Осциллограф. Часть 1. Основы работы
Осциллограф — 1. Применение на практике.
Если вы в своей практике используете мультиметр, то какое-то время тратили на изучение его возможностей. Потратьте немного времени и на осциллограф. Органов управления немногим больше. Главное понять, «что к чему». Кое-что попробую показать, остальное поймете самостоятельно. Также попробую объяснить понятия «основные режимы, характеристики и используемые термины» и как это выглядит на осциллограммах.
Развертка.
В большинстве осциллографов развертка изображения на экране происходит слева — направо по ширине экрана. Измеряется в единицах времени (сек). Иными словами, это «время, когда экран полностью заполнен сигналом». Дальше происходит смена картинки.
Классический пример развертки (справа). Импульсы «лежащие на боку» — есть не что иное, как пилообразные импульсы напряжения генератора развертки (именуемые в народе «пила»).
Но есть «но». Представьте «кашу», это когда на вход осциллографа подан сигнал, быстро меняющийся во времени, и есть генератор развертки, который работает сам по себе. И осциллограф начинает отображать сигнал с разных точек. Изображение будет, только понять что это — не получится.
Триггер.
Управляет генератором развертки и запускает его с одной и той же точки. Поэтому мы имеем устойчивое изображение. При этом может выполняться одно из условий:
— запуск генератора развертки по уровню сигнала. При достижении сигнала на входе определенного уровня происходит запуск развертки;
— запуск по времени нарастания амплитуды в переднем фронте импульса, или по времени изменения амплитуды заднего фронта;
— запуск «на сбой» в импульсной последовательности. Когда устанавливается длительность импульса (нормального). Развертка в этом случае всегда будет запускаться с того места, где длительность импульса будет меньше или больше установленной; на экране вы будете видеть именно этот временной отрезок, где происходит сбой.
— Захват импульса при уменьшении амплитуды (и т.д.)
Это не все возможные варианты режимов работы триггера, некоторые модели осциллографов имеют их больше – все зависит от предназначения осциллографа и решаемых задач.
Осциллограф имеет органы управления, позволяющие не только посмотреть, но и рассмотреть сигнал. Об этом ниже.
К одному из таких органов управления относится и «Усиление» сигнала (пороговое значение входного сигнала). Это может быть и «крутилка» или кнопка — кто что имеет. Но есть обязательно. И совместно с органами управления развертки, это мощный инструмент.
Практическое применение
Применять будем осциллограф на фото справа. Фото №1 На фото прибор, его экран. Подключен ёмкостной датчик. Автомобиль «Subaru Forester». Рассматриваем систему зажигания. |
|
Фото №2
Прибор включен. Меню прибора, выбираю первый пункт. Следующие пункты позволяют выбрать количество каналов, а также при их выборе идет переход в следующее меню, где перечислены основные типы датчиков и исполнительные устройства автомобильных систем, которые можно выбрать на любой канал. Но тогда все установки прибора устанавливаются автоматически, исходя из конкретного сигнала, конкретного устройства. (Это первое отличие автомобильного осциллографа от осциллографа вообще. Он «заточен» на конкретные виды сигналов). Кроме этого имеются свободные выборки: для сигналов от 0 — 5В…0 -12В |
Фото №3
Питание включено, датчик подключен, мотор работает. Сигнала нет. В чем причина?
Фото №4
Нет, сигнал есть. Смотрите, чем отличается фото № 3 от № 4. Вверху смотрите, пункт выделен, а внизу его значение. Время развертки 10ms осталось неизменным. Что изменилось?
На первом фото видно, к какой катушке совершено подключение. А давайте представим, что знаний «что такое триггер» — нет. Можно ли зафиксировать изображение так же, как на фото? Если этого не сделать, оно будет постоянно «бежать».
Фото№5
А здесь развёртка изменена: было 10 — стало 1ms. А экран вроде бы маленький.
Фото №6
* здесь не только развертку изменил, а и увеличил (фото 2-пункт 3). И уже есть возможность посмотреть участок, где ключ сработал и чуть дальше. В принципе, можно «прокрутить» сигнал до его окончания.
Фото №7
Вот так. Начало на фото №6, а конец вот:
Фото 8
Можно еще вывести курсоры (если надо посмотреть длительность горения искры или время насыщения).
Фото №9
Примерно так. Курсор А сплошной, курсор В – прерывистый. Длительность на экране — 4,60ms/
Фото №10
* курсоры стоят от момента включения ключа, до момента возникновения искры.
Фото №11
* длительность горения искры.
Показано всего процентов 20 от возможностей прибора, только на одной опции и в одном пункте меню (осциллоскоп)
ИМХО:
Не считаю, что работаю плохим прибором и считаю, что плохими приборами работать недопустимо. Данный прибор использую постоянно при входной диагностике. Он позволяет наблюдать и проводить измерения с достаточной степенью достоверности всех сигналов системы управления автомобиля.
Когда необходимо проводить анализ, когда машина «зависает», осциллоскоп и мотор- тестер данного прибора мною не используется. Хотя такая возможность в прибор заложена. Неудобно «прокручивать» сигнал, просматривая детали, растянув его разверткой и усилив, не видя полной фазы или цикла. Тем более, когда используется не один канал. Слишком много манипуляций, при выполнении переходов, что отвлекает от рассмотрения сигнала. Но это все, что я могу сказать о недостатках. Утверждение же о маленьких экранах и пр. считаю необоснованным и ведущим в заблуждение.
Но всегда использую просмотр графического изображения, выделенных пунктов из текущих параметров. Это тогда, когда прибор вкл. в режиме сканера и подключен к диагностическому разъему. Не всегда можно сравнить нужные параметры, они могут оказаться на разных «страничках». Надо «листать», или выделив нужные, перейти в режим просмотра только этих параметров, а в голове держать цифры. А если просто: выделил до 4-х датчиков (параметров), нажал кнопочку и пошло графическое изображение. Развертка очень медленная, рукой можно быстрее нарисовать, а рядом с каждой осциллограммой цифровые значения. Такие же, как в «дате». И все в одном месте — осциллограмму смотришь и цифровые значения видишь.
Продолжение следует
МАРКИН Александр Васильевич
г. Белгород
© 1999 – 2010 Легион-Автодата
Осциллограф | Описание, функции, предназначение
Осциллограф – это прибор, который показывает изменение напряжение во времени на каком-либо участке электрической цепи.Ось X на экране осциллографа – это время, ось Y – напряжение.
В этой статье мы рассмотрим три типа осциллографов, а также принципы их работы.
Аналоговый осциллограф
Его еще также называют
Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.
Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют “землей”.
Более современные щупы уже выглядят вот так.
А вот и сам разъем щупа
Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.
Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.
При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.
Как измерить постоянное напряжение аналоговым осциллографом
Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает “постоянный ток”. В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.
Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.
Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.
Далее сигнальный провод осциллографа цепляем на “плюс” питания, а нулевой – на “минус” питания. Далее наблюдаем вот такую картину.
Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку. Мы выставили коэффициент масштабирования по Y, что 1 клеточка – это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.
Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.
Смотрим, что произойдет с сигналом с напряжением в 1 Вольт
Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!
Что случится, если мы соединим сигнальный провод осциллографа с “минусом” питания, а нулевой с “плюсом” питания? В этом случае осциллограмма “пробьет пол” и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение “-2” Вольта.
Как измерить переменное напряжение аналоговым осциллографом
Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC – “переменный ток”. Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.
Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.
По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так. Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.
В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.
Мы видим, что его значение стоит на 5. Это означает, что один квадратик по оси “Х” , то есть по оси времени, будет равен 5 миллисекунд или 0,005 секунд.
Период – это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.
Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.
где
V – это частота, Гц
T – период сигнала, с
Для данного случая
V=1/T=1/0,02=50 Гц. Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.
Цифровой осциллограф
Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!
Как подготовить цифровой осциллограф к работе
Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (Ch2)
На щупе есть делитель. Ставим его ползунок на 10Х. В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала “10Х”.
Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.
Все должно выглядеть приблизительно вот так:
На дисплее в это время происходит какой-то
В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку
Согласился с условиями автоматического позиционирования сигнала
и готово!
Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его желательно корректировать каждый раз перед работой.
В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.
Крутим и смотрим, что у нас получается на дисплее.
Ого, слишком сильно крутанул винт.
Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.
Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно на этом этапе цифровой осциллограф полностью готов к работе.
Как измерить постоянное напряжение цифровым осциллографом
Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC – direct current, что с английского означает “постоянный ток”.
Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)
Все, после этого наш осциллограф полностью готов к измерению постоянного тока.
Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.
Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.
Смотрим на дисплей осциллографа
Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения. Постоянное напряжение – это такое напряжение, которое не изменяется во времени.
На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).
Как измерить переменное напряжение цифровым осциллографом
Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.
Выставляем напряжение на ЛАТРе 100 Вольт.
На осциллографе переключаем на АС, что означает alternating current – переменный ток.
Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.
С помощью кнопки “Measure” я вывел некоторые интересующие нас параметры:
Vk – среднеквадратичное значение напряжения. В данном случае он нам показывает напряжение, которое мы подавали с ЛАТРа – это 100 Вольт.
F – частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.
T – период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.
Как вывести все параметры сигнала
Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:
Сигнал с генератора частоты на экране осциллографа выглядит вот так.
А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.
Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку “Measure” , что с англ. означает “измерять”
Далее нажимаем кнопочку “Add” ( с англ. – добавлять), с помощью вспомогательной клавиши h2
И потом нажимаем кнопку “Show All” (с англ. – показать всё) с помощью вспомогательной клавиши F3
В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:
Описание характеристик сигналов
Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:
– Амплитудные
– Временные
Давайте рассмотрим основные из них. Начнем слева-направо.
Period – с англ. период. Период сигнала – это время, за которое сигнал повторяется. В нашем случае период обозначается буквой “Т”.
Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник
Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.
Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.
Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.
“Пико” – буквой “p”
“Нано” – буквой “n”
“Микро” обозначается буквой “u”, как и в маркировке современных конденсаторов.
“Милли” – буквой “m”.
Freq. Полное название frequency – с англ. частота. Обозначается буквой “F”. Частоту очень легко можно вычислить по формуле, зная период Т.
F=1/T
В нашем случае получаем 1/1х10-6=106=1 Мегагерц (MHz). Смотрим на наши автоматические измерения:
Ну разве не чудо? 😉
Следующий показатель Mean. В нашем случае обозначается просто буковкой “V”. Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:
Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:
Так как мы видим, что значение нашего квадратика равно 1 Вольту (внизу слева)
То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением
Почти в тютельку!
Остальные параметры сигнала не столь важны для начинающих электронщиков.
Плюсы и минусы цифрового осциллографа
Начнем с плюсов
- Запись, остановка, автоматические измерения и другие фишки – это еще не весь список, что умеет делать цифровой осциллограф
- Габариты цифрового осциллографа намного меньше, чем аналогового
- Потребление энергии меньше, чем у аналогового осциллографа
- Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа
Минусы
- Дороговизна
- Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.
Где купить цифровой осциллограф
Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:
Посмотреть его можете на Алиэкпрессе по этой ссылке.
USB осциллограф
USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.
У нас на обзоре USB осциллограф INTRUSTAR.
В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов
С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем Ch2, что означает первый канал, а второй разъем Ch3, то есть второй канал. Следовательно, осциллограф двухканальный. Справа видим два штыря. Эти штыри – генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой – сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.
В рабочем состоянии USB осциллограф выглядит вот так.
После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.
Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.
Плюсы и минусы USB осциллографа
Плюсы:
- Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
- Настройка и установка ПО занимает около 10-15 минут
- Удобный интерфейс
- Малогабаритный размер
- Может производить операции как с постоянным, так и с переменным током
- Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей
Минусы:
- Малая частота дискретизации
- Обязательно нужен ПК
- Малая полоса пропускания
- Глубина памяти тоже никакая
Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.
Похожие статьи по теме “осциллограф”
Фигуры Лиссажу
Электрический сигнал
Практические упражнения по работе с осциллографом (RC-цепи)
В прошлой статье «Что такое осциллограф и как им пользоваться» мы познакомились с основами работы этого замечательного прибора. Чтобы освоить работу с осциллографом, нужны практические упражнения. В статье рассмотрены простые эксперименты с источником питания на основе тарнсформатора, с мостовым выпрямителем, а также с RC-цепями. Материал будет полезен тем кто желает познакомиться с измерительным прибором-осциллографом.
Источник питания и мостовой выпрямитель
Начнемс самого простого, — с источника питания на силовом трансформаторе и мостовом выпрямителе. Прежде всего необходим трансформатор, пусть это будет китайский «ALG» с вторичной обмоткой на 12V (рис.1). К вторичной обмотке трансформатора подключим вход осциллографа (пусть это С1-65) и мультиметр.
Предварительно ручку осциллографа «Время/дел.» установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа установим в положение «импульсный режим». Теперь подадим на первичную обмотку переменное напряжение 220V (от электросети, соблюдая все необходимые правила электробезопасности).
Рис. 1. Схема для эксперимента и изображение на экране осциллографа.
Теперь сравним показания осциллографа и мультиметра. Мультиметр покажет переменное напряжение 12V (или около того), а размах синусоиды на экране осциллографа от пика до пика будет целых 34V. Зная, что амплитудное значение синусоидального напряжения равно половине размаха, а действующее , — в корень_из_2 раз раз меньше амплитудного, вычислим действующее значение:
Подключим к вторичной обмотке трансформатора мостовой выпрямитель из четырех диодов (рис. 2). К выходу выпрямителя подключим осциллограф.
На его экране будет весьма интересная картинка, — нижние полуволны синусоиды как бы перевернулись и расположились по положительной оси У. Практически, и частота колебаний увеличилась в два раза, то есть уже не 50, а 100 Гц, а размах уменьшился в два раза.
То, что видно на экране (рис. 2) принято называть пульсирующим напряжением. Но пульсирующее напряжение не годится для питания электронной схемы, — это еще не постоянное напряжение.
А чтобы его сделать постоянным нужно пульсации сгладить с помощью накопительного конденсатора.
На рисунке 3 показана схема с накопительным конденсатором С1 и резистором R1, который служит нагрузкой. Посмотрим, что нам теперь покажут приборы. Мультиметр покажет что-то около 16,5V, а на экране осциллографа будет видна искривленная линия, приподнятая вверх по шкале У на некоторую величину (рисунок 3, левая осциллограмма).
Рис. 2. Подключим и исследуем мостовой выпрямитель из четырех диодов.
По верхним пикам кривизны этой линии — на 17V. Так выглядит напряжение со сглаженными пульсациями. Чтобы посмотреть величину пульсаций нужно переключить вход осциллографа на переменный ток «~» и повернуть ручку «V/дел.» в сторону уменьшения, пока пульсации не будут видны отчетливо. В данном случае, установили 0,5V/дел. (рис.3, осциллограмма справа). Видно, что размах пульсаций равен 1V.
Таким образом, на выходе нашего выпрямителя есть постоянное напряжение с пульсациями 1V. Величина этих пульсаций зависит от емкости сглаживающего конденсатора и от нагрузки. Если нагрузка увеличится (уменьшится сопротивление R1) пульсации возрастут.
Рис. 3. Сглаживающий конденсатор в выпрямителе.
Это можно проверить, заменив R1 переменным. А с увеличением емкости пульсации уменьшаются. Вот, если в этом же примере (при том же сопротивлении R1) вы параллельно С1 подключите еще один конденсатор емкостью 220мкФ, пульсации уменьшатся до 0,ЗV, а при емкости конденсатора 1000 мкФ уровень пульсаций будет менее 0,1V.
Но это при сопротивлении нагрузки 1 кОм, то есть при токе нагрузки 16 миллиампер. С увеличением тока нагрузки пульсации будут увеличиваться. Именно по этому в выпрямителях, рассчитанных на большие нагрузки, используют сглаживающие конденсаторы очень большой емкости.
Выше, с помощью осциллографа была рассмотрена работа мостового выпрямителя. Но источник питания, часто кроме трансформатора и выпрямителя содержит стабилизатор напряжения.
Схема простейшего параметрического стабилизатора состоит из стабилитрона и токоограничительного резистора. Главное свойство стабилитрона в том, что он вроде бы работает как диод, то есть, пропускает ток в прямом направлении, но он пропускает и обратный ток, но только если обратное напряжение превысило некоторую величину, — напряжение стабилизации.
Подключим схему параметрического стабилизатора к вторичной обмотке трансформатора, и с помощью осциллографа, посмотрим во что превратилась синусоида переменного напряжения (рис.4). Ручку «Время/дел.» осциллографа установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа — в импульсный режим.
Рис. 4. Исследуем параметрический стабилизатор.
Стабилитрон, работая как диодный одно-полупериодный выпрямитель, убрал отрицательные полуволны. А как стабилитрон, он обрезал верхушку положительных полуволн на уровне своего напряжения стабилизации (для Д814В — это 10V).
А теперь, подключим такой же стабилизатор на выходе выпрямительного моста (рис. 5). Импульсы пульсирующего напряжения стабилитрон так же, обрезал на уровне своего напряжения стабилизации. Причем, стабилитрону безразлично какой амплитуды эти импульсы или полуволны, 17V или, например, 27V, он их ограничит СТАБИЛЬНО на уровне 10V.
Рис. 5. Исследуем параметрический стабилизатор на выходе моста.
Автомобильный осциллограф для диагностики автомобиля
Найти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия.
Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала. При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени.
Какой выбрать осциллограф для диагностики авто
Рассмотрим наиболее удобные и информативные приборы.
USB Autoscope Постоловского
На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.
Преимущества
- Профессиональные скрипты от Андрея Шульгина.
- Удобный интерфейс.
- Широкий диапазон измерения от 6 до 300 вольт.
- Обработка скриптов в автоматическом режиме.
- Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
- Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
- Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.
Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.
Мотодок 3
Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.
Преимущества и недостатки
- Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
- Подключения на любое расстояние по кабелю RJ 45.
- Качество картинки при диагностике, что не маловажно при работе.
- Подробная документация на сайте производителя.
Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.
Диагностика осциллографом автомобиля: как проводить
Пользоваться осциллографом не составляет особых трудностей у диагностов. Методика подробно описана в инструкциях к прибору. Главное знать места подключения к датчику положения коленчатого вала для проведения скрипта Шульгина по эффективности цилиндров. Для различных марок автомобилей ДПКВ может находится возле задающего диска или маховика.
Проверка датчиков осциллографом
ДПКВ
Датчик положения коленчатого вала. Нужен для синхронизации искры и форсунок по такту сжатия. Сигнал имеет синусоидальную форму с разрывом. Форма сигнала с одинаковой амплитудой. Если есть отклонения, значит задающий диск имеет не равномерность вращения или люфт.
Исправный ДПКВМетодика измерения
- Подключаем измерительный щуп к сигнальному проводу осциллографа.
- Ставим диапазон измерения до 300-500 вольт.
- Нажимаем кнопку пуск и снимаем сигнал.
ДПРВ
Датчик положения распределительного вала. Имеет прямоугольную форму сигнала амплитудой 12,3 – 12,7 вольта. Полезно снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга. Но как правило этот параметр проверки ДВС есть на сканере.
Нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
ДМРВ
Датчик массового расхода воздуха применяется на бензиновых двигателях для измерения объема прошедшего воздуха. Основной параметр для диагностики — это его АЦП равное 0,996 вольт при включенном зажигании. При углубленной диагностике ДМРВ, нужно померить время релаксации – период, за который, датчик выходит в нулевое положение.
Исправный ДМРВ. Нулевое напряжения равно 0,996 вольт и скорость выхода на рабочий диапазон 0,5 мс.Ниже представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха 1,130 вольт. Авто с таким датчиком будет расходовать много топлива и терять мощность.
Неисправный дмрв
Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на заведенном ДВС, при резко нажатой педали газа. Чем больше показания к 5 вольтам, тем датчик имеет большую отдачу и авто будет эластичнее.
Сигнал напряжения ДМРВ под нагрузкойРабота с автомобильным осциллографом не страшна для начинающих диагностов. Нужно тщательно изучить инструкцию по работе с прибором и применять на практике. Чем больше опыт подключения к конкретной марке, тем быстрее и точнее поиск неисправностей.
ДПДЗ
Датчик положения дроссельной заслонки. Проверить легче всего сканером. Но при плавающей неисправности, когда автомобиль едет рывками, нужно проверить сигнал осциллографом. Подключаем сигнальный провод щупа к выходу ДПДЗ и снимаем сигнал открывая дроссель. Не должно быть резких скачков.
Исправный датчик положения дроссельной заслонки Неисправный датчик положения дроссельной заслонкиПроверка массы двигателя осциллографом
Плохую массу двигателя можно проверить измерительным щупом осциллографа. Минус щупа соединяется с минусовой клеммой АКБ, а сигнальный с двигателем или кузовом. Значительные помехи говорят о плохой массе.
Хорошая массаДиагностика катушек зажигания с помощью осциллографа
Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части. Может выдать ошибку по пропускам зажигания. Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания нужна проверка осциллографом.
Ниже приведен пример типичного сигнала высоковольтного пробоя, по которому можно судить о работоспособности всей высоковольтной системы автомобиля. Любой дефектный элемент: катушка, провод, свеча проявится на этой осциллограмме.
Типичные неисправности системы зажигания
Межвитковое замыкание в первичной цепи катушки Пробой высоковольтного провода Свеча в саже Слишком большое время накопления катушки. Дефект в электронном блоке управления двигателем.Проверка индивидуальных катушек зажигания
Для диагностики индивидуальных катушек зажигания очень удобно использовать осциллограф АВТОАС-ЭКСПРЕСС М. Удобство заключается в его компактности и легкости подключения. Достаточно загрузить программу и приложить индуктивный или емкостной датчик прибора к самой катушке. Получаем осциллограмму как показано выше.
Диагностика топливной форсунки осциллографом
Форсунка бензинового двигателя состоит из запорного клапана, электромагнитный катушки. Соответственно движение этого клапана возможно проверить осциллографом.
Исправная форсунка Неисправная форсункаДиагностика форсунок с помощью осциллографа требуется в случае тщательного поиска неисправности. В большинстве случаев достаточно сделать тест Андрея Шульгина на эффективность работы цилиндров.
Проверка датчика кислорода с применением осциллографа
Лямбда зонд служит для точного дозирования топливо – воздушной смеси и снижения уровня токсичности отработавших газов. Работает по принципу гальванического элемента. Вырабатывает напряжение в зависимости от присутствия свободного кислорода во внутренней и внешней ячейке датчика. Напряжение варьируется от 0,1 – 0,9 вольт, что соответствует бедной и богатой смеси.
Проверить работу датчика можно
- Сканером
- Осциллографом
Первый вариант быстрый и достаточный для оценки общей работы. Второй же вариант диагностики датчика кислорода более точный и позволяет оценить скорость сработки лямбда зонда в режиме обратной связи.
Неисправный датчик кислорода. Скорость реакции медленная Датчик кислорода полностью неисправенСкрипт CSS Андрея Шульгина
Вот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт.
Порядок записи сигнала применительно к осциллографу USB Autoscope:
- Подключиться параллельно сигнальным щупом осциллографа к выходу ДПКВ
- Если установлена система зажигания DIS поставить щуп синхронизации на первый цилиндр, индивидуальная катушка — воспользоваться индуктивным датчиком.
- Запустить двигатель и дать работать на холостом ходу.
- Активировать скрипт CSS
- Через 5-10 секунд плавно поднять обороты до 3000 и опустить.
- Спустя 5-10 секунд резко поднять обороты и выключить искру оставив педаль газа полностью нажатой.
- Остановить скрипт.
Анализ теста Андрея Шульгина
- Нажать кнопку «Выполнить скрипт»
- Задать входную информацию для анализа: количество и порядок работы цилиндров, угол опережения зажигания с погрешностью ±10°.
- Анализируем полученную картинку.
- Холостой ход — снижена эффективность 3 цилиндра.8.
- Низкая компрессия в 3 цилиндре.
Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию.
Порядок проведения теста эффективности на осциллографе Мотодок 3
Порядок снятия скрипта аналогичный USB Autoscope:
Анализ осциллограммы давления в цилиндре
Для снятия характеристики газодинамических процессов в цилиндре в комплекте с Мотортестером прилагается датчик давления на 16 атм. Двигатель должен быть прогрет до температуры 80-90 °C
Порядок проведения теста:
- Датчик давления вкрутить вместо свечи. Высоковольтный провод проверяемого цилиндра соединить с разрядником и подключить к нему датчик синхронизации первого цилиндра.
- Выключить форсунку в проверяемом цилиндре.
- Запустить прибор.
- Завезти двигатель и дать работать на холостых оборотах.
- Получить осциллограмму давления синхронизированную по ВМТ 0°C, как показано ниже.
Важно проанализировать две точки на осциллограмме:
- Момент открытия выпускного клапана. На моторах без фазовращателей значение 140-145°, с фазовращателями порядка 160°.
- Момент перекрытия, когда выпускной и впускной клапана открыты одновременно. Должен быть 360-360°.
При отклонениях от этих значений, можно говорить о смещении фаз газораспределения.
Все вышеприведенные методы работы с мотор тестером можно делать в различной последовательности. Все зависит от конкретного случая. Где-то достаточно провести тест Шульгина или снять характеристику давления в цилиндре. Главное найти неисправность меньшими потерями для владельца автомобиля.
Как пользоваться осциллографом? Как пользоваться портативным цифровым осциллографом?
В статье будет подробно рассказано о том, как пользоваться осциллографом, что это такое и для каких целей он необходим. Никакая лаборатория не может просуществовать без измерительной аппаратуры или источников сигналов, напряжений и токов. А если вы планируете заниматься проектированием и созданием различных устройств (особенно если речь идет о высокочастотной технике, например, инверторных блоках питания), то без осциллографа сделать что-либо окажется проблематично.
Что такое осциллограф
Это такой прибор, который позволяет «увидеть» напряжение, а если точнее, то его форму в течение определенного промежутка времени. С его помощью можно измерить немало параметров – напряжение, частоту, силу тока, углы сдвигов фаз. Но чем хорош особенно этот прибор, так это тем, что он позволяет визуально оценить форму сигнала. Ведь в большинстве случаев именно она говорит о том, что конкретно происходит в цепи, в которой проводится измерение.
В некоторых случаях, например, напряжение может содержать не только постоянную, но и переменную составляющую. И форма второй может быть далека от идеальной синусоиды. Такой сигнал вольтметры, например, воспринимают с большими погрешностями. Стрелочные приборы будут выдавать одно значение, цифровые — намного меньшее, а вольтметры постоянного тока в — несколько раз больше. Самое точное измерение получается провести именно при помощи описываемого в статье прибора. И не имеет значения, применяется ли осциллограф Н3013 (как пользоваться, рассмотрено ниже) либо иной модели. Измерения происходят одинаково.
Особенности прибора
Цифровые осциллографы могут не только показывать в режиме реального времени форму сигнала, но и сохранять все данные, которые впоследствии можно будет прочитать на персональных компьютерах. По осциллограмме, изображенной на рисунке выше, можно определить некоторые особенности сигналов:
- Характер сигнала импульсный.
- Отрицательных значений не имеет входящий сигнал.
- Происходит очень быстрое изменение значений от 0 до максимума и обратно.
- Длительность импульса выше длительности паузы более чем в три раза.
Как правило, при помощи осциллографа проводятся исследования периодических сигналов. Именно о них и пойдет речь в статье.
Как он функционирует
Сердце всех осциллографов – электронно-лучевая трубка. Это, можно сказать, радиолампа, следовательно, внутри находится вакуум. На катоде происходит излучение электронов. При помощи фокусирующей системы производится формирование тонкого луча из этих электронов. Внутренняя часть экрана покрыта ровным слоем люминофора. Он при воздействии электронов начинает светиться. Глядя снаружи на экран, можно видеть посредине светлую точку.
В электронно-лучевой трубке имеется две пары пластинок, которые направляют электронный луч в нужную сторону. Причем его отклонение происходит в перпендикулярных (взаимно) направлениях. Если говорить проще, то получается две координатные системы. Чтобы наблюдать за напряжением на экране трубки, нужно:
- По горизонтали луч следует отклонять таким образом, чтобы значение отклонения было прямо пропорционально времени.
- В вертикальной плоскости необходимо, чтобы значение отклонения было пропорционально тому напряжению, исследование которого проходит.
Развертка
Напряжение развертки необходимо подавать на те пластины, которые расположены в вертикальной плоскости. Оно пилообразной формы, медленно нарастает линейно, и у него очень быстрый спад. При этом положительное напряжение приводит к тому, что луч отклоняется вправо. А отрицательное – к тому, что луч движется влево. Это в том случае, если наблюдатель находится перед экраном, и можно видеть, как луч совершает движение слева направо. При этом скорость его постоянна. После достижения крайней правой границы он быстро идет на исходную. Затем заново повторяется движение.
В данной статье будет максимально подробно рассказано о том, как правильно пользоваться осциллографом. Вышеизложенный процесс и носит название «развертка». Линия развертки – это линия (горизонтальная), прочерчиваемая лучом на экране. Когда проводятся измерения, ее называют линией нуля. Она же является осью времени на графике. Частота развертки – это не что иное, как частота, с которой происходит повторение импульсов пилообразной формы. В процессе измерений она не применяется. Важные параметры для измерений – это скорость.
Как подключить импортный осциллограф
Напряжение мерить нужно в двух точках, значит, вход осциллографа – это две клеммы. Обратите внимание на то, что функции у каждой из клемм разные:
- Первая подключается на вход усилителя, который отклоняет луч в вертикальной плоскости.
- Вторая клемма – это общий провод (земля, минус, корпус). Имеет электрическую связь непосредственно с корпусом прибора.
Отсюда вывод можно сделать о том, что при помощи осциллографа измеряется фазовое напряжение относительно земли. Причем необходимо знать, какой из входов — фаза. В приборах зарубежного производства применяются специальной конструкции щупы. В них общий провод сделан в виде зажима типа «крокодил». Наиболее разумное решение, так как именно этот провод чаще всего соединяется с металлическим корпусом устройства, на котором проходят измерения. А вот фаза выполняется в виде иглы. С ее помощью можно без труда ткнуть в любое место печатного монтажа, даже в одинокую ножку микропроцессора.
Как подключить отечественный осциллограф
В России иные стандарты, поэтому на приборах отечественного производства все по-другому. Чаще всего используются штекеры диаметром 4 мм. Причем они одинаковые, приходится выяснять некоторые признаки, чтобы не спутать подключение:
- Минусовой вывод, как правило, имеет большую длину.
- Черный или коричневый цвет характерен для земляного провода.
- На земляном штекере нанесены УГО «заземление» или «общий провод».
Но такое можно не всегда встретить, так как кабели часто подвергаются ремонту, во время которого на провод устанавливают штекер, имеющийся в наличии. С вероятностью 100% можно определить, какой провод нулевой, а какой — фазовый, одним способом. Сначала коснитесь рукой одного штекера, затем — другого. И это не зависит от модели, неважно, это осциллограф С1-118А (как пользоваться приборами, рассказано будет ниже) или какой-либо другой.
В том случае, если вы будете держать в руке минусовой провод, на экране устройства можно наблюдать ровную горизонтальную линию. А если дотронетесь до фазового провода, то на экране появится искаженная синусоида с огромным количеством помех. Последние наблюдаются по причине того, что имеется некоторая емкость между проводами бытовой электросети в комнате и вашим телом (пространство в помещении – это диэлектрик).
Дальнейшие действия
Когда фаза и минус определены, можно проводить измерения. В том случае, если вы не можете визуально определить общий для всех элементов провод, необходимо подключаться к точкам, между которыми нужно измерить напряжение. Но чаще всего в цепи имеется общий провод, он может даже быть соединен с заземлением. Таким же образом подготавливается и осциллограф ОМШ-2М. Как пользоваться им для измерения величин, будет рассказано ниже. В этом случае земляной провод осциллографа необходимо соединять с ним.
По сути, осциллограф – это вольтметр, который показывает график изменения напряжения на определенном участке времени. Но он позволяет увидеть и форму электрического тока. Для осуществления этого нужно подключить специальное токовое сопротивление. Причем значение его должно быть меньше, нежели полное сопротивление самой цепи. В этом случае резистор не сможет оказывать влияние на работу цепи.
Двухканальный осциллограф
Еще его называют двухлучевым, он обладает одной особенностью – может выдавать на экране сигналы из двух различных источников одновременно. У него есть два канала, которые обозначаются римскими цифрами. Обратите внимание на то, что в обоих каналах минусовые клеммы соединены электрически с корпусом. Поэтому при проведении измерений не допускайте подключения этих проводов к различным участкам цепи. Вот как пользоваться осциллографом С1-68, например, для измерений тока и напряжения одновременно.
Кроме того, есть риск получить неверные сведения, так как цепь кардинально изменяется из-за этого короткого замыкания. Недостаток – это невозможность наблюдения за двумя различными напряжениями. Но он не очень существенный, так как в большинстве приборов один из полюсов (как правило, минусовой вывод источника питания) соединен с корпусом, и он общий. Следовательно, измерения всех напряжений происходят относительно этого общего провода.
Возможности двухканального прибора
Воспользовавшись двухканальным осциллографом, вы получаете возможность контролировать ток и напряжение в цепи одновременно. Следовательно, без труда проводите замер сдвига фаз между напряжением и током. Один канал должен измерять ток, а второй — напряжение в исследуемой цепи. Для измерения тока, как вы помните, необходимо включить в схему некоторый резистор с определенным сопротивлением. Так как пользоваться осциллографом С1-94 и аналогами довольно сложно, нужно держать под рукой рекомендуемые схемы подключений для измерения того или иного параметра.
Стоит обращать внимание на конструкцию осциллографов – она немного несимметричная. Другими словами, синхронизация первого канала намного качественнее и стабильнее, нежели второго. Следовательно, нужно подключать выводы первого канала для измерения напряжения, а не тока. Это позволит получить более стабильное отображение осциллограммы на экране прибора. Никогда не подключайте минусовые клеммы двух каналов к разным точкам цепи! Всегда соединяйте их вместе.
Органы управления
На передней панели прибора имеется несколько рукояток, которые необходимы для проведения точной настройки осциллографа. Два потенциометра — для управления каналами 1 и 2. Также имеется функция управления синхронизацией, разверткой, присутствует возможность регулировки фокусировки, яркости, подсветки. Если присмотреться к экрану, то можно увидеть, что он разбит на небольшие квадраты — деления. Ими необходимо пользоваться при проведении измерений. Именно к этим квадратам следует привязывать масштабы по горизонтали и вертикали. Такие особенности имеет осциллограф С1-67. Как пользоваться приборами такого типа для измерений величин, будет рассказано ниже.
Обратите внимание, что по горизонтали масштаб измеряется в секундах на деление. А по вертикали — в вольтах на деление. Как правило, в осциллографе имеется примерно 6-10 квадратов в горизонтальной плоскости и 4-8 — в вертикальной. На центровые линии нанесены риски, они делят каждый отрезок на 10 частей (равных) или на 5. Благодаря этим делениям можно производить более точные расчеты.
Режим входа
На передней панели имеется специальный переключатель, который переводит прибор в различные состояния. Обозначается символом — сверху прямая черта, ниже нее -волнистая. При переводе в верхнее положение на вход может поступать как переменное, так и постоянное напряжение. Вход открытый считается для постоянного тока. При переключении в нижнее положение допустима подача на вход только переменного напряжения. Благодаря этому появляется возможность проводить замеры очень маленького переменного напряжения (по отношению к очень большим значениям постоянного). Актуально для проведения измерений в усилительных каскадах.
Реализовать это довольно просто – необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт. Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа.
Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.
Вход канала осциллографа
На передней панели имеется масштаб в вертикальной плоскости – он определяется при помощи регулятора чувствительности того канала, по которому происходит измерение. Существует возможность сменить масштаб не плавно, а ступенчато, при помощи переключателя. Какие задать значения можно с его помощью, смотрите на корпусе рядом с ним. На одной оси с этим переключателем находится регулятор для плавной корректировки (вот как пользоваться осциллографом С1-73 и аналогичными моделями).
На передней панели можно найти ручку с изображением двунаправленной стрелки. Если вращать ее, то график этого канала начнет перемещаться в вертикальной плоскости (вниз-вверх). Обратите внимание на то, что возле этой ручки имеется графическое обозначение, которое показывает, в какую сторону необходимо ее вращать, чтобы изменить значение множителя в меньшую или большую сторону. Органы управления обоих каналов одинаковые. Кроме того, на передней панели имеются ручки регулировки контрастности, яркости, синхронизации. Стоит отметить, что цифровой карманный осциллограф (как пользоваться девайсом, мы рассматриваем) также имеет ряд настроек отображения графиков.
Как проводятся измерения
Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым. Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность – все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой. Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к погрешности измерений сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие – график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.
Как измерить напряжение
Чтобы провести измерение напряжения, необходимо использовать значения масштаба в вертикальной плоскости. Для начала нужно выполнить одно из этих действий:
- Соединить обе входные клеммы осциллографа между собой.
- Перевести переключатель режимов входа в положение, которое соответствует соединению с общим проводом. Затем регулятором, возле которого изображена двунаправленная стрелка, добиться того, чтобы линия развертки совпала с центральной (горизонтальной) чертой на экране.
Переводите прибор в режим измерений и подаете на вход сигнал, который необходимо исследовать. При этом в какое-либо рабочее положение устанавливается переключатель режимов. А вот как пользоваться портативным цифровым осциллографом? Немного сложнее — у таких приборов намного больше регулировок.
В результате можно видеть на экране некоторый график. Для точного измерения высоты следует использовать ручку с изображением горизонтальной двунаправленной стрелки. Добиваетесь того, чтобы верхняя точка графика попадала на вертикальную линию, расположенную в центре. На ней имеется градуировка, поэтому будет намного проще произвести расчет действующего напряжения в цепи.
Как измерить частоту
При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.
Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.
Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот – при уменьшении периода происходит увеличение частоты. Низкое значение погрешности – это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.
Как определяется сдвиг фаз
А теперь о том, как пользоваться осциллографом С1-112А для измерения сдвига фаз. Но для начала – определение. Сдвиг фаз – это характеристика, показывающая, как располагаются относительно друг друга два процесса (колебательных) в течение некоторого времени. Причем измерение происходит не в секундах, а в частях периода. Другими словами, единица измерения – это единицы угла. Если сигналы будут одинаково располагаться взаимно, то у них сдвиг фаз будет также одинаков. Причем это не зависит от частоты и периода – реальный масштаб графиков на горизонтальной (временной) оси может быть любым.
Максимальная точность измерения будет в том случае, если растянуть график на всю длину экрана. В аналоговых осциллографах график сигнала для каждого канала будет иметь одну яркость и цвет. Чтобы отличить эти графики друг от друга, необходимо сделать для каждого свою амплитуду. И напряжение, которое подается на первый канал, важно делать максимально большим. При этом получится намного лучше удерживать синхронизацией изображение на экране. Вот как пользоваться осциллографом С1-112А. Другие приборы отличаются в эксплуатации незначительно.
Что такое осциллограф »Электроника
Осциллограф — один из наиболее полезных испытательных приборов, используемых при проектировании электронных схем, производстве, тестировании, обслуживании и ремонте электроники.
Осциллограф Учебное пособие включает:
Осциллограф, основы
Типы осциллографов
Характеристики
Как пользоваться осциллографом
Запуск области видимости
Пробники осциллографа
Технические характеристики пробника осциллографа
Типы областей: Аналоговый прицел Объем аналогового хранилища Цифровой люминофор Цифровой прицел Объем USB / ПК Осциллограф смешанных сигналов MSO
Осциллографы
или осциллографы — важный инструмент в арсенале инженера-электронщика или тестера.Осциллограф — это элемент оборудования для тестирования электроники, который позволяет видеть формы сигналов и, таким образом, значительно упрощает обнаружение любых проблем, возникающих в электронной схеме.
Ввиду преимуществ, которыми они обладают, осциллографы являются важным элементом испытательного оборудования электроники для любой лаборатории электроники или области тестирования электронного оборудования, будь то проектирование радиочастот, общее проектирование электронных схем, производство электроники, обслуживание, ремонт или где угодно, кроме электронных схем и формы сигналов на них необходимо исследовать.
Название «осциллограф» связано с тем, что он позволяет просматривать колебания. Иногда использовалось название электронно-лучевого осциллографа или CRO. Причина в том, что для отображения сигналов использовались электронно-лучевые трубки (ЭЛТ). В настоящее время эти измерительные приборы обычно называют осциллографами или просто осциллографами.
Сегодня используются ЖК-дисплеи или плазменные дисплеи, поскольку они меньше по размеру и более удобны в использовании, особенно потому, что они не требуют очень высоких напряжений старых ЭЛТ.
Функция осциллографа
Функция осциллографа состоит в том, чтобы отображать формы сигналов на каком-либо дисплее. В нормальном режиме работы время отображается по оси X (горизонтальная ось), а амплитуда отображается по оси Y (вертикальная ось). Таким образом можно увидеть электронную форму волны на осциллографе, как это можно себе представить. Форму волны можно сравнить с рябью, движущейся по поверхности пруда, когда в него бросают камень.
Увидев форму волны таким образом, можно увидеть, проанализировать работу схемы и выяснить, почему могут существовать какие-либо проблемы.
Базовый экран осциллографаОсновные темы осциллографов
При взгляде на осциллограф можно выделить несколько ключевых тем и областей, представляющих интерес:
Типы осциллографов: Существует несколько различных типов осциллографов от аналоговых до цифровых и др. Первые типы осциллографов были аналоговыми, но с развитием цифровых технологий практически все новые испытательные приборы в наши дни управляются процессором и используют цифровую обработку сигналов для обеспечения превосходного отображения форм сигналов.
Осциллографы не только содержатся в стандартных коробках настольного типа, но и некоторые осциллографы предназначены для подключения к компьютерам, используя их отображение и обработку для помощи. Часто это USB-осциллографы, подключенные через USB-каналы, но доступны и другие типы, подключенные через другие шинные системы или для использования в стоечных системах, таких как PXI и более старые системы VXI.
Технические характеристики осциллографа: Технические характеристики осциллографов иногда могут сбивать с толку.Очень полезно базовое понимание терминов и их значения. Понимание основных характеристик осциллографа может обеспечить понимание ограничений любого данного испытательного прибора, а также помочь в выборе, когда его нужно нанять, купить или даже забронировать в обычном магазине.
Технические характеристики аналоговых и цифровых осциллографов немного отличаются. Хотя основные понятия, такие как точность, временной диапазон, верхние частоты и т. П., По существу одинаковы, цифровые осциллографы также имеют спецификации для таких элементов, как количество битов ЦАП, глубина памяти и т. Д., Которые характерны для цифровых осциллографов.
Как пользоваться осциллографом: Хотя в наши дни осциллографы просты в использовании, это помогает понять, как работают эти элементы испытательного оборудования электроники, какие элементы управления и как они работают. На экране есть даже софт-клавиши, так что сделать можно много.
Обычно наиболее широко используемые элементы управления являются общими для всех прицелов любого производителя, поэтому переход от одного прицела к другому часто бывает относительно простым.
Запуск осциллографа: Функция запуска — одна из наиболее важных функций осциллографа. Триггер осциллографа позволяет временной развертке «начинаться» в одной и той же точке в каждом цикле формы волны, и это позволяет отображать ее так, чтобы она все еще оставалась на экране.
Функция запуска осциллографа претерпела значительные изменения с тех пор, как большинство осциллографов перешли на использование цифровых технологий. Доступная цифровая обработка сигналов позволяет триггеру обеспечить большую гибкость и большую функциональность, чтобы можно было более тщательно исследовать сигналы для обнаружения проблем и проблем.
Пробники осциллографа: Любому осциллографу потребуются пробники для подключения к тестируемому устройству. Характеристики и использование этих пробников позволяет наилучшим образом использовать реальный измерительный прибор, поэтому знание того, какие пробники выбрать, как их настроить, и ограничений, является важным для истинного понимания выполненных измерений.
Разработка осциллографа
Осциллограф разрабатывался много лет.Потребовалось большое количество новых открытий и изобретений, чтобы достичь того уровня сложности, который мы видим сегодня.
Истории дат осциллограмм более 100 лет, каждый шаг является результатом инноваций, вдохновения и упорного труда.
Ключевые этапы развития и истории осциллографа | |
---|---|
Дата | Открытие / Развитие |
1897 | Карл Фердинанд Браун изобрел первую электронно-лучевую трубку, ЭЛТ.Он мог отображать на экране грубые цифры, контролируемые напряжением на пластинах трубки. |
1899 | Джонатан Зеннек усовершенствовал базовую электронно-лучевую трубку, включив в нее пластины формирования луча и используя магнитное поле для обзора следа. |
1931 | В. К. Зворыкин усовершенствовал электронно-лучевую трубку, разработав прочно герметичную электронно-лучевую трубку высокого вакуума с термоэлектронным эмиттером. Это позволило General Radio изготовить осциллограф, который можно было использовать за пределами лаборатории. |
Конец 1930-х годов | Британская компания A C Cossor изобрела двухлучевой осциллограф, который широко использовался во время Второй мировой войны для обслуживания электронного оборудования и, в частности, радарных систем. |
1946 | Осциллограф с синхронизацией развертки был изобретен Говардом Воллумом и Джеком Мердоком. Это значительно упростило использование осциллографа, так как сигналы могли отображаться стабильно. |
1946 | Компания Tektronix была основана Говардом Воллумом и Джеком Мердоком. |
1963 | Компания Tektronix представила бистабильную запоминающую трубку с прямым обзором (DVBST). Это позволяло отображать одиночные импульсные сигналы, а не просто повторяющиеся сигналы. |
Цифровой запоминающий осциллограф, DSO, был изобретен Вальтером Лекроем после производства высокоскоростных дигитайзеров для исследовательского центра CERN в Швейцарии. Позже Уолтер Лекрой основал LeCroy Corporation. |
Внешний осциллограф
Обычно на внешней стороне корпуса осциллографа находится большое количество элементов.
Осциллограф с высокими характеристикамиНа передней панели испытательного оборудования обычно есть несколько элементов:
- Дисплей Первое, что бросается в глаза на осциллографе, — это большой дисплей, который используется для отображения формы сигнала. Обычно это может занять около четверти места на передней панели или даже немного больше. Часто бывает хорошо иметь достаточно большой дисплей, тогда на нем легче увидеть различные элементы сигнала.
- Разъемы На передней панели имеется множество различных разъемов. Обычно имеется вход для каждого из отображаемых каналов — часто осциллограф имеет более одного канала. Многие осциллографы являются двухканальными и поэтому могут отображать два сигнала одновременно, что позволяет сравнивать формы сигналов. Другие входы могут включать триггерный вход, который позволит запускать кривую на осциллографе в соответствии с этим сигналом.
- Элементы управления Осциллограф имеет множество элементов управления:
- Вертикальное усиление / чувствительность входного сигнала: обычно калибруется в В / см, т. Е. Каждое вертикальное деление шкалы представляет заданное количество вольт.
- Timebase: изменяет скорость, с которой кривая пересекает экран по горизонтали на осциллографе. Он откалиброван по времени / делению, например 1 мс / см, предполагая, что деления делаются с интервалом в один сантиметр.
- Триггер: элементы управления, связанные с триггером, позволяют запускать синхронизацию осциллографа различными способами. Это позволяет получить неподвижное или стабильное изображение на экране осциллографа.
Для правильной работы осциллографа необходимо правильно подавать сигналы на входы, а также правильно использовать элементы управления.
Осциллографы— один из наиболее широко используемых элементов испытательного оборудования электроники.Они обеспечивают высокий уровень понимания работы схемы и являются ключом к обнаружению многих проблем и их решению, будь то общее проектирование электронных схем, проектирование радиочастот, тестирование производства электроники, обслуживание, ремонт и даже полевое обслуживание.
Другие темы тестирования:
Анализатор сети передачи данных
Цифровой мультиметр
Частотомер
осциллограф
Генераторы сигналов
Анализатор спектра
Измеритель LCR
Дип-метр, ГДО
Логический анализатор
Измеритель мощности RF
Генератор радиочастотных сигналов
Логический зонд
Тестирование и тестеры PAT
Рефлектометр во временной области
Векторный анализатор цепей
PXI
GPIB
Граничное сканирование / JTAG
Вернуться в меню тестирования., ,
ar-oscilloscope.com | Беспроводной осциллограф | логический анализатор | анализатор спектра | портативный осциллограф | осциллограф bluetooth | осциллограф android | обрабатывается | Осциллограф AR
Осциллограф Bluetooth Android.
Может использоваться с любым мобильным устройством с системой Android через Bluetooth.
Это означает, что нет никакого проводного соединения с телефоном или планшетом, что может гарантировать безопасность вашего мобильного устройства, а также портативность.
Осциллограф — наиболее часто используемый и гибкий прибор для электрических измерений.Он визуализирует функцию электрического потенциала во времени, давая гораздо больше информации, чем другие методы измерения потенциала и тока.
С помощью осциллографа можно прямо или косвенно измерить следующие величины:
постоянное напряжение, переменное напряжение, постоянный ток, переменный ток, время, временная задержка, фаза, разность фаз, частота для просмотра сигналов в реальном времени и проведения измерений.
Скриншоты
Видео
Преимущества
- Портативность
- Использование возможностей сенсорного экрана для управления приложениями;
- Простой в использовании, интуитивно понятный.
Характеристики
- Отображение звуковой волны, захваченной с микрофона;
- Форма волны акселерометра, x y z;
- Демо-режим;
- Измерение: частота, мин. / Макс., Пик-пик;
- Курсоры, которые представляют собой линии, которые можно перемещать по экрану для измерения временного интервала между двумя точками,
или разницы между двумя напряжениями; - Типы триггера: автоматический, нормальный и одиночный;
- FFT для микрофонного входа;
- Показывает уровень заряда батареи удаленного устройства;
- Показывает информацию об уровне запуска;
- Сохраните снимки экрана с вашего инструмента на мобильное устройство;
- Сохранить данные сигнала в файл в формате csv;
Декодеры протоколов:
- SPI
- I2C
- Угадай битрейт
- UART
- Уровень канала 1-Wire
- ИК NEC
Математические каналы
На многих осциллографах математика формы сигнала обычно означает простые вычисления, такие как A + B.y, exp, ln, log, absУправляет следующими функциями
- Старт / стоп / однократное получение;
- Изменить время / деление двумя пальцами;
- Измените вольт / дел двумя пальцами;
- Включение / выключение каналов;
- Горизонтальное положение сигнала на экране;
- Выберите тип / уровень триггера;
- Масштабирование экрана;
- Полноэкранный режим;
- Установить триггер на нулевой уровень двойным щелчком;
- Время блокировки / изменение деления;
- Блокировка изменения напряжения / дел;
Руководство пользователя
Системные требования
Загрузки (старые версии)
| Academo.org — Бесплатное интерактивное обучение.
Осциллограф — полезный инструмент для всех, кто работает с электрическими сигналами, поскольку он обеспечивает визуальное представление формы сигнала или формы волны. Это позволяет вам измерять свойства волны, такие как амплитуда или частота.
Первоначальный сигнал выше представляет собой синусоидальную волну 200 Гц с амплитудой 5 вольт. Частоту этой волны можно настроить с помощью ползунка «Входная частота волны».(Вы также можете выбрать отображение прямоугольной волны.)
Если вы просматриваете страницы с помощью последней версии Google Chrome, в раскрывающемся списке ввода можно выбрать «живой ввод». Это будет принимать данные с любого микрофона, подключенного к вашему компьютеру, и отображать аудиоданные в реальном времени. (Различные микрофоны посылают на компьютер разное напряжение, поэтому для единообразия мы нормализовали входной сигнал, поэтому необработанный входной сигнал всегда будет ограничен где-то между -5 и +5 вольт.)
Поскольку осциллографы бывают самых разнообразных форм, амплитуд и частот, осциллографы должны иметь ряд элементов управления для настройки отображения формы сигнала, чтобы она могла удобно поместиться в окне просмотра.
Freeze live input
Этот флажок фиксирует входной сигнал, позволяя эффективно делать снимок того, что отображается на осциллографе в данный момент времени. Это особенно полезно
потому что вы все еще можете регулировать развертку времени и настройку вольт на деление. Попробуйте свистеть и заморозить ввод. Настройка временной развертки по удобной шкале позволяет рассчитать частоту свистка путем подсчета периода одной полной формы волны.
Усиление осциллографа
Это число, на которое умножается входящий сигнал.Коэффициент усиления 1 не будет иметь никакого эффекта, коэффициент усиления меньше 1 сделает сигнал меньше, а коэффициент усиления больше 1 сделает его больше.
секунд / дел.
Этот элемент управления позволяет регулировать продолжительность времени, которое представляет каждый квадрат сетки. При первой загрузке осциллографа этот параметр устанавливается на 1 мс и отображает одну полную форму сигнала на 4 квадратах. Это означает, что период волны составляет 4 мс, или 0,004 с, что дает частоту (1 / 0,004) = 250 Гц. Если вы измените развертку на 500 мкс (половину от того, с чего она началась), вы должны увидеть, что форма волны теперь занимает 8 квадратов для завершения одного полного колебания.Период (и, следовательно, частота) остается постоянным, потому что 8 умноженных на 500 мкс все еще равняются 0,004 с.
вольт / дел.
Эта настройка очень похожа на настройку временной развертки, описанную выше, но вместо того, чтобы растягивать волну по оси x, она включает в себя растяжение по оси y. Синусоидальная волна имеет амплитуду 5 В, что означает, что когда вольт / дел установлено на 5, форма волны достигает вершины первого квадрата. Если бы вы изменили настройку на 10 вольт / дел, форма волны теперь достигает только половины квадрата.
Смещение по горизонтали и вертикали
Эти два ползунка позволяют регулировать положение кривой осциллографа на сетке. Они особенно полезны для выравнивания частей
формы волны с линиями сетки (это может упростить подсчет квадратов, например, при определении длины волны).
Если вы хотите встроить осциллограф на свой веб-сайт, скопируйте и вставьте следующий HTML-код на свою веб-страницу.
Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus.,Осциллограф
Программный осциллограф, созданный для просмотра музыки. Перетащите аудиофайл в приложение и наблюдайте за формами волны.
Загрузки
- Windows 1.0.8 (23 января 2017 г.)
- Mac OS X 1.0.8 (23 января 2017 г.)
- Linux 1.0.3-предварительная версия; выбор устройства не работает (5 марта 2016 г.)
- Источник
Как использовать
После запуска осциллографа приветственное сообщение уже загружено, нажмите ▶ ︎ play, чтобы убедиться, что ваша настройка звука работает. Если это не так, откройте настройки disable и отключите параметр «Использовать по умолчанию». Затем выберите аудиовыход, который хотите использовать.
Чтобы открыть файлы, вы можете щелкнуть значок папки или перетащить файл из Explorer / Finder / Nautilus / … в приложение.
Ключ | Действие |
---|---|
Пробел | Воспроизведение / пауза |
f | Полноэкранный режим |
Вкладка | Скрыть интерфейс |
e | Экспорт в последовательность изображений (по умолчанию 1920×1080 @ 60fps, отредактируйте настройки.txt для настройки) |
Характеристики
- с 1.0.8 3D (бок о бок и анаглиф) при воспроизведении 4-канальных файлов
- , начиная с 1.0.7 Аудиофайлы Time Stretch
- , начиная с версии 1.0.6 Стерео микрофонный вход
- , начиная с 1.0.5 Поддерживаемые платформы: Windows и Mac OS X (32-разрядная версия)
- с 1.0.5 Экспорт последовательности изображений
- начиная с 1.0.1 Поддерживаются Wav, Flac, Mp3 и несколько других файлов (через ffmpeg / libavcodec)
- с 1.0.0 Внешний вид очень близок к аналоговому осциллографу
Известные проблемы
Спасибо. Спасибо!
Лицензия / Исходный код
- Вы можете найти домашнюю страницу проекта и исходный код в свободном доступе на github. Сам код выпущен под лицензией MIT.
- На основе Openframeworks, библиотеки творческого кодирования для C ++. Большая его часть лицензирована как MIT / BSD.
- Использует FFmpeg для декодирования аудиофайлов.FFmpeg под лицензией gpl / lgpl 2.1.
Включенные здесь совместно используемые библиотеки были скомпилированы в соответствии с lgpl.
Копию LGPL вместе с инструкциями по компиляции библиотеки для каждой платформы можно найти в папке
docs / ffmpeg
. это часть файлов выпуска. В качестве альтернативы (или если файлы были включены не случайно) вы можете найти онлайн-версии инструкций по компиляции и LGPL как часть проекта ofxAvCodec.
Форум / Вопросы
Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus.Это программное обеспечение использует код FFmpeg под лицензией LGPLv2.1, и его исходный код можно скачать здесь / здесь.
.