Принцип работы заземления и зануления: Разница между заземлением и занулением

Содержание

Разница между заземлением и занулением

Заземление и зануление служат для предотвращения ударов электрического тока. Но между занулением и заземлением есть существенная разница, которая заключается не только в способе установки.

 Разница зануления и заземления. Суть защитных установок

Заземление и зануление отличаются друг от друга по принципу работы:

  • заземление применяется для сетей с изолированной нейтралью. Необходимо, для того чтобы снизить напряжение
  • зануление применяется там, где установлена глухозаземленная нейтраль. Это нужно для того, чтобы срабатывали автоматические выключатели при попадании тока в нетоковедущую часть устройства. Представляет собой соединенные части из металла, которые не находятся под напряжением

Чтобы лучше разобраться в работе этих защитных систем и понять разницу между ними, нужно поговорить о каждом из них отдельно.

Принцип работы заземления, виды систем заземления

Заземляющее устройство образуется заземлителем с проводником или системой проводников. Они соединяют между собой токопроводящие участки приборов и землю. Выделяют три вида систем заземления:

  • рабочие – поддерживают установленный режим работы установок в нормальных и аварийных ситуациях
  • защитные – защищают людей и животных от удара током после повреждения фазных проводов
  • грозозащитные – с их помощью заземляют молниеотводы

Заземлители бывают естественные (трубопроводы, обсадные трубы, но ни в коем случае не отопительные и водопроводные трубы) и искусственные (специально сооруженные конструкции, к которым относится уголковая сталь, стальные стержни).

Заземления классифицируются по количеству рабочих и защитных проводников:

  • TN-C
    – в наше время применяется все реже и встречается только в старых постройках; предназначались для трехфазных четырехпроводных сетей. Данная система не обеспечивает нужной безопасности
  • TN-C-S – к такой системе переходят от TN-C тогда, когда в старой постройке планируется установка новой техники, в частности компьютерной. Уровень необходимой безопасности довольно высок
  • TN-S – нулевой и рабочий проводники прокладывают отдельно, соединив токопроводящие части электрической установки
  • TT – в этой системе с землей связаны открытые токоведущие участки
  • IT – в отличие от TT изолирована от земли, благодаря чему утечка тока снижается максимально

Принцип работы зануления

Если дополнительно установить к занулению УЗО, это приведет к выключению одного из элементов, действующих наиболее быстро, или одновременному срабатыванию двух устройств. Нулевой провод всегда должен находиться в исправности. В случае если этот провод оборвется, в зануленных корпусах возрастет напряжение. Поэтому монтаж выключателей в нулевой провод запрещен.

В чем разница между занулением и заземлением

Основная разница заземления и зануления – то, что в заземлении уровень безопасности обеспечивается снижением напряжения тока, которое происходит очень быстро, а в занулении – от отключения поврежденного участка электрической сети. Поэтому заземление безопаснее и надежнее зануления. Также разница между заземлением и занулением состоит в том, что монтаж зануления – более тонкая и сложная работа, в то время как для установки заземления не требуется иметь особые навыки.

Как произвести монтаж заземления или зануления, можно увидеть на видео. Также в видео более подробно рассказано о разнице между занулением и заземлением.

определение, в чем разница, видео

Любая действующая система энергоснабжения должна гарантировать высокий уровень безопасности при работе с подключённым к ней оборудованием. Для чего в её составе предусматривается специальная конструкция (она называется заземляющим устройством или ЗУ). Благодаря этому, высокий потенциал в аварийной ситуации снижается до безопасного уровня. В отсутствии условий получения эффекта от заземлителя допускается применение защитного зануления, которое может рассматриваться как заземление на ноль.

Понятие зануления

Схема подсоединения потребителя к типовой трёхфазной сети

Согласно ПУЭ оно рассматривается как преднамеренное соединение металлического корпуса электроприбора с нейтралью питающей сети для предупреждения поражения человека опасным напряжением. Чтобы лучше понять, что это такое зануление – сначала нужно разобраться со схемой подсоединения потребителя к типовой трёхфазной сети или подключения 380 вольт (фото справа). Из неё следует, что каждая фаза подключается к нагрузке через защитное устройство (автомат А1 или предохранитель).

Принцип действия такой схемы состоит в следующем:

  • При замыкании фазы «В» на корпус К1 электроустановки (из-за износа изоляции, например) за счёт соединения с рабочим нулём PEN ток Iкз короткого замыкания в цепи возрастает.
  • В результате срабатывает автомат А1, отключающий эту фазу от нагрузки.

Таким образом, идея зануления с помощью провода ЗП1 состоит в том, чтобы превратить попадание одной фазы на корпус электроприбора в простейшее короткое замыкание на шину PEN или N.

Чем отличается заземление от зануления

Для того чтобы понять, чем же отличается заземление от зануления – потребуется вспомнить, что представляет собой первое из сравниваемых понятий. Известно, что

защита заземлением – это преднамеренное соединение корпуса оборудования, которое вследствие пробоя изоляции может оказаться под высоким напряжением, с простой металлической конструкцией, погруженной в землю (фото слева).

Такое сооружение называется заземляющим контуром (ЗК), наличие которого на любом объекте обеспечивает высокий уровень необходимой защиты.

При рассмотрении, в чем разница заземления и зануления необходимо учитывать следующие их особенности:

  • Для того чтобы заземлить от нуля корпус оборудования потребуется специальный контур, в то время как для обустройства зануляющей цепи в нём нет необходимости.
  • В системе заземления предусматривается отдельный провод, соединяющий защищаемую конструкцию с ЗУ (при этом проводник зануления пробрасывается из той же точки, но только до входной шины).
  • При замыкании через ноль безопасность обеспечивается отключением данной фазы от питающей сети, тогда как при заземлении опасное напряжение снижается до минимального уровня.

В многоквартирных домах условия для обустройства надёжной «земли», как правило, отсутствуют. Именно поэтому в городских квартирах зануление – единственно возможный вариант защиты от опасного потенциала (наряду с нередко используемым УЗО).

Обратите внимание: Все эти способы защиты обеспечивают гарантированное отключение питающей цепи от нагрузки или снижения потенциала на ней.

Разница между заземлением и занулением проявляется в том, что в первом случае отключение питающей цепи происходит за счет стекания опасного тока в землю, а во втором – в результате превышения токовой уставки в автомате. В УЗО, по определению, защита срабатывает из-за появления утечек через тело человека, прикоснувшегося к корпусу неисправного оборудования.

Схема заземления и зануления

Что надёжнее

Сравнивая заземление и зануление по надежности и ответить на вопрос что лучше, необходимо исходить из их назначения, а также из следующих соображений:

  1. Эффективность каждого из этих видов защиты зависит от конкретных условий их применения.
  2. В соответствии с требованиями ПУЭ зануление применяется лишь в тех случаях, когда нет возможности сделать качественное заземление (этим они и отличаются, по сути).
  3. Поскольку скорость срабатывания включенного в фазную цепь автомата или предохранителя не очень высока – зануление считается менее надежным, чем мгновенно срабатывающее УЗО или работающее постоянно заземление.

Еще одним существенным отличием заземления от зануления, заметно снижающим надежность последнего, является зависимость аварийного тока от точки пробоя изоляции на корпус устройства. Если это случается, например в самом начале обмотки электродвигателя, то ток в цепи будет максимальным и защита сработает чётко.

Схема работы системы зануления при пробое изоляции (рисунок слева). Схема поражения человека электрическим током без системы зануления и заземления (рисунок справа)

В случае, когда пробой изоляции окажется ближе к нулевому рабочему проводнику – разность напряжений между точкой замыкания и проводом PEN окажется равной нулю. Вследствие этого оно может не сработать совсем. Именно поэтому защитное зануление используется чаще всего как вынужденная мера, к которой прибегают в отсутствии возможности обустроить надежное заземление (в многоквартирных домах старой застройки, например).

При рассмотрении вопроса о том, как сделать защиту в частном доме, последний решается намного проще. В данном случае все условия для обустройства полноценного заземления электроустановок и электроприборов налицо, защитный контур можно сделать под окном в огороде, например. Последующие действия сводятся к простому соединению ЗК посредством толстого медного проводника с главной заземляющей шиной вводного щитка.

В заключение отметим, что заземление и зануление – это различные подходы к одному и тому же техническому решению, обеспечивающему надежную защиту человека от поражения электрическим током. Выбор того, что лучше, зависит от целого ряда причин, определяемых условиями эксплуатации защищаемого оборудования, а также от преследуемых целей.

Предлагаем Вам ознакомиться с видео о том, чем отличается заземление от зануления.

Чем отличается заземление от зануления: разница

Современная трёхфазная электропроводка выполнена по пятипроводной схеме, а однофазная по трёхпроводной. В этих схемах зануление и заземление выполнены отдельными проводами, следовательно, они выполняют разные функции. Для того чтобы правильно использовать эти проводники необходимо знать, чем отличается заземление от зануления.

Определение из нормативных документов

В «библии» электромонтёров Правилах Устройства Электроустановок п.п.1.7.28-1.7.31 даётся чёткое определение, что считается заземлением, а что занулением электрооборудования.

Однако формулировки, используемые в этом и других документах, являются сложными для людей, не связанных с электричеством. Для лучшего понимания материала статьи можно объяснить, что такое заземление и зануление простыми словами.

Что такое зануление

Все жилые районы и большинство промышленных предприятий подключены к понижающим трансформаторам, вторичные обмотки которых соединены в «звезду» и подключены к контуру заземления без разрывов и переключателей. Такая схема электропитания называется «с глухозаземлённой нейтралью».

От таких подстанций отходит четыре провода — три фазных от концов обмоток и нейтраль, или нулевой проводник, от средней точки звезды. Занулением является соединение металлических корпусов электроприборов с нейтралью трансформатора или с нулевым проводником в однофазной сети 220В.

Согласно ПУЭ п.1.7.31 защитным занулением это подключение будет в том случае, если оно выполнено для повышения электробезопасности, а не по требованиям технологии или иным причинам.

Информация! Если нулевой проводник, присоединённый к контуру заземления или глухозаземлённой нейтрали, используется только для защиты, то его можно назвать «защитнное заземление».

Что такое заземление

Заземление — это подключение корпуса оборудования к контуру заземления. Такой контур может находиться возле здания или на трансформаторной подстанции. В последнем случае электропитание осуществляется по пятипроводной схеме, с дополнительным заземляющим проводом РЕ.

Соединение оборудования с заземлителями может осуществляться с двумя целями:

  • Защитное заземление. Производится для предотвращения электротравм. Определение даётся в ПУЭ п.1.7.29.
  • Рабочее (функциональное) заземление
    . Используется для работы электрооборудования, описывается в ПУЭ п.1.7.30.
Информация! Соединение заземления с нейтралью в трансформаторной подстанции или во вводном щитке даёт возможность также называть его «защитным занулением».

Для чего применяют заземление и зануление

С точки зрения электротехники эти проводники являются равнозначными и основное отличие заземления от зануления заключается в назначении таких проводов.

Зачем необходимо заземление

Прикосновение к элементам, находящимся под напряжением сети, может быть опасным для здоровья. В исправном оборудовании корпус отделён от токоведущих частей при помощи изоляционных материалов.

При разрушении изоляции на металлических частях корпуса появляется высокое напряжение и если оборудование не подключено к контуру заземления контакт человека с оборудованием приведёт к поражению электрическим током.

Наличие заземления обеспечивает отсутствие разности потенциалов между оборудованием с повреждённой изоляцией и заземлёнными элементами здания. При этом происходит срабатывание дифференциальной защиты и, при коротком замыкании на корпус, отключению автоматического выключателя.

Рабочее и защитное зануление

Соединение оборудования с нейтралью есть двух видов:

  • Защитное. Предназначено для отключения питания при нарушении изоляции. При этом возникает короткое замыкание между элементами, подключёнными к фазным проводам, и занулённым корпусом. Это вызывает повышение тока в сети выше уставки соответствующего автоматического выключателя.
  • Рабочее. Используется для получения однофазного напряжения в трёхфазной сети. В данной схеме нейтраль подключается не к корпусу, а к нулевой шине электросхемы или щита.

Схема подключения

Схемы подключения заземления и зануления отличаются в зависимости от назначения.

Защитное заземление должно подключаться к электроприборам без выключателей и разъединителей. Для этого используется отдельный пятый проводник РЕ в подходящем кабеле. Второй конец этого кабеля присоединяется к глухозаземлённой нейтрали понижающего трансформатора в схемах электроснабжения TN-S.

Защитное зануление предполагает присоединение корпусов оборудования к нейтральному проводнику ДО вводного автомата и в таком виде практически не используется.

Для использования защитного зануления точку соединения с нейтралью необходимо дополнительно заземлять. При этом морально устаревшая схема электроснабжения TN-C преобразовывается в более современную схему TN-C-S.

Рабочее зануление выполняется путём установки в электрощите нулевой шины N. К ней присоединяются нулевые провода отдельных линий при монтаже однофазных автоматов и нейтраль однофазных потребителей в трёхфазной сети.

Принцип работы заземления и зануления

Основная задача защитного заземления и защитного зануления одинаковая — предотвратить электротравму человека при повреждении изоляции между элементами, находящимися под напряжением и металлическим корпусом оборудования.

Однако эти приспособления выполняют свои функции по-разному и главное, чем отличается зануление от заземления это способом защиты и используемой защитной аппаратуры.

Принцип работы заземления

Для поражения электрическим током необходима разность потенциалов между корпусом оборудования и поверхностью, на которой стоит человек. Обычно это заземлённый пол или сантехника. При повреждении изоляции заземляющий провод отводит высокое напряжение в землю и шунтирует тело человека.

Согласно нормам ПУЭ п.1.8.39 сопротивление контура заземления должно быть не более 4 Ом, что многократно превышает сопротивление тела человека, даже если контакт был произведён мокрыми руками.

В результате ток, протекающий через организм, становится намного меньше величины, при которой он начинает ощущаться как лёгкое покалывание.

Ток, протекающий через заземляющий провод, называется ток утечки и его появление приводит к срабатыванию дифференциальной защиты, а при его увеличении выше уставки автоматического выключателя происходит аварийное отключение автомата линии.

Принцип работы зануления

Зануление является менее надёжной защитой и предназначено для отключения линии в аварийных ситуациях защитным автоматом. Это защитное устройство сработает только при коротком замыкании между внутренней частью электрооборудования и корпусом.

Фактически, нулевой проводник в сетях с глухозаземлённой нейтралью выполняет две функции — заземления и зануления и является совмещённым проводом PEN, однако его сопротивление не нормируется и разность потенциалов между занулённым корпусом и заземлёнными элементами здания может достигать значительной величины, особенно если линия проложена тонким проводом и имеет значительную протяжённость и сопротивление.

Подходящий к квартире или частному дому однофазный двухжильный кабель кроме двухполюсного автомата проходит через дифреле, которое не отключает питание при нарушении изоляции. Такая защита сработает только при прикосновении к корпусу оборудования с повреждённой изоляцией.

В чем практическая разница между заземлением и занулением

Если заземляющий и нейтральный проводники оба проходят от потребителя к глухозаземлённой нейтрали трансформаторной подстанции, где подключаются к контуру заземления, то возможно не имеет значения, как их использовать?

Несмотря на то, что с точки зрения электротехники эти проводники равнозначные, отличия в монтаже делают недопустимым произвольное подключение земли и ноля в щитке и к электроприборам. Согласно ПУЭ, у каждого из этих проводов свои требования и область применения:

  • Заземление. Используется для того, чтобы обеспечить отсутствие напряжения на корпусе электроприбора. При нарушении изоляции напряжение по заземляющему проводнику отводится в землю, при этом появляется ток утечки. Если его величина превышает 30мА, то срабатывает УЗО или дифавтомат, установленные в электрощитке. Заземляющий провод должен проходить от контура заземления до розетки или корпуса оборудования без автоматов или выключателей без контакта с нейтралью.
  • Зануление. Согласно ПУЭ п.1.7.132 использовать подключение к рабочему нулевому проводнику для защиты от поражения электричеством запрещено, поэтому зануление применяется для разделения трёхфазного электропитания на три однофазных линии. Для подключения к нейтрали корпуса оборудования необходимо выполнить отвод от нулевого провода с дополнительным заземлением места разделения. В этом случае дополнительный провод считается заземляющим.
Заземление и зануление служат для защиты человека от поражения электрическим током. Основное отличие зануления от заземления в том что они по разному осуществляют эту защиту. Заземление обеспечивает безопасность путем снижения напряжения прикосновения до безопасной величины (электрический ток уходит в землю). Зануление — путем отключения поврежденного оборудования от сети.

Что лучше

Главное, чем отличается заземление от зануления, это надёжностью защиты от поражения электрическим током. По нейтральному проводу протекает электрический ток, что может привести к разрушению мест соединений и подгоранию контактов автоматов и рубильников.

Согласно ПУЭ, нулевой проводник должен отключаться одновременно с фазным, но это не гарантирует одновременного включения контактов выключателя. В этом случае на корпусе занулённого электроприбора через электросхему появится фазное напряжение.

В отличие от защитного заземления, установленное в схеме зануления УЗО будет отключать питание только в случае попадания человека под напряжение.

Ток утечки, протекающий через повреждённую изоляцию и зануление, вызовет только срабатывание автоматического выключателя при коротком замыкании. Незначительный ток может привести к полному разрушению электроприбора и его возгоранию.

Опасность зануления в быту

Для защиты от поражения электрическим током применяются два вида защит — заземление и зануление. В чем разница между ними понимают не все электромонтёры, а тем более домашние мастера.

Поэтому при монтаже электропроводки иногда вместо заземляющего провода используется подключение к нейтрали. Выполнить эту работу по всем нормам ПУЭ, описанным в главе 1.7, затруднительно и вместо этого просто производится соединение нейтральной и заземляющей шин в электрощитке после вводного автомата или даже в розетке.

Такое зануление выполняет свои защитные функции до тех пор, пока нейтральный проводник сохраняет свою целостность на всем протяжении. При аварийных ситуациях на заземляющих клеммах и корпусах электроприборов гарантировано появляется напряжение, что может быть опасным для жизни.

Поэтому использование рабочего нулевого проводника в качестве защитного запрещено нормами ПУЭ.

Вывод

Главное, чем отличается заземление от зануления — это надёжность защиты. В случае подключении корпуса к заземлению высокое напряжение отводится в землю и появляющийся при этом ток утечки вызывает срабатывание дифференциальной защиты. При монтаже зануления отключение производится автоматическим выключателем только в случае короткого замыкания. Поэтому при выборе способа защиты зануление следует устанавливать только при невозможности произвести монтаж заземления.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Чем отличается заземление от зануления простыми словами

При монтаже электросетей в помещениях разного назначения обязательно должна быть предусмотрена защита, предотвращающая возможное поражение человека током. И для этого используется заземление и зануление. Причем далеко не все знают, в чем их разница. Ведь обе они обеспечивают безопасность использования электрических приборов.

По сути, эти два понятия во многом схожи, из-за чего их часто путают, но выполняют они свои функции по-разному. Поэтому постараемся разобраться, что в них общего и чем отличаются.

Заземление

Начнем с разбора каждой системы по отдельности.

Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.

По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).

Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.

Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.

В стандарт входит три системы – TN, TT и IT.

Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.

Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).

Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).

Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.

Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.

Читайте также:

В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.

Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.

В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.

Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.

Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.

Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.

Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.

Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.

Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.

Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.

Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).

Здесь можно подробнее узнать, как сделать заземление в частном доме.

Зануление

А теперь по занулению. В определении этого термина указывается, что зануление – преднамеренное соединение токопроводящих, но не находящихся под напряжением, элементов приборов и оборудования с глухозаземленной нейтралью (трехфазные трансформаторы), выводом источника тока (однофазный трансформатор), средней точкой источника, подающего постоянный ток.

То есть, корпус любого прибора, подключенного к сети, должен быть дополнительно соединен с нейтралью источника питания.

Для систем TT и IT зануление не применяется, поскольку для заземления потребителей используется отдельный контур.

Читайте также:

Для создания зануления используется нулевой защитный проводник (PE), который соединяется с нейтралью источника.

Но в ПУЭ сразу же дается пояснение, что в качестве защитного проводника может использоваться и рабочий (N), что подразумевает, что для создания зануления может использоваться и PEN-проводник.

В чем их отличие?

Получается, что зануление, по сути, это то же заземление, сделанное по системе ТN, но если рассматривать более подробно, то разница между ними есть.

Первое, это то, что при заземлении совмещенный нулевой PEN-проводник (системы TN-C и TN-C-S) и PE-проводник (система TN-S) выступают в качестве посредника между приборами и заземляющим контуром трансформатора.

То есть, имеется источник питания, возле которого закопан контур и вместе они соединены.

Проводка от источника идет на потребитель (помещение), где она разветвляется, чтобы обеспечить запитку всех электроприборов и оборудования.

Чтобы заземлить эти приборы (обеспечить защиту), используется та же проводка, а именно нулевые проводники, и контур трансформатора.

Читайте также:

А вот при занулении выполняется соединение не с контуром, а непосредственно с нейтральным проводником трансформатора.

А поскольку в обоих случаях используется один проводник — нулевой (в совмещенном – PEN-проводник, в разделенном – РЕ-проводник), то в конструктивном плане заземление и зануление – одно и то же.

Второе, каждый из них работает по-разному, хоть и конструкция – одинакова.

В случае с заземлением, при появлении опасного потенциала на незакрытых участках сети, он будет отводиться в землю посредством заземляющего контура, обладающего высоким сопротивлением.

Зануление же работает с точностью до наоборот. При соприкосновении фазы с корпусом, подключенным к нулевому проводнику, происходит резкое возрастание силы тока в следствие малого сопротивления, то есть происходит короткое замыкание, в результате которого срабатывают автоматические выключатели, устройства защитного отключения, либо же плавятся предохранители.

Вот и получается, что заземление и зануление в техническом плане – одно и то же, но обеспечивают они защиту по-разному.

В целом же, обе они направлены на обеспечение максимальной защиты человека от возможного поражения электрическим током при пробое фазы на нуль, и дополняют друг друга.

Особенности создания заземления и зануления

Теперь о том, как все выглядит на деле. При создании подсистемы TN-C-S совмещенный нулевой проводник (PEN) тянется от трансформатора к помещению.

В вводном распределительном устройстве (ВРУ) происходит разделение его на N и PE-проводники. На конечный потребитель при этом доходит три провода – фаза, рабочий и защитный нули.

ЧИТАЙТЕ ПО ТЕМЕ: Как заземлить стиральную машину.

При подключении прибора получается, что посредством PE-проводника он соединяется с PEN-проводником, который является и соединителем с заземляющим контуром, и глухозаземленной нейтралью.

Примерно то же происходит и в подсистеме TN-S с той лишь разницей, что заземление и зануление осуществляется разделенными нулевыми проводниками.

То есть в этих двух подсистемах создавая заземление, автоматически выполняется и зануление.

А вот в системе TN-C этого не происходит. Дело в том, что в ней используется PEN-проводник, который не расщепляется на вводе.

Получается, что к конечному потребителю доходит только два провода – фаза и рабочий ноль, а защитного РЕ-проводника – нет, по сути, конечный потребитель не заземлен.

Поэтому и создается зануление – соединение корпусов потребителей с нулевым рабочим проводником.

Если в вышеуказанных подсистемах создавая заземление сразу же появляется и зануление, то в этой его приходится создавать отдельно.

В данном случае зануление является альтернативой заземлению, чтобы обеспечить хоть какую-то защиту.

Поэтому TN-C считается устаревшей, поскольку она не обеспечивает должную безопасность.

Часто возникает вопрос – зачем вообще нужно зануление, ведь заземления считается более безопасной системой.

Моделируем ситуацию: произошел пробой фазы на корпус. Заземление обеспечило отвод большей части напряжения в землю, но часть его все же осталась на корпусе, при этом произойдет повышение значения тока, хоть и незначительно.

Это не опасно для человека, но может привести к неприятным последствиям. Поскольку из-за отсутствия зануления не произойдет сильного скачка тока, то защитные средства просто не сработают, и поврежденный участок не отключиться.

Читайте также:

В результате возможно повреждение оборудования или участка электросети, возникновение пожара.

Получается, что зануление и заземление дополняют друг друга, первый делает отключение поврежденного участка цепи, а второй нейтрализует негативные последствия возникшего КЗ в сети, обеспечивая максимально возможную защиту от поражения электрически током.

Часто указывается, что в системах TN-S и TN-C-S зануление не делается. И это так, но только частично. Ведь согласно изложенному, создавая заземление, делаем сразу и зануление. И только у TN-C зануление – отдельный вид работ.

Отсюда можно сразу и судить, где используется зануление, а где нет. Присутствует оно везде, где используется система TN. Но если в старых постройках его приходилось создавать отдельно, то в новых зданиях оно делается в процессе монтажа заземления.

Читайте по теме — способы защиты электроприборов от поломки.

Заземление и зануление электроустановок | Novation.by

Заземление электроустановки — это обеспечение электробезопасности путём целенаправленной электрической связи корпуса устройства с «землёй». Защита делится на два варианта: заземление и зануление. Их общей целью является нейтрализация вредного для человека при касании воздействия электрического тока, если оборудование на корпусе или же в любой другой доступной точке пробило на опасное напряжение.

Заземление

Суть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством — «землёй». Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму. Главная характеристика заземляющего устройства — его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали — заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью. Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована.

Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т.д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека. При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от «земли» величина тока окажется недопустимой для пострадавшего. Если организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма. Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей — человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи. Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека.

Два типа заземления

Заземлители делятся на два типа — естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным. Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой. Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения. Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов.

Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли. Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов. Итоговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения. Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки — земли. Общепринятой практикой является увеличение количества искусственных заземлителей.

Зануление

Вторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока. Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления. Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе.

Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство. В качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции. Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты — выравниванием потенциала и защитным отключением.


Защитное зануление. Работа и устройство. Применение и особенности

Во всем мире используется защита, основанная на соединении нетоковедущих проводящих частей оборудования с землей и заземленной нейтралью источника. В России эта система называется защитное зануление. Защитное действие этой системы основано на принципе достижения нулевого напряжения на корпусе прибора, за счет многократного заземления и соединения нетоковедущих частей с нейтралью источника.

Несмотря на ряд недостатков, зануление продолжает служить основным электрозащитным средством во всем мире. Открытые части установки соединяют отдельным нулевым защитным проводником.

Зануление – соединение металлических частей электрооборудования с нулевым защитным проводом. Зануление служит мерой защиты от случайного попадания под напряжение.

Защитное зануление рассчитано на случай короткого замыкания. Распределение нагрузки на предприятии осуществляется равномерно, нулевой провод исполняет функции защиты. Ноль соединяется с корпусом электродвигателя. Когда происходит короткое замыкание, то возникает напряжение на корпусе электродвигателя.

При этом происходит срабатывание автоматического выключателя. При применении заземляющей шины промышленные электроустановки соединяются.

Принцип действия

Замыкание случается при касании подключенного к напряжению фазного провода на корпус прибора, который соединен с нулем. Возникает большая сила тока, срабатывают аппараты защиты, отключающие питание неисправного прибора.

Время срабатывания защиты и отключения неисправной линии по правилам не должно быть более 0,4 секунды. Для зануления можно применить третью неиспользуемую жилу в кабеле для 1-фазной сети питания.

Фаза и ноль должны быть с небольшой величиной сопротивления. Только тогда аппарат защиты отключит напряжение в установленное время. Чтобы было хорошее зануление необходимо обеспечить качественные контакты соединений.

Защитное зануление дает возможность создать быстрое выключение от сети неисправного питания. Вероятность удара током человека практически исчезает. Зануление считается одним из видов заземления.

Порядок зануления

Зануление для защиты в доме начинается с нейтрали, соединенной с заземленной нейтралью трансформатора.

Нейтраль с 3-фазной линией приходит в здание дома в шкаф ввода. Далее, она разветвляется по щиткам на разных этажах. От нее используется рабочий ноль, образующий 1-фазное напряжение. Ноль имеет название рабочего, так как он применяется для работы.

Зануление для защиты создается отдельным нулем в щитке. Ноль соединен с заземленной нейтралью. Нужно знать, что в схеме соединения ноля с нейтралью не должно быть аппаратов коммутации (рубильников, автоматов).

Как известно в цепях трехфазного переменного напряжения обмотка трансформатора может соединяться в треугольник и в звезду. Рассмотрим звезду. Звезда имеет нулевую точку, или нейтраль. Это та точка, в которой сумма всех трех напряжений сети будет равна нулю.

При такой схеме трансформатора могут быть две возможные схемы. Схема с изолированной нейтралью показана на нашем рисунке. Такая схема обычно используется при работе трехфазных систем, а также однофазных систем, но используется именно изолированная нейтраль.

Также есть еще глухозаземленная нейтраль.

Нейтраль трансформатора соединяется с землей. Эта схема может быть использована не только для работы в трехфазной или однофазной системе, но также для защитного зануления.

Схема состоит из переменного источника напряжения 220 В, его датчика напряжения, нагрузки, сопротивления, которое в нормальном состоянии отключено. Но когда возникает пробой изоляции при выполнении неправильного монтажа, на корпусе появляется напряжение. Измерим напряжение на нагрузке относительно земли. Рассмотрим схему на базе однофазного источника напряжения.

Мы заземляем нулевую точку. Делаем имитацию пробоя изоляции на корпус. На корпусе установилось напряжение, которое будет равно напряжению источника. При таком состоянии если прикоснуться к корпусу, то человека ударит током. Как избежать этой ситуации? Все очень просто. Используют схему защитного зануления, а именно, корпус соединяют с глухозаземленной нейтралью трансформатора. Напряжение на корпусе становится равным нулю.

Почему опасно защитное зануление в квартире

Его используют для защиты людей и животных от поражения электрическим током, а также для срабатывания защитной аппаратуры в случае возникновения утечки тока на землю. Возникает вопрос: если мы используем глухозаземленную нейтраль, то можно соединить точку защитного заземления с нейтралью?

Этого делать нельзя. По правилам это запрещено. Если при выполнении монтажных работ будут перепутаны местами фаза и ноль, а мы поставим перемычку для соединения заземления с нейтралью, получим следующую неприятную ситуацию. При подключении устройства к сети, корпус оказывается под напряжением относительно земли. Как гласит ПУЭ использование нулевого рабочего проводника в качестве защитного зануления категорически запрещено.

Для защитного зануления отводится специальная шина, которая будет соединена с заземляющим устройством или с глухозаземленной нейтралью. Все заземляющие провода подключаются к этой шине параллельно. Поэтому, не нужно ставить перемычки. А перед тем, как реализовывать защитное заземление или зануление нужно ознакомиться с правилами.

Некоторые специалисты делают заземление приборов перемычкой клеммы ноля в розетке на контакт защиты.
Такой способ запрещен.

На входе в квартиру устанавливают аппарат, служащий для подключения питания сети. Это может быть пакетный выключатель или автомат. Опасность самодельного заземления с помощью перемычки в том, что корпус устройства, подключенного к этой розетке, в случае повреждения изоляции нуля станет доступным напряжению фазы. А если оборвется провод нуля, то работа прибора прекратится. Возникнет ложная видимость провода, как обесточенного. Это опасно для жизни.

Такая розетка сделает много неприятностей, если в нее запитать стиральную машину. Если отгорит ноль, то стиральная машина может убить человека в случае прикосновения к ней.

Если человек принимает душ из электрического водонагревателя, а в это время нулевой провод в розетке отсоединится, то человека ударит током. Такое зануление очень опасно выполнять в квартире.

Применение зануления
Применяется в электроустановках до 1 кВ в:
  • Сетях постоянного тока со средней точкой заземления.
  • 1-фазных сетях с заземленным выводом.
  • 3-фазных сетях с заземленным нулем.

Защитное зануление служит для защиты от удара током. Если внутри электроприбора повредилась изоляция и корпус прибора оказался под током, то отреагирует защита и отключит сеть питания.

Образование тока КЗ возникает, если произошло замыкание нулевого и фазного провода на зануленный корпус. Для скорейшего отключения устройства применяют автоматы, предохранители, магнитные пускатели с защитой от перегрева, контакторы с реле.

Похожие темы:

Что такое заземление?

Заземление (earthing) — это выполнение электрического присоединения проводящих частей к локальной земле (определение согласно ГОСТ 30331.1-2013).

Защитное заземление (protective earthing) — это заземление, выполняемое с целью обеспечения электрической безопасности.

Присоединение к локальной земле может быть: преднамеренным, непреднамеренным или случайным, постоянным или временным.

Другими словами, заземление представляет собой действие, выполняемое в электроустановке. Следовательно оно не может быть, например, исправным или неисправным. Оно не может иметь сопротивления или каких-либо других характеристик. Сопротивление имеет, например, заземляющее устройство. Заземление может быть лишь только выполнено или нет. Это важный момент, который часто неправильно понимают.

Посредством выполнения заземления, а именно – присоединением открытых проводящих частей к защитным проводникам создают пути для протекания токов замыкания на землю. Защитные устройства должны отключать эти токи при выполнении заземления.

Нормативные документы устанавливают требования к двум видам заземления: защитному заземлению и функциональному заземлению. Последнее ранее называли рабочим заземлением.

Пример выполнения защитного заземления для системы TT вы можете видеть на рисунке ниже:

Рис. 1. Система TT трехфазная четырехпроводная

Согласно требованиям ГОСТ Р 58698-2019 заземление не является мерой защиты. Оно лишь элемент, например, меры защиты «автоматическое отключение питания». То есть для защиты от поражения электрическим током заземление применяют в совокупности с другими мерами предосторожности. Самостоятельно заземление не может обеспечить эту защиту.

Следует знать, что «металлические части» электрооборудования класса II запрещено заземлять. Заземлению подлежат открытые проводящие части электрооборудования класса I.

Еще частая ошибка — это утверждать, что при заземлении электрический ток «моментально уходит в землю, не причинив человеку какой-либо опасности». На самом деле, при замыкании фазного проводника на заземлённые проводящие части последние оказываются под напряжением и представляют опасность для людей. При замыканиях на землю открытые проводящие части в системах TN оказываются под напряжением, обычно равным половине фазного напряжения. В системе ТТ это напряжение может достигать фазного.

Заземление и зануление: в чем разница?

Часто эти два понятия путают. На самом деле — зануление ничем кардинально не отличается от заземления. Зануление — это лишь защитное заземление применяемое в системах TN. После введения в действие стандартов комплекса ГОСТ Р 50571 в 1995 г. о занулении следовало забыть, поскольку в них определены системы TN, в которых предписано выполнять защитное заземление. Тем не менее это понятие все еще имеет место быть в нормативной документации, создавая при этом определенную путаницу. Более подробно читайте в статье: «Что такое зануление и как его выполняют?«

Основные принципы электрического заземления для электриков и техников

Электрическое заземление

Это обсуждение основных принципов , лежащих в основе систем электрического заземления , и того, как заземление связано с безопасностью и эффективной работой устройств защиты цепей, таких как предохранители и цепи выключатели.

Основные принципы электрического заземления для электриков и техников (фото предоставлено: помните о козе через Flickr)

Обсуждение быстро переходит от базового исследования заземления к простым примерам установки в одном здании и к объектам с несколькими зданиями и сооружениями.Наконец, мы кратко рассмотрим заземление применительно к молниезащите и контролю статического электричества .

Заземление для большинства инженеров, техников и электриков — это простая тема, и ей уделяется мало внимания, кроме осознания того, что что-то требуется. Для кого-то есть площадки, а есть «Чистые земли» .

Рисунок 1 — Высокое сопротивление заземления, безопасно Sally

Тридцать лет назад, когда компьютеры были относительно новыми, существовало множество подходов к заземлению, особенно для электроники и компьютеров.

Некоторые из этих подходов устанавливали так называемую «чистую землю» , которая часто была изолирована от заземления .

Многие из этих идей оказались неэффективными, а иногда и опасными для оборудования и персонала. По мере того, как частоты становились все выше и выше, (скорость компьютеров все быстрее и быстрее) усилилась в исследованиях в области заземления, экранирования, электромагнитных помех, молниезащиты и статического электричества.

Результатом исследования стало фундаментальных научных знаний, лежащих в основе .Этот предмет не так прост, как когда-то казалось, и нужно четкое понимание основных принципов. Во-первых, «земля» или «заземление» цепи — неправильное употребление. В большинстве случаев этот термин означает заземление или соединение цепи с землей.

На самом деле, это соединение цепи с общей точкой отсчета — для большинства систем, которая является землей .

Основные принципы электрического заземления для электриков и техников, автор John C. Pfeiffer, P.E. Pfeiffer Engineering Co., Inc.

Связанный контент EEP с рекламными ссылками

Введение в заземление для электромагнитной совместимости

Правильное заземление — важный аспект проектирования электронной системы как с точки зрения безопасности, так и с точки зрения электромагнитной совместимости. Земля играет решающую роль в определении того, что происходит в случае непреднамеренных неисправностей, электрических переходных процессов или электромагнитных помех. Правильные стратегии заземления также позволяют инженерам более эффективно контролировать нежелательные излучаемые излучения.

С другой стороны, неправильное заземление может подорвать безопасность и электромагнитную совместимость продукта или системы. В последние несколько десятилетий плохое заземление стало основной причиной сбоев системы, связанных с электромагнитной совместимостью.

Разработка хорошей стратегии заземления — довольно простой процесс. Итак, можно задаться вопросом, почему так много систем неправильно заземлены. Ответ прост: инженеры часто путают понятие заземления с другим важным понятием — текущей отдачей.Тот факт, что возвратные токопроводы в цифровой электронике часто обозначаются как заземление или GND, может сбивать с толку. Когда токопроводящие обратные токопроводы рассматриваются как заземляющие (или когда заземляющие проводники используются для обратных токов), результатом часто становится конструкция со значительными проблемами ЭМС.

Определение земли

Хорошая стратегия заземления начинается с четкого понимания цели заземления. Прежде всего, заземление служит опорным нулевым напряжением цепи или системы.Это хорошо понимали несколько десятилетий назад. В 1992 году Американский национальный институт стандартов (ANSI) определил такое заземление [1],

4.152 — заземление. (1) Прикрепление корпуса оборудования, рамы или шасси к объекту или конструкции транспортного средства для обеспечения общего потенциала. (2) Подключение электрической цепи или оборудования к земле или к некоторому проводящему телу относительно большой протяженности, которое служит вместо земли.

Было хорошо известно, что земля является опорным потенциалом, а заземляющие проводники обычно не токоведущие.

Рисунок 1. Розетка на 110 В в США

В США розетки с заземлением на 110 В имеют три клеммы, как показано на Рисунке 1. Горячая клемма имеет номинальный потенциал 110 В среднеквадратического значения и обеспечивает ток питания. Клемма нейтрали имеет номинальный потенциал 0 В среднеквадратического значения и действует как возврат силового тока. Клемма заземления также имеет номинальный потенциал 0 Vrms, но не пропускает ток при нормальных условиях. Клеммы нейтрали и заземления подключены к проводам, идущим обратно к одной и той же точке в электрической сервисной коробке (точке, которая электрически соединена с землей вне здания).

Поскольку нейтральный и заземляющий провода идут в одно и то же место, они электрически взаимозаменяемы. Фактически, если бы они были электрически закорочены в розетке с однопроводным подключением обратно к сервисной коробке, было бы трудно обнаружить какую-либо разницу. Так зачем же прокладывать два провода вместо одного? Простой ответ заключается в том, что заземление и возврат тока — это две отдельные функции, которые обычно несовместимы. Значительные токи, протекающие в проводнике, могут помешать тому, чтобы он был надежным опорным потенциалом.

Возможно, наиболее важным моментом, который следует учитывать при заземлении в целях безопасности и ЭМС, является то, что заземление не является током возврата. Земля и ток — это очень важные концепции, но это не одно и то же. Земля НЕ ЯВЛЯЕТСЯ путем для возврата токов к их источнику. Земля — ​​это, по сути, эталон нулевого напряжения для цепей и систем продукта. Концепция заземления играет решающую роль при проектировании с точки зрения безопасности и электромагнитной совместимости.

Важность заземления для безопасности

Важной частью разработки безопасных электрических продуктов и систем является знание того, где и когда небезопасные напряжения могут появляться на различных проводящих поверхностях.С точки зрения безопасности, заземление является опорным нулевым напряжением, а напряжение на каждом другом проводе — это разница между его напряжением и землей. Для зданий ориентиром на землю обычно является земля под зданием (или буквально «земля» под зданием). Это удобно, потому что земля относительно велика, и все большие металлические конструкции (например, водопровод и кабели, проходящие через границу здания) легко соединяются или привязаны к заземлению.

Строительные площадки обычно представляют собой металлические прутья, вбитые в землю возле входа в электроснабжение.Эти стержни подключены к коробке выключателя, от которой заземление распределяется на все электрические розетки через нетоковедущие провода. Они также соединяются с любым металлом, который распространяется по всему зданию, например с водопроводными трубами или строительной сталью.

Приборы или электрические изделия со значительной открытой металлической поверхностью обычно требуются для заземления металла на провод заземления, чтобы гарантировать, что он не может достичь опасного потенциала по сравнению с любым другим заземленным металлом в здании.Если происходит неисправность, которая вызывает короткое замыкание между силовым проводом и оголенным металлом, заземление коробки выключателя обеспечивает протекание большого количества тока. Это заставляет выключатель размыкаться и обесточивает прибор.

Рис. 2. Диаграмма, иллюстрирующая базовую работу GFCI.

Важно отметить, что этот метод обеспечения безопасности продуктов основан на хорошем соединении заземления розетки с блоком выключателя.В старых розетках может отсутствовать клемма заземления, и даже в новых розетках с неправильной проводкой может отсутствовать заземление. По этой причине во многих продуктах используются конструкции, в которых для безопасной работы не требуется заземление. Изделия с двойной изоляцией спроектированы таким образом, чтобы гарантировать, что соединение питания не может закоротить на оголенный металл, за счет исключения оголенного металла и / или обеспечения срабатывания автоматического выключателя в случае короткого замыкания.

Также растет количество электротехнической продукции со встроенными устройствами прерывания цепи замыкания на землю (GFCI).GFCI работают, обнаруживая дисбаланс тока между проводами подачи и возврата питания. При первом признаке того, что дисбаланс тока превышает безопасный порог, GFCI отключает питание.

Заземление безопасности может совпадать с заземлением ЭМС, а может и не совпадать, но заземление по соображениям безопасности может быть важным фактором, который следует учитывать при проектировании с учетом ЭМС. Например, в медицинских изделиях и промышленных средствах управления заземление цепи часто требуется изолировать от заземления шасси по соображениям безопасности.Это представляет собой уникальную конструктивную проблему для инженеров EMC, которые обычно хотят видеть все большие металлические объекты, хорошо соединенные на высоких частотах.

Важность заземления для ЭМС

Проблемы ЭМС часто возникают из-за того, что два больших металлических объекта находятся под разным потенциалом. Потенциальная разница всего в несколько сотен микровольт между любыми двумя резонансными проводниками может привести к превышению допустимого уровня излучаемого излучения. Точно так же напряжения, индуцированные между двумя плохо соединенными проводниками, могут привести к проблемам с помехоустойчивостью.

Заземление — это в основном искусство определения нулевого опорного напряжения и соединения металлических предметов или цепей с этим опорным сигналом через низкоомное, нетоковедущее соединение. Правильная стратегия заземления ЭМС гарантирует, что большие металлические конструкции не могут двигаться относительно друг друга, что приведет к непреднамеренным излучениям или проблемам с защитой. Склеивание металлических предметов для поддержания на них одинакового потенциала и привязка всех внешних соединений к одному и тому же нулевому заземлению — это ключевой шаг к обеспечению электромагнитной совместимости большинства продуктов.

Наземные сооружения

Почти все электронные устройства и системы имеют наземную структуру. В зданиях это заземляющие провода, водопровод и металлоконструкции. В автомобилях и самолетах это металлический каркас или шасси. В большинстве компьютеров это металлическая опорная конструкция и / или корпус.

Конструкция заземления служит местной опорной точкой нулевого напряжения. Нельзя допускать, чтобы что-либо крупное и металлическое приобретало потенциал, значительно отличающийся от потенциала земли.Обычно это достигается путем прикрепления всех крупных металлических объектов к заземляющей конструкции на интересующих частотах. Это также может быть достигнуто путем достаточной изоляции больших металлических предметов и обеспечения отсутствия возможных источников, которые могут вызвать развитие потенциала между ними.

Рисунок 3. Спутник с двумя солнечными батареями.

Например, рассмотрим спутник, показанный на рисунке 3. Его наземная структура представляет собой металлический корпус, в котором находится большая часть электроники.Чтобы передать значительную электромагнитную мощность на спутник или из него, необходимо установить напряжение между наземной структурой и чем-то еще значительного электрического размера. На частотах ниже нескольких сотен мегагерц единственными проводниками значительного электрического размера (кроме наземной конструкции) являются две группы солнечных панелей и, возможно, любые провода, соединяющие эти массивы с цепями внутри спутника.

Прикрепление массивов солнечных панелей к корпусу в точках, где они находятся в непосредственной близости, гарантирует, что между большими проводниками не возникнет значительных напряжений, которые могут служить непреднамеренно передающими или приемными антеннами для шума.Соединительные провода также необходимо прикрепить к заземляющей конструкции. Обычно это достигается с помощью шунтирующих конденсаторов, чтобы установить связь на частотах шума, в то же время позволяя токам мощности и сигнала течь без ослабления.

Стратегия заземления, примененная к спутнику в этом примере, может использоваться практически с любым другим устройством или системой, имеющей наземную структуру. Основная философия заключается в том, что сама наземная конструкция представляет собой половину непреднамеренной антенны.Излучаемая связь может возникать только в том случае, если между заземляющей конструкцией и другим проводящим объектом значительных электрических размеров возникает напряжение. Прикрепление всех объектов значительного электрического размера к заземляющей конструкции предотвращает их превращение в другую половину непреднамеренной антенны.

Эта стратегия заземления важна не только для удовлетворения требований к излучению и помехоустойчивости, она также играет ключевую роль в соблюдении требований к кондуктивным помехам и помехоустойчивости, когда конструкция заземления является одновременно опорным нулевым напряжением и предпочтительным путем для потенциально мешающих шумовых токов.

Три важных момента относительно наземных сооружений:

  1. Конструкция заземления должна быть хорошим проводником на интересующих частотах, но не должна быть электрически малогабаритной. Иногда вы можете услышать, как кто-то утверждает, что земли не существует на высоких частотах, потому что земля является эквипотенциальной поверхностью, а потенциал в двух точках на расстоянии четверти длины волны на поверхности неодинаков. Этот аргумент необоснован, потому что наземные конструкции не обязательно являются эквипотенциальными поверхностями в этом смысле.Фактически, вся концепция однозначно определяемой разности потенциалов между двумя удаленными точками разваливается на высоких частотах.

    Земля служит защитным заземлением для большинства систем распределения электроэнергии, даже если земля определенно не является электрически малой при 50 или 60 Гц. Неважно, что потенциал Земли в Лос-Анджелесе не такой, как в Нью-Йорке. Наземные конструкции служат в качестве местных источников нулевого напряжения. Они не должны быть электрически маленькими.

  2. Конструкция заземления не должна закрывать электронику.Наземная конструкция не является защитным ограждением. Это просто что-то большое и металлическое, которое служит локальным источником нулевого напряжения для всего остального, большого и металлического.

  3. Конструкция заземления не может пропускать преднамеренные токи (по крайней мере, с интересующими амплитудами и частотами). Токи, протекающие по проводнику или внутри него, заставляют магнитный поток наматывать проводник. Магнитный поток, охватывающий проводник, индуцирует на нем напряжение. На высоких частотах это напряжение потенциально может приводить в движение одну часть конструкции заземления относительно другой части.

Наземные конструкции могут проводить токи с частотами и амплитудами, которые не влияют на их эффективность как наземные конструкции. Например, в большинстве автомобилей рама используется в качестве пути обратного тока для огней и некритичных датчиков, работающих на очень низких частотах. Это не ухудшает способность рамы служить заземляющей структурой на более высоких частотах.

Важно отметить, что, хотя конструкция заземления не может пропускать преднамеренные токи, ожидается, что она будет пропускать токи короткого замыкания и токи наведенного шума.Фактически, правильное использование конструкции заземления зависит от ее способности переносить непреднамеренные токи с достаточно низким импедансом, чтобы контролировать непреднамеренные напряжения.

Заземляющие провода

Заземляющие проводники — это соединения (например, винты, болты, прокладки, провода или металлические ленты), которые крепят большие металлические предметы к заземляющей конструкции. Как и заземляющие конструкции, заземляющие проводники не пропускают преднамеренные токи. Их функция — поддерживать напряжение между двумя металлическими конструкциями ниже критического значения.

Заземляющие проводники должны иметь достаточно низкий импеданс (т. Е. Сопротивление плюс индуктивное реактивное сопротивление), чтобы их полное сопротивление, умноженное на максимальный ток, который они могут нести, было ниже минимального напряжения, которое может привести к проблеме ЭМС. Например, предположим, что экран экранированной витой пары проводов подключен к заземляющей конструкции через 1-сантиметровый контактный разъем, как показано на рисунке 4. Витая пара проводов передает псевдодифференциальный сигнал 100 Мбит / с с синфазным шумом. ток 0.3 мА при 100 МГц. Напряжение, управляющее экраном кабеля относительно платы, приблизительно равно току, возвращающемуся в экран, умноженному на эффективную индуктивность соединения экрана. Предполагая, что эффективная индуктивность контакта разъема составляет приблизительно 10 нГн (т.е. 1 нГн / мм), напряжение, управляющее экраном кабеля относительно заземляющей конструкции, составляет приблизительно 2 милливольта. Во многих ситуациях этого достаточно, чтобы превысить предел излучаемых излучений на частоте 100 МГц, и потребуется предпринять шаги для уменьшения синфазного шума или уменьшения индуктивности соединения заземляющего проводника.

Рисунок 4. Витая пара с экраном, подключенным к заземляющей конструкции.

Гальваническая коррозия

Когда заземляющее соединение выполняется путем скрепления болтами двух плоских металлических поверхностей, сопротивление соединения может быть более важным, чем индуктивность. Это особенно верно, когда поверхность раздела между ними подвергается коррозии.

Потенциал гальванической коррозии — это мера того, насколько быстро разнородные металлы будут корродировать при контакте.Коррозия зависит от наличия электролита, например воды; а скорость коррозии зависит от многих факторов, включая свойства электролита.

Рисунок 5. Анодные индексы для обычных металлов.

На диаграмме на Рисунке 5 указаны анодные индексы нескольких распространенных металлов рядом с их названиями. Этот параметр является мерой электрохимического напряжения, которое возникает между металлом и золотом. Чтобы найти относительное напряжение пары металлов, их анодные индексы вычитаются, как указано в таблице.В зависимости от окружающей среды соединения между материалами с разницей напряжений более 0,95 В обычно требуют покрытия или прокладок для сохранения целостности соединения с течением времени.

Земля против обратного тока

Как указано в начале этой главы, заземление и возврат тока — это две очень разные функции. К сожалению, в реальных изделиях многие токопроводы имеют маркировку «заземление». Это создает большую путаницу, поскольку правила, относящиеся к земле, применяются к текущим доходам и наоборот.

Например, схематическая часть платы на рисунке 6 имеет четыре разных заземления. Один компонент работает с сигналами или мощностью, которые относятся к трем из этих заземлений. Маловероятно, что разработчик этой схемы хотел четыре разных источника нулевого напряжения. Фактически, четыре заземления соединены перемычками, что указывает на то, что разработчик намеревался иметь одну опорную цепь нулевого напряжения.

Рисунок 6. Частичная схема с четырьмя заземлениями.

Схема платы, показанная на Рисунке 7, показывает слой с двумя изолированными цепями, помеченными «GND» и «AGND».Изоляция заземления затрудняет поддержание одинакового потенциала всех крупных металлических объектов в системе. Как правило, это следует делать только в случае необходимости из соображений безопасности. Так почему же эти «земли» изолированы?

Рисунок 7. Один слой разводки платы с двумя основаниями.

В двух приведенных выше примерах причина того, что «наземные» сети были изолированы, заключается в том, что они на самом деле не были заземлением. Они были обратными проводниками для силовых или сигнальных токов.Разработчикам не нужны были изолированные источники нулевого напряжения. Они изолировали проводники обратного тока, пытаясь избежать связи по общему сопротивлению.

Около 50 лет назад, когда цифровые схемы только начинали внедряться в такие продукты, как радиоприемники и высококачественное аудиооборудование, разработчики электроники быстро поняли, что цифровой шум может быть связан со звуковыми цепями, если они используют одни и те же возвратные проводники. . Например, рассмотрим простую доску, показанную на рисунке 8a.Он имеет два цифровых компонента: цифро-аналоговый (ЦАП) преобразователь и усилитель для усиления аналогового сигнала перед его отправкой с платы через разъем. Несимметричный цифровой сигнал между двумя цифровыми компонентами использует землю в качестве обратного пути. На частотах килогерц и ниже возвратный по плоскости ток распространяется с распределением, примерно представленным зелеными линиями на рисунке 8b. Низкочастотный ток, возвращающийся от усилителя к цифро-аналоговому преобразователю, следует по пути, примерно представленному синими линиями на рисунке 8b.

Рис. 8. Простая плата смешанного сигнала слева (а) и примерное распределение обратного тока на заземляющем слое (b).

В текущем распределении явно много совпадений. Это приводит к общему сопротивлению, поскольку токи в одной цепи имеют общее сопротивление заземляющей поверхности с токами в другой цепи. Если бы общее сопротивление заземляющей поверхности было порядка 1 мОм, а цифровые токи были порядка 100 мА, то индуцированное напряжение в аналоговых цепях было бы порядка 100 мкВ.

Пятьдесят лет назад инженеры, проектирующие аудиосхемы, заметили, что напряжения, индуцированные в аудиосхемах из-за связи общего импеданса с цифровыми схемами, часто были неприемлемыми. В акустическом сигнале люди слышали цифровой шум.

Очевидным решением было изолировать обратные токи цифрового сигнала от обратных токов аналогового сигнала. В то время платы с более чем двумя слоями не были распространены, поэтому популярным подходом было разделение текущей возвратной плоскости.Пример этого показан на рисунке 9.

Рис. 9. Плата смешанного сигнала с зазором в плоскости обратного тока слева (а) и приблизительным распределением обратного тока на плоскости заземления (b).

Поскольку токи низкой частоты не могут проходить через зазор, токи перенаправляются по обе стороны от зазора. Это снижает плотность цифрового обратного тока в области плоскости, используемой в основном для аналоговых токов, и значительно снижает связь по общему импедансу.

На относительно простых двухслойных платах 1960-х и 1970-х годов зазор между аналоговыми и цифровыми схемами часто был эффективным способом устранения неприемлемых перекрестных помех из-за связи общего импеданса. К сожалению, это сработало настолько хорошо, что люди в конце концов пришли к мысли, что плоскости заземления всегда должны быть разделены между цифровыми и аналоговыми цепями. Так родилось правило дизайна, и дизайнеры досок любят правила дизайна. Пятьдесят лет спустя многие дизайнеры плат по-прежнему придерживаются этого правила дизайна, хотя оно больше не имеет смысла.Фактически, лучшее правило проектирования современных плат — никогда не допускать зазора между аналоговыми и цифровыми схемами заземления.

Чтобы проиллюстрировать, почему это так, рассмотрим схему платы на рисунке 10. Она имеет те же компоненты, что и в предыдущем примере, и, как и в предыдущем примере, имеет зазор между аналоговой и цифровой схемами. Однако в этом случае зазор окружает аналоговую схему с трех сторон.

Рис. 10. Ужасно смешанная компоновка сигнальной платы слева (а) и гораздо лучшая альтернативная компоновка справа (b).

График обратных токов, как это было сделано в предыдущем примере, проиллюстрирует отличную развязку между цифровым и аналоговым обратным токами. Но предыдущие графики обратного тока не учитывали все токи в плоскости. Обратите внимание, что есть четыре цифровых дорожки, соединяющих цифро-аналоговый преобразователь с одним из цифровых компонентов. Для этих сигналов также требуются обратные токи. Эти токи должны поступать от контакта заземления ЦАП на контакт заземления цифрового компонента.Раньше этот путь был коротким и несущественным, но теперь зазор заставляет эти токи делить ту же область плоскости, что и аналоговые токи. Вместо того, чтобы улучшить ситуацию, этот пробел потенциально усугубляет ситуацию.

Правильное определение зазора между аналоговыми и цифровыми цепями имеет решающее значение. Пятьдесят лет назад часто было трудно определить правильное место для разрыва. В современных платах с высокой плотностью зазоры между плоскостями, как правило, нереально и совершенно ненужно для решения несуществующей проблемы.

Существует по крайней мере три причины, по которым в современных конструкциях плат нет необходимости в зазоре в заземляющем слое:

  1. Цифровые и аналоговые сигналы, как правило, работают на гораздо более высоких частотах, чем 50 лет назад. На частотах выше примерно 100 кГц обратные токи на заземляющем слое ограничиваются областями непосредственно под дорожками сигнала. Поскольку они не распространяются по плоскости, зазоры между плоскостями не улучшают изоляцию между цепями.

  2. Даже на частотах кГц и ниже сопротивление заземляющих поверхностей печатной платы составляет менее 1 мОм / квадрат . Это означает, что «зашумленные» схемы, сбрасывающие ток в амперах на землю, способны вызывать только милливольты (наихудший случай) напряжения в других схемах, находящихся в той же плоскости. Существует относительно немного ситуаций, когда такой уровень шумовой связи может стать проблемой.

  3. В тех ситуациях, когда миллиом муфты недопустим, гораздо лучше изолировать возврат на другом слое .Например, лучшим решением проблемы сцепления в нашем предыдущем примере было отсутствие зазора между плоскостью. На рисунке 10b показано, как возврат аналогового тока с помощью дорожки на верхнем слое полностью позволяет избежать общей проблемы связи импеданса. В платах, которые имеют много аналоговых и цифровых возвратов, которые должны быть изолированы на низких частотах, обычно будет необходимо соединить их на высоких частотах, чтобы предотвратить проблемы излучаемого излучения. Маршрутизация изолированных возвратных сигналов на соседних слоях значительно упрощает установление между ними хорошего высокочастотного соединения.

Обратите внимание, что аналоговая трасса возврата тока на рис. 10b подключена к плоскости цифрового возврата тока с помощью одного переходного отверстия, расположенного рядом с выводом заземления ЦАП. Переходное отверстие не несет аналоговых или цифровых обратных токов. Его единственная функция — гарантировать, что аналоговая и цифровая схемы имеют одинаковое опорное напряжение нулевого напряжения. Другими словами, переходное отверстие является заземляющим проводником, тогда как плоскость и дорожка являются токопроводящими проводниками.

Одноточечное и многоточечное заземление

Предположим, что аналоговая трасса возврата тока на рисунке 10b имеет два сквозных соединения с цифровой плоскостью возврата тока, как показано на рисунке 11.Теперь аналоговый обратный ток имеет два возможных пути. Он может вернуться по следу или может вернуться в самолете. Ток будет разделен в соответствии с сопротивлением каждого пути, позволяя значительному количеству аналогового тока возвращаться в плоскость. Аналогичным образом, некоторый цифровой ток будет течь по аналоговой обратной линии тока. Изоляция разрушается, и снова вводится связь по общему импедансу.

Рис. 11. Добавление второго соединения между двумя изолированными возвратными токами может означать, что они больше не изолированы на низких частотах.

Вообще говоря, два пути возврата тока не изолированы на низких частотах, если они соединены более чем в одной точке. Сквозное соединение на рисунке 10b является примером одноточечного заземления. Одноточечное заземление — важная концепция в ЭМС, хотя ее часто неправильно понимают проектировщики, не проводившие должного различия между проводниками с возвратным током и заземляющими проводниками.

Рис. 12. Одноточечное заземление.

Рисунок 12 иллюстрирует концепцию одноточечного заземления.Изолированные цепи или системы связаны с одной точкой через нетоковедущие заземляющие проводники. На рисунке 13 показана другая реализация, в которой заземляющие проводники подключаются более чем в одной точке, но все они по-прежнему привязаны к одной точке. Одним из примеров этого является заземление в зданиях. Каждое заземленное устройство имеет выделенный проводной путь к электросети здания, но параллельные пути создаются водопроводными соединениями или изделиями, внешние металлические поверхности которых находятся в электрическом контакте.Подключение заземляющих проводов более чем в одной точке не снижает эффективности схемы заземления.

Рис. 13. Еще одна реализация с одноточечным заземлением.

Хотя одноточечное заземление является важной концепцией для обеспечения того, чтобы изолированные цепи имели одинаковое опорное напряжение нулевого напряжения, оно не работает, если по заземляющим проводам проходят сигнальные или силовые токи. Например, на рисунке 14 средняя и правая цепи не изолированы.У токов, возвращающихся от нагрузки к источнику средней цепи, теперь есть возможность вернуться через намеченный синий провод или пройти по дополнительному соединению в правую цепь и обратно в среднюю цепь через «одноточечную» землю.

Рис. 14. Это НЕ одноточечное заземление.

Путь на Рисунке 14 от одноточечного соединения к средней цепи к правой цепи и обратно к одноточечному соединению иногда называют контуром заземления.Контуры заземления часто считаются несовместимыми с одноточечным заземлением и часто упоминаются как источник связи общего сопротивления; но это неверно. На рисунке 13 показан контур заземления, и он по-прежнему является хорошей реализацией одноточечного заземления. Контур заземления на Рисунке 14 включает в себя сегмент, который вообще не заземлен. Синий провод в средней цепи может называться «землей» на схеме платы, но это проводник обратного тока.

Как правило, контуры заземления хороши, если все проводники в контуре действительно являются проводниками заземления.Если один или несколько проводников в петле представляют собой низкочастотный обратный проводник, то все проводники в петле будут нести часть этого обратного тока. Это может облегчить связь по общему сопротивлению.

На рисунке 15 показан еще один пример неправильного применения концепции единой точки заземления. Этот пример взят из инструкции производителя по применению, в которой покупателям предлагается, как расположить драйвер трехфазного двигателя. Идея заключалась в том, чтобы гарантировать, что все три фазы имеют такое же опорное напряжение нулевого напряжения, что и двигатель.Реализация призвала вернуть все токи переключения и ток двигателя в одну и ту же точку.

Рис. 15. Одноточечный возврат по току (плохая идея).

Конечно, это не одноточечное заземление. Это одноточечный текущий возврат. Хотя все проводники помечены как заземление на схеме и на плате, они не являются заземлением. Это токопроводы с обратным током.

Отправка всех коммутируемых токов в одну точку схемы в основном гарантирует, что индуктивность соединения будет выше, чем в противном случае.Это обеспечивает высокий общий импеданс, а также взаимную индуктивность между фазами. Это также гарантирует, что ни одна из фаз или двигателя не будет иметь одинакового опорного нулевого напряжения.

По сути, важно помнить, что одноточечное заземление является важной стратегией для обеспечения того, чтобы изолированные цепи и устройства имели одинаковое опорное напряжение нулевого напряжения. С другой стороны, одноточечные возвратные токи часто являются основной причиной серьезных проблем электромагнитной связи.

Рисунок 16.Многоточечная земля.

Альтернативой стратегии одноточечного заземления является стратегия многоточечного заземления. Пример этого показан на рисунке 16. Вместо одной точки земля определяется локально. По сути, это концепция наземной конструкции, описанная ранее.

Обычно системы, использующие заземляющую структуру, подключают цепи и модули, которые не изолированы от заземляющей конструкции более чем в одной точке. Простой пример этого показан на рисунке 17.

Рис. 17. Гибридная стратегия заземления.

В этом случае соединение между средней и правой цепями позволяет низкочастотным обратным токам течь по заземляющей конструкции. На этих частотах структуру правильнее было бы описать как структуру с обратным током. При разработке стратегии заземления важно понимать, что проводящая конструкция может выполнять функцию заземления на одних частотах и ​​функцию возврата тока на других.

Например, в автомобиле средняя и правая цепи на рисунке 17 могут представлять модуль управления тормозами и датчик скорости вращения колеса соответственно. Каждый из них заземлен на раму автомобиля, чтобы соответствовать требованиям по излучению и эмиссии на высоких частотах, но ни один модуль не позволяет токам высокой частоты возвращаться на раму. Таким образом, на высоких частотах рама представляет собой многоточечную наземную структуру.

На более низких частотах критическая связь будет осуществляться с использованием дифференциальных сигналов, чтобы токи сигналов не попадали в кадр (и токи кадра не попадали в сигналы).Тем не менее, основания власти не обязательно будут изолированы. Силовые токи, поступающие в модули по 12-вольтовым проводам питания, возвращаются к батарее по всем доступным путям. Таким образом, на низких частотах (например, постоянный ток — кГц) рама не является наземной структурой, это структура с возвратным током. Силовой ток, протекающий по корпусу из-за одного модуля, может вызвать сотню милливольт на заземляющих соединениях других модулей, но большинство модулей не будут подвержены влиянию сотен милливольт на очень низких частотах.

Предположим, что схема слева на рисунке 17 представляет распределение мощности на стартер для двигателя внутреннего сгорания. Эта схема может потреблять сотни ампер тока при запуске двигателя. Если позволить этим токам вернуться на раму транспортного средства, это может привести к недопустимому уровню шума в модулях, использующих раму в качестве обратного проводника силового тока. В этом случае можно было бы принять решение изолировать возврат от стартера и подключить его к раме в одной точке.

Стратегии заземления

Возможно, наиболее важным моментом, который следует отметить в отношении стратегий заземления, будь то для электромагнитной совместимости или безопасности, является то, что разрабатываемый продукт должен иметь его. Проблемы обычно возникают, когда с заземляющим проводом обращаются как с токоотводящим проводником или с токоотводящими проводниками как с заземляющими проводниками.

Правильные стратегии возврата тока обычно сосредоточены на обеспечении путей с низкой индуктивностью для высокочастотных токов и поддержании контроля над путями низкочастотных токов.

Правильные стратегии заземления сосредоточены на выявлении и защите опорного нулевого напряжения для каждой цепи и системы.

Один из способов отследить, выполняют ли проводники в первую очередь функцию заземления или функцию возврата тока, — это соответствующим образом пометить их. Например, назовите соединение с заземляющей структурой «заземление шасси» или «шасси-GND», но используйте термин «цифровой возврат» или «D-RTN» для обозначения плоскости на печатной плате, основная функция которой — возврат цифровых токов. к их источнику.Половина успеха при разработке хорошей стратегии заземления — это правильное признание и сохранение целостности истинных оснований.

Еще одним важным аспектом любой стратегии заземления является определение конструкции грунта. На уровне системы наземная конструкция всегда представляет собой металлический корпус или каркас, если таковой имеется. На уровне платы, если плата подключается к раме, то заземление платы должно быть там, где это соединение происходит. Если рамы нет или нет близости к раме, заземление платы обычно должно быть определено на одном из контактов разъема (часто вход питания 0 В).

Вообще говоря, все крупные металлические предметы (например, кабели, большие радиаторы, металлические опоры и т. Д.) Должны быть прикреплены к заземляющей конструкции. Если это невозможно, они должны быть достаточно изолированы от наземной конструкции, чтобы гарантировать отсутствие значительного нежелательного сцепления. Медицинские изделия и многие высоковольтные системы требуют строгой изоляции между корпусом или шасси и любыми токоведущими цепями. К сожалению, для близлежащих высокочастотных цепей относительно легко навести в этих структурах ток в микроамперах, которого достаточно, чтобы вызвать проблемы излучаемого излучения.Предотвращение этого без привязки к корпусу обычно требует ограничения полосы пропускания схемы, экранирования схемы и / или увеличения расстояния между схемой и корпусом.

Список литературы

[1] Американский национальный стандартный словарь технологий электромагнитной совместимости (EMC), электромагнитного импульса (EMP) и электростатического разряда (ESD), ANSI C63.14-1992.

Что есть что: заземление, соединение и заземление

Заземление и заземление являются неотъемлемой частью любой современной системы электрической защиты.Эффективная система заземления с низким сопротивлением является основой электрической системы, независимо от типа конструкции. Крайне важно помочь обеспечить безопасность персонала, а также надежную защиту жизненно важного оборудования, а также свести к минимуму перерывы в обслуживании и дорогостоящие простои. Зная разницу между заземлением, соединением и заземлением, необходимо правильно спроектировать и установить систему электрического заземления.

Но сначала давайте определимся с терминами.

  • Земля : Проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или с некоторым проводящим телом, которое служит вместо земли.
  • Земля : Проводящая масса земли, электрический потенциал которой в любой точке условно принимается равным нулю. В некоторых странах термин «земля» используется вместо «земля».
  • Bond : Постоянное соединение металлических частей для образования электропроводящего пути, который обеспечит непрерывность электрической цепи и способность проводить любой ток, который может возникнуть.

Необходимость заземления

Существуют важные причины, по которым следует установить систему заземления, в том числе:

  1. Для защиты людей.
  2. Защищайте конструкции и оборудование от непреднамеренного контакта с токоведущими проводниками.
  3. Обеспечьте максимальную защиту от сбоев в электросистеме и молнии.

Это фундаментальный факт, что электричество всегда течет до точки с наименьшим потенциалом. Задача состоит в том, чтобы обеспечить поступление электричества, включая неисправности, молнии и электронные шумы, в эту точку с максимальной безопасностью для людей, сохраняя при этом надежность оборудования. Следовательно, мы должны во всех случаях обеспечивать безопасный контролируемый поток электроэнергии с минимальным падением напряжения на землю.

Коды и стандарты заземления

Потребности в заземлении зависят от функции. Требования к заземлению энергосистемы будут отличаться от требований электрического оборудования, молниезащиты или правильного функционирования электронного оборудования.

Правильная установка соответствующих систем заземления требует знания потребностей и планировки объекта. Характеристики почвы, материалы заземляющих проводов и заземляющие соединения и концевые заделки являются важными факторами , определяющими конструкцию системы заземления.Должны применяться применимые стандарты и нормы.

Хотя многие нормы и стандарты содержат минимальные требования к заземлению и подключению, проектирование и установка систем электрического заземления является одним из наиболее важных аспектов любой системы распределения электроэнергии. Однако нормы и стандарты часто понимаются неправильно, а системы заземления впоследствии устанавливаются неправильно.

Почему важно хорошее заземление?

Переходный характер молнии с связанным с ней быстрым нарастанием и токами большой величины означает, что для обеспечения эффективности молниезащиты необходимо уделить особое внимание заземлению.Многие факторы, такие как колебания удельного сопротивления почвы, доступность установки, расположение и существующие физические характеристики, зависят от конкретной площадки и, как правило, влияют на решения о применяемых методах заземления. Основная цель системы заземления прямого удара:

  • Эффективно отводит энергию молнии в землю.
  • Помогите защитить оборудование и персонал.
  • Обеспечьте эквипотенциальное управление.

Принципы заземления

Сопротивление заземления

Удельное сопротивление грунта является важным аспектом при проектировании.Он заметно различается для разных типов почвы, содержания влаги и температуры и вызывает колебания импеданса грунта.

Короткое прямое соединение с землей

Напряжение, генерируемое разрядом молнии, зависит в первую очередь от времени нарастания тока и импеданса (в первую очередь индуктивности) пути к земле. Чрезвычайно быстрое время нарастания приводит к значительному повышению напряжения из-за любой последовательной индуктивности, возникающей из-за длинных непрямых путей или резких изгибов при прокладке заземляющих проводов.Вот почему так важны короткие прямые заземления.

Муфта от электродной системы к земле

Эффективность системы заземляющих электродов при связывании тока молнии с землей зависит от ряда факторов, включая геометрию системы заземляющих электродов, форму проводников и эффективную связь с почвой.

На рисунке 1-B показан ток от точки инжекции одиночного заземляющего электрода. По мере того, как ток течет из центральной точки инжекции, на поверхности земли вокруг электрода создается градиент напряжения.Этот градиент выравнивается до плато на некотором расстоянии от электрода, как показано на рисунке 1-A. Импеданс, видимый током, определяется частицами почвы, находящимися в прямом контакте с поверхностью стержня, и общим импедансом почвы.

На рисунке изображено:

  • Хорошая электропроводность.
  • Проводники, способные выдерживать доступные электрические токи короткого замыкания.
  • Срок службы — не менее 40 лет.
  • Низкое сопротивление заземления и полное сопротивление.

Основной идеей любой заземляющей установки должна быть попытка максимизировать площадь поверхности электродов или проводников с окружающей почвой. Это не только помогает снизить сопротивление заземления системы заземления, но также значительно улучшает полное сопротивление системы заземления в условиях грозового перенапряжения.

Будьте в курсе последних достижений в области заземления, склеивания и многого другого

Хотите быть в курсе последних советов и лучших практик в области электрической защиты объектов? Подпишитесь на наш блог, чтобы получать самую свежую информацию прямо на свой почтовый ящик.

Все о системах электрического заземления

Дата публикации: 26 сен 2020 г. Последнее обновление: 26 сен 2020 г. Абдур Рехман

В этом блоге мы расскажем о необходимости системы электрического заземления, ее важности, типах заземленной системы, общих методах и факторах, влияющих на установку заземленной системы, советах по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля — ​​это обычная точка возврата электрического потока.Система заземления — это резервный путь, по которому электрический ток может протекать на землю по альтернативному пути из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

W Что это за электрическое заземление?

Проще говоря, «заземление» означает, что был проложен путь с низким сопротивлением для прохождения электричества в землю. «Заземленное» соединение включает соединение между электрооборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока.Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы поговорим о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Целью заземления электрической системы является повышение безопасности всей системы и обеспечение защиты от колебаний в электросети.Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Зачем нужно заземлять электрическую систему?

Некоторые люди, особенно в крупных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грживача, почетного профессора Национального учебного института OSHA, «большинство несчастных случаев и смертельных случаев в связи с линейным контактом являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного покрытия линии или отсутствия соответствующего заземления. »

Общие риски незаземленной электрической системы — поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением. Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество.В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Обычно силовые системы подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между любыми линиями электропередач и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были обычным явлением в 40-х и 50-х годах, они все еще используются в наши дни.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током.При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление — это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор.Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением:

Ограничьте ток замыкания на землю до <10 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

Заземление с низким сопротивлением:

Ограничивает ток замыкания на землю от 100 до 1000 ампер.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электропитания напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса. Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах.Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Наиболее распространенные методы электрического заземления:

  • Пластины заземления
  • Заземляющие трубы и стержни

Пластины заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы плиты заземления имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Повышение РИТЭГа в холодной воде Сильно пострадавшие
Увеличение количества РИТЭГов с течением времени РИТЭГ усиленный
Максимальное сопротивление электрода Среднее значение
Стоимость установки Ниже среднего
Ожидаемая продолжительность жизни Бедные 5-10 лет

Трубки и стержни заземления:

Стальная оцинкованная труба (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вертикально помещается в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Повышение РИТЭГа в холодной воде Сильно пострадавшие
Увеличение количества РИТЭГов с течением времени РИТЭГ хуже
Максимальное сопротивление электрода Плохо
Стоимость установки Среднее значение
Ожидаемая продолжительность жизни Бедные 5-10 лет

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, влияющие на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование системы заземления
  • Местоположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии существенно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы — это серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Заземленная система обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт оборудования и время простоя, снижает уровень электрического шума (колебания электрического сигнала).

Советы по безопасности при электрическом заземлении:

В электрической системе поддержание заземления должно быть первоочередной задачей с точки зрения безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • При удалении заземления в первую очередь следует устанавливать соединение с заземлением, а в последнюю — снимать (OSHA 29CFR 1910.269 ​​(п) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения, чтобы отключить подачу питания на рабочем месте при возникновении неисправности, устройства защиты кабеля для пола для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и продлевает их безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит самые современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.


  • Об авторе

    Абдур Рехман (Abdur Rehman) — профессиональный инженер-электрик с более чем восьмилетним опытом работы с оборудованием от 208 В до 115 кВ как в коммунальных, так и в промышленных и коммерческих помещениях.Особое внимание он уделяет вопросам защиты энергосистем и инженерным исследованиям.

% PDF-1.4 % 452 0 obj> эндобдж xref 452 79 0000000016 00000 н. 0000002685 00000 н. 0000001876 00000 н. 0000002876 00000 н. 0000002902 00000 н. 0000002948 00000 н. 0000002983 00000 н. 0000003184 00000 п. 0000003262 00000 н. 0000003338 00000 н. 0000003416 00000 н. 0000003494 00000 н. 0000003572 00000 н. 0000003650 00000 н. 0000003728 00000 н. 0000003805 00000 н. 0000003882 00000 н. 0000003959 00000 н. 0000004036 00000 н. 0000004113 00000 п. 0000004190 00000 п. 0000004267 00000 н. 0000004344 00000 п. 0000004421 00000 н. 0000004498 00000 н. 0000004575 00000 п. 0000004652 00000 п. 0000004729 00000 н. 0000004806 00000 н. 0000004883 00000 н. 0000004960 00000 н. 0000005037 00000 н. 0000005114 00000 п. 0000005191 00000 п. 0000005268 00000 н. 0000005345 00000 н. 0000005422 00000 н. 0000005499 00000 н. 0000005575 00000 н. 0000005651 00000 п. 0000005775 00000 н. 0000006399 00000 н. 0000006911 00000 п. 0000006947 00000 н. 0000007132 00000 н. 0000007209 00000 н. 0000007399 00000 н. 0000008046 00000 н. 0000008724 00000 н. 0000009416 00000 н. 0000010102 00000 п. 0000010871 00000 п. 0000011469 00000 п. 0000012145 00000 п. 0000012316 00000 п. 0000014986 00000 п. 0000015043 00000 п. 0000015146 00000 п. 0000015238 00000 п. 0000015323 00000 п. 0000015418 00000 п. 0000015519 00000 п. 0000015651 00000 п. 0000015740 00000 п. 0000015832 00000 п. 0000015993 00000 п. 0000016154 00000 п. 0000016281 00000 п. 0000016449 00000 п. 0000016554 00000 п. 0000016685 00000 п. 0000016795 00000 п. 0000016902 00000 п. 0000016999 00000 н. 0000017107 00000 п. 0000017198 00000 п. 0000017287 00000 п. 0000017401 00000 п. 0000017515 00000 п. трейлер ] >> startxref 0 %% EOF 454 0 obj> поток xb«f`f` cg`a8Ġ! `

Вы заземлены: Заземление электрической системы

Заземление электрической системы означает, что один системный проводник подключен к земле (по определению, земля), а ссылка на землю от системы Установлено.Установка и эксплуатация незаземленной системы означает, что никакая ссылка на землю от проводников системы не устанавливается, кроме как через емкость. Национальный электротехнический кодекс (NEC) Раздел 250.30 содержит особые правила для заземленных и незаземленных отдельно производных систем.

На землю или нет

С самых первых лет использования электричества было много дискуссий и даже жарких споров о преимуществах заземленных операционных систем по сравнению с незаземленными.Код Code указывает пользователям, нужно ли заземлять систему. Как указано в разделах 250.20, 250.21 и 250.22 последовательно, определенные электрические системы должны быть заземлены, некоторые системы могут быть заземлены, а другие системы не могут быть заземлены. Часть II статьи 250 устанавливает требования к заземлению электрической системы. Заземленные системы подключаются к земле таким образом, чтобы ограничивать напряжение, создаваемое линиями высокого напряжения, скачками напряжения в сети, грозовыми разрядами и т. Д.Заземление системы также устанавливает связь с землей от системы и стабилизирует напряжение относительно земли во время нормальной работы.

Во время аномальных событий, таких как скачок напряжения в сети или удар молнии, потенциал системы и потенциал токопроводящих кожухов системы будут пытаться увеличиваться на время аномального события. Событие замыкания на землю пытается вызвать повышение потенциала заземленного оборудования и систем на время возникновения неисправности или до тех пор, пока устройство максимального тока не размыкает цепь.Заземление помогает ограничить эти наземные потенциалы во время аномальных событий. Системное заземление — это процесс установления соединения от одного системного проводника (часто нейтрального) к земле (земле). Следовательно, когда система заземлена, один провод системы надежно заземлен; через импедансное устройство, резистор или катушку индуктивности; или каким-либо другим способом. Подключение к земле осуществляется через провод заземляющего электрода, установленный в соответствии с частью III статьи 250.

Незаземленные преимущества и недостатки

Незаземленные системы часто задаются и устанавливаются на промышленных объектах, где требуется непрерывность питания для сборочных линий и других непрерывных процессов, которые могут быть повреждены или могут привести к травмам, если первое замыкание фазы на землю приведет к прерыванию мощность системы. Выбор установки и эксплуатации этого типа системы определяется характером процесса, эксплуатационными характеристиками процесса и желаемым оператором / владельцем метода работы.Если датчики заземления устанавливаются в незаземленных системах, датчики для таких систем должны располагаться как можно ближе к источнику питания. Перечисленное оборудование для обнаружения заземления доступно для использования в незаземленных системах.

Функционально, первое замыкание фазы на землю в незаземленной системе не вызовет срабатывания устройства максимального тока, поэтому обеспечивается непрерывное обслуживание. Однако важно, чтобы персонал, контролирующий систему, реагировал на сигнал тревоги, исследовал первое состояние заземления и устранял его.Если первое условие между фазой и землей не устранено и второе замыкание фазы на землю возникает на другой фазе, результатом является одновременное короткое замыкание между фазой и короткое замыкание фазы на землю. События такого типа в некоторых случаях могут привести к значительному простою и разрушению оборудования.

Недостатками незаземленной системы является то, что состояние первого замыкания фазы на землю может быть трудным для обнаружения и может потребовать значительного количества исследований и времени.Напряжение относительно земли в незаземленной системе теоретически составляет 0 вольт (В), потому что нет заземления ни от одного системного проводника. Но в таких системах могут присутствовать различные уровни распределенной емкости утечки. Уровни напряжения между фазой и землей могут возникать в результате эффектов емкостной связи цепей, питаемых такими системами.

Выключатели для незаземленных сетей

Напряжение относительно земли для незаземленных систем поясняется определением «напряжение относительно земли», которое указывает, что напряжение относительно земли заземленной системы — это напряжение между данным проводником и той точкой или проводником цепи, которая заземлена.

Например, в однофазной системе 120/240 В напряжение между любым незаземленным фазным проводом и землей составляет 120 В. Однако для незаземленных систем наибольшее напряжение между данным проводником и любым другим проводником цепи также является напряжением между фазой и землей.

Например, в трехфазной трехпроводной системе, имеющей треугольник, 480 В, межфазное напряжение составляет 480 В. Это напряжение (480) также является напряжением между фазой и землей для этой системы, согласно определению.Установка автоматических выключателей в таких системах требует понимания обозначенных номинальных значений напряжения, таких как выключатели, отмеченные прямым номиналом напряжения (240, 480, 600 и т. Д.), По сравнению с номинальным напряжением (600/347, 480/277, 240 /). 120 и так далее). За дополнительными сведениями обратитесь к Разделу 240.85.

Заземление системы | Определение | Принципы

Заземление системы:

Процесс подключения некоторой электрической части энергосистемы (например, нейтральная точка системы, соединенной звездой, один провод вторичной обмотки трансформатора и т. Д.)) на землю (т. е. почву) называется заземлением системы.

Системное заземление приобрело большое значение в быстрорастущей энергосистеме. Приняв надлежащие схемы заземления системы, мы можем добиться многих преимуществ, включая защиту, надежность и безопасность сети энергосистемы. Но прежде чем обсуждать различные аспекты заземления нейтрали, желательно привести два примера, чтобы оценить необходимость заземления системы.

(i) На рис. 26.5 (i) показана первичная обмотка распределительного трансформатора, подключенная между линией и нейтралью линии 11 кВ.Если вторичные проводники незаземлены, может показаться, что человек может прикоснуться к любому вторичному проводнику без вреда, потому что нет возврата на землю. Однако это не так. Как показано на рис. 26.5, между первичной и вторичной обмотками имеется емкость C 1 , а между вторичной обмоткой и землей — емкость C 2 . Эта емкостная связь может создавать высокое напряжение между вторичными линиями и землей.

В зависимости от относительных величин C 1 и C 2 , оно может составлять от 20% до 40% от первичного напряжения.Если человек касается любого из вторичных проводов, возникающий в результате емкостной ток I C , протекающий через тело, может быть опасным даже в случае небольших трансформаторов [см. Рис. 26.5 (U)]. Например, если I C составляет всего 20 мА, человек может получить смертельный удар электрическим током.

Если один из вторичных проводов заземлен, емкостная связь почти уменьшается до нуля, как и емкостной ток I C . В результате человек не испытает поражения электрическим током.Это объясняет важность заземления системы.

(ii) Давайте теперь обратимся к более серьезной ситуации. На рис. 26.6 (i) показана первичная обмотка распределительного трансформатора, подключенная между линией и нейтралью линии 11 кВ. Вторичные проводники не заземлены. Предположим, что линия высокого напряжения (в данном случае 11 кВ) касается проводника 230 В, как показано на рис. 26.6 (i). Это может быть вызвано внутренней неисправностью трансформатора или ветвью или деревом, падающими на линии 11 кВ и 230 В.В этих условиях между проводами вторичной обмотки и землей возникает очень высокое напряжение. Это немедленно пробьет изоляцию 230 В, что приведет к сильному пробою. Этот пробой может произойти где угодно во вторичной сети, возможно, внутри дома или на заводе. Следовательно, незаземленная вторичная обмотка в этом случае представляет собой потенциальную опасность возгорания и может привести к серьезным несчастным случаям при ненормальных условиях.

Если одна из вторичных линий заземлена, как показано на рис. 26.6 (ii), случайный контакт между проводником 11 кВ и проводом 230 В приведет к полному короткому замыканию.Ток короткого замыкания (т.е. ток короткого замыкания) следует пунктирной траектории, показанной на рис. 26.6 (ii). Этот большой ток приведет к срабатыванию предохранителя на стороне 11 кВ, отключив, таким образом, трансформатор и вторичную распределительную систему от линии 11 кВ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *