · 2,5 + 0,7 = 1,95 м.  Примем RО = RВ = 31,65 Ом·м.,

3. Находим предварительное количество стержней вертикального заземления по контуру без учета сопротивления горизонтального заземления:

Продолжение примеров расчёта заземления

n = 31,65 /4 = 7,9 шт., находим по таблице 3 ближайшее значение, где n ≈ 8 шт., далее по таблице 3.2 выберем число электродов n = 10 шт., к их длине a = 1хL коэффициент спроса  ηВ = 0,56, уточняем число электродов:

 Продолжение примеров расчёта заземленияn = 31,65/(4 · 0,56) = 14,13 шт; примем ближайшее значение в сторону увеличения по таблице 3, где кол. вертикальных электродов n = 20 шт., коэффициент спроса  ηВ = 0,47.

4. Находим эквивалентное удельное сопротивление горизонтального заземлителя:

 Длину горизонтального заземлителя найдем исходя из количества заземлителей  расположенных по контуру, где а = 1 · L = 1 · 2,5 = 2,5 м; где  LГ = а · n, LГ = 2,5 · 20 = 50 м; находим сопротивление растекания тока для горизонтального заземлителя, где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5:

 Продолжение примеров расчёта заземленияRГ = 0,366 · (500 · 3,5 / 50 · 0,27) · lg (2 · 502 /0,040 · 0,7) = 47,44 · lg 178571,42 = 249,45 Ом·м, где коэффициент спроса по таблице 3 ηГ = 0,27, примем сопротивление горизонтального заземлителя RГ =  249,45 Ом·м.

5. Находим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Продолжение примеров расчёта заземления

Rоб =  (249,45 · 31,65) / (31,65 · 0,27) + (249,45 · 0,47 ·20) = 3,354 Ом·м, где Rоб = 3,35  Ом·м,  что соответствует норме  сопротивление не более Rн = 4 Ом.,

   Посмотреть                 Рисунки к примерам расчёта заземления

Примечание: данный раздел пока находится в разработке, могут быть опечатки. 

Вернутся:

на страницу  ⇒   Системы заземляющих устройств

на страницу        Глубине промерзания грунта заземляющих устройств

на страницу      Расчёт заземляющих устройств

на страницу    Примеры расчёта заземления

Перейти в раздел:   Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *