Расчет мощности автомата | Электрик
Автоматический выключатель — прибор, обеспечивающий защиту Вашего здания, электроники и Ваших ближайших от поражения электрическим током.
Некоторое время назад в роли автоматического выключателя служили обычные керамические плавкие «пробки», но это время прошло и на смену своим устаревшим собратьям появились более технологичные и более удобные устройства.
Автоматический выключатель обязан отключаться, когда нагрузка значительно превосходит разрешенную норму либо при появлении короткого замыкания, когда существенно растет электрический ток. Но он обязан пропускать ток и действовать в обычном режиме, в случае если вы, к примеру, одновременно включили стиралку и электроутюг.В обычных условиях, когда работа всех устройств и электропроводки проходит в нормальном режиме, выключатель проводит через себя электрический ток.
Хотя в случае когда по каким-нибудь причинам мощь тока превысила номинальные значения (подключена нагрузка больше рассчитанной, вследствие поломки электрических приборов либо электроцепей появилось короткое замыкание), включаются расцепители механического выключателя и размыкают цепь.
В модульных автоматических выключателях традиционно стоят 2 вида расцепителей:
- Термический расцепитель — срабатывающий при токах перегрузки. Конструктивно представляет собой биметаллическую пластинку, которая при нагревании благодаря свойствам мат-ла распрямляется. Зависимо от величины номинального тока регулируется нагреваемая часть пластинки. В соответствии с этим скорость срабатывания автомата напрямик пропорциональна мощи тока, проходящей через пластинку.
- Электромагнитный расцепитель приспособление срабатывающее при токах короткого замыкания, которые кратно превосходят номинальный ток автоматического выключателя.
Проводка в жилплощади либо доме традиционно разбита на несколько групп.
Групповая линия питает несколько однотипных потребителей и имеет единый агрегат защиты. Иными словами — это несколько потребителей, которые подключены вдоль к одному питающему кабелю от электрощита и для этих потребителей установлен единый автоматический выключатель.
Электропроводка любой категории выполняется электрическим кабелем конкретного сечения и защищается отдельным автоматическим выключателем.
Для расчета номинального тока автомата следует знать максимальный рабочий ток линии, который разрешается для ее обычной и неопасной работы.
Наибольший ток, который кабель имеет возможность вынести не перегреваясь, находится в зависимости от площади сечения и мат-ла токопроводящей жилы кабеля (медь либо алюминий), а так же от метода прокладки электропроводки (открытая либо скрытая).
Помимо прочего нужно помнить, что автоматический выключатель работает для защиты от сверхтоков проводки, но не электроприборов. Другими словами автомат оберегает кабель, который проложен в стенке от автомата в электрическом щите к розетке, но не телевизор, электрическую плиту, утюг либо стиральную машинку, которые подключены к данной розетке.
Потому номинальный ток автоматического выключателя выбирается, сначала, отталкиваясь от сечения используемого кабеля, а потом уже берется в расчет подключаемая электрическая нагрузка. Номинальный ток автомата обязан быть менее максимально возможного тока для кабеля этого сечения и материала.
Метод расчета показателя мощности 3-х фазного автомата
Наша компания предоставляет услуги по разработке проекта системы электроснабжения. Мы подготовили для Вас эту статью с полезной информацией. Надеемся, что Вам она будет полезной.
Чтобы произвести расчет номинального значения мощности 3-х фазного автомата, нужно сложить вместе показатели мощности всех приборов, которые подключены к электрической сети. Бывают такие случаи, когда напряжение по фазам равная:
Затем ваты нужно будет перевести в килозначение.
Для этого полученные показатели нужно разделить на 1000. Т.е. 15000 В:1000=15кВ.
После определенный показатель следует умножить на 1.52 и в итоге получится значение рабочего тока, выраженное в амперах. Т.е. 15 кВ• 1,52 = 22,8 А.
Номинальное значение тока автоматического прибора должно быть равным величине, которая больше рабочего тока. При значении рабочего тока 22,8 А, номинальный ток в автомате должен быть равен 25А.
Вообще значение номинального тока может быть равным таким показателям, как шесть, десять, шестнадцать, двадцать, двадцать пять, тридцать два, сорок, пятьдесят, шестьдесят три, восемьдесят, сто.
В обязательном порядке нужно сверить диаметр сечения жил кабеля на соответствующую нагрузку.
Выше представленная формула расчета используется только в том случае, если в трех фазах одинаковая нагрузка. Если же в одной фазе значение больше, чем в других, то тогда автомат необходимо отбирать по мощности, которая определяется следующим образом:
Нагрузка по фазам может быть равной таким значениям L1 5000 В, L2 4000 В, L3 6000 В.
Их сначала нужно перевести в киловатты. Для этого делим величину на тысячу. В частности 6000 В : 1000=6кВ.
Потом вычисляем значение рабочего тока. В этой фазе оно равно 6кВ•4.55=27.3А
А т.к. номинальное значение тока в автомате должно быть больше рабочего, то в данном случае следует взять 32А.
Вводной автомат на 15 квт 1 фаза. Как производится расчет автоматического выключателя
При проектировании электросети нового дома, для подключения новых мощных приборов, в процессе модернизации электрощита приходится осуществлять выбор автоматического выключателя для надёжной электрической безопасности.
Некоторые пользователи небрежно относятся к данной задаче, и могут не задумываясь подключить любой имеющийся автомат, лишь бы работало, или при выборе ориентируются по таким критериям: подешевле, чтоб не сильно по карману било, или по мощней, чтобы лишний раз не выбивало.
Очень часто такая халатность и незнание элементарных правил выбора номинала предохранительного устройства приводит к фатальным последствиям. Данная статья ознакомит с основными критериями защиты электропроводки от перегрузки и короткого замыкания, для возможности правильного выбора защитного автомата соответственно мощности потребления электроэнергии.
Коротко принцип работы и предназначение защитных автоматов
Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.
Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.
Внешний вид трех полюсного автоматического выключателя
Провода должны соответствовать нагрузке
Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.
Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на .
Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.
Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.
Защитить самое слабое звено электропроводки
Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.
Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.
При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.
Расплавленная изоляция проводов
Расчет номинала автомата
Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:
где Р – суммарная мощность электроприборов.
Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.
Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.
Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.
Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:
Таблица выбора автомата по току
Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про
Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.
Для увеличения безопасности, электропроводку в квартире нужно делить на несколько линий. Это отдельные автоматы для освещения, розеток кухни, остальных розеток. Бытовые приборы большой мощности с повышенной опасностью (электроводонагреватели, стиральные машины, электрические плиты), нужно включать через УЗО.
Удобный монтаж автоматов в щитке
УЗО вовремя среагирует на утечку тока и отключит нагрузку. Для правильного выбора автомата важно учесть три основных параметра; — номинальный ток, коммутационную способность отключения тока короткого замыкания и класс автоматов.
Расчетный номинальный ток автомата — это максимальный ток, который рассчитан на длительную работу автомата. При токе выше номинального, происходит отключение контактов автомата. Класс автоматов означает кратковременную величину пускового тока, когда автомат еще не срабатывает.
Пусковой ток многократно превосходит номинальное значение тока. Все классы автоматов имеют разные превышения пускового тока. Всего имеется 3 класса для автоматов различных марок:
— класс В, где пусковой ток может быть больше номинального от 3 до 5 раз;
— класс С имеет превышение тока номинала в 5 — 10 крат;
— класс D с возможным превышением тока номинального значения от 10 до 50 раз.
Маркировка автоматического выключателя
В домах, квартирах используют класс С. Коммутационная способность определяет величину тока короткого замыкания при мгновенном отключении автомата. У нас используются автоматы с коммутационной способностью 4500 ампер, зарубежные автоматы имеет ток к. з. 6000 ампер. Можно использовать оба типа автоматов, российские и зарубежные.
Расчет автоматического выключателя
Выбирать автоматы можно с расчетом по току нагрузки или сечению электропроводки.
Расчет автомата по току
Подсчитываем всю мощность нагрузок на автомат. Плюсуем мощности всех потребителей электричества, и по следующей формуле:
получаем расчетный ток автомата.
P- суммарная мощность всех потребителей электричества
U – напряжение сети
Округляем расчетную величину полученного тока в большую сторону.
Расчет автомата по сечению электропроводки
Чтобы выбрать автомат можно воспользоваться таблицей 1. Выбранный по сечению электропроводки ток, уменьшают до нижней величины тока автомата, для снижения нагрузки электропроводки.
Выбор номинального тока по сечению кабеля. Таблица №1
Для розеток автоматы берут на ток 16 ампер, так как розетки рассчитаны на ток 16 ампер, для освещения оптимальный вариант автомата 10 ампер. Если вы не знаете сечение электропроводки, тогда его нетрудно рассчитать по формуле:
S – сечение провода в мм²
D – диаметр провода без изоляции в мм
Второй метод расчета автоматического выключателя является более предпочтительным, так как он защищает схему электропроводки в помещении.
На приведенном упрощенном графике, по горизонтальной шкале указаны номиналы тока автоматов, по вертикальной шкале, значение активной мощности при однофазном питании 220 Вольтрассчет для напряжение 380 Вольт и/или трехфазного питания будет значительно отличаться и приведенный график для других, кроме 220 Вольт и однофазное электропитание, мощностей недействителен. . Для выбора подходящего для выбранной рассчетной мощности автомата, достаточно провести горизонталь от выбранной слева мощности до пересечения с зеленым столбиком, посмотрев в основание которого можно выбрать номинал автомата для указанной мощности. Нужную время токовую характеристику и количество полюсов можно выбрать, перейдя по картинке на таблицу выбора автоматов кривой C, как наиболее универсальной и часто применяемой характеристики.
Таблица выбора автоматов по мощности
Расширенная таблица выбора автоматов по мощности, включая трехфазное подключение звездой и треугольником позволяет подобрать соответствующий потребляемой мощности автоматический выключатель. Для работы с таблицей, то есть для выбора автомата, соответствующей мощности, достаточно, зная эту мощность , выбрать в таблице значение большее или равное этой мощности значение. В левой крайней колонке вы увидете номинальный ток автомата, соответствующего выбранной мощности. Вверху, над выбранной мощностью, вы увидете тип подключения автомата, количество полюсов и использумое напряжение. В случае, если выбранной мощности соответствуют несколько значений мощности в таблиценапример мощность 6,5 кВт может быть получена однофазным подключением автомата 32А, подключением трехполюсного автомата 6А трехфазным треузольником и подключением четырехполюсного автомата 10А трехфазной звездой , следует выбрать доступный вам способ подключения. То есть выбирая автомат для мощности 6,5 кВт при отсутствии трехфазного электропитания, нужно выбирать только из однофазного подключения, где будут доступны однополюсный и двухполюсный автомат 32А. Переход по ссылке в таблице для определенной, соответствующей возможностям подключения, мощности осуществляется на соответствующий по номинальному току и количеству полюсов автоматический выключатель с время токовой характеристикой C. В том случае, если нужна друга характеристика отсечки, можно выбрать автомат другой характеристики, ссылки на которые находятся на странице каждого автомата.Выбор автоматов по мощности и подключению
Вид подключения => | ОднофазноеОднофазное вводный | Трехфазное треугольником | Трехфазное звездой | ||
Полюсность автомата => | Однополюсный автомат | Двухполюсный автомат | Трехполюсный автомат | Четырехполюсный автомат | |
Напряжение питания => | 220 Вольт | 220 Вольт | 380 Вольт | 220 Вольт | |
V | V | V | V | ||
Автомат 1А > | 0.2 кВт | 0.2 кВт | 1.1 кВт | 0.7 кВт | |
Автомат 2А > | 0.4 кВт | 0.4 кВт | 2.3 кВт | 1.3 кВт | |
Автомат 3А > | 0.7 кВт | 0.7 кВт | 3.4 кВт | 2.0 кВт | |
Автомат 6А > | 1.3 кВт | 1.3 кВт | 6.8 кВт | 4.0 кВт | |
Автомат 10А > | 2.2 кВт | 2.2 кВт | 11.4 кВт | 6.6 кВт | |
Автомат 16А > | 3.5 кВт | 3.5 кВт | 18.2 кВт | 10.6 кВт | |
Автомат 20А > | 4.4 кВт | 4.4 кВт | 22.8 кВт | 13.2 кВт | |
Автомат 25А > | 5.5 кВт | 5.5 кВт | 28.5 кВт | 16.5 кВт | |
Автомат 32А > | 7.0 кВт | 7.0 кВт | 36.5 кВт | 21.1 кВт | |
Автомат 40А > | 8.8 кВт | 8.8 кВт | 45.6 кВт | 26.4 кВт | |
Автомат 50А > | 11 кВт | 11 кВт | 57 кВт | 33 кВт | |
Автомат 63А > | 13.9 кВт | 13.9 кВт | 71.8 кВт | 41.6 кВт |
Пример подбора автомата по мощности
Одним из способов выбора автоматического выключателя, является выбор автомата по мощности нагрузки. Первым шагом, при выборе автомата по мощности , определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.Как пример можно привести кухонную электропроводку, рассчитанную на подключение электрочайника (1,5кВт), микроволновки (1кВт), холодильника (500 Ватт) и вытяжки (100 ватт). Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофемашину (1,5 кВт) и подключили к этой же электропроводке. Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного автовыключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник. Для снижения вероятности возникновения таких ситуаций и применяется повышающий коэффициент потребления. В нашем случае, при подключении кофемашины мощность увеличилась на 1,5кВт, а коэффициент потребления стал 1,48 (округляем до 1,5). То есть для возможности подключения дополнительного прибора мощностью 1,5кВт рассчетную мощность сети надо умножить на коэффициент 1,5 получив 4,65кВт возможной к получению с проводки мощности.
При выборе автомата по мощности возможно так же применение понижающего коэффициента потребления. Этот коэффициент определяет отличие потребляемой мощности, в сторону снижения, от суммарной рассчетной в связи с неиспользованием одновременно всех, заложенных в рассчет электроприборов. В ранее рассмотренном примере кухонной проводки с мощностью 3,1кВт, понижающий коэффициент будет равен 1, так как чайник, микроволновка, холодильник и вытяжка могут быть включены одновременно, а в случае рассмотрения проводки с мощностью 4,6кВт (включая кофемашину), понижающий коэффициент может быть равен 0,67, если одновременное включение электрочайника и кофемашины невозможно (например, всего одна розетка на оба прибора и в доме нет тройников)
Таким образом, при первом шаге определяется рассчетная мощность защищаемой проводки, и определяются повышающий (увеличение мощности при подключении новых электроприборов) и понижающий (невозможность одновременного подключения некоторых электроприборов) коэффициенты. Для выбора автомата предпочтительно использовать мощность, полученную умножением повышающего коэффициента на рассчетную мощность, при этом естественно учитывая возможности электропроводки (сечение провода должно быть достаточным для передачи такой мощности).
Номинальная мощность автомата
Номинальная мощность автомата, то есть мощность, потребление которой в защищаемой автоматическим выключателем проводке не приведет к отключению автомата рассчитывается в общем случае по формуле , что можно описать фразой => «Мощность = Напряжение умноженное на Силу тока умноженное на косинус Фи», где напряжение это переменное напряжение электросети в Вольтах, сила тока это ток, протекающий через автомат в Амперах и косинус фи — это значение тригонометрической функции Косинус для угла фи (угол фи — это угол сдвига между фазами напряжения и тока). Так как в большинстве случаев выбор автомата по мощности производится для бытового применения, где сдвига между фазами тока и напряжения, вызываемого реактивными нагрузками типа электродвигателей, практически нет, то косинус близок 1 и мощность можно приближенно рассчитать как напряжение умноженное на ток.Так как мощность уже определена, то из формулы мы получаем ток, а именно ток, который соответствует рассчетной мощности путем деления мощности в Ваттах на напряжение сети, то есть на 220 Вольт. В наше примере с мощностью 3,1кВт (3100 Ватт) получается ток равный 14 Ампер (3100Ватт/220Вольт = 14,09 Ампер). Это значит, что при подключении всех указанных приборов с суммой мощности 3,1кВт через автомат защиты будет протекать ток примерно равный 14-и Амперам.
После определения силы тока по потребляемой мощности, следующим шагом в выборе автоматического выключателя является выбор автомата по току
Для выбора автомата по мощности трехфазной нагрузки применяется та же самая формула, с учетом того, что сдвиг между фазами напряжения и тока в трехфазной нагрузке может достигать больших значений и соответственно, необходимо учитывать значение косинуса. В большом количестве случаев, трехфазная нагрузка имеет маркировку указывающую значение косинуса сдвига фаз, например на маркировочной табличке электродвигателя можно увидеть , являющимся именно тем, участвующем в рассчете косинусом угла сдвига фаз. Соответственно, при рассчете трехфазной нагрузки мощность, допустим указанная на шильдике подключаемого трехфазного, на 380 Вольт, электродвигателя мощность равна 7кВт, ток рассчитывается как 7000/380/0,6=30,07
Полученный ток, является суммой токов по всем трем фазам, то есть на одну фазу (на один полюс автомата) приходится 30,07/3~10 Ампер, что соответсвует выбору трехполюсного автомата D10 3P . Характеристика D в данном примере выбрана в связи с тем, что при пуске электродвигателя, пока раскручивается ротор двигателя, токи значительно превышают номинальные значения, что может привести с выключению автоматического выключателя с характеристикой B и характеристикой C .
Максимальная мощность автоматического выключателя
Максимальная мощность автомата, то есть та мощность и соответственно ток, который автомат может через себя пропустить и не отключиться, зависит от отношения протекающего по автомату тока и номинального тока автомата, указанного в технических данных автоматического выключателя. Это отношение можно назвать приведенным током, являющимся безразмерным коэффициентом, уже не связанным с номинальным током автомата. Максимальная мощность автомата зависит от время-токовой характеристики, приведенного тока и продолжительности протекания приведенного тока через автомат, что описано в разделе Время-токовые характеристики автоматических выключателей .Максимальная кратковременная мощность автомата
Максимальная кратковременная мощность автомата может в несколько раз превышать номинальную мощность, но только на короткое время. Величина превышения и время, которое автомат не выключит нагрузку при таком превышении описывается характеристиками (кривыми срабатывания) обозначаемыми латинской буквой , или , указываемыми в маркировке автомата переж цифрой, обозначающей номинальный ток автоматического выключателя.Расчет тока автоматических выключателей, таблица и расчёты
Перед приобретением автоматического выключателя необходимо выполнить расчет его параметров.
Расчет подразумевает определения номинального электротока автоматического устройства и время-токовые параметры. При этом количество полюсов выключателя не зависит от полученных показателей, во внимание берется схема подключения питания.
Автоматический выключатель – это устройство для защиты линии электропитания от разрушений электротоком, значение которого превышает возможности конкретной проводки. Таким образом, при расчете нужно учитывать не только мощность включенных в сеть нагрузок, но и допустимый для линии питания рабочий электроток, возникающий при включении потребителей (пусковые токи).
При расчете номинального значения выключателя берется во внимание рабочий ток электрической проводки и используются специальные расчетные таблицы, в которых приведено соответствие материала и сечения провода определенных характеристикам тока. Также не следует забывать и о пусковых токах подключаемых устройств.
Расчет тока автоматического выключателя
Как уже было оговорено выше, в расчет показателя защитного автомата берется сила тока, допускаемая для безопасного и нормального функционирования конкретной линии электропитания. То есть, чтобы определить номинал автоматического выключателя необходимо определить максимальный рабочий электроток линии питания, но не силу и мощность тока подключенного оборудования. Иными словами, расчет мощности нагрузки выполнятся лишь в случаях, когда электрическая проводка соответствует мощностям нагрузки.
Во многих случаях, используемый расчет выключателя по суммарной мощности нагрузок не учитывает тот факт, что это устройство в первую очередь используется для защиты электрических линий, а не самой нагрузки.
В документации на электрическую проводку обычно не указывается номинальный рабочий электроток, поэтому определять этот показатель приходится только по сечению токопроводящей жилы кабеля.
Величина электротока, который способен выдержать провод без нагрева, зависит от материала его исполнения (алюминия или меди), площади сечений и способа монтажа проводки (скрытая, открытая, в трубе, в земле, в лотке).
Сечение провода напрямую зависит от диаметра проводника, который можно измерить с помощью штангельциркуля или микрометра. Рассчитывается сечение проводника по следующей формуле:
S≈0,785*D2 ,
Где:
- S– это площадь сечения, квадратные миллиметры;
- D– это диаметр проводника, миллиметры.
Измерение диаметра проводиться только для токопроводящей жилы. Диаметр провода с изоляцией будет больше, следовательно, результат рабочего электротока проводки будет неверным.
Зная диаметр токопроводящей жилы и таблицы зависимости от материала (первая – для медных, вторая – для алюминиевых жил), устанавливаем допустимые показатели для электропроводки.
Отметим, что допустимая величина электротока электрической проводки, указанная в таблицах, справедлива для скрытого типа проводки. Кроме того, по таблице видно, что допустимый ток для проводки с одним двухжильным проводом немного выше, чем с трехжильным. Это объясняется тем, что рабочий электроток ограничен температурой, до которой нагреваются провода при прохождении по ним тока. При использовании трехжильного кабеля, теплоотдача в сравнении с двухжильным, снижается, следовательно, уменьшается и величина допустимого электротока.В свою очередь при применении одножильного провода, допустимый ток проводки выше, чем у двухжильного.
После того, как установлен рабочий электроток, можно выбирать номинал автоматического выключателя, который будет эту электропроводку защищать. Обычно номинал автомата выбирается равным или немного меньшим от рабочего значения. В некоторых случаях возможно установка автомата с номиналом немного выше рабочего электротока.
Выбор характеристической кривой
Кроме номинала выключателя, необходимо выбрать и время-токовую характеристику,- кривая автомата, зависящая от пусковых электротоков.
В приведенной ниже таблице указана кратность пусковых токов и их продолжительность для некоторых электрических приборов.
Зная кратность пускового электротока и тока электрических приборов можно установить силу тока и время действия повышенного электротока при включении прибора в сеть. Например, мощность электрической мясорубки составляет 1,5 киловатт, рабочий ток – 6,81 ампер. С учетом кратности пускового тока для этого прибора – получаем 48 ампер. Такой ток может протекать по электрической цепи в течение 3 секунд. Если использовать выключатель B16 для защиты линии, которая питает эту мясорубку, то посмотрев на время-токовую характеристику можно увидеть, что при перегрузка в момент ее включения в три раза превышает номинал выключателя. В связи с этим для защиты линии лучше использовать выключатель С16, у которого срабатывание при кратковременном повышении тока, составляет 80 ампер.
В таблице приведена и большая кратность электротоков, например, у блоков питания, где электролитические конденсаторы создают пусковые токи с 10 разовой кратность. Обычно мощность таких токов незначительна, а продолжительно такого тока невелика, поэтому они не создают угроз для пускового срабатывания автомата.
Примеры расчета автоматических выключателей в электрической цепи
Вводная часть
Любая электрическая цепь в квартире и доме, должна защищаться автоматом защиты от перегрузок и сверхтоков короткого замыкания. Эту нехитрую истину можно наглядно продемонстрировать в любом электрическом щите квартиры, этажном щите, вводно-распределительном щите дома и т.п. электрическим шкафам и боксам.
Вопрос не в том, ставить автомат защиты или нет, вопрос, как рассчитать автомат защиты, чтобы он правильно выполнял свои задачи, срабатывал, когда нужно и не мешал стабильной работе электроприборов.
Определяемся с номиналом
1000 Вт / (220 В х 0,95) = 4,78 А
Мощность, кВт | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
Сила тока, А | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
Схема подключения | Номиналы автоматов по току | |||||||
10 А | 16 А | 20 А | 25 А | 32 А | 40 А | 50 А | 63 А | |
Однофазная, 220 В | 2,2 кВт | 3,5 кВт | 4,4 кВт | 5,5 кВт | 7,0 кВт | 8,8 кВт | 11 кВт | 14 кВт |
Трёхфазная, 380 В | 6,6 кВт | 10,6 | 13,2 | 16,5 | 21,0 | 26,4 | 33,1 | 41,6 |
Например, если нужно узнать, на сколько ампер нужен автомат под мощность 15 кВт при трёхфазном токе, то ищем в таблице ближайшее большее значение – оно составляет 16,5 кВт, что соответствует автомату на 25 ампер.
В реальности существуют ограничения по выделяемой мощности. В частности, в современных городских многоквартирных домах с электроплитой выделенная мощность составляет от 10 до 12 киловатт, а на входе ставится автомат на 50 А. Эту мощность разумно разбить на группы с учётом того, что самые энергоёмкие приборы концентрируются на кухне и в ванной комнате. На каждую группу ставится свой автомат, что позволяет исключить полное обесточивание квартиры в случае возникновения перегрузки на одной из линий.
В частности, под электроплиту (или варочную панель) целесообразно сделать отдельный ввод и установить автомат на 32 или 40 ампер (в зависимости от мощности плиты и духовки), а также силовую розетку с соответствующим номинальным током. Других потребителей подключать к этой группе не стоит. Отдельная линия должна быть и у стиральной машины, и у кондиционера – для них будет достаточно автомата на 25 А.
На вопрос о том, сколько розеток можно подключить на один автомат, можно ответить одной фразой: сколько угодно. Сами по себе розетки не потребляют электроэнергию, то есть не создают нагрузку на сеть. Нужно лишь позаботиться о том, чтобы суммарная мощность одновременно включаемых электроприборов соответствовала сечению провода и мощности автомата, о чём будет сказано ниже.
Для частного дома или коттеджа вводной автомат подбирается в зависимости от выделенной мощности. Далеко не всем хозяевам удаётся получить желаемое количество киловатт, особенно в регионах с ограниченными возможностями электросетей. Но в любом случае, как и для городских квартир, сохраняется принцип разделения потребителей на отдельные группы.
Вводной автомат для частного дома
Сечение жилы, кв.мм | Допустимый ток, А | Макс. мощность нагрузки, кВт | Ток автомата, А | Возможные потребители |
1,5 | 19 | 4,2 | 16 | Освещение, сигнализация |
2,5 | 27 | 6,0 | 25 | Розеточная группа, тёплый пол |
4 | 38 | 8,4 | 32 | Кондиционер, водогрейка |
6 | 46 | 10,1 | 40 | Электроплита, духовка |
Как видим, все три показателя (мощность, сила тока и сечение провода) взаимосвязаны, поэтому номинал автомата можно, в принципе, выбирать по любому из них. В то же время необходимо убедиться, что все параметры стыкуются между собой, и при необходимости сделать соответствующую корректировку.
При любом раскладе следует помнить следующее:
- Установка чрезмерно мощного автомата может привести к тому, что до его срабатывания электрооборудование, не защищённое собственным предохранителем, выйдет из строя.
- Автомат с заниженным числом ампер способен стать источником нервных стрессов, обесточивая дом или отдельные помещения при включении электрочайника, утюга или пылесоса.
Характеристики автоматического выключателя
Трехфазный автоматический выключатель в случаях замыкания на линии активируется при помощи электромагнитного расщепителя. Принцип работы элемента заключается в нагреве биметаллической пластины в момент повышения номинала тока и выключении напряжения.
Предохранитель не дает КЗ и сверхтоку с показателями выше расчетных воздействовать на проводку. Без него кабельные жилы нагреваются до температуры плавления, что приводит к воспламенению изоляционного слоя. По этой причине важно знать, сможет ли сеть выдержать напряжение.
Проблема характерна для домов старой застройки, в которых на существующую линию ставятся новые автоматы, счетчик, УЗО. Автоматы подбираются под общую мощность техники, но иногда они не срабатывают – кабель дымиться или горит.
К примеру, у жил старого кабеля с сечением 1,5 мм2 токовый предел составляет 19 А. При единовременном включении оборудования с суммарным током 22,7 А защиту обеспечит только модификация на 25 Ампер.
Провода нагреются, но коммутатор останется включенным до момента оплавления изоляции. Предотвратить пожар может полная замена проводки на медный кабель с сечением 2,5 мм2.
На основании п. 3.1.4 ПУЭ задачей автоматического устройства является предотвращение перегрузки на самом слабом звене электроцепи. Его номинальный ток подбирается по току подсоединенных бытовых приборов.
Сечение провода, мм2 | Допустимый ток нагрузки по материалу кабеля | |
Медь | Алюминий | |
0,75 | 11 | 8 |
1 | 15 | 11 |
1,5 | 17 | 13 |
2,5 | 25 | 19 |
4 | 35 | 28 |
Модификацию на 25 Ампер можно применять для защиты проводки или установить на ввод.
Например, для проводки используется медный провод с сечением 1,5 мм2 с допустимым током нагрузки 19 А. Чтобы кабель не нагревался, понадобится выбрать меньшее значение – 16 А.
Таблица выбора сечения кабеля в зависимости от мощности
Iрасч=P/Uном, где:
- Iрасч – расчетный ток,
- P – мощность приборов,
- Uном – номинал напряжения.
Предлагаем ознакомиться Как подобрать фугу для плитки
В качестве примера можно рассчитать, автомат, который понадобится ставить на бойлер с нагрузкой 3 кВт и напряжением сети 220 В:
- Перевести 3 кВт в Ватты – 3х1000=3000.
- Разделить величину на напряжение: 3000/220=13,636.
- Округлить расчетный ток до 14 А.
В зависимости от условий окружающей среды и способу прокладки кабеля нужно учесть поправочный коэффициент для сети 220 В. Среднее значение равно 5 А. Его понадобится прибавить к расчетному показателю тока Iрасч=14 5=19 А. Далее по таблице ПУЭ выбирается сечение медного провода.
Сечение, мм2 | Ток нагрузки, А | |||||
Одножильный кабель | Двухжильный кабель | Трехжильный кабель | ||||
Одинарный провод | 2 провода вместе | 3 провода вместе | 4 провода вместе | Одиночная укладка | Одиночная укладка | |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
На каждую линию требуется правильно выбрать автомат защиты
Исходя из этого, алгоритм выбора автомата защиты прост:
- Рассчитываете сечение проводки для конкретного участка.
- Смотрите, какой максимальный ток выдерживает данный кабель (есть в таблице).
- Далее из всех номиналов защитных автоматов выбираем ближайший меньший. Номиналы автоматов привязаны к допустимым длительным токам нагрузки для конкретного кабеля — они имеют немного меньший номинал (есть в таблице). Выглядит перечень номиналов следующим образом: 16 А, 25 А, 32 А, 40 А, 63 А. Вот из этого списка и выбираете подходящий. Есть номиналы и меньше, но они уже практически не используются — слишком много электроприборов у нас появилось и имеют они немалую мощность.
Пример
Алгоритм очень прост, но работает безошибочно. Чтобы было понятнее, давайте разберем на примере. Ниже приведена таблица в которой указаны максимально допустимый ток для проводников, которые используют при прокладке проводки в доме и квартире. Там же даны рекомендации относительно использования автоматов.
Сечение жил медных проводов | Допустимый длительный ток нагрузки | Максимальная мощность нагрузки для однофазной сети 220 В | Номинальный ток защитного автомата | Предельный ток защитного автомата | Примерная нагрузка для однофазной цепи |
1,5 кв. мм | 19 А | 4,1 кВт | 10 А | 16 А | освещение и сигнализация |
2,5 кв. мм | 27 А | 5,9 кВт | 16 А | 25 А | розеточные группы и электрический теплый пол |
4 кв.мм | 38 А | 8,3 кВт | 25 А | 32 А | кондиционеры и водонагреватели |
6 кв.мм | 46 А | 10,1 кВт | 32 А | 40 А | электрические плиты и духовые шкафы |
10 кв. мм | 70 А | 15,4 кВт | 50 А | 63 А | вводные линии |
В таблице находим выбранное сечение провода для данной линии. Пусть нам необходимо проложить кабель сечением 2,5 мм2 (наиболее распространенный при прокладке к приборам средней мощности). Проводник с таким сечением может выдержать ток в 27 А, а рекомендуемый номинал автомата — 16 А.
Как будет тогда работать цепь? До тех пор, пока ток не превышает 25 А автомат не отключается, все работает в штатном режиме — проводник греется, но не до критических величин. Когда ток нагрузки начинает возрастать и превышает 25 А, автомат еще некоторое время не отключается — возможно это стартовые токи и они кратковременны.
Расчет по мощности
Можно ли выбрать автомат по мощности нагрузки? Если к линии электропитания будет подключено только одно устройство (обычно это крупная бытовая техника с большой потребляемой мощностью), то допустимо сделать расчет по мощности этого оборудования. Так же по мощности можно выбрать вводный автомат, который устанавливается на входе в дом или в квартиру.
Если ищем номинал вводного автомата, необходимо сложить мощности всех приборов, которые будут подключены к домовой сети. Затем найденная суммарная мощность подставляется в формулу, находится рабочий ток для этой нагрузки.
Формула для вычисления тока по суммарной мощности
После того, как нашли ток, выбираем номинал . Он может быть или чуть больше или чуть меньше найденного значения. Главное, чтобы его ток отключения не превышал предельно допустимый ток для данной проводки.
Когда можно пользоваться данным методом? Если проводка заложена с большим запасом (это неплохо, кстати). Тогда в целях экономии можно установить автоматически выключатели соответствующие нагрузке, а не сечению проводников. Но еще раз обращаем внимание, что длительно допустимый ток для нагрузки должен быть больше предельного тока защитного автомата. Только тогда выбор автомата защиты будет правильным.
Автоматические выключатели разных производителей
Пример 1. Расчет вводного автомата дома
Примеры расчета автоматических выключателей начнем с частного дома, а именно рассчитаем вводной автомат. Исходные данные:
- Напряжение сети Uн = 0,4 кВ;
- Расчетная мощность Рр = 80 кВт;
- Коэффициент мощности COSφ = 0,84;
1-й расчет:
Чтобы выбрать номинал автоматического выключателя считаем номинал тока нагрузки данной электросети:
Iр = Рр / (√3 × Uн × COSφ) Iр = 80 / (√3 × 0,4 × 0,84) = 137 А
2-й расчет
Чтобы избежать, ложное срабатывание автомата защиты, номинальный ток автомата защиты (ток срабатывания теплового расцепителя) следует выбрать на 10% больше планируемого тока нагрузки:
- Iток.расцепителя = Iр × 1,1
- Iт.р = 137 × 1,1 = 150 А
Итог расчета: По сделанному расчету выбираем автомат защиты (по ПУЭ-85 п. 3.1.10) с током расцепителя ближайшим к расчетному значению:
- I ном.ав = 150 Ампер (150 А).
Такой выбор автомата защиты позволит стабильно работать электрической цепи дома в рабочем режиме и срабатывать, только в аварийных ситуациях.
Функции трехфазных автоматов
- одновременное обслуживание нескольких однофазных зон цепи;
- предотвращение образования сверхтоков на линии;
- совместная работа с выпрямителями сети переменного тока;
- защита высокомощного оборудования;
- повышенная мощность за счет установки специального преобразователя;
- быстрое срабатывание в режиме КЗ на линии с большим количеством потребителей;
- возможность отключения в ручном режиме при помощи рубильника или выключателя;
- совместимость с дополнительными защитными клеммами.
Фаза и напряжение
Однофазные модели на 220 В подключаются к одной клемме, трехфазные на 380 В – к трем.
Ток утечки
На корпусе имеется маркировка – греческая буква «дельта». Токовая утечка частного дома составляет около 350 мА, отдельной группы приборов – 30 мА, светильников и розеток – 30 мА, одиночных звеньев – 15 мА, бойлера – 10 мА.
На автомате имеются индексы А (срабатывание при утечке постоянного тока) и АС (срабатывание при утечке переменного тока).
Количество полюсов
Однополюсный автомат применяется для одной фазы
В зависимости от количества полюсов можно приобрести трехфазный выключатель:
- однополюсный тип аппаратов для защиты одного кабеля и одной фазы;
- двухполюсный, представленный двумя приборами с общим рубильником – выключение происходит в момент превышения допустимого значения одного из них, одновременно обрываются нейтраль и фаза в однофазной сети;
- трехполюсный аппарат, обеспечивающий разрыв и защиту фазной цепи – являются тремя приборами с общей рукояткой активации/деактивации;
- четырехполюсный прибор, который монтируется только на ввод трехфазного РУ – разрывает все три фазы и рабочий ноль. Разрыв заземления защиты недопустим.
Предлагаем ознакомиться Выбор кабеля и автомата по мощности
Место установки
Для бытового использования предназначен электрический автомат на 3 фазы с маркировкой С на 25 А. На вводе в этом случае лучше устанавливать изделия С50, С65, С85, С95. Для розеток или иных точек – С 25 и С 15, для освещения – С 12 или С 17, для электроплиты – С 40. Они будут срабатывать, когда показатели тока в 5-10 раз превышают номинал.
Пример 2. Расчет автоматического выключателя групповой цепи кухни
примеры расчета автоматических выключателей
Во втором примере посчитаем, какой автоматический выключатель нужно выбрать для кухонной электропроводки, которую правильно называть розеточная групповая цепь электропроводки кухни. Это может быть кухня квартиры или дома, разницы нет.
Статьи по теме: Группы розеток стандартной квартиры
Аналогично первому примеру расчет состоит из двух расчетов: расчет тока нагрузки электрической цепи кухни и расчет тока теплового расцепителя.
Расчет тока нагрузки
Исходные данные:
- Напряжение сети Uн = 220 В;
- Расчетная мощность Рр = 6 кВт;
- Коэффициент мощности COSφ = 1;
1. Расчетную мощность считаем, как сумму мощностей всех бытовых приборов кухни, умноженной на коэффициент использования, он же коэффициент использования бытовой техники.
2. Коэффициент использования бытовой техники это поправочный коэффициент, уменьшающий расчетную (полную) потребляемую мощность электроцепи и учитывающий количество одновременно работающих электроприборов.
То есть, если на кухне установлено 10 розеток для 10 бытовых приборов (стационарных и переносных), нужно учесть, что все 10 приборов одновременно работать не будут.
Коэффициент использования
Рассчитать коэффициент использования для простой группы можно самостоятельно.
- Выпишите на листок планируемые бытовые приборы.
- Рядом с прибором поставьте его мощность по паспорту.
- Просуммируйте все мощности приборов по паспорту. Это Pрасчет.
- Подумайте, какие приборы могут работать одновременно: чайник+ тостер, микроволновка+блендер, чайник+микроволновка+тостер, и т.д.
- Посчитайте суммарные мощности этих групп. Рассчитайте среднюю суммарную мощность групп одновременно включаемых приборов. Это будет Pноминал (номинальная мощность).
- Разделите Pрасчет на Pноминал, получите коэффициент использования кухни.
На самом деле, в теории расчетов коэффициент использования внутри дома (без инженерных сетей) и квартиры принимается равным, единице, если количество розеток не больше 10. Это так, но на практике, именно коэффициент использования позволяет работать современным бытовым приборам кухни на старой электропроводке.
Примечание:
В теории расчетов 1 бытовая розетка планируется на 6 кв. метров квартиры (дома). При этом:
- коэффициент использования=0,7 –для розеток от 50 шт.;
- коэффициент использования=0,8 –розеток 20-49 шт.;
- коэффициент использования=0,9 –розеток от 9 до 19шт.;
- коэффициент использования=1,0 –розеток ≤10шт.
Статьи по теме: Устройство электрических розеток
Вернемся к автоматическому выключателю кухни. Считаем номинал тока нагрузки кухни:
- Iр = Рр / 220В;
- Iр = 6000 / 220= 27,3 А.
Ток расцепителя:
- Iрасчет.= Iр×1,1=27,3×1,1=30А
По сделанному расчету выбираем номинал автомата защиты для кухни в 32 Ампер.
Номиналы автоматических выключателей по току
Предельное значение номинала определяют по формуле Iном ≤ Iпр/1,45, где Iпр – допустимый в длительном режиме ток для определенной проводки. Если планируется монтаж сети, действуют следующим образом:
- уточняют схему подключения потребителей;
- собирают паспортные данные техники, измеряют напряжение;
- по представленной схеме рассчитывают отдельно, суммируют токи в отдельных цепях;
- для каждой группы надо подобрать автомат, который будет выдерживать соответствующую нагрузку;
- определяют кабельную продукцию с подходящим сечением проводника.
Если сети установлены в штробах и закрыты штукатуркой, разборка слишком затруднена. В этом случае применяют подбор автомата по сечению кабеля. Начинают с оценки нагрузочных способностей имеющихся линий. Полученный результат используют для оценки подходящих моделей защитных устройств. Далее распределяют потребителей по группам с учетом суммарной мощности (совместного использования).
Правила выбора номинала
Пример выбора номинала автомата для каждой линии
Для корректных выводов надо учитывать особенности подключаемого оборудования. Если по расчету суммарный ток составляет 19 ампер, пользователи предпочитают покупать аппарат на 25А. Это решение предполагает возможность применения дополнительных нагрузок без существенных ограничений.
Однако в некоторых ситуациях лучше выбрать автоматический выключатель на 20А. Этим обеспечивают относительно меньшее время на отключения питания при росте тока (повышении температуры) биметаллическим разъединителем. Такая предосторожность поможет сохранить в целостности обмотки электродвигателя при блокировке вращения ротора заклинившим приводом.
Разное время срабатывания пригодится для обеспечения селективной работы средств защиты. На линиях устанавливают устройства с меньшей задержкой. При аварийной ситуации отсоединяется от электричества только поврежденная часть. Вводной автомат не успеет отключиться. Питание по другим цепям пригодится для поддержания в работоспособном состоянии освещения, сигнализации, других инженерных систем.
Вывод
Приведенный пример расчета кухни получился несколько завышенным, обычно для электропроводки кухни хватает 16 ампер если учесть, что плиту, стиральную машину, посудомоечную машину выводят в отдельные группы.
Эти примеры расчета автоматических выключателей для групповых цепей, лишь показывают общий принцип расчетов, причем не включают расчет инженерных цепей включающий работу насосов, станков и других двигателей частного дома.
Коротко принцип работы и предназначение защитных автоматов
Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.
Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.
Внешний вид трех полюсного автоматического выключателя
Провода должны соответствовать нагрузке
Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.
Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток .
Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.
Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.
кабель силовой NYM
Защитить самое слабое звено электропроводки
Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.
Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.
При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.
Расплавленная изоляция проводов
Как правильно рассчитать автомат по мощности
Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.
Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.
Для чего нужны защитные автоматы и как они работают?
Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.
Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.
Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.
Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.
Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.
Чем опасно несоответствие кабеля сетевой нагрузке?
Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.
Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.
Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.
Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт. Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.
Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.
Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.
Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.
Защита слабого звена электроцепи
Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.
Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.
Как выполняется выбор сечения провода и номинала автоматического выключателя – на следующем видео:
Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.
Как рассчитать номинал автоматического выключателя?
Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.
Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.
Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.
Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.
Наглядно про подбор автоматических выключателей на видео:
Заключение
В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.
При выборе автоматов постоянно допускается одна и та же ошибка — не учитывается температура окружающей среды.Номинальный ток автомата назначается по ПУЭ при температуре в + 30 градусов Цельсия,а номинальный ток кабеля или провода назначается по ПУЭ при температуре в + 25 ,а эксплуатироваться автомат и кабель будут при комнатной температуре,допустим в + 18 градусов Цельсия.Если номинальный ток двухжильного или трехжильного, с защитным проводником, кабель — провода сечением 2.5 миллиметра квадратного по меди в однофазной сети равно 25 ампер ( 27 ампер это для кабелей с дополнительной изоляцией в виде ПЭТ ленты или композитного стекломиканита или стеклоленты,заполнением пространства под общей оболочкой мелованной резиной и т. д.),то при + 18 градусов Цельсия это уже номинальный ток в 27 ампер,а номинальный ток автомата на 16 ампер уже фактически равен 18.3 ампера,если учесть что при токах в 1.13 номинального тока автомат не отключается гарантированного в течении более одного часа,то реальный предельный рабочий ток провода уже 20.7 амер,то есть автомат на 16 ампер превращается уже в автомат на 20 ампер,при этом ,согласно DIN стандарту на модульные автоматы ,изготовленные по этому стандарту,номинальный ток кабеля или провода должен быть в полтора раза больше номинального тока автомата или 20.7 * 1.5 = 31 ампер,а номинальный ток кабеля 27 ампер,значит автомат на 16 ампер не годится и нужен автомат на 13 ампер.При температуре в + 35 градусов Цельсия опять же автомат на 16 ампер превращается в автомат на 15 ампер,а номинальный ток провода снижается до 22 ампер,то есть 15 * 1.13 * 1.5 = 25.5 ампера ,а номинальный ток кабеля — 22 ампера .И опять автомат на 16 ампер не годится и нужен автомат на 13 ампер.А вообще кабель всегда нужно проверять по термическому уравнению Tкабеля = t окружающей среды + к * ( I ) ^ 2 ,где T кабеля — температура кабеля в градусах Цельсия, t окружающей среды — температура окружающей среды в градусах Цельсия ,I — ток протекающий по кабелю в амперах,нагрев провода током пропорционален квадрату этого тока, к — температурный коэффициент провода,безразмерная величина, для его определения используют формулу к = (65 — 25 ) /( i ^ 2) номинальный,где 65 — максимальная рабочая температура кабеля по ПУЭ в + 65 градусов Цельсия ,25 — температура кабеля при которой назначается его номинальный ток в + 25 градусов Цельсия и i номинальный ток кабеля при температуре в + 25 градусов Цельсия. 2.
Те времена, когда на электрических щитках квартир или частных домов можно было встретить традиционные керамические пробки, уже давно прошли. Сейчас повсеместно применяются автоматические выключатели новой конструкции – так называемые автоматы защиты.
Для чего предназначены эти устройства? Как правильно произвести расчет автоматического выключателя в каждом конкретном случае? Конечно, основная функция этих устройств заключается в защите электросети от коротких замыканий и перегрузок.
Автомат должен отключаться, когда нагрузка существенно превышает допустимую норму или при возникновении короткого замыкания, когда значительно возрастает электрический ток. Однако он должен пропускать ток и работать в нормальном режиме, если вы, например, одновременно включили стиральную машинку и электроутюг.
Что защищает автоматический выключатель
Прежде чем подбирать автомат, стоит разобраться, как он работает и что он защищает. Многие люди считают, что автомат защищает бытовые приборы. Однако это абсолютно не так. Автомату нет никакого дела до приборов, которые вы подключаете к сети – он защищает электропроводку от перегрузки.
Ведь при перегрузке кабеля или возникновении короткого замыкания возрастает сила тока, что приводит к перегреву кабеля и даже возгоранию проводки.
Особенно сильно возрастает сила тока при коротком замыкании. Величина силы тока может возрасти до нескольких тысяч ампер. Конечно, никакой кабель не способен долго продержаться при такой нагрузке. Тем более, кабель сечением 2,5 кв. мм, который часто используют для прокладки электропроводки в частных домовладениях и квартирах. Он попросту загорится, как бенгальский огонь. А открытый огонь в помещении может привести к пожару.
Поэтому правильный расчет автоматического выключателя играет очень большую роль. Аналогичная ситуация возникает при перегрузках — автоматический выключатель защищает именно электропроводку.
Когда нагрузка превышает допустимое значение, сила тока резко возрастает, что приводит к нагреванию провода и оплавлению изоляции. В свою очередь, это может привести к возникновению короткого замыкания. А последствия такой ситуации предсказуемы – открытый огонь и пожар!
По каким токам производят расчет автоматов
Функция автоматического выключателя состоит в защите электропроводки, подключенной после него. Основным параметром, по которому производят расчет автоматов, является номинальный ток. Но номинальный ток чего, нагрузки или провода?
Исходя из требований ПУЭ 3.1.4, токи уставок автоматических выключателей которые служат для защиты отдельных участков сети, выбираются по возможности меньше расчетных токов этих участков или по номинальному току приемника.
Расчет автомата по мощности (по номинальному току электроприемника) производят, если провода по всей длине на всех участках электропроводки рассчитаны на такую нагрузку. То есть допустимый ток электропроводки больше номинала автомата.
Также учитывается время токовая характеристика автомата, но про нее мы поговорим позже.
Например, на участке, где используется провод сечением 1 кв. мм, величина нагрузки составляет 10 кВт. Выбираем автомат по номинальному току нагрузки — устанавливаем автомат на 40 А. Что произойдет в этом случае? Провод начнет греться и плавиться, поскольку он рассчитан на номинальный ток 10-12 ампер, а сквозь него проходит ток в 40 ампер. Автомат отключится лишь тогда, когда произойдет короткое замыкание. В результате может выйти из строя проводка и даже случиться пожар.
Поэтому определяющей величиной для выбора номинального тока автомата является сечение токопроводящего провода. Величина нагрузки учитывается лишь после выбора сечения провода. Номинальный ток, указанный на автомате, должен быть меньше максимального тока, допустимого для провода данного сечения.
Таким образом, выбор автомата производят по минимальному сечению провода, который используется в проводке.
Например, допустимый ток для медного провода сечением 1,5 кв. мм, составляет 19 ампер. Значит, для данного провода выбираем ближайшее значение номинального тока автомата в меньшую сторону, составляющее 16 ампер. Если выбрать автомат со значением 25 ампер, то проводка будет греться, так как провод данного сечения не предназначен для такого тока. Чтобы правильно произвести расчет автоматического выключателя, необходимо, в первую очередь, учитывать сечение провода.
Расчет вводного автоматического выключателя
Система электропроводки делится на группы. Каждая группа имеет свой кабель с определенным сечением и автоматические выключатели с номинальным током удовлетворяющему этому сечению.
Чтобы выбрать сечение кабеля и номинальный ток автомата, нужно произвести расчет предполагаемой нагрузки. Этот расчет производят, суммируя мощности приборов, которые будут подключены к участку. Суммарная мощность позволит определить ток, протекающий через проводку.
Определить величину тока можно по следующей формуле:
- Р — суммарная мощность всех электроприборов, Вт;
- U — напряжение сети, В (U=220 В).
Несмотря на то, что формула применяется для активных нагрузок, которые создают обычные лампочки или приборы с нагревательным элементом (электрочайники, обогреватели), она все же поможет приблизительно определить величину тока на данном участке. Теперь нам нужно выбрать токопроводящий кабель. Зная величину тока, мы по таблице сможем выбрать сечение кабеля для данного тока.
После этого можно производить расчет автоматического выключателя для электропроводки данной группы. Помните, что автомат должен отключиться раньше, чем произойдет перегрев кабеля, поэтому номинал автомата выбираем ближайшее меньшее значение от расчетного тока.
Смотрим на величину номинального тока на автомате и сравниваем ее с максимально допустимой величиной тока для провода с данным сечением. Если допустимый ток для кабеля меньше, чем номинальный ток, указанный на автомате, выбираем кабель с большим сечением.
Расчеты электропроводки выполняются еще на стадии проектирования. Прежде всего рассчитывается сила тока в цепях, исходя из этого подбираются автоматические защитные устройства, сечение проводов и кабелей. Особое значение имеет расчет автомата по мощности 380, защищающий от перегрузок и коротких замыканий.
Слишком большой номинал может привести к выходу из строя оборудования, поскольку устройство не успеет сработать. Низкий номинальный ток автомата приведет к тому, что защита будет срабатывать даже при незначительных перегрузках в часы пик. Правильно выполненные расчеты помогут выбрать наиболее оптимальный вариант для конкретных условий эксплуатации.
Как рассчитать мощность электротока
В соответствии с законом Ома, сила тока (I) находится в прямой пропорции с напряжением (U) и в обратной пропорции с сопротивлением (R). Расчет мощности (Р) осуществляется путем умножения силы тока на напряжение. Таким образом, для участка цепи образуется следующая формула, по которой рассчитывается ток: I = P/U.
С учетом реальных условий, к данной формуле прибавляется еще один компонент и при расчетах однофазной сети получается следующий вид: I = P/(U х cos φ).
Трехфазная сеть рассчитывается немного по-другому. Для этого используется следующая формула: I = P/(1,73 х U х cos φ), в которой напряжение U условно составляет 380 вольт, cos φ является коэффициентом мощности, посредством которого активная и реактивная составляющие сопротивления нагрузки соотносятся между собой.
Современные блоки питания обладают незначительной реактивной компонентой, поэтому значение cos φ принимается за 0,95. Это не касается трансформаторов и электродвигателей с высокой мощностью, обладающих большим индуктивным сопротивлением. Расчет сетей, где могут подключаться такие устройства, выполняется с коэффициентом cos φ, эквивалентным 0,8. В других случаях используется стандартная методика расчетов с последующим применением повышающего коэффициента 1,19, получающегося из соотношения 0,95/0,8.
При использовании в формулах известных параметров напряжения 220 и 380 В, а также коэффициента мощности 0,95, в результате получается сила тока для однофазной сети – I = P/209, а для трехфазной – I = P/624. Таким образом, при наличии одной и той же нагрузки, сила тока в трехфазной сети будет в три раза ниже. Это связано с наличием трех проводов отдельных фаз, на каждую из которых равномерно распределяется общая нагрузка. Напряжение между каждой фазой и рабочим нулем составляет 220 вольт, поэтому известная формула может выглядеть следующим образом: I = P/(3 х 220 х cos φ).
Выбор автомата по номинальному току
Рассмотренные формулы широко применяются в расчетах вводного автоматического выключателя. Применяя одну из них – I = P/209 при нагрузке Р в 1 кВт, получается сила тока для однофазной сети 1000 Вт/209 = 4,78 А. Результат можно округлить в большую сторону до 5 А, поскольку реальное напряжение в сети не всегда соответствует 220 В.
Таким образом, получилась сила тока в 5 А на 1 кВт нагрузки. То есть, устройство мощностью более 1 кВт нельзя подключать, например, в удлинитель с маркировкой 5 А, поскольку он не рассчитан на более высокие токи.
Автоматические выключатели обладают собственным номиналом по току. Исходя из этого, легко определить нагрузку, которую они способны выдержать. Для упрощения вычислений существует таблица. Автомат номиналом 6 А соответствует мощности 1,2 кВт, 8 А – 1,6 кВт, 10 А – 2 кВт, 16 А – 3,2 кВт, 20 А – 4 кВт, 25 А – 5 кВт, 32 А – 6,4 кВт, 40 А – 8 кВт, 50 А – 10 кВт, 63 А – 12,6 кВт, 80 А – 16 кВт, 100 А – 20 кВт. Исходя из этих же номиналов проводятся расчеты автомата по мощности на 380в.
Метод 5 А на 1 кВт может использоваться и для определения силы тока, возникающей в сети, когда в нее подключаются какие-либо бытовые приборы и оборудование. В расчетах нужно пользоваться максимальной потребляемой мощностью во время пиковых нагрузок. Для этого применяются технические характеристики оборудования, взятые из паспортных данных. При их отсутствии можно взять ориентировочные параметры стандартных электроприборов.
Отдельно рассчитывается группа освещения. Как правило, мощность приборов освещения оценивается в пределах 1,5-2 кВт, поэтому для них будет достаточно отдельного автомата номиналом 10 А.
Если сложить все имеющиеся мощности, получается довольно высокий суммарный показатель. Однако на практике полная мощность никогда не используется, поскольку существуют ограничения на выделяемую электрическую мощность для каждой квартиры. В современном жилом доме, при наличии электроплит, она составляет от 10 до 12 кВт. Поэтому на вводе устанавливается автомат с номинальным током 50 А. Точно так же выполняется расчет мощности трехфазных автоматов.
Полученные 12 кВт распределяются по всей квартире с учетом размещения мощных и обычных потребителей. Особое внимание следует обратить на кухню и ванную комнату, где устанавливаются электроплиты, водонагреватели, стиральные машины и другое энергоемкое оборудование. Как правило, они подводятся к отдельным автоматическим выключателям соответствующего номинала, а сечение кабелей для подключения также рассчитывается в индивидуальном порядке.
Мощные бытовые агрегаты подключаются не только к автоматам, но и к устройствам защитного отключения. Часть общей мощности следует оставить для освещения и розеток, установленных в помещениях. Правильно выполненные расчеты позволят качественно смонтировать проводку и выбрать нужный выключатель. В этом случае эксплуатация оборудования будет безопасной и долговечной.
Расчет мощности онлайн-калькулятором
В первую очередь необходимо ввести исходные данные в соответствующие графы. На калькуляторе эти показатели включают количество фаз, напряжение сети и мощность нагрузки. Первые два пункта известны заранее, а вычисления мощности приборов и оборудования осуществляются вручную.
Напряжение для однофазной сети выставляется 220 вольт, для трехфазной – 380 В и выше. После ввода параметров остается лишь нажать на кнопку «Рассчитать» и получить требуемый результат. В соответствующем окне появятся данные о номинальном токе автоматического выключателя, наиболее подходящего для данной сети.
Мощность
Количественная работа связана с силой, вызывающей смещение. Работа не имеет ничего общего с количеством времени, в течение которого эта сила вызывает смещение. Иногда работа выполняется очень быстро, а иногда — довольно медленно. Например, альпинистке требуется необычно много времени, чтобы поднять свое тело на несколько метров вдоль скалы. С другой стороны, турист (который выберет более легкий путь в гору) может поднять свое тело на несколько метров за короткий промежуток времени.Эти два человека могут выполнять одинаковый объем работы, но путешественник выполняет ее значительно быстрее, чем скалолаз. Величина, связанная со скоростью выполнения определенного объема работы, называется мощностью. У туриста номинальная мощность выше, чем у скалолаза.Мощность — это скорость выполнения работы. Это соотношение работы / времени. Математически это вычисляется с использованием следующего уравнения.
Мощность = Работа / времяили
P = Вт / т
Стандартная метрическая единица измерения мощности — Вт .Как следует из уравнения мощности, единица мощности эквивалентна единице работы, деленной на единицу времени. Таким образом, ватт эквивалентен джоулям в секунду. По историческим причинам, лошадиных сил иногда используется для описания мощности, выдаваемой машиной. Одна лошадиная сила эквивалентна примерно 750 Вт.
Большинство машин спроектировано и построено для работы с объектами. Все машины обычно характеризуются номинальной мощностью.Номинальная мощность указывает скорость, с которой эта машина может работать с другими объектами. Таким образом, мощность машины — это соотношение работы / времени для этой конкретной машины. Автомобильный двигатель — это пример машины, которой задана номинальная мощность. Номинальная мощность относится к тому, насколько быстро автомобиль может разгонять автомобиль. Предположим, что двигатель мощностью 40 лошадиных сил может разогнать автомобиль от 0 миль / час до 60 миль / час за 16 секунд. Если бы это было так, то автомобиль с четырехкратной мощностью в лошадиных силах мог бы выполнять такой же объем работы за четверть времени.То есть 160-сильный двигатель мог разогнать тот же автомобиль с 0 миль / час до 60 миль / час за 4 секунды. Дело в том, что при одинаковом объеме работы мощность и время обратно пропорциональны. Уравнение мощности предполагает, что более мощный двигатель может выполнять такой же объем работы за меньшее время.
Человек — это также машина с номинальной мощностью . Некоторые люди более властны, чем другие. То есть некоторые люди могут выполнять тот же объем работы за меньшее время или больше за то же время.Обычная физическая лаборатория включает в себя быстрый подъем по лестнице и использование информации о массе, росте и времени для определения личных способностей ученика. Несмотря на диагональное движение по лестнице, часто предполагается, что горизонтальное движение является постоянным, и вся сила от ступенек используется для подъема ученика вверх с постоянной скоростью. Таким образом, вес ученика равен силе, которая действует на ученика, а высота лестницы — это смещение вверх. Предположим, что Бен Пумпинирон поднимает свое 80-килограммовое тело на 2.0-метровый подъезд за 1,8 секунды. Если бы это было так, то мы могли бы вычислить номинальную мощность Бена . Можно предположить, что Бен должен приложить к лестнице нисходящую силу 800 Ньютон, чтобы поднять свое тело. Поступая таким образом, лестница толкала тело Бена вверх с достаточной силой, чтобы поднять его тело вверх по лестнице. Также можно предположить, что угол между силой лестницы на Бена и смещением Бена равен 0 градусов. Используя эти два приближения, можно определить номинальную мощность Бена, как показано ниже.
Номинальная мощность Бена — 871 Вт. Он вполне лошади .
Другая формула мощностиВыражение для мощности — работа / время. А поскольку выражение для работы — это сила * смещение, выражение для мощности можно переписать как (сила * смещение) / время. Поскольку выражение для скорости — это смещение / время, выражение для мощности можно еще раз переписать как «сила * скорость».Это показано ниже.
Это новое уравнение мощности показывает, что мощная машина одновременно сильна (большая сила) и быстра (большая скорость). Мощный автомобильный двигатель — сильный и быстрый. Мощная сельскохозяйственная техника — прочная и быстрая. Сильный тяжелоатлет силен и быстр. Сильный лайнсмен футбольной команды силен и быстр. Машина , которая достаточно сильна, чтобы приложить большую силу, чтобы вызвать смещение за небольшой промежуток времени (т.е., большая скорость) — машина мощная.
Проверьте свое понимание
Используйте свое понимание работы и власти, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.
1. Два студента-физика, Уилл Н. Эндейбл и Бен Пумпинирон, в зале для тяжелой атлетики. Уилл поднимает 100-фунтовую штангу над головой 10 раз за одну минуту; Бен поднимает 100-фунтовую штангу над головой 10 раз за 10 секунд.Какой студент больше всего работает? ______________ Какой ученик дает больше всего энергии? ______________ Объясните свои ответы.
2. В физической лаборатории Джек и Джилл взбежали на холм. Джек вдвое массивнее Джилл; тем не менее, Джилл преодолевает то же расстояние за половину времени. Кто работал больше всего? ______________ Кто доставил больше всего энергии? ______________ Объясните свои ответы.
3. Уставшая белка (масса около 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см, чтобы выполнить работу всего на 0,50 Дж. Если уставшая белка проделает всю эту работу за 2 секунды, то определите ее мощность.
4. При выполнении подтягивания студентка-физик поднимает ее 42.0-кг тело на дистанцию 0,25 метра за 2 секунды. Какую силу развивают бицепсы ученика?
5. Ежемесячный счет за электроэнергию в вашей семье часто выражается в киловатт-часах. Один киловатт-час — это количество энергии, доставленное потоком 1 киловатт электроэнергии за один час. Используйте коэффициенты преобразования, чтобы показать, сколько джоулей энергии вы получаете, покупая 1 киловатт-час электроэнергии.
6. Эскалатор используется для перемещения 20 пассажиров каждую минуту с первого этажа универмага на второй. Второй этаж находится на высоте 5,20 метра от первого этажа. Средняя масса пассажира — 54,9 кг. Определите требуемую мощность эскалатора, чтобы переместить это количество пассажиров за это время.
% PDF-1.5 % 186 0 obj> эндобдж xref 186 92 0000000016 00000 н. 0000003171 00000 п. 0000002136 00000 п. 0000003345 00000 н. 0000003964 00000 н. 0000004004 00000 п. 0000004051 00000 н. 0000004116 00000 п. 0000004343 00000 п. 0000004449 00000 н. 0000004616 00000 н. 0000004915 00000 н. 0000005231 00000 п. 0000049796 00000 п. 0000049832 00000 п. 0000052489 00000 п. 0000052648 00000 п. 0000052804 00000 п. 0000052963 00000 п. 0000053123 00000 п. 0000053286 00000 п. 0000053454 00000 п. 0000053619 00000 п. 0000053820 00000 п. 0000054120 00000 п. 0000054211 00000 п. 0000055403 00000 п. 0000055564 00000 п. 0000055728 00000 п. 0000056005 00000 п. 0000056756 00000 п. 0000057340 00000 п. 0000057850 00000 п. 0000058452 00000 п. 0000058905 00000 п. 0000059467 00000 п. 0000059532 00000 п. 0000059596 00000 п. 0000059974 00000 н. 0000060583 00000 п. 0000061083 00000 п. 0000061458 00000 п. 0000061981 00000 п. 0000062507 00000 п. 0000063266 00000 п. 0000063785 00000 п. 0000064411 00000 п. 0000064930 00000 н. 0000065452 00000 п. 0000069069 00000 п. 0000072170 00000 п. 0000075480 00000 п. 0000078573 00000 п. 0000081705 00000 п. 0000084995 00000 п. 0000085426 00000 п. 0000085942 00000 п. 0000086700 00000 п. 0000087209 00000 п. 0000087822 00000 п. 0000088305 00000 п. 0000091432 00000 п. 0000095392 00000 п. 0000095564 00000 п. 0000095777 00000 п. 0000095949 00000 п. 0000096018 00000 п. 0000096072 00000 п. 0000096128 00000 п. 0000096184 00000 п. 0000096357 00000 п. 0000096438 00000 п. 0000101142 00000 н. 0000107059 00000 н. 0000112099 00000 н. 0000116937 00000 п. 0000125004 00000 н. 0000130029 00000 н. 0000134219 00000 п. 0000138889 00000 н. 0000142465 00000 н. 0000147625 00000 н. 0000154660 00000 н. 0000154806 00000 н. 0000155182 00000 н. 0000159726 00000 н. 0000160190 00000 п. 0000160694 00000 н. 0000198095 00000 н. 0000198996 00000 н. 0000249569 00000 н. 0000250067 00000 н. трейлер ] >> startxref 0 %% EOF 188 0 obj> поток xb«c`dc`g` Ā
9.3 Простые машины — Физика
Задачи обучения раздела
К концу этого раздела вы сможете делать следующее:
- Опишите простые и сложные машины
- Расчет механического преимущества и эффективности простых и сложных машин
Поддержка учителей
Поддержка учителей
Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:
- (6) Научные концепции.Учащийся знает, что в физической системе происходят изменения, и применяет законы сохранения энергии и количества движения. Ожидается, что студент:
- (C) описывать простые и сложные машины и решать проблемы, связанные с простыми машинами;
- (D) определяют входную работу, выходную работу, механическое преимущество и эффективность машин.
Кроме того, в Руководстве по физике для средней школы рассматривается содержание этого раздела лаборатории под названием «Работа и энергия», а также следующие стандарты:
- (6) Научные концепции.Учащийся знает, что в физической системе происходят изменения, и применяет законы сохранения энергии и количества движения. Ожидается, что студент:
- (D) продемонстрировать и применить законы сохранения энергии и сохранения количества движения в одном измерении.
Раздел Основные термины
сложная машина | КПД | идеальное механическое преимущество | плоскость наклонная | ввод работы |
рычаг | механическое преимущество | выходная работа | шкив | винт |
простая машина | клин | колесо и ось |
Поддержка учителя
Поддержка учителя
В этом разделе вы примените то, что вы узнали о работе, чтобы найти механическое преимущество и эффективность простых машин.
[BL] [OL] Спросите студентов, что они знают о машинах и работе. Избавьтесь от заблуждений о том, что машины сокращают объем работы. Убедитесь, что учащиеся не отождествляют машины и двигатели, запрашивая (и, при необходимости, предоставляя) примеры машин, которые не являются моторизованными. Объясните, что простые машины часто бывают ручными и они уменьшают силу, а не работают.
[AL] Попросите вспомнить формулу W = f d . Объясните: произведение силы и расстояния имеет решающее значение для понимания простых машин.Поскольку объем работы не изменяется, член f d не меняется, но сила может уменьшаться при увеличении расстояния. Это основной принцип всех простых машин.
Простые машины
Простые машины облегчают работу, но не уменьшают объем работы, которую вы должны выполнять. Почему простые машины не могут изменить объем выполняемой вами работы? Напомним, что в закрытых системах сохраняется общее количество энергии. Машина не может увеличить количество энергии, которую вы в нее вкладываете.Итак, чем полезна простая машина? Хотя он не может изменить объем выполняемой вами работы, простая машина может изменить количество силы, которую вы должны приложить к объекту, и расстояние, на котором вы прикладываете силу. В большинстве случаев используется простая машина, чтобы уменьшить силу, которую вы должны приложить для выполнения работы. Обратной стороной является то, что вы должны приложить силу на большем расстоянии, потому что произведение силы и расстояния, f d , (что равняется работе), не меняется.
Давайте посмотрим, как это работает на практике.На рис. 9.7 (а) рабочий использует рычаг, чтобы приложить небольшую силу на большом расстоянии, в то время как монтировка тянет гвоздь с большой силой на небольшом расстоянии. На рис. 9.7 (b) показано, как работает рычаг математически. Сила усилия, приложенная на F e , поднимает нагрузку (силу сопротивления), которая толкает вниз на F r . Треугольный шарнир называется точкой опоры; часть рычага между точкой опоры и рычагом F e является рычагом усилия, L e ; а часть слева — рычаг сопротивления, L r .Механическое преимущество — это число, которое говорит нам, во сколько раз простая машина умножает силу усилия. Идеальное механическое преимущество, IMA , — это механическое преимущество совершенной машины без потери полезной работы, вызванной трением между движущимися частями. Уравнение для IMA показано на Рисунке 9.7 (b).
Рисунок 9.7 (a) Монтировка — это разновидность рычага. (b) Идеальное механическое преимущество равно длине плеча усилия, деленному на длину плеча сопротивления рычага.
В общем случае IMA = сила сопротивления, F r , деленная на силу усилия, F e . IMA также равно расстоянию, на котором прилагается усилие, d e , деленному на расстояние, на которое перемещается груз, d r .
IMA = FrFe = dedrIMA = FrFe = dedrВозвращаясь к экономии энергии, для любой простой машины работа, вложенная в машину, W i , равна работе, которую выполняет машина, W o .Объединив это с информацией в параграфах выше, мы можем написать
Wi = WoFede = FrdrIf FeУравнения показывают, как простая машина может производить такое же количество работы, уменьшая при этом величину силы усилия за счет увеличения расстояния, на котором прилагается сила усилия.
Watch Physics
Введение в Mechanical Advantage
В этом видео показано, как рассчитать IMA рычага тремя различными методами: (1) исходя из силы усилия и силы сопротивления; (2) от длины плеч рычага, и; (3) от расстояния, на которое приложена сила, и расстояния, на которое перемещается груз.
Teacher Support
Teacher Support
Начало этого видео может вызвать больше путаницы, чем освещение. Он показывает вывод с использованием триггерных функций, который выходит за рамки этой главы. Заинтересованные студенты могут захотеть пройти через это. Большинству студентов следует перейти к последним двум или трем минутам, в которых объясняются основы расчета IMA рычага из различных соотношений. Обзор W = f d .
Проверка захвата
Смотрите Physics: Introduction to Mechanical Advantage. Это видео знакомит с простыми машинами, механическими преимуществами и моментами.Двое детей разного веса катаются на качелях. Как они позиционируют себя относительно точки поворота (точки опоры), чтобы быть уравновешенными?
- Более тяжелый ребенок сидит ближе к точке опоры.
- Более тяжелый ребенок сидит дальше от точки опоры.
- Оба ребенка сидят на равном расстоянии от точки опоры.
- Поскольку оба имеют разный вес, они никогда не будут уравновешены.
Некоторые рычаги оказывают большое усилие на плечо с коротким усилием. Это приводит к меньшей силе, действующей на большем расстоянии на конце рычага сопротивления. Примерами рычага этого типа являются бейсбольные биты, молотки и клюшки для гольфа. В рычаге другого типа точка опоры находится на конце рычага, а нагрузка — посередине, как в конструкции тачки.
Поддержка учителя
Поддержка учителя
[AL] Сообщите учащимся, что есть два других класса рычагов с различным расположением нагрузки, точки опоры и усилия. Попросите их сначала попробовать их набросать. После того, как они с вашей помощью или без вашей помощи обнаружат эти три вида, спросите, могут ли они придумать примеры типов, не показанных на рис. 9.7.
Простая машина, показанная на рисунке 9.8, называется колесно-осевой . На самом деле это рычаг.Разница в том, что рычаг усилия может вращаться по полной окружности вокруг точки опоры, которая является центром оси. Сила, приложенная к внешней стороне колеса, вызывает большее усилие, прилагаемое к веревке, намотанной вокруг оси. Как показано на рисунке, идеальное механическое преимущество рассчитывается путем деления радиуса колеса на радиус оси. Любое кривошипно-шатунное устройство — это пример колеса и оси.
Рисунок 9.8 Сила, приложенная к колесу, действует на его ось.
Поддержка учителя
Поддержка учителя
[BL] [OL] Посмотрите, понимают ли ученики идею о том, что колесо и ось на самом деле являются разновидностью рычага. Покажите им, что это больше похоже на рычаг, если заменить колесо на кривошип. Приведите несколько примеров: брашпиль с ручным приводом, рулевое колесо, дверная ручка и т. Д. Спросите их, почему рулевые колеса имели больший диаметр до изобретения рулевого управления с гидроусилителем.
[AL] Объясните, что колеса на транспортных средствах — это не совсем простые машины в том же смысле, что и на рисунке 9.8. Ось транспортного средства не работает под нагрузкой. Потери энергии на трение уменьшаются, но ничего не поднимается.
Наклонная плоскость и клин — две формы одной и той же простой машины. Клин — это просто две наклонные плоскости вплотную друг к другу. На рис. 9.9 показаны простые формулы для расчета IMA для этих машин. Все наклонные, мощеные поверхности для прогулок или езды являются наклонными плоскостями. Ножи и головки топоров являются примерами клиньев.
Рисунок 9.9 Слева показана наклонная плоскость, справа — клин.
Поддержка учителя
Поддержка учителя
[BL] [OL] Расскажите о том, чем наклонные плоскости и клинья похожи и различны. Обратите внимание, что при использовании наклонной плоскости груз перемещается, но при использовании клина груз неподвижен, и машина перемещается. Объясните, почему эти машины обычно теряют на трение больше энергии, чем другие простые машины.
Винт, показанный на рисунке 9.10 — фактически рычаг, прикрепленный к круглой наклонной плоскости. Саморезы по дереву (конечно) также являются примерами шурупов. Рычажная часть этих винтов представляет собой отвертку. В формуле для IMA расстояние между резьбой винтов называется шагом и обозначается символом P .
Рисунок 9.10 Показанный здесь винт используется для подъема очень тяжелых предметов, например, угла автомобиля или дома на небольшое расстояние.
Поддержка учителя
Поддержка учителя
[BL] [OL] Предложите классифицировать винт как отдельный тип простой машины, возможно потому, что он выглядит совсем не так, как есть на самом деле — наклонная плоскость, которая иногда поворачивается рычаг.Объясните, что комбинированное механическое преимущество может быть огромным. Устройства, подобные показанному на рис. 9.9, используются для подъема автомобилей и даже домов. Попросите учащихся сравнить этот винт с шурупом для дерева и круговой лестницей.
[AL] Спросите студентов, чем силы, действующие на винт для дерева, отличаются от сил, прилагаемых винтом на рис. 9.9. Попросите объяснить 2 ππ в уравнении для IMA .
На рис. 9.11 показаны три разные системы шкивов.Из всех простых машин механическое преимущество легче всего рассчитать для шкивов. Просто посчитайте количество веревок, поддерживающих груз. Это IMA . И снова мы должны приложить силу на большем расстоянии, чтобы увеличить силу. Чтобы поднять груз на 1 метр с помощью шкивной системы, вам нужно потянуть за N метров веревки. Шкивные системы часто используются для подъема флажков и оконных жалюзи и являются частью механизма строительных кранов.
Рисунок 9.11 Здесь показаны три системы шкивов.
Teacher Support
Teacher Support
[BL] [OL] Расчет для IMA шкива кажется слишком простым, чтобы быть правдой, но это так. Попросите учащихся попытаться понять, почему IMA — это просто N . Скажите им, что просмотр видео должен прояснить этот момент. Шкивы когда-то были замечены на парусных кораблях и фермах, где они использовались для подъема тяжелых грузов. Свес, который вы, возможно, видели на конце старых крыш сараев, — это то место, где когда-то был прикреплен шкив.Таким образом, тюки сена можно было поднимать на сеновал, не намокая. Шкивы все еще используются, чаще всего на больших строительных кранах.
Watch Physics
Механическое преимущество наклонных плоскостей и шкивов
В первой части этого видео показано, как рассчитать IMA для систем шкивов. В последней части показано, как рассчитать IMA наклонной плоскости.
Поддержка учителей
Поддержка учителей
Перед просмотром видео ознакомьтесь с тем, что было известно о IMA наклонных плоскостей и систем шкивов.Напомните ученикам, что для получения идеального тренажера работа = тренировка, и что W = f d . На видео показано, как найти f s и d s.
Проверка захвата
Как можно использовать шкив для подъема легкого груза на большую высоту?
- Уменьшите радиус шкива.
- Увеличьте количество шкивов.
- Уменьшите количество веревок, поддерживающих груз.
- Увеличьте количество веревок, поддерживающих груз.
Сложная машина — это комбинация двух или более простых машин. Кусачки на рис. 9.12 сочетают в себе два рычага и два клина. Велосипеды включают колеса и оси, рычаги, винты и шкивы. Автомобили и другие транспортные средства представляют собой комбинации многих машин.
Рисунок 9.12 Кусачки — обычное сложное устройство.
Поддержка учителей
Поддержка учителей
[BL] [OL] Убедитесь, что учащиеся понимают, что сложная машина — это просто комбинация простых машин и по-прежнему довольно проста .Не позволяйте им путать этот термин со сложными машинами, такими как компьютеры. Обратите внимание, что IMA отдельных простых машин в сложной машине обычно умножаются, потому что выходная сила одной машины становится входной силой другой машины. Для дополнительного веселого занятия попросите учащихся поискать в Интернете машину Руба Голдберга .
Расчет механического преимущества и эффективности простых машин
В общем случае IMA = сила сопротивления, F r , деленная на силу усилия, F e . IMA также равно расстоянию, на котором прилагается усилие, d e , деленному на расстояние, на которое перемещается груз, d r .
IMA = FrFe = dedrIMA = FrFe = dedrВернитесь к обсуждению каждой простой машины для конкретных уравнений для IMA для каждого типа машины.
Никакие простые или сложные машины не обладают реальными механическими преимуществами, рассчитанными по уравнениям IMA .В реальной жизни часть прикладной работы всегда заканчивается потерей тепла из-за трения между движущимися частями. Как входная работа ( W i ), так и выходная работа ( W o ) являются результатом силы, F , действующей на расстоянии, d .
Wi = FidiandWo = FodoWi = FidiandWo = FodoВыходная эффективность машины — это просто выходная работа, деленная на входную работу, и обычно умножается на 100, чтобы выразить ее в процентах.
% Эффективности = WoWi × 100% эффективности = WoWi × 100Посмотрите фотографии простых машин и подумайте, какая из них будет иметь наибольшую эффективность. Эффективность связана с трением, а трение зависит от гладкости поверхностей и площади соприкасающихся поверхностей. Как смазка повлияет на эффективность простой машины?
Поддержка учителя
Поддержка учителя
[BL] [OL] Просмотрите материал о потере механической энергии на тепло и о законе сохранения энергии.Объясните, как потеря тепла из-за трения гарантирует, что W o всегда будет меньше, чем W i , предотвращая достижение КПД 100%.
Рабочий пример
Эффективность рычага
Входная сила 11 Н, действующая на рычаг усилия, перемещается на 0,4 м, что поднимает груз 40 Н, опирающийся на рычаг сопротивления, на расстояние 0,1 м. Каков КПД машины?
Стратегия
Сформулируйте уравнение для КПД простой машины,% КПД = WoWi × 100,% КПД = WoWi × 100, и вычислите W o и W i . Оба значения работы являются продуктом Fd .
Решение
Wi = FidiWi = Fidi = (11) (0,4) = 4,4 Дж и Wo = FodoWo = Fodo = (40) (0,1) = 4,0 Дж, тогда% КПД = WoWi × 100 = 4,04,4 × 100 = 91% эффективность = WoWi × 100 = 4,04,4 × 100 = 91%
Обсуждение
КПД реальных машин всегда будет меньше 100 процентов из-за работы, которая преобразуется в недоступное тепло за счет трения и сопротивления воздуха. W o и W i всегда можно рассчитать как силу, умноженную на расстояние, хотя эти величины не всегда так очевидны, как в случае рычага.
Поддержка учителя
Поддержка учителя
Совет для учителя. При расчете эффективности достаточно легко понять, что такое сила, входящая и выходящая: сила, которую вы прикладываете, — это сила внутрь, а вес поднимаемого объекта — сила извлечения. .Входные и выходные расстояния легче увидеть для рычага, наклонной плоскости и клина. Остальные три не так очевидны. Для системы шкивов входное расстояние — это расстояние, на которое вы тянете веревку, а выходное расстояние — это расстояние, на которое поднимается нагрузка. Для колеса и оси входное расстояние — это окружность колеса, а выходное расстояние — это окружность оси. Для винта входное расстояние — это длина окружности, к которой приложена сила, а выходное расстояние — это расстояние между резьбой винта.
Практические задачи
10.Каков IMA наклонной плоскости длиной 5 \, \ text {m} и высотой 2 \, \ text {m}?
- 0,4
- 2,5
- 0,4 \, \ text {m}
- 2,5 \, \ text {m}
Если система шкивов может поднять нагрузку 200 Н с усилием 52 Н и имеет КПД почти 100 процентов, сколько канатов поддерживает нагрузку?
- Требуется 1 веревка, потому что фактическое механическое преимущество равно 0.26.
- Требуется 1 веревка, поскольку фактическое механическое преимущество составляет 3,80.
- Требуется 4 троса, поскольку фактическое механическое преимущество составляет 0,26.
- Требуется 4 троса, поскольку фактическое механическое преимущество составляет 3,80.
Проверьте свое понимание
12.Верно или неверно — КПД простой машины всегда меньше 100 процентов, потому что небольшая часть входной работы всегда преобразуется в тепловую энергию из-за трения.
- Истинно
- Ложь
Круглая ручка смесителя прикреплена к штоку, который открывает и закрывает клапан при повороте ручки. Если стержень имеет диаметр 1 см, а IMA станка равен 6, каков радиус ручки?
- 0,08 см
- 0,17 см
- 3,0 см
- 6,0 см
Поддержка учителей
Поддержка учителей
Используйте вопросы «Проверьте свое понимание», чтобы оценить достижения учащимися учебных целей раздела.Если учащиеся не справляются с какой-либо конкретной целью, «Проверьте свое понимание» поможет определить, какая из них, и направит учащихся к соответствующему содержанию.
Работа, энергия и сила
ОпределенияРабота можно определить как передачу энергии. В физике мы говорим, что работа выполняется с объектом, когда вы передаете ему энергию. Если один объект передает (отдает) энергию второму объекту, то первый объект работает со вторым объектом.
Работа — это приложение силы на расстоянии. Поднять какой-нибудь груз с земли и положить его на полку — хороший пример работы. Сила равна весу объекта, а расстояние равно высоте полки (W = Fxd).
Принцип работы-энергии — Изменение кинетической энергии объекта равно чистой работе, проделанной над объектом.
Энергия можно определить как способность выполнять работу.2.
Виды энергии
Есть два типа энергии во многих формах:
Кинетическая энергия = Энергия движения
Потенциальная энергия = Накопленная энергия
Формы энергии
Солнечное излучение — инфракрасное тепло, радиоволны, гамма-лучи, микроволны, ультрафиолетовый свет
Атомная / ядерная энергия — энергия, выделяемая в ядерных реакциях.Когда нейтрон расщепляет ядро атома на более мелкие части, это называется делением. Когда два ядра соединяются под воздействием миллионов градусов тепла, это называется слиянием
.Электрическая энергия — Производство или использование электроэнергии в течение периода времени, выраженное в киловатт-часах (кВтч), мегаватт-часах (NM) или гигаватт-часах (ГВтч).
Химическая энергия — Химическая энергия — это форма потенциальной энергии, связанная с разрывом и образованием химических связей. Он накапливается в продуктах питания, топливе и батареях и выделяется в виде других форм энергии во время химических реакций.
Механическая энергия — Энергия движущихся частей машины. Также относится к движениям людей
Тепловая энергия — форма энергии, которая передается за счет разницы температур
Что такое Power
Мощность — это работа, выполненная за единицу времени. Другими словами, мощность — это мера того, насколько быстро можно выполнить работу. Единица мощности — ватт = 1 джоуль / 1 секунда.
Одной из распространенных единиц энергии является киловатт-час (кВтч).Если мы используем один кВт мощности, одного кВтч энергии хватит на один час.
Расчет работы, энергии и мощности
РАБОТА = W = Fd
Поскольку энергия — это способность выполнять работу, мы измеряем энергию и работу в одних и тех же единицах (Н * м или джоули).
МОЩНОСТЬ (P) — скорость производства (или поглощения) энергии с течением времени: P = E / t
Единицей измерения СИPower является ватт, представляющий выработку или поглощение энергии со скоростью 1 Джоуль / сек.Единицей измерения мощности в английской системе является мощность в лошадиных силах, что эквивалентно 735,7 Вт.
См. Также: Работа, энергия и мощность — Как понять и рассчитать счет за энергию.
Попробуйте это упражнение!
1) Сила в 20 ньютонов, толкающая объект на 5 метров в направлении силы. Сколько работы сделано?
Пожалуйста, введите свой ответ в отведенное для этого поле:
2) Если вы выполняете 100 джоулей работы за одну секунду (используя 100 джоулей энергии).Сколько энергии используется?
3) 1 лошадиная сила равна сколько ватт?
| Microsoft Azure
Упростите и ускорьте разработку и тестирование (разработка / тестирование) на любой платформе
Объединяйте людей, процессы и продукты, чтобы постоянно приносить пользу клиентам и коллегам.
Интегрируйте безопасность во все аспекты жизненного цикла доставки программного обеспечения.
Предоставляйте клиентам то, что они хотят, с помощью персонализированного, масштабируемого и безопасного процесса покупок
Создавайте, быстро запускайте и надежно масштабируйте свои игры на разных платформах — и улучшайте их на основе аналитики.
Находите новые идеи, собирая неиспользованные данные с подключенных устройств, активов и датчиков.
Превратите свои идеи в приложения быстрее, используя подходящие инструменты.
Создавайте масштабные надежные приложения и функциональные возможности и быстрее выводите их на рынок.
Привлекайте клиентов везде, на любом устройстве с помощью единой сборки мобильного приложения.
Быстрее реагируйте на изменения, оптимизируйте расходы и надежно отправляйте товары.
Создавайте приложения быстрее, избавляя от необходимости управлять инфраструктурой.
Подключайте современные приложения к полному набору служб обмена сообщениями в Azure
Ускорьте выход на рынок, предоставьте инновационные возможности и повысьте безопасность с помощью приложений Azure и модернизации данных.
Electric Power — learn.sparkfun.com
Добавлено в избранное Любимый 50Расчетная мощность
Электроэнергия — это скорость передачи энергии. Он измеряется в джоулях в секунду (Дж / с) — ватт (Вт). Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи? Что ж, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), которые определяются в джоулях на единицу заряда (кулон) (Дж / Кл).Ток, еще один из наших любимых терминов, связанных с электричеством, измеряет поток заряда во времени в амперах (А) — кулонах в секунду (Кл / с). Соедините их вместе и что мы получим ?! Власть!
Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.
Например,
Ниже представлена простая (хотя и не полностью функциональная) схема: батарея 9 В, подключенная через 10 Ом; резистор.
Как рассчитать мощность на резисторе? Сначала мы должны найти ток, проходящий через него. Достаточно просто … Закон Ома!
Хорошо, 900 мА (0,9 А) проходит через резистор и 9 В. Какая же тогда мощность подается на резистор?
Резистор преобразует электрическую энергию в тепло. Таким образом, эта схема каждую секунду преобразует 8,1 джоулей электрической энергии в тепло.
Расчет мощности в резистивных цепях
Когда дело доходит до расчета мощности в чисто резистивной цепи, знать два из трех значений (напряжение, ток и / или сопротивление) — это все, что вам действительно нужно.
Подставляя закон Ома (V = IR или I = V / R) в наше традиционное уравнение мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:
Итак, в нашем предыдущем примере 9V 2 /10 & ohm; (V 2 / R) составляет 8,1 Вт, и нам никогда не нужно рассчитывать ток, протекающий через резистор.
Второе уравнение мощности можно составить исключительно с точки зрения тока и сопротивления:
Почему мы заботимся о падении мощности на резисторе? Или любой другой компонент в этом отношении.Помните, что мощность — это передача энергии от одного типа к другому. Когда эта электрическая энергия, идущая от источника питания, попадает на резистор, энергия превращается в тепло. Возможно, больше тепла, чем может выдержать резистор. Это приводит нас к … номинальной мощности.
Энергия и мощность — Работа, мощность и эффективность — AQA — GCSE Physics (Single Science) Revision — AQA
Расчетная мощность
Уравнение, используемое для расчета мощности:
\ [power = \ frac {work ~ done} { time} \]
\ [power = \ frac {W} {t} \]
Это когда:
- мощность ( P ) измеряется в ваттах (Вт)
- выполненная работа ( Вт ) измеряется в джоулях (Дж)
- время ( t ) измеряется в секундах (с)
Один ватт равен одному джоулю в секунду (Дж / с).Это означает, что на каждый дополнительный джоуль, передаваемый в секунду, мощность увеличивается на один ватт.
Пример
Два электродвигателя используются для подъема груза 2 Н на высоту 10 м по вертикали.
Мотор 1 делает это за 5 секунд.
Второй двигатель делает это за 10 секунд.
Для обоих двигателей:
\ [W = F \ times d = 2 \ times 10 = 20 ~ J \]
Для одного двигателя:
\ [P = \ frac {W} {t} = \ frac {20} {5} = 4 ~ W \]
Для второго двигателя:
\ [P = \ frac {W} {t} = \ frac {20} {10} = 2 ~ W \]
Так как В два раза больше энергии передается одним двигателем в секунду, можно сказать, что первый двигатель в два раза мощнее, чем второй.
- Вопрос