Принцип работы шим: Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая

Содержание

Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса

t к периоду импульса T. D = t/T. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t.

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку электродвигатель обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.

Реализовать ШИМ можно посредством компаратора с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.

Похожие темы:

Что такое ШИМ — принцип работы широтно-импульсной модуляции

Микропроцессоры работают исключительно с цифровыми сигналами: с логическим нулем (0В) или с логической единицей (5В или 3.3В). По этой причине на выходе микропроцессор не может сформировать промежуточное напряжение. Применение для решения таких задач внешних ЦАП нецелесообразно из-за сложности. Специально для этого разработана широтно-импульсная модуляция — определенный процесс управления мощностью, идущей к нагрузке, методом изменения скважности импульсов постоянной частотности.

Что такое шим (широтно-импульсная модуляция)?

Это современный метод управления уровнем мощности подаваемой к нагрузке, заключающийся в изменении продолжительности импульса при постоянной частоте их следования. Это технология модуляции сигнала за счет вариативного изменения ширины импульсов, а не выходного напряжения.  ШИМ преобразователь может быть аналоговый, цифровой и пр.

Широтно-импульсная модуляция — важнейшие параметры:

  1. Т  -период тактирования — промежутки времени, через которые подаются импульсы.
  2. Длительность импульса — время пока подается сигнал.
  3. Скважность — рассчитанное по формуле соотношение длины импульса к импульсному Т периоду тактирования.
  4. D коэффициент заполнения — показатель обратный скважности.

Область применения

Применение ШИМ позволяет увеличить и намного коэффициент полезного действия электрических преобразователей. Тем более это относится к импульсным преобразователям, которые сегодня преимущественно применяются во вторичных источниках питания разных электронных аппаратов. Импульсные преобразователи обратноходовые, прямоходовые 1-тактные, 2-тактные, полумостовые, резонансные управляются с участием ШИМ.

Принцип ШИМ сегодня стал основным для электронных устройств, которым требуется поддержание на заданном уровне выходных параметров и их регулировка. Метод применяется для изменения скорости вращения двигателей, яркости света, управления силовым транзистором БП импульсного типа.

Используется ЩИМ модуляция и в системах управления яркостью светодиодов. Светодиод, благодаря низкой инерционности, успевает мигнуть на частоте всего в несколько десятков кГц. Для человеческого глаза работа светодиода в импульсном режиме воспринимается как свечение. Яркость светодиода зависит от продолжительности импульса в течение одного периода. При коэффициенте заполнения в 50%, то есть, если время свечения равно времени паузы, яркость светодиода составляет одну вторую номинальной величины. Когда появились светодиодные лампы 220В, нашлась проблема повышения их надёжности при нестабильном входном напряжении. Задача была решена разработкой драйвера питания, функционирующего по принципу ШИМ.

Распространение устройств, функционирующих по принципу ШИМ, позволило уйти от линейных трансформаторных БП. В результате чего повысилось КПД и уменьшились масса и габариты источников питания. Поэтому сегодня ШИМ-контроллер является сегодня неотъемлемой частью импульсного БП. Он управляет силовым транзистором и напряжение на выходе блока питания всегда остаётся стабильным. Кроме этого, ШИМ-контроллер:

  • обеспечивает плавный пуск преобразователя;
  • ограничивает скважность и амплитуду управляющих импульсов;
  • контролирует входное напряжение;
  • защищает от КЗ силового ключа;
  • в аварийной ситуации переводит устройство в деж. режим.

Сегодня широтно-импульсная модуляция применяется повсеместно и позволяет управлять яркостью подсветки ЖК дисплеев мобильных телефонов, смартфонов, ноутбуков. Реализована микросхема ШИМ в сварочных аппаратах, в автоинверторах, в зарядных устройствах и пр. В любом зарядном устройстве используется сегодня ШИМ.

ШИМ контроллер: принцип работы

ШИМ сигналом управляет ШИМ контроллер. Он управляет силовым ключом благодаря изменениям управляющих импульсов. В ключевом режиме транзистор может быть полностью открытым или полностью открытым. В закрытом состоянии через p-n-переход идет ток не больше нескольких мкА, то есть мощность рассеивания близка к нулю. В открытом состоянии идет большой ток, но так как сопротивление p-n-перехода мало, происходят небольшие теплопотери. Больше тепла выделяется в при переходе из одного состояния в другое. Однако благодаря быстроте переходного процесса в сравнении с частотой модуляции, мощность этих потерь незначительна.

Все это позволило разработать высокоэффективный компактный широтно импульсный преобразователь, то есть с малыми теплопотерями. Резонансные преобразователи с переключением в 0 тока ZCS позволяют свести теплопотери к минимуму.

Аналоговая ШИМ

В аналоговых ШИМ-генераторах управляющий сигнал формируется при помощи аналогового компаратора, когда на его инвертирующий вход подается пилообразный или треугольный сигнал, а на неинвертирующий — непрерывный модулирующий.

Выходные импульсы идут прямоугольной формы. Частота их следования соответствует частоте пилы, а длительность плюсовой части импульса зависит от времени, когда уровень постоянного модулирующего сигнала, идущего на неинвертирующий вход компаратора, выше уровня пилообразного сигнала, подающегося на инвертирующий вход. В период когда напряжение пилообразного сигнала будет превышать модулирующий сигнал — на выходе будет фиксироваться отрицательная часть импульса.

Во время когда пилообразный сигнал подается на неинвертирующий вход, а модулирующий — на инвертирующий, выходные прямоугольные импульсы будут положительными, когда напряжение пилы будет выше уровня модулирующего сигнала на инвертирующем входе, а отрицательное — когда напряжение пилы станет ниже сигнала модулирующего.

Цифровая ШИМ

Работая с цифровой информацией, микроконтроллер может формировать на выходах или 100% высокий или 0% низкий уровень напряжения. Но для эффективного управления нагрузкой такое напряжение на выходе нужно изменять. Например, когда осуществляется регулировка скорости вращения вала мотора или при изменении яркости светодиода.

Вопрос решают ШИМ контроллеры. То есть, 2-хуровневая импульсно-кодированная модуляция — это серия импульсов, характеризующаяся  частотой 1/T и либо шириной Т, либо шириной 0. Для их усреднения применяется передискретизация. При цифровой ШИМ прямоугольные подимпульсы, которыми и заполнен период, могут занимать любое место в периоде. Тогда на среднем значении сигнала за период сказывается лишь их количество. Так как процесс осуществляется на частоте в сотни кГц, можно добиться плавной регулировки. ШИМ контроллеры решают эту задачу.

Можно провести следующую аналогию с механикой. Когда маховик вращается при помощи двигателя, при включенном двигателе маховик будет раскручиваться или продолжать вращение, если двигатель выключен, маховик будет тормозить из-за сил трения. Однако, если движок включать/выключать на несколько секунд, вращение маховика будет держаться на определенной скорости благодаря инерции. Чем дольше период включения двигателя, тем быстрее раскрутится маховик. Аналогично работает и ШИМ модулятор. Так работают ШИМ контроллеры, в которых переключения происходят в секунду тысячи раз, и частоты могут достигнуть единиц мегагерц.

Использование ШИМ-контроллеров обусловлено их следующими преимуществами:

  • стабильностью работы;
  • высокой эффективностью преобразования сигнала;
  • экономией энергии;
  • низкой стоимостью.

Получить на выводах микроконтроллера (МК) ШИМ сигнал можно:

  • аппаратным способом;
  • программным способом.

В каждом МК есть встроенный таймер, генерирующий ШИМ импульсы на определённых выводах. Это аппаратный способ. Получение ШИМ сигнала при помощи команд программирования более эффективно за счет разрешающей способности и дает возможность задействовать больше выводов. Но программный способ вызывает высокую загрузку МК, занимая много памяти.

Принцип шим-регулятора

Работа ШИМ регулятора сложностью не отличается. ШИМ-регулятор — устройство, выполняющее такую же функцию, что и традиционный линейный регулятор мощности (то есть, меняет напряжение или ток за счёт силового транзистора, рассеивающего значительную мощность на себе). Но ШИМ-регулятор отличается намного большим КПД. Достигается это благодаря тому, что управляющий силовой транзистор функционирует в ключевом режиме (либо включен, тогда пропускает большой ток, но мало падение напряжения, либо выключен — ток не проходит). В результате на таких силовых транзисторах мощность практически не рассеивается и энергия впустую не тратится.

После силового транзистора напряжение выходит как прямоугольные импульсы с изменяющейся скважностью в зависимости от необходимой мощности. Но сигнал нужно демодулировать (то есть, выделить среднее напряжение). Этот процесс происходит или в самой нагрузке (когда она индуктивного характера) или если между нагрузкой и силовым каскадом располагают фильтр нижних частот.

Пример использования шим регулятора

Самый простой пример использования регулятора напряжения ШИМ — ШИМ микросхема NE555, с которой знаком каждый радио-любитель. Благодаря ее универсальности можно конструировать самые разнообразные детали: от простейшего одновибратора импульсов с 2 в обвязке до модулятора, состоящего из большого числа компонентов. ШИМ регулятор напряжения имеет широкую область применения — это схемы регулировки яркости светодиодов и лент, а также регулировка скорости вращения движков.

В чем отличие между шим и шир?

На Западе понятия широтно-импульсного регулирования ШИР и ШИМ практически не различаются. Однако у нас между ними все же существует различие. Во многих микросхемах реализован принцип ШИР, однако при этом они все равно называются ШИМ контроллеры. Таким образом различий в названии этих двух способов практически нет.

Единственное отличие между ШИР и ШИМ — при ШИР время импульса и паузы постоянны. А при ШИМ их длительности изменяются, что позволяет сформировать выходной ШИМ сигнал заданной формы.

Все про широтно-импульсную модуляцию (ШИМ)

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Широтно-импульсный модулятор, принцип работы и схема

Широтно-импульсная модуляция (ШИМ, английская аббревиатураPWM — Pulse-Width Modulation) — это способ кодирования аналогового сигнала путем изменения ширины (длительности) прямоугольных импульсов несущей частоты. На рис.1 представлены типичные графики ШИМ-сигнала.

Так как при ШИМ частота импульсов, а значит, и период (Т) остаются неизменными, то при уменьшении ширины импульса (t) увеличивается пауза между импульсами (рис.16) и наоборот, при расширении импульса пауза сужается (рис.1в).

Если ШИМ-сигнал пропустить через фильтр низших частот (ФНЧ), то уровень постоянного напряжения на выходе фильтра будет определяться скважностью импульсов ШИМ. Скважность Q — это отношение периода импульсов Т к их длительности t, т.е. Формула:

Величина, обратная скважности, которая также встречается в литературе, называется “коэффициентом заполнения” (К3). Назначение ФНЧ — не пропускать на выход несущую частоту ШИМ.

Сам фильтр может состоять из простейшей интегрирующей RC-цепочки или же отсутствовать вовсе, например, если нагрузка имеет достаточную инерцию.

Рис. 1. Графики работы ШИМ.

Таким образом, с помощью двух логических уровней “1 ” и “0” можно получить любое промежуточное значение аналогового сигнала. Широтно-импульсная модуляция широко используется в современной электронике, например, в импульсных источниках питания или в устройствах цифровой обработки звуковых сигналов. В [1] описан широтно-импульсный модулятор на одной КМОП-микросхеме.

Он выполнен на основе двух логических элементов (рис.2) микросхемы К176ЛП1 (рис.За), которая называется универсальным логическим элементом (зарубежный аналог — CD4007).

Универсальность ИМС заключается в том, что она может быть использована и как три самостоятельных элемента НЕ, и как элемент ЗИЛИ-НЕ (рис.Зб), и как элемент НЕ с большим коэффициентом разветвпения (рис.Зв).

Рис. 2. Широтно-импульсный модулятор на одной КМОП-микросхеме.

Рис. 3. Структура микросхемы К176ЛП1.

Микросхема содержит шесть МОП-транзисторов, три из которых (VT1…VT3) — с п-каналом, три других (VT4… VT6)-с р-каналом. Напряжение питания подают на выводы 14 (+9 В) и 7 (общий), выводы 6, 3 и 10 — входы, остальные — выходы.

Разные по функциональному назначению логические элементы получают путем соответствующих соединений входных и выходных выводов. Модулятор (рис.2) изменяет коэффициент заполнения импульсов автогенератора в соответствии с управляющим напряжением.

Регулирование коэффициента заполнения обеспечивается шунтированием времязадающего резистора R2 сопротивлением каналов полевых транзисторов VТ1 и VТ2, входящих в состав микросхемы.

Коэффициент заполнения изменяется в пределах от 1 до 99% периода рабочей частоты. Недостатком этого генератора является ненадежный запуск при уменьшении емкости времязадающего конденсатора С1 (при увеличении частоты генерации).

Для устранения этого недостатка предлагаю выполнить широтно-импульсный модулятор на трех логических элементах (рис.4). Трехэлементный генератор запускается в любом случае, а конденсатор просто снижает его частоту. Широтно-импульсный модулятор построен на микросхеме DD2 и инверторе DD1.

Полевые транзисторы VТ1 и VТ2 из состава микросхемы подключены через диоды VD1 и VD2 параллельно резистору R2.

Рис. 4. Широтно-импульсный модулятор на трех логических элементах.

При высоком уровне на выходе генератора диод VD2 открывается, т.е. сопротивление п-канала VТ2 включается параллельно R2. Подобным образом сопротивление р-канала VТ1 включается через VD1 параллельно R2 при низком уровне на выходе генератора.

Широтно-импульсный модулятор измененяет коэффициент заполнения импульсов генератора в соответствии с управляющим напряжением. Само изменение частоты колебаний минимально зависит от коэффициента заполнения, т.к. сопротивление канала одного транзистора возрастает, а другого уменьшается при любой величине управляющего напряжения. Таким образом, среднее за период значение шунтирующего резистор R2 сопротивления остается постоянным.

Увеличение управляющего напряжения, поступающего на модулятор, приводит к увеличению длительности выходных импульсов, уменьшение — наоборот. Частота колебаний остается неизменной. Данный генератор может генерировать сигнал частотой до 10 МГц.

В. Калашник, г. Воронеж. E-mail: kalaviv[a]mail.ru. РМ-07-12.

Литература:

  1. Широтно-импульсный модулятор на одной КМОП микросхеме. — Электроника, 1977, №13, С.55.
  2. Генераторы на элементах КМОП. — Схемотехника, 2007, №6, С.37.

Что такое ШИМ – Широтно-Импульсная Модуляция? ⋆ diodov.net

Рассмотрим, что такое ШИМ или PWM. А также, чем отличается ШИМ от ШИР. Алгоритм широтно-импульсной модуляции применяется для плавного изменения мощности на нагрузке, поступающей от источника питания. Например, с целью регулирования скорости вращения вала двигателя; плавности изменения яркости освещения или подсветки. Отдельной широкой областью применения ШИМ являются импульсные источники питания и автономные инверторы.

Для питания нагрузки часто необходимо изменять величину напряжения, подводимого от источника питания. Принципиально можно выделить два способа регулирования напряжения – линейный и импульсный.

Примером линейного способа может послужить переменный резистор. При этом значительная часть мощности теряется на резисторе. Чем больше разница напряжений источника питания и потребителя, тем ощутимей потери мощности, которая попросту «сгорает» на резисторе, превращаясь в тепло. Поэтому линейный способ регулирования рационально применять только при небольшой разнице входного и выходного напряжений. В противном случае коэффициент полезного действия источника питания в целом будет очень низкий.

В современной преобразовательной технике преимущественно используются импульсное регулирование мощности на нагрузке. Одним из способов реализации импульсного регулирования является широтно-импульсная модуляция ШИМ. В англоязычной литературе PWM – pulse-width modulation.

Принцип импульсного регулирования

Основными элементами любого типа импульсного регулятора мощности являются полупроводниковые ключи – транзисторы или тиристоры. В простейшем виде схема импульсного источника питания имеет следующий вид. Источника постоянного напряжения Uип ключом K подсоединяется к нагрузке Н. Ключ К переключается с определенной частотой и остается во включенном состоянии определенную длительность времени. С целью упрощения схемы я на ней не изображаю другие обязательные элементы. В данном контексте нас интересует только работа ключа К.

Чтобы понять принцип ШИМ воспользуемся следующим графиком. Разобьем ось времени на равные промежутки, называемые периодом T. Теперь, например половину периода мы будем замыкать ключ K. Когда ключ замкнут, к нагрузке Н подается напряжение от источника питания Uип. Вторую часть полупериода ключа находится в закрытом состоянии. А потребитель останется без питания.

Время, в течение которого ключ замкнут, называется временем импульса tи. А время длительности разомкнутого ключа называют временем паузы tп. Если измерить напряжение на нагрузке, то оно будет равно половине Uип.

Среднее значение напряжения на нагрузке можно выразить следующей зависимостью:

Uср.н = Uип tи/T.

Отношение времени импульса к периоду T называют коэффициентом заполнения D. А величина, обратная ему называется скважностью:

S = 1/D = T/tи.

На практике удобнее пользоваться коэффициентом заполнения, который зачастую выражают в процентах. Когда транзистор полностью открыт на протяжении всего времени, то коэффициент заполнения D равен единице или 100 %.

Если D = 50 %, то это означает, что половину времени за период транзистор находится в открытом состоянии, а половину в закрытом. В таком случае форма сигнала называется меандр.
Следовательно, изменяя коэффициент D от 0 до единицы или до 100 % можно изменять величину Uср.н от 0 до Uип:

Uср.н = Uип∙D.

А соответственно регулировать и величину подводимой мощности:

Pср.н = Pип∙D.

Широтно-импульсное регулирование ШИР

В западной литературе практически не различают понятия широтно-импульсного регулирования ШИР и широтно-импульсной модуляции ШИМ. Однако у нас различие между ними все же существует.

Сейчас во многих микросхемах, особенно применяемых в DC-DC преобразователях, реализован принцип ШИР. Но при этом их называют ШИМ контроллерами. Поэтому теперь различие в названии между этими двумя способами практически отсутствует.

В любом случае для формирования определенной длительности импульса, подаваемого на базу транзистора и открывающего последний, применяют источники опорного и задающего напряжения, а также компаратор.
Рассмотрим упрощенную схему, в которой аккумуляторная батарея GB питает потребитель Rн импульсным способом посредством транзистора VT. Сразу скажу, что в данной схеме я специально не использовал такие элементы, необходимые для работы схемы: конденсатор, дроссель и диод. Это сделано с целью упрощения понимания работы ШИМ, а не всего преобразователя.

Упрощенно, компаратор имеет три вывода: два входа и один выход. Компаратор работает следующим образом. Если величина напряжения на входном выводе «+» (неинвертирующий вход) выше, чем на входе «-» (инвертирующий вход), то на выходе компаратора будет сигнал высокого уровня. В противном случае – низкого уровня.

В нашем случае, именно сигнал высокого уровня открывает транзистор VT. Рассмотрим, как формируется необходимая длительность времени импульса tи. Для этого воспользуемся следующим графиком.

При ШИР на одни вход компаратора подается сигнал пилообразной формы заданной частоты. Его еще называют опорным. На второй вход подается задающее напряжение, которое сравнивается с опорным. В результате сравнения на выходе компаратора формируется импульс соответствующей длительности.

Если на неинверитирующем входе компаратора опорный сигнал, то сначала будет идти пауза, а затем импульс. Если на неинвертирующий вход подать задающий сигнал, то сначала будет импульс, затем пауза.

Таким образом, изменяя значение задаваемого сигнала, можно изменять коэффициент заполнения, а соответственно и среднее напряжение на нагрузке.

Частоту опорного сигнала стремятся сделать максимальной, чтобы снизить параметры дросселей и конденсаторов (на схеме не показаны). Последнее приводит к снижению массы и габаритов импульсного блока питания.

ШИМ – широтно-импульсная модуляция

ШИМ в преобладающем большинстве применяется для формирования сигнала синусоидальной формы. Часто ШИМ применяется для управления работой инверторного преобразователя. Инвертор предназначен для преобразования энергии постоянного тока в энергию переменного тока.

Рассмотрим простейшую схему инвертора напряжения.

В один момент времени открывается пара транзисторов VT1 и VT3. Создается путь для протекания тока от аккумулятора GB через активно-индуктивную нагрузку RнLн. В следующий момент VT1 и VT3 заперты, а открыты диагонально противоположные транзисторы VT2 и VT4. Теперь тока протекает от аккумулятора через RнLн в противоположном направлении. Таким образом, ток на нагрузке изменяет свое направление, поэтому является переменным. Как видно, ток на нагрузке не является синусоидальным. Поэтому применяют ШИМ для получения синусоидально формы тока.

Существует несколько типов ШИМ: однополярная, двухполярная, одностороння, двухсторонняя. Здесь мы не будем останавливаться на каждом конкретном типе, а рассмотрим общий подход.

В качестве модулирующего сигнала применяется синусоида, а опорным является сигнал треугольной формы. В результате сравнивания этих сигналов формируются длительности импульсов и пауз (нижний график), которые управляют работой транзисторов VT1…VT4.

Обратите внимание, что амплитуда напряжения на нагрузке всегда равна амплитуде источника питания. Также остается неизменным период следования импульсов. Изменяется лишь ширина открывающего импульса. Поэтому при подключении нагрузки ток, протекающий через нее, будет иметь синусоидальную форму (показано пунктиром на нижнем графике).

Так вот, основное отличие между ШИР и ШИМ заключается в том, что при широтно-импульсном регулировании время импульса и паузы сохраняют постоянное значение. А при широтно-импульсной модуляции изменяются длительности импульсов и пауз, что позволяет реализовать выходной сигнал заданной формы.

Еще статьи по данной теме

ШИМ – широтно-импульсная модуляция — Help for engineer

ШИМ – широтно-импульсная модуляция

Широтно-импульсная модуляция применяется в технике для преобразования переменного напряжения в постоянное, с изменением его среднего значения (Ud). Управление средним значением напряжения происходит путем изменения скважности импульсов.

Скважность – это отношение одного периода, к времени действия (длительности) импульса в нем. В англоязычной литературе часто встречается понятие коэффициент заполнения, который обратно пропорционален скважности. Формула скважности:

где T – длительность периода, с;
t – время действия импульса (длительность), с;
D – коэффициент заполнения.

То есть, не смотря на то, что скважность и коэффициент заполнения могут использоваться в одинаковом контексте, физический смысл их отличается. Эти величины безразмерны. Коэффициент заполнения обычно отображают в процентах (%).

Рисунок 1 – Скважность импульсов

На приведенном выше рисунке изображены импульсы, которые возникают с определенной периодичностью. Длительность импульса равна ¼ периода Т, это означает, что коэффициент заполнения равен 25%, а скважность – 4. Специфическое название имеется у набора импульсов c коэффициентом заполнения – 50%, такой сигнал называется меандр.

Существуют цифровые и аналоговые ШИМ. Принцип их работы остается одинаковым вне зависимости от исполнения и заключается в сравнении двух видов сигналов:

Uоп – опорное (пилообразное, треугольное) напряжение;
Uупр – входное постоянное напряжение.

Cигналы поступают на компаратор, где они сравниваются, а при их пересечении возникает / исчезает (или становится отрицательным) сигнал на выходе ШИМ.

Выходное напряжение Uвых ШИМ имеет вид импульсов, изменяя их длительность, мы регулируем среднее значение напряжения (Ud) на выходе ШИМ:

Рисунок 2 – Скважность сигнала при однополярной ШИМ

Однополярная модуляция означает, что происходит формирование импульсов только положительной величины и имеет место нулевое значение напряжения. Осуществить такую модуляцию в некоторых схемах невозможно, преимущество однополярной модуляции: малое амплитудное значение высокочастотных гармоник.

В двухполярной модуляции вместо нулевого длительного напряжения формируется отрицательное напряжение, она проиллюстрирована на рисунке 4.

Преимущество использования ШИМ — это легкость изменения величины напряжения при минимальных потерях. Конечно же, можно, применять делитель напряжения, но его работа основана на применении резисторов, а на них происходит рассеивание энергии, что в свою очередь вызывает нагрев и неэкономичность (преобразование электрической энергии в тепловую).

Работа широтно-импульсного преобразователя реализуется с помощью полупроводниковых приборов – транзисторов. Максимальные потери на транзисторах бывают при их полуоткрытом состоянии. Поэтому используют два крайних положения: полностью открыты или закрыты, тогда потери минимальны. Частота срабатывания транзисторов очень большая, то есть переходные состояния имеют мало времени и потери, фактически, сводятся к нулю.

ШИМ нашел широкое применение как регулятор оборотов двигателей постоянного тока (ДПТ).

Рисунок 3 – Схема ШИМ регулятора для ДПТ

Схема ШИМ управления двигателя постоянного тока состоит из тиристорного преобразователя VS1÷VS6, сглаживающего конденсатора С. Транзисторы VT1÷VT4 реализуют подачу импульсного напряжения на двигатель постоянного тока М. С помощью обратных диодов VD1÷VD4, энергия будет отдаваться в сеть при торможении двигателя. Наличие в данной схеме четырех транзисторов дает возможность работы ДПТ во всех 4-х квадрантах механической характеристики.

Принцип работы схемы основан на двухполярной модуляции:

Рисунок 4 – Двухполярная широтно-импульсная модуляция

Недостаточно прав для комментирования

схема, принцип работы, управление Управление шим сигналом

Широтно-импульсная модуляция (ШИМ, англ. Pulse-width modulation (PWM) ) — приближение желаемого сигнала (многоуровневого или непрерывного) к действительным бинарным сигналам (с двумя уровнями — вкл /выкл ), так, что, в среднем, за некоторый отрезок времени, их значения равны. Формально, это можно записать так:

,

где x (t ) — желаемый входной сигнал в пределе от t1 до t2 , а ∆T i — продолжительность i -го ШИМ импульса, каждого с амплитудой A . ∆T i подбирается таким образом, что суммарные площади (энергии) обеих величин приблизительно равны за достаточно продолжительный промежуток времени, равны также и средние значения величин за период:

.

Управляемыми «уровнями», как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/ или скорость электродвигателя. Для импульсных источников x (t ) = U const стабилизации.

Основной причиной внедрения ШИМ является сложность обеспечения произвольным Напряжение_(электрическое). Есть некое базовое постоянное напряжение питания (в сети, от аккумуляторов и пр.) и на его основе нужно получить более низкое произвольное и уже им запитывать электродвигатели или иное оборудование. Самый простой вариант — делитель напряжения , но он обладает пониженным КПД, повышенным выделением тепла и расходом энергии. Другой вариант — транзисторная схема. Она позволяет регулировать напряжение без использования механики. Проблема в том, что транзисторы греются больше всего в полуоткрытом состоянии (50%). И если с таким КПД ещё «можно жить», то выделение тепла, особенно в промышленных масштабах сводит всю идею на нет. Именно поэтому было решено использовать транзисторную схему, но только в пограничных состояниях (вкл/выкл), а полученный выход сглаживать LC-цепочкой (фильтром) при необходимости. Такой подход весьма энергоэффективен. ШИМ широко применяется повсеместно. Если вы читаете эту статью на LCD-мониторе (телефоне/КПК/… с LCD-подсветкой), то яркость подсветки регулируется ШИМ. На старых мониторах можно убавить яркость и услышать как ШИМ начинает пищать (очень тихий писк частотой в несколько килогерц). Так же «пищат» плавно мигающие LED-лампочки, например, в ноутбуках. Очень хорошо слышно пищание ШИМ по ночам в тишине.

В качестве ШИМ можно использовать даже COM-порт. Т.к. 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 как 0 1111 1111 1, то диапазон выходных напряжений — 10-90% с шагом в 10%.

ШИП — широтно-импульсный преобразователь, генерирующий ШИМ-сигнал по заданному значению управляющего напряжения. Основное достоинство ШИП — высокий КПД его усилителей мощности, который достигается за счёт использования их исключительно в ключевом режиме. Это значительно уменьшает выделение мощности на силовом преобразователе (СП).

Применение

ШИМ использует транзисторы (могут быть и др. элементы) не в линейном, а в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения). В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи почти не течёт, и, хотя всё напряжение питания падает на транзисторе, то есть КПД=0 %, в абсолютном выражении выделяемая на транзисторе мощность равна нулю. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность так же мала.

Принцип работы ШИМ

ШИМ есть импульсный сигнал постоянной частоты и переменной скважности , то есть отношения периода следования импульса к его длительности. С помощью задания скважности (длительности импульсов) можно менять среднее напряжение на выходе ШИМ .

Генерируется аналоговым компаратором , на отрицательный вход которого подаётся опорный сигнал в виде «пилы» или «треугольника», а на положительный — собственно сам модулируемый непрерывный аналоговый сигнал. Частота импульсов соответствует частоте «зубьев» пилы. Ту часть периода, когда входной сигнал выше опорного, на выходе получается единица, ниже — нуль.

В цифровой технике, выходы которой могут принимать только одно из двух значений, приближение желаемого среднего уровня выхода при помощи ШИМ является совершенно естественным. Схема настолько же проста: пилообразный сигнал генерируется N -битным счётчиком. Цифровые устройства (ЦШИП) работают на фиксированной частоте, обычно намного превышающей реакцию управляемых установок (передискретизация ). В периоды между фронтами тактовых импульсов, выход ЦШИП остаётся стабильным, на нём действует либо низкий уровень либо высокий, в зависимости от выхода цифрового компаратора, сравнивающего значение счётчика с уровнем приближаемого цифрового сигнала V (n ). Выход за много тактов можно трактовать как череду импульсов с двумя возможными значениями 0 и 1, сменяющими друг-друга каждый такт Т . Частота появления единичных импульсов получается пропорциональной уровню приближаемого сигнала ~V (n ). Единицы, следующие одна за другой, формируют контур одного, более широкого импульса. Длительности полученных импульсов переменной ширины ~V (n ), кратны периоду тактирования T , а частота равна 1/(T *2 N ). Низкая частота означает длительные, относительно T , периоды постоянства сигнала одного уровня, что даёт невысокую равномерность распределения импульсов.

Описанная цифровая схема генерации подпадает под определение однобитной (двухуровневой) импульсно-кодовой модуляции (ИКМ ). 1-битную ИКМ можно рассматривать в терминах ШИМ как серию импульсов частотой 1/T и шириной 0 либо T . Добиться усреднения за менее короткий промежуток времени позволяет имеющаяся передискретизация. Высоким качеством обладает такая разновидность однобитной ИКМ, как импульсно-плотностная модуляция (pulse density modulation ), которая ещё именуется импульсно-частотной модуляцией .

Восстанавливается непрерывный аналоговый сигнал арифметическим усреднением импульсов за много периодов при помощи простейшего фильтра низких частот. Хотя обычно даже этого не требуется, так как электромеханические составляющие привода обладают индуктивностью, а объект управления (ОУ) — инерцией, импульсы с выхода ШИП сглаживаются и ОУ, при достаточной частоте ШИМ-сигнала, ведёт себя как при управлении обычным аналоговым сигналом.

См. также

  • Векторная модуляция — векторная широтно-импульсная модуляция, используемая в силовой электронике.
  • SACD — формат аудиодисков, использующий широтно-импульсную модуляцию звукового сигнала.
  • 1.4. Тиристоры
  • 1.4.1. Принцип действия тиристора
  • 1.4.2. Статические вольт-амперные характеристики тиристора
  • 1.4.3. Динамические характеристики тиристора
  • 1.4.4. Типы тиристоров
  • 1.4.5. Запираемые тиристоры
  • 2. Схемы управления электронными ключами
  • 2.1. Общие сведения о схемах управления
  • 2.2. Формирователи импульсов управления
  • 2.3. Драйверы управления мощными транзисторами
  • 3. Пассивные компоненты и охладители силовых электронных приборов
  • 3.1. Электромагнитные компоненты
  • 3.1.1. Гистерезис
  • 3.1.2. Потери в магнитопроводе
  • 3.1.3. Сопротивление магнитному потоку
  • 3.1.4. Современные магнитные материалы
  • 3.1.5. Потери в обмотках
  • 3.2. Конденсаторы для силовой электроники
  • 3.2.1. Конденсаторы семейства мку
  • 3.2.2. Алюминиевые электролитические конденсаторы
  • 3.2.3. Танталовые конденсаторы
  • 3.2.4. Пленочные конденсаторы
  • 3.2.5. Керамические конденсаторы
  • 3.3. Теплоотвод в силовых электронных приборах
  • 3.3.1. Тепловые режимы работы силовых электронных ключей
  • 3.3.2. Охлаждение силовых электронных ключей
  • 4. Принципы управления силовыми электронными ключами
  • 4.1. Общие сведения
  • 4.2. Фазовое управление
  • 4.3. Импульсная модуляция
  • 4.4. Микропроцессорные системы управления
  • 5. Преобразователи и регуляторы напряжения
  • 5.1. Основные виды устройств преобразовательной техники. Основные виды устройств силовой электроники символически изображены на рис. 5.1.
  • 5.2. Трехфазные выпрямители
  • 5.3. Эквивалентные многофазные схемы
  • 5.4. Управляемые выпрямители
  • 5.5. Особенности работы полууправляемого выпрямителя
  • 5.6. Коммутационные процессы в выпрямителях
  • 6. Импульсные преобразователи и регуляторы напряжения
  • 6.1. Импульсный регулятор напряжения
  • 6.1.1. Импульсный регулятор с шим
  • 6.1.2. Импульсный ключевой регулятор
  • 6.2. Импульсные регуляторы на основе дросселя
  • 6.2.2. Преобразователь с повышением напряжения
  • 6.2.3. Инвертирующий преобразователь
  • 6.3. Другие разновидности преобразователей
  • 7. Инверторы преобразователей частоты
  • 7.1. Общие сведения
  • 7.2. Инверторы напряжения
  • 7.2.1. Автономные однофазные инверторы
  • 7.2.2. Однофазные полумостовые инверторы напряжения
  • 7.3. Трёхфазные автономные инверторы
  • 8. Широтно-импульсная модуляция в преобразователях
  • 8.1. Общие сведения
  • 8.2. Традиционные методы шим в автономных инверторах
  • 8.2.1. Инверторы напряжения
  • 8.2.2. Трехфазный инвертор напряжения
  • 8.3. Инверторы тока
  • 8.4. Модуляция пространственного вектора
  • 8.5. Модуляция в преобразователях переменного и постоянного тока
  • 8.5.1. Инвертирование
  • 8.5.2. Выпрямление
  • 9. Преобразователи с сетевой коммутацией
  • 10. Преобразователи частоты
  • 10.1. Преобразователь с непосредственной связью
  • 10.2. Преобразователи с промежуточным звеном
  • 10.3.1. Двухтрансформаторная схема
  • 10.3.3. Схема каскадных преобразователей
  • 11. Резонансные преобразователи
  • 11.2. Преобразователи с резонансным контуром
  • 11.2.1. Преобразователи с последовательным соединением элементов резонансного контура и нагрузки
  • 11.2.2. Преобразователи с параллельным соединением нагрузки
  • 11.3. Инверторы с параллельно-последовательным резонансным контуром
  • 11.4. Преобразователи класса е
  • 11.5. Инверторы с коммутацией в нуле напряжения
  • 12. Нормативы на показатели качества электрической энергии
  • 12.1. Общие сведения
  • 12.2. Коэффициент мощности и кпд выпрямителей
  • 12.3. Улучшение коэффициента мощности управляемых выпрямителей
  • 12.4. Корректор коэффициента мощности
  • 13. Регуляторы переменного напряжения
  • 13.1. Регуляторы напряжения переменного тока на тиристорах
  • 13.2. Регуляторы напряжения переменного тока на транзисторах
  • Вопросы для самоконтроля
  • 14. Новые методы управления люминесцентными лампами
  • Вопросы для самоконтроля
  • Заключение
  • Библиографический список
  • 620144, Г. Екатеринбург, Куйбышева,30
  • 8.1. Общие сведения

    Принципы импульсного управления и модуляции рассмотрены в гл. 4 на при­мере простейшей схемы регулятора постоянного тока. При этом даны определе­ния основных видов импульсной модуляции, используемых в теории линейных импульсных систем, которые соответствуют практике управления импульсными преобразователями постоянного тока.

    Однако широтно-импульсная модуляция напряжений или токов в преобразова­телях переменного тока имеет в силовой электронике несколько иное определе­ние, учитывающее особенности ШИМ при решении задач преобразования элект­роэнергии на переменном токе. Согласно определению МЭК 551-16-30, широтно- импульсной модуляцией называется импульсное управление, при котором ширина или частота импульсов или и та и другая модулируются в пределах периода основ­ной частоты для того, чтобы создать определенную форму кривой выходного напряжения. В большинстве случаев ШИМ осуществляется в целях обеспечения синусоидальности напряжения или тока, т. е. снижения уровня высших гармоник относительно основной (первой) гармоники, и называется синусоидальной. Разли­чают следующие основные методы обеспечения синусоидальности: аналоговая ШИМ и ее модификации; избирательное (селективное) подавление высших гармоник; гистерезисная или дельта-модуляция;

    модуляция пространственного вектора.

    Классическим вариантом организации аналоговой синусоидальной ШИМ явля­ется изменение ширины импульсов, формирующих выходное напряжение (ток) посредством сравнения сигнала напряжения заданной формы, называемого опор­ным или эталонным, с сигналом напряжения треугольной формы, имеющим более высокую частоту и называемым несущим сигналом. Опорный сигнал является модулирующим и определяющим требуемую форму выходного напряжения (тока). Существует много модификаций этого метода, в которых модулирующие сигналы представлены специальными функциями, отличными от синусоиды. В конспекте лекций будет рассмотрено несколько основных схем поясняющих эти методы ШИМ.

    Метод избирательного подавления высших гармоник в настоящее время успешно реализуется средствами микропроцессорных контроллеров на основе программного обеспечения. Гистерезисная модуляция основана на принципах релейного «слежения» за опорным сигналом, например, синусоидальной формы. В простейшем техниче­ском исполнении этот метод сочетает принципы ШИМ и ЧИМ (частотно-импульсной модуляции). Однако посредством специальных схемотехнических мер можно стабилизировать частоту модуляции или ограничить диапазон ее изменения.

    Метод модуляции пространственного вектора основан на преобразовании трехфазной системы напряжения в двухфазную и получении обобщенного про­странственного вектора. Величина этого вектора рассчитывается в моменты, определяемые основной и модулирующей частотами. Он считается весьма пер­спективным для управления трехфазными инверторами, в частности, при исполь­зовании их в электроприводе. В то же время он во многом сходен с традиционной синусоидальной ШИМ.

    Системы управления на основе ШИМ позволяют не только обеспечить синусо­идальную форму усредненных значений основной гармоники напряжения или тока, но и управлять значениями ее амплитуды, частоты и фазы. Так как в этих случаях в преобразователе используются полностью управляемые ключи, то становится возможным реализовать работу преобразователей переменного (постоянного) тока совместно с сетью переменного тока во всех четырех квадрантах в режимах как выпрямления, так и инвертирования с любым заданным значением коэффициента мощности основной гармоники cosφ в диапазоне от -1 до 1. Более того, с увеличе­нием несущей частоты расширяются возможности воспроизведения на выходе инверторов тока и напряжения заданной формы. Это позволяет создавать актив­ные фильтры для подавления высших гармоник.

    Основные определения, используемые при дальнейшем изложении, рассмот­рим на примере применения первого метода в однофазной полу мостовой схеме инвертора напряжения (рис. 8.1, а ). В этой условной схеме ключи S 1 и S 2 пред­ставлены полностью управляемыми коммутационными элементами, дополнен­ными последовательно и параллельно соединенными с ними диодами. Последова­тельные диоды отражают однонаправленную проводимость ключей (например, транзисторов или тиристоров), а параллельные обеспечивают проводимость обратных токов при активно-индуктивной нагрузке.

    Диаграммы опорного, модулирующего u M (θ) и несущего u H (θ) сигналов приве­дены на рис. 8.1, б . Формирование импульсов управления ключами S 1 и S 2 осу­ществляется по следующему принципу. При u M (θ) > u H (θ) ключ S 1 включен, a S 2 выключен. При u M (θ) u H (θ) состояния ключей изменяются на противоположные: S 2 — включен, a S 1 — выключен. Таким образом, на выходе инвертора формиру­ется напряжение в виде двух полярных импульсов. В реальных схемах для исключе­ния одновременной проводимости ключей S 1 и S 2 следует предусматривать опреде­ленную задержку между моментами формирования сигналов на включение этих ключей. Очевидно, что ширина импульсов зависит от соотношения амплитуд сигна­лов u M (θ) и u H (θ). Параметр, характеризующий это соотношение, называется индексом амплитудной модуляции и определяется по формуле (8.1):

    , (8.1.)

    где U M m и U H m — максимальные значения модулирующего сигнала u M (θ) и несущего сигнала u H (θ) соответственно.

    Рис. 8.1. Однофазный полу мостовой инвертор напряжения: а – схема; б – диаграммы напряжения при импульсной модуляции

    Частота несущего сигнала u H (θ) равна частоте коммутации f H ключей S 1 и S 2 и обычно значительно превышает частоту модулирующего сигнала f M . Соотношение частот f H и f M является важным показателем эффективности процесса модуляции и называется индексом частотной модуляции, который определяется по формуле (8.2):

    При малых значениях M f сигналы u M (θ) и u H (θ) должны быть синхронизированы, чтобы избежать появления нежелательных субгармоник. В в качестве максимального значения My , определяющего необходимость синхронизации, уста­навливается М f = 21. Очевидно, что при синхронизированных сигналах и коэффициент M f является постоянной величиной.

    Из диаграммы на рис. 8.1 видно, что амплитуда первой гармоники выходного напряжения U am 1 может быть с учетом (8.1) представлена в следующем виде (8.3):

    (8.3)

    Согласно (8.3) при М a = 1 амплитуда первой гармоники выходного напряжения равна высоте прямоугольника полуволн U d /2. Характерная зависимость относи­тельного значения первой гармоники выходного напряжения от значения М a пред­ставлена на рис. 8.2, из которого видно, что изменение М a от 0 до 1 линейно и зависит от амплитуды U am 1 . Предельное значение величины М a определяется прин­ципом рассматриваемого вида модуляции, согласно которому максимальное зна­чение U am 1 ограничено высотой полуволны прямоугольной формы, равной U d /2. При дальнейшем увеличении коэффициента М a модуляция приводит к нелиней­ному возрастанию амплитуды U am 1 до максимального значения, определяемого формированием на выходе инвертора напряжения прямоугольной формы, которое в дальнейшем остается неизменным.

    Разложение прямоугольной функции в ряд Фурье дает максимальное значение (8.4):

    (8.4)

    Эта величина ограничивается значением индекса М а, изменяющегося в диапа­зоне от 0 до примерно 3. Очевидно, что функция на интервале а-б значений от 1 до 3,2 является нелинейной (рис. 8.2). Режим работы на этом участке называется сверх модуляцией.

    Значение M f определяется выбором частоты несущего сигнала u H (θ) и сущест­венно влияет на технические характеристики преобразователя. С ростом частоты увеличиваются коммутационные потери в силовых ключах преобразователей, но при этом улучшается спектральный состав выходного напряжения и упрощается реше­ние задачи фильтрации высших гармоник, обусловленных процессом модуляции. Важным фактором выбора значения f H во многих случаях является необходимость обеспечения его значения в звуковом диапазоне частоты более 20 кГц. При выборе f H следует также учитывать уровень рабочих напряжений преобразователя, его мощность и другие параметры.

    Рис. 8.2. Зависимость относительного значе­ния амплитуды основной гармоники выход­ного напряжения от индекса амплитудной модуляции для однофазной полу мостовой схемы

    Общей тенденцией здесь является рост значений M f преобразователей малой мощности и низких напряжений и наоборот. Поэтом выбор M f является многокритериальной оптимизационной задачей.

    Импульсная модуляция со стохастическим процессом . Использование ШИМ в преобразователях связано с появлением высших гармоник в модулируе­мых напряжениях и токах. При этом в спектральном составе этих параметров наиболее значительные гармоники возникают на частотах, кратных индексу час­тотной модуляции M f и сгруппированных около них на боковых частотах гармо­ник с убывающими амплитудами. Высшие гармоники могут порождать следую­щие основные проблемы:

      возникновение акустических шумов;

      ухудшение электромагнитной совместимости (ЭМС) с другими электротех­ническими устройствами или системами.

    Основными источниками акустических шумов являются электромагнитные компоненты (дроссели и трансформаторы), на которые воздействуют ток и напря­жение, содержащие высшие гармоники с частотами звукового диапазона. Следует отметить, что шумы могут возникать на определенных частотах, где высшие гар­моники имеют максимальное значение. Факторы, вызывающие шумы, например явление магнитострикции, усложняют разрешение проблемы ЭМС. Проблемы с ЭМС могут возникать в широком частотном диапазоне в зависимости от критич­ности к уровню электромагнитных помех электротехнических устройств. Тради­ционно для снижения уровня шумов использовались конструктивные и технологи­ческие решения, а для обеспечения ЭМС применялись пассивные фильтры.

    В качестве перспективного направления решения этих проблем рассматрива­ются методы, связанные с изменением характера спектрального состава модули­руемых напряжений и токов. Сущность этих методов состоит в выравнивании час­тотного спектра и снижении амплитуды явно выраженных гармоник за счет стохастического их распределения в широком частотном диапазоне. Такой прием иногда называется «размазыванием» частотного спектра. Концентрация энергии помех уменьшается на частотах, где гармоники могут иметь максимальные значе­ния. Реализация этих методов не связана с воздействием на компоненты силовой части преобразователей и в большинстве случаев ограничена программными средствами с незначительным изменением системы управления.

    Рассмотрим кратко принципы реализации этих методов. В основе ШИМ лежит изменение коэффициента заполнения γ= t и / T n , где t и — длительность импульса; Т n — период его формирования. Обычно эти величины, а также положение импульса на интервале периода Т n являются постоянными в установившихся режимах. Результаты ШИМ определяются как интегральные усредненные значе­ния. В этом случае детерминированные значения t и и включая положение импульса, обусловливают неблагоприятный спектральный состав модулируемых параметров. Если этим величинам придать случайный характер при сохранении заданного значения γ, то процессы становятся стохастическими и спектральный состав модулируемых параметров изменяется. Например, такой случайный харак­тер можно придать положению импульса t и на интервале периода Т n или обеспе­чить стохастическое изменение последнего. Для этой цели может использоваться генератор случайных чисел, воздействующий на задающий генератор частоты модуляции f n =1/T n . Аналогичным образом можно изменять положение импульса на интервале Т n с математическим ожиданием, равным нулю. Усреднен­ное интегральное значение γ должно оставаться на заданном системой регулирова­ния уровне, в результате чего будет реализовано выравнивание спектрального состава высших гармоник в модулируемых напряжениях и токах.

    Вопросы для самоконтроля

    1. Перечислите основные методы ШИМ для обеспечения синусоидальности тока или напряжения.

    2. В чем отличие однополярной модуляции напряжения от двухполярной?

    3. Перечислите основные параметры ШИМ.

    4. С какой целью используется ШИМ со стохастическими процессами?

    ШИМ или PWM (широтно-импульсная модуляция, по-английски pulse-width modulation) – это способ управления подачей мощности к нагрузке. Управление заключается в изменении длительности импульса при постоянной частоте следования импульсов. Широтно-импульсная модуляция бывает аналоговой, цифровой, двоичной и троичной.

    Применение широтно-импульсной модуляции позволяет повысить КПД электрических преобразователей, особенно это касается импульсных преобразователей, составляющих сегодня основу вторичных источников питания различных электронных аппаратов. Обратноходовые и прямоходовые однотактные, двухтактные и полумостовые, а также мостовые импульсные преобразователи управляются сегодня с участием ШИМ, касается это и резонансных преобразователей.

    Широтно-импульсная модуляция позволяет регулировать яркость подсветки жидкокристаллических дисплеев сотовых телефонов, смартфонов, ноутбуков. ШИМ реализована в , в автомобильных инверторах, в зарядных устройствах и т. д. Любое зарядное устройство сегодня использует при своей работе ШИМ.

    В качестве коммутационных элементов, в современных высокочастотных преобразователях, применяются биполярные и полевые транзисторы, работающие в ключевом режиме. Это значит, что часть периода транзистор полностью открыт, а часть периода — полностью закрыт.

    И так как в переходных состояниях, длящихся лишь десятки наносекунд, выделяемая на ключе мощность мала, по сравнению с коммутируемой мощностью, то средняя мощность, выделяемая в виде тепла на ключе, в итоге оказывается незначительной. При этом в замкнутом состоянии сопротивление транзистора как ключа очень невелико, и падение на нем напряжения приближается к нулю.

    В разомкнутом же состоянии проводимость транзистора близка к нулю, и ток через него практически не течет. Это позволяет создавать компактные преобразователи с высокой эффективностью, то есть с небольшими тепловыми потерями. А резонансные преобразователи с переключением в нуле тока ZCS (zero-current-switching) позволяют свести эти потери к минимуму.


    В ШИМ-генераторах аналогового типа, управляющий сигнал формируется аналоговым компаратором, когда на инвертирующий вход компаратора, например, подается треугольный или пилообразный сигнал, а на неинвертирующий — модулирующий непрерывный сигнал.

    Выходные импульсы получаются , частота их следования равна частоте пилы (или сигнала треугольной формы), а длительность положительной части импульса связана с временем, в течение которого уровень модулирующего постоянного сигнала, подаваемого на неинвертирующий вход компаратора, оказывается выше уровня сигнала пилы, который подается на инвертирующий вход. Когда напряжение пилы выше модулирующего сигнала — на выходе будет отрицательная часть импульса.

    Если же пила подается на неинвертирующий вход компаратора, а модулирующий сигнал — на инвертирующий, то выходные импульсы прямоугольной формы будут иметь положительное значение тогда, когда напряжение пилы выше значения модулирующего сигнала, поданного на инвертирующий вход, а отрицательное — когда напряжение пилы ниже сигнала модулирующего. Пример аналогового формирования ШИМ — микросхема TL494, широко применяющаяся сегодня при построении импульсных блоков питания.


    Цифровая ШИМ используются в двоичной цифровой технике. Выходные импульсы также принимают только одно из двух значений (включено или выключено), и средний уровень на выходе приближается к желаемому. Здесь пилообразный сигнал получается благодаря использованию N-битного счетчика.

    Цифровые устройства с ШИМ работают также на постоянной частоте, обязательно превосходящей время реакции управляемого устройства, этот подход называется передискретизацией. Между фронтами тактовых импульсов, выход цифрового ШИМ остается стабильным, или на высоком, или на низком уровне, в зависимости от текущего состояния выхода цифрового компаратора, который сравнивает уровни сигналов на счетчике и приближаемый цифровой.

    Выход тактуется как последовательность импульсов с состояниями 1 и 0, каждый такт состояние может сменяться или не сменяться на противоположное. Частота импульсов пропорциональна уровню приближаемого сигнала, а единицы, следующие друг за другом могут сформировать один более широкий, более продолжительный импульс.

    Получаемые импульсы переменной ширины будут кратны периоду тактования, а частота будет равна 1/2NT, где T – период тактования, N – количество тактов. Здесь достижима более низкая частота по отношению к частоте тактования. Описанная схема цифровой генерации — это однобитная или двухуровневая ШИМ, импульсно-кодированная модуляция ИКМ.

    Эта двухуровневая импульсно-кодированная модуляция представляет собой по сути серию импульсов с частотой 1/T, и шириной Т или 0. Для усреднения за больший промежуток времени применяется передискретизация. Высокого качества ШИМ позволяет достичь однобитная импульсно-плотностная модуляция (pulse-density-modulation), называемая также импульсно-частотной модуляцией.

    При цифровой широтно-импульсной модуляции прямоугольные подимпульсы, которыми оказывается заполнен период, могут приходиться на любое место в периоде, и тогда на среднем за период значении сигнала сказывается только их количество. Так, если разделить период на 8 частей, то комбинации импульсов 11001100, 11110000, 11000101, 10101010 и т. д. дадут одинаковое среднее значение за период, тем не менее, отдельно стоящие единицы утяжеляют режим работы ключевого транзистора.

    Корифеи электроники, повествуя о ШИМ, приводят такую аналогию с механикой. Если при помощи двигателя вращать тяжелый маховик, то поскольку двигатель может быть либо включен, либо выключен, то и маховик будет либо раскручиваться и продолжать вращаться, либо станет останавливаться из-за трения, когда двигатель выключен.

    Но если двигатель включать на несколько секунд в минуту, то вращение маховика будет поддерживаться, благодаря инерции, на некоторой скорости. И чем дольше продолжительность включения двигателя, тем до более высокой скорости раскрутится маховик. Так и с ШИМ, на выход приходит сигнал включений и выключений (0 и 1), и в результате достигается среднее значение. Проинтегрировав напряжение импульсов по времени, получим площадь под импульсами, и эффект на рабочем органе будет тождественен работе при среднем значении напряжения.

    Так работают преобразователи, где переключения происходят тысячи раз в секунду, и частоты достигают единиц мегагерц. Широко распространены специальные ШИМ-контроллеры, служащие для управления балластами энергосберегающих ламп, блоками питания, и т. д.


    Отношение полной длительности периода импульса ко времени включения (положительной части импульса) называется скважностью импульса. Так, если время включения составляет 10 мкс, а период длится 100 мкс, то при частоте в 10 кГц, скважность будет равна 10, и пишут, что S = 10. Величина обратная скважности называется коэффициентом заполнения импульса, по-английски Duty cycle, или сокращенно DC.

    Так, для приведенного примера DC = 0.1, поскольку 10/100 = 0.1. При широтно-импульсной модуляции, регулируя скважность импульса, то есть варьируя DC, добиваются требуемого среднего значения на выходе электронного или другого электротехнического устройства, например двигателя.

    Хорошее определение широтно-импульсной модуляции (ШИМ) заключается в самом его названии. Это означает модуляция (изменение) ширины импульса (не частоты). Чтобы лучше понять что такое ШИМ , давайте сначала посмотрим некоторые основные моменты.

    Микроконтроллеры представляют собой интеллектуальные цифровые компоненты которые работают на основе бинарных сигналов. Лучшее представление бинарного сигнала – меандр (сигнал имеющий прямоугольную форму). Следующая схема объясняет основные термины, связанные с прямоугольным сигналом.

    В ШИМ-сигнале время (период), и следовательно частота является всегда постоянной величиной. Изменяется только время включения и время выключения импульса (скважность). Используя данный метод модуляции, мы можем получить необходимое нам напряжение.

    Единственное различие между меандром и ШИМ-сигналом заключается в том, что у меандра время включения и отключения равны и постоянны (50% скважность), в то время как ШИМ-сигнал имеет переменную скважность.

    Меандр может рассматриваться как частный случай ШИМ сигнала, который имеет 50% рабочий цикл (период включения = период отключения).

    Рассмотрим на примере использование ШИМ

    Допустим, мы имеим напряжение питания 50 вольт и нам необходимо запитать какую-либо нагрузку, работающую от 40 вольт. В этом случае хороший способ получения 40В из 50В — это использовать так называемый понижающий чоппер (прерыватель).

    ШИМ сигнал, генерируемый чеппером, поступает на силовой узел схемы (тиристор, полевой транзистор), который в свою очередь управляет нагрузкой. Этот ШИМ-сигнал может легко генерироваться микроконтроллером, имеющим таймер.

    Требования к ШИМ-сигналу для получения с помощью тиристора 40В из 50В: подача питания, на время = 400мс и выключение на время = 100мс (с учетом периода ШИМ сигнала равного 500 мс).

    В общих словах это можно легко объяснить следующим образом: в основном, тиристор работает как переключатель. Нагрузка получает напряжение питания от источника через тиристор. Когда тиристор находится в выключенном состоянии, нагрузка не подключена к источнику, а когда тиристор находится в открытом состоянии, нагрузка подключается к источнику.

    Этот процесс включения и выключения тиристора осуществляется посредством ШИМ сигнала.

    Соотношение периода ШИМ-сигнала к его длительности называется скважность сигнала, а обратная к скважности величина именуется коэффициентом заполнения.

    Если коэффициент заполнения равен 100, то в этом случае у нас сигнал постоянный.

    Таким образом, скважность импульсов (рабочий цикл) может быть вычислен с использованием следующей формулы:

    Используя выше приведенные формулы, мы можем рассчитать время включения тиристора для получения необходимого нам напряжения.

    Умножая скважность импульсов на 100, мы можем представить это в процентном соотношении. Таким образом, процент скважность импульсов прямо пропорционален величине напряжения от исходного. В приведенном выше примере, если мы хотим получить 40 вольт от 50 вольт источника питания, то это может быть достигнуто путем генерации сигнала со скважность 80%. Поскольку 80% из 50 вместо 40.

    Для закрепления материала, решим следующую задачу:

    • рассчитаем длительность включения и выключения сигнала, имеющего частоту 50 Гц и скважность 60%.

    Полученный ШИМ волны будет иметь следующий вид:

    Один из лучших примеров применения широтно-импульсной модуляции является использование ШИМ для регулировки скорости двигателя или яркости свечения светодиода.

    Этот прием изменения ширины импульса, чтобы получить необходимый рабочий цикл называется “широтно-импульсная модуляция”.

    Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

    Есть два варианта:

    • Регулирование ШИМ
    • Аналоговое

    Эти методы контролируют проходящий через светодиод ток, но между ними есть определенные различия.
    Аналоговое регулирование изменяет уровень тока, который проходит через светодиоды. А ШИМ регулирует частоту подачи тока.

    ШИМ-регулирование

    Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов.
    Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

    Виды ШИМ-регулирования

    • Двухпроводная. Часто используется в системе освещения машин. Источник питания преобразователя должен иметь схему, которая формирует сигнал ШИМ на DC-выходе.
    • Шунтирующее устройство. Чтобы сделать период включении/выключения преобразователя используют шунтирующий компонент, который обеспечивает путь для выходного тока помимо светодиода.

    Параметры импульсов при ШИМ

    Частота следования импульсов не меняется, поэтому никаких требований в определении яркости света к ней нет. В данном случае, меняется только ширина, или время положительного импульса.

    Частота импульсов

    Даже с учетом того, что особых претензий к частоте нет, существуют граничные показатели. Они определяются чувствительностью глаза человека к мельканиям. Например, если в кино мелькания кадров должны составлять 24 кадра в секунду, чтобы наш глаз воспринимал его как одно движущееся изображение.
    Чтобы мелькания света воспринимались как равномерный свет, частота должна составлять не меньше 200Гц. По верхним показателям ограничений нет, но ниже никак нельзя.

    Как работает регулятор ШИМ

    Для непосредственного управления светодиодами применяется транзисторный ключевой каскад. Обычно для них используют транзисторы, способные накапливать большие объемы мощности.
    Это необходимо при использовании светодиодных лент или мощных светодиодах.
    Для небольшого количества или невысокой мощности вполне достаточно использования биполярных транзисторов. Так же можно подключать светодиоды прямо к микросхемам.

    Генераторы ШИМ

    В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции.
    Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565.
    Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать.
    Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины.
    Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ.
    Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

    Почему ШИМ?

    • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
    • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
    • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

    Недостатки использования ШИМ

    • Со временем мерцание изображение может быть довольно заметно, особенно при низкой яркости или движении глаз.
    • При постоянном ярком освещении (например, свете солнца) изображение может расплываться.
    АМн · ФМн · КАМ · ЧМн · GMSK
    OFDM · COFDM · TCM
    Импульсная модуляция
    АИМ · ДМ · ИКМ · ΣΔ · ШИМ · ЧИМ · ФИМ
    Расширение спектра
    FHSS · DSSS
    См. также: Демодуляция

    Широтно-импульсная модуляция [Analog Devices Wiki]

    Цель

    В этой лаборатории мы исследуем широтно-импульсную модуляцию и ее использование в различных приложениях.

    Широтно-импульсная модуляция (ШИМ) — это метод кодирования аналогового сигнала в один цифровой бит. Сигнал ШИМ состоит из двух основных компонентов, которые определяют его поведение: рабочий цикл и частота.

    Он используется для передачи информации путем кодирования сообщения в импульсный сигнал, а также для управления мощностью электронных устройств, таких как двигатели, и в качестве основного алгоритма для фотоэлектрических зарядных устройств солнечных батарей.

    Рабочий цикл описывает количество времени, в течение которого сигнал находится в высоком (включенном) состоянии, как процент от общего времени, необходимого для завершения одного цикла.

    На следующей диаграмме показаны последовательности импульсов при рабочем цикле 0%, 25% и 100%.

    Частота определяет, насколько быстро ШИМ завершает цикл и, следовательно, насколько быстро он переключается между высоким и низким состояниями.

    При включении и выключении цифрового сигнала с достаточно высокой скоростью и с определенным рабочим циклом выходной сигнал будет вести себя как аналоговый сигнал постоянного напряжения при подаче питания на устройства, которые реагируют намного медленнее, чем частота ШИМ, например аудиоколонки, электродвигатели и электромагнитные приводы.

    Материалы

    Модуль активного обучения ADALM2000
    Макетная плата без пайки и комплект перемычек
    1 Операционный усилитель OP97
    1 Резистор 1 кОм 1 потенциометр 10 кОм

    Широтно-импульсный модулятор — Принцип работы

    Широтно-импульсная модуляция (ШИМ) — это метод генерации низкочастотных выходных сигналов из высокочастотных импульсов. Быстрое переключение выходного напряжения ветви инвертора между верхним и нижним напряжениями шины постоянного тока, низкочастотный выход можно рассматривать как среднее значение напряжения за период переключения.

    Помимо этого, есть также несколько других способов генерации сигналов с широтно-импульсной модуляцией, включая аналоговые методы, сигма-дельта модуляцию и прямой цифровой синтез.

    Один из простейших методов генерации сигнала ШИМ — это сравнение двух управляющих сигналов, сигнала несущей и сигнала модуляции. Это известно как несущая ШИМ. Несущий сигнал представляет собой высокочастотный (частота переключения) треугольный сигнал. Сигнал модуляции может иметь любую форму.

    Используя этот подход, выходной сигнал может быть ШИМ-представлением любой желаемой формы сигнала.В машинах синусоидальная и трапецеидальная формы волны являются одними из самых распространенных.

    Рассмотрим схему на рисунке 1.

    Рисунок 1. Принцип работы ШИМ.

    Следуя описанию принципа ШИМ, мы используем отрицательный вход операционного усилителя для несущей, а положительный вход для сигнала модуляции. Таким образом, более высокий сигнал модуляции приведет к выходу с высоким уровнем в течение большей части периода ШИМ.

    Настройка оборудования

    Создайте следующую макетную схему для широтно-импульсной модуляции.

    Рисунок 2. Принцип работы ШИМ — макетная схема.

    Процедура

    Используйте первый генератор формы волны в качестве несущего сигнала, обеспечивающего размах амплитуды 4 В, сдвиг 2,5 В, возбуждение треугольной волны 1 кГц для схемы. Используйте второй генератор сигналов в качестве сигнала модуляции с размахом амплитуды 3 В, 2.Смещение 5 В, синусоида 50 Гц.

    Подайте на операционный усилитель + 5В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

    На рисунке представлены два канала генератора сигналов, содержащие два входных сигнала (оранжевый — сигнал несущей, фиолетовый — сигнал модуляции).

    График выходного сигнала на канале 2 осциллографа представлен на рисунке 4.

    Если мгновенная величина сигнала модуляции больше, чем сигнал несущей в определенный момент времени, выходной сигнал будет высоким. Если сигнал модуляции ниже, чем сигнал несущей, выходной сигнал будет низким.

    Если пик модуляции меньше, чем пик несущего сигнала, выходной сигнал будет точным ШИМ-представлением сигнала модуляции. Редактировать

    Управление шириной импульса с помощью модуляции постоянного напряжения

    Фон

    Для этого конкретного приложения мы будем использовать простой операционный усилитель в конфигурации режима переключения (дополнительные сведения см. В разделе «Действие: операционный усилитель в качестве компаратора»), чтобы продемонстрировать широтно-импульсную модуляцию постоянного напряжения.

    Рассмотрим схему на рисунке 5.

    Рисунок 5. Регулировка ширины импульса с использованием напряжения модуляции постоянного тока.

    Схема работает как простой компаратор, где отрицательный вход операционного усилителя подключен к сигнал несущей, в то время как положительный вход действует как пороговое напряжение, которое устанавливает, когда происходят переходы между выходом высокого напряжения и выходом низкого напряжения. Потенциометр действует как делитель напряжения для входного опорного напряжения, регулируя пороговое напряжение и косвенно рабочий цикл выходного сигнала.

    Настройка оборудования

    Создайте следующую макетную схему для управления шириной импульса, используя напряжение модуляции постоянного тока.

    Рисунок 6. Управление шириной импульса с помощью модуляции постоянного напряжения — схема макетной платы.

    Процедура

    Используйте первый генератор сигналов в качестве источника Vin для подачи в схему возбуждения треугольной волны амплитудой 5 В от пика до пика, 1 кГц . Используйте второй генератор сигналов в качестве источника постоянного напряжения с размахом амплитуды 5 В.Подайте на операционный усилитель + 5В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

    Анимированный сюжет представлен на рисунке 7.

    Рисунок 7. Регулировка ширины импульса с использованием модуляции постоянного тока. Напряжение — формы сигналов.

    Выходной сигнал представляет собой ШИМ-представление входного напряжения. Обратите внимание, что при изменении значения потенциометра рабочий цикл сигнала изменяется, а частота остается постоянной.

    Фиксированная 50% ШИМ с нестабильным мультивибратором

    Фон

    Рассмотрим схему на рисунке 8.

    Рисунок 8. ШИМ с нестабильным мультивибратором.

    На схеме показан нестабильный мультивибратор на одном операционном усилителе. Функциональность легко понять при рассмотрении функционального принципа триггера Шмитта (схема компаратора с гистерезисом изучается в Activity: Op Amp as Comparator): Вход триггера Шмитта, идентичный инвертирующему входу операционного усилителя, подключен к выходу схемы через резистивно-конденсаторную цепь.В то время как напряжение конденсатора (которое также является входом триггера Шмитта) ниже нижнего порога, выходное напряжение равно положительному напряжению питания схемы. Теперь конденсатор заряжается через резистор R 3 , пока не будет достигнут верхний порог срабатывания триггера Шмитта. В результате выходное напряжение операционного усилителя становится отрицательным. Теперь конденсатор разряжается через R 3 , пока напряжение на этих устройствах не достигнет нижнего порога срабатывания триггера Шмитта.Выходное напряжение операционного усилителя приводится к положительному напряжению питания, и весь процесс начинается снова.

    Преимущество этой схемы в том, что ей не требуется M2K для генерации несущей (но рабочий цикл фиксирован на уровне 50%).

    Настройка оборудования

    Постройте следующую макетную схему для ШИМ с нестабильным мультивибратором.

    Рисунок 9. ШИМ с нестабильной макетной платой мультивибратора.

    Процедура

    Подайте в цепь +/- 5В от источника питания.Настройте осциллограф так, чтобы выходной сигнал отображался на канале 1.

    График с выходным сигналом на канале 1 осциллографа представлен на рисунке 10.

    Рисунок 10. Форма выходного сигнала ШИМ с нестабильным мультивибратором.

    Обратите внимание, что рабочий цикл выходного сигнала составляет примерно 50%, в то время как значения низкого / высокого напряжения имеют тенденцию достигать положительных / отрицательных значений питания.

    В предыдущем примере мы сгенерировали ШИМ с фиксированным рабочим циклом 50% с использованием нестабильных мультивибраторов.Но как мы можем отрегулировать рабочий цикл? Для этого нам нужно будет немного изменить схему.

    Рассмотрим схему, представленную на рисунке 11.

    Рисунок 11. Регулировка рабочего цикла ШИМ с мультивибратором.

    Резистор R 3 на рисунке 8 был заменен потенциометром и вставлены два диода. Теперь зарядный ток конденсатора проходит через D 1 , а разрядный ток проходит через D 2 .В зависимости от настройки потенциометра VR 1 сопротивление зарядного тока, проходящего через верхнюю ветвь цепи, отличается от сопротивления разрядного тока, проходящего через нижнюю ветвь.

    Настройка оборудования

    Создайте следующую макетную схему для регулировки рабочего цикла ШИМ с мультивибраторами.

    Рисунок 12. Регулировка рабочего цикла ШИМ с макетной схемой мультивибратора.

    Процедура

    Подайте в цепь +/- 5В от источника питания.Настройте осциллограф так, чтобы выходной сигнал отображался на канале 1, а напряжение на конденсаторе (на отрицательном входе операционного усилителя) отображалось на канале 2.

    Измените значение потенциометра и обратите внимание на изменение рабочего цикла. Пример графика представлен на рисунке 13.

    Рисунок 13. Регулировка рабочего цикла для ШИМ с нестабильными формами сигналов мультивибратора.

    В этом примере рабочий цикл был установлен примерно на 25%. Всякий раз, когда рабочий цикл изменяется, неизбежно происходит небольшое изменение частоты переключения, потому что две цепи связи на инвертирующем и неинвертирующем входе обе подключены к выходу операционного усилителя.

    Продолжаем работу с лабораторией

    Все действия в этой лаборатории основаны на простом операционном усилителе (OP97), сконфигурированном как компаратор. В комплект деталей ADALP2000 входит также компаратор AD8561, предназначенный для этой единственной цели. Следовательно, производительность схем ШИМ может быть увеличена с помощью этой части.

    Постройте описанные выше схемы, используя AD8561 из набора деталей, и обсудите любые заметные изменения поведения схемы и входных / выходных сигналов.

    Дополнительная литература

    Основы широтно-импульсной модуляции (ШИМ): как работает ШИМ

    Николас Браун — Следуйте за мной в Twitter.

    Определение широтно-импульсной модуляции

    Широтно-импульсная модуляция (PWM) — это изящный метод управления током, который позволяет вам управлять скоростью двигателей, теплопроизводительностью нагревателей и многим другим энергоэффективным (и обычно более тихим) способом.Существующие приложения для ШИМ включают, но не ограничиваются:

    • Контроллеры вентиляторов с регулируемой скоростью.
    • Приводы компрессоров VRF HVAC.
    • Цепи привода двигателей гибридных и электрических транспортных средств.
    • Светодиодные диммеры.

    Широтно-импульсная модуляция изменила мир, сократив энергопотребление бытовых приборов, использующих двигатели, таких как инверторные кондиционеры [ PDF ], инверторные холодильники, инверторные стиральные машины и многие другие.Например, инверторные кондиционеры в некоторых случаях могут потреблять меньше половины энергии, чем их неинверторные аналоги.

    В наши дни, если устройство рекламируется как имеющее компрессор с регулируемой скоростью или вентилятор с регулируемой скоростью (это не включает двух- или трехскоростные вентиляторы), существует значительная вероятность того, что в нем используется ШИМ!

    Зачем нужен ШИМ?

    Начинающие инженеры-электрики могут захотеть узнать, почему они должны использовать широтно-импульсную модуляцию для управления устройствами, и у домовладельцев есть аналогичный вопрос, на который есть тот же ответ: зачем использовать инверторные кондиционеры или другие устройства с регулируемой скоростью?

    Ответ на оба вопроса: PWM изменяет скорость двигателей бытовых приборов, поэтому они потребляют столько энергии, сколько им нужно, но без обычных последствий сжигания неиспользованного тока в виде тепла.Примером более старой альтернативы является простая транзисторная схема, которая изменяет ток, проходящий через нее, путем изменения ее сопротивления.

    То же правило эффективности, которое применяется к резисторам, применимо и к транзисторам — их сопротивление приводит к потере энергии, потому что они сжигают часть ее в виде тепла. В этом отношении они действуют как обогреватели.

    К счастью, эти схемы никогда не были массовыми. Такие приборы, как кондиционеры и холодильники, работали все время на полной скорости, производя много шума и тратя много энергии, потому что им приходилось часто включаться и выключаться.

    PWM действительно использует транзисторы, но другим способом, как описано ниже.

    Пример контроллера двигателя с ШИМ.

    Если вы хотите начать работу с ШИМ, отличной точкой входа будет схема ШИМ 555, схема ШИМ Arduino (очень удобная, так как вы можете легко изменить ее поведение с помощью простой модификации исходного кода) или схема ШИМ MSP30. о котором я писал на Kompulsa.

    Как работает ШИМ?

    PWM работает за счет пульсации постоянного тока и изменения количества времени, в течение которого каждый импульс остается «включенным», чтобы контролировать количество тока, протекающего к устройству, например светодиоду.ШИМ является цифровым, что означает, что он имеет два состояния: включено и выключено (которые соответствуют 1 и 0 в двоичном контексте, что станет для вас более актуальным при использовании микроконтроллеров).

    Чем дольше горит каждый импульс, тем ярче будет светодиод. Из-за того, что интервал между импульсами такой короткий, светодиод фактически не гаснет. Другими словами, источник питания светодиода включается и выключается так быстро (тысячи раз в секунду), что светодиод фактически остается включенным, не мигая.Это называется ШИМ-регулировкой яркости, а такая схема просто называется схемой ШИМ-регулятора яркости светодиода.

    Квадраты на приведенном ниже рисунке ШИМ — это импульсы, которые представляют время «включения», а депрессивные области представляют время, когда питание «выключено». И квадраты, и углубления имеют одинаковую «ширину», поэтому рабочий цикл составляет 50%. ШИМ-сигналы обычно представляют собой прямоугольные волны, как показано на рисунке ниже.

    Сигнал ШИМ (прямоугольная волна) с рабочим циклом 50%.

    Если рабочий цикл источника питания с ШИМ установлен на 70%, то импульс включен в течение 70% времени и выключен в течение 30% времени.Рабочий цикл означает количество времени, в течение которого он включен. При рабочем цикле 70% яркость светодиода должна быть около 70%. Корреляция между рабочим циклом и яркостью не является линейной на 100%, поскольку эффективность светодиодов зависит от величины подаваемого тока.

    Если бы рабочий цикл составлял 0%, весь сигнал был бы ровным, как показано ниже. Рабочий цикл ШИМ 0% означает, что питание отключено. В таком состоянии светодиод не работал бы. Это было бы просто выключено.

    Сигнал ШИМ (прямоугольная волна) с коэффициентом заполнения 0%.Это означает, что питание отключено.

    Основная причина того, что схемы ШИМ настолько эффективны, заключается в том, что они не пытаются частично ограничить ток, используя сопротивление. Они полностью включают и полностью выключают ток. Вместо этого они просто меняют количество включенного времени.

    Пример схемы диммера светодиода с ШИМ

    Старомодная транзисторная схема, о которой я упоминал выше в разделе «Зачем использовать ШИМ», может быть, например, на 50%, и легко тратить огромную часть других 50%, которые она блокирует.

    Дополнительное тепло, выделяемое традиционными транзисторными схемами, является еще одним соображением, поскольку оно может увеличить количество времени, в течение которого охлаждающие вентиляторы должны оставаться включенными, чтобы снизить температуру указанных устройств.

    ШИМ-сигнал

    Чтобы еще больше разобраться, схемы ШИМ [ PDF ] обычно включают в себя очень крошечный источник питания и большой. Крошечный источник питания управляет большим с помощью транзисторов мощностью .

    Крошечный генерирует сигнал , а «мощность », которая представляет собой большой ток и напряжение, которые фактически питают светодиод, управляется вышеупомянутыми транзисторами.Этим крошечным источником питания может быть вывод GPIO микроконтроллера, такой как вывод ввода-вывода Arduino, вывод таймера 555 и другие.

    Установка рабочего цикла сигнала на 30% также приведет к рабочему циклу 30% для мощности, поскольку большой ток является просто усиленной копией крошечного тока (который является сигналом).

    Эта концепция позволяет очень сложным микроконтроллерам (часто называемым микроконтроллерам) и другим компьютерам управлять очень большими токами по разумной цене.Микроконтроллер / MCU генерирует сигнал, затем этот сигнал управляет силовым транзистором.

    Дополнительная литература

    Введение в микроконтроллеры — Венский технологический университет [ PDF ].

    Как сгенерировать сигнал ШИМ с помощью Arduino — Государственный университет Портленда [ PDF ].

    Как работают полупроводники и транзисторы — Университет Вирджинии.

    Как создать контроллер вентилятора с ШИМ-управлением с критически важным для безопасности микроконтроллером Hercules — Kompulsa.

    Принцип

    PWM — Программист искал

    Источник: http://www.eepw.com.cn/article/275890.htm

    http://blog.sina.com.cn/s/blog_61ac952e0100il5a.html

    Широтно-импульсная модуляция — это разновидность аналоговой управляющей широтно-импульсной модуляции. Это очень эффективная технология, использующая цифровой выход микропроцессора для управления аналоговой схемой. Он широко используется во многих областях, от измерения и связи до управления мощностью и преобразования..

    ШИМ — это широтно-импульсная модуляция, то есть форма импульса с переменной скважностью. Эта технология основана на этом заключении как теоретической основе для управления включением и выключением полупроводникового переключающего устройства, так что на выходе получается серия импульсов с одинаковой амплитудой и неодинаковой шириной. Эти импульсы используются для замены синусоидальной волны или другой необходимой формы волны. Модуляция ширины каждого импульса по определенному правилу может не только изменить выходное напряжение схемы инвертора, но и изменить выходную частоту.

    Принцип работы ШИМ

    Волны с широтно-импульсной модуляцией обычно состоят из серии прямоугольных импульсов с различными рабочими циклами, коэффициент заполнения которых пропорционален мгновенному значению дискретизации сигнала. На следующем рисунке показаны блок-схема и форма сигнала системы широтно-импульсной модуляции. Система состоит из компаратора и генератора пилы с периодом Ts. Если речевой сигнал больше, чем пилообразный сигнал, компаратор выдает нормальное число A, в противном случае он выдает 0.Таким образом, из рисунка видно, что компаратор выдает серию волн с широтно-импульсной модуляцией, модулированных задними фронтами.


    Из анализа фиг. 1b видно, что ширина сформированного прямоугольного импульса зависит от значения амплитуды речевого сигнала в момент времени tk заднего фронта импульса. Таким образом, временной интервал между выборочными значениями неоднороден. Вставив схему выборки и хранения на входе системы, можно получить однородный сигнал выборки, но для фактического случая tk-kTs << Ts разница между равномерной выборкой и неравномерной выборкой очень мала.

    Последовательность импульсов одинаковой амплитуды и неравной ширины используется для замены синусоидальной полуволны. Синусоидальная полуволна делится на N поровну, что рассматривается как N связанных последовательностей импульсов с равной шириной, но с разными амплитудами; Неравная ширина, середина совпадают, площадь (импульс) равна, а ширина изменяется по синусоидальному закону.

    Форма волны ШИМ — форма волны ШИМ, ширина импульса которой изменяется по синусоидальному закону и эквивалентна синусоидальной волне.


    Чтобы изменить эквивалентную амплитуду выходной синусоидальной волны, измените ширину каждого импульса в той же пропорции.

    Волна SPWM: эквивалентная синусоидальная форма волны, также может быть эквивалентна другим требуемым формам волны, например, эквивалентной требуемой несинусоидальной форме волны переменного тока и т. Д. Основной принцип такой же, как и управление SPWM, и он также основан на принципе эквивалентной площади.

    Имя собственное для PWM

    1) Коэффициент заполнения: это отношение времени, в течение которого высокий уровень сохраняется в выходном ШИМ, ко времени тактового цикла ШИМ.

    Например, частота ШИМ составляет 1000 Гц, тогда его период тактовой частоты составляет 1 мс, что составляет 1000 мкс.Если время высокого уровня равно 200 мкс, то время низкого уровня должно быть 800 мкс, тогда рабочий цикл составляет 200: 1000, также то есть коэффициент заполнения ШИМ составляет 1: 5.

    2) Разрешение — это минимальный рабочий цикл, например, 8-битный ШИМ, теоретическое разрешение составляет 1: 255 (одинарный наклон), а теория 16-битного ШИМ составляет 1: 65535 (одинарный наклон).

    3) Частота такая. Например, 16-битный ШИМ имеет разрешение 1: 65535. Для достижения этого разрешения T / C должен быть рассчитан от 0 до 65535.Если отсчет от 0 до 80, отсчет от 0 до 80 …, то его минимальное разрешение составляет 1:80, но оно также быстрое, то есть выходная частота ШИМ высока.

    4) Двойной скат / одинарный скат

    Предположим, ШИМ считает от 0 до 80, а затем считает от 0 до 80 ……. Это один наклон. Предположим, ШИМ считает от 0 до 80, а затем считает от 80 до 0 … Это двойной наклон.

    Видно, что время счета двойного наклона удвоено, поэтому выходная частота ШИМ вдвое медленнее, но разрешение составляет 1: (80 + 80) = 1: 160, что вдвое.

    Предполагая, что ШИМ представляет собой одиночный наклон, максимальный счет установлен на 80, и мы устанавливаем значение сравнения 10, затем T / C считает от 0 до 10 (счетчик все еще ведет счет до тех пор, пока счет не достигнет установленного значения 80. ) микроконтроллер будет контролировать, будет ли порт ввода-вывода выводить 1 или 0 или инверсию порта в это время в соответствии с вашими настройками. Таким образом, это самый основной принцип ШИМ.


    Широтно-импульсная модуляция

    — learn.sparkfun.com

    Что такое широтно-импульсная модуляция?

    Широтно-импульсная модуляция (PWM) — это причудливый термин для описания типа цифрового сигнала.Широтно-импульсная модуляция используется во множестве приложений, включая сложные схемы управления. Обычно мы используем их в SparkFun для управления затемнением светодиодов RGB или для управления направлением сервопривода. Мы можем достичь ряда результатов в обоих приложениях, потому что широтно-импульсная модуляция позволяет нам изменять, сколько времени сигнал находится на высоком уровне аналоговым способом. Хотя сигнал может быть только высоким (обычно 5 В) или низким (земля) в любое время, мы можем изменить пропорцию времени, в течение которого сигнал является высоким, по сравнению с тем, когда он низкий в течение согласованного временного интервала.

    Роботизированная клешня, управляемая серводвигателем с использованием широтно-импульсной модуляции

    Рекомендуемая литература

    Некоторые базовые руководства, которые вы могли бы рассмотреть в первую очередь:

    Рабочий цикл

    Когда сигнал высокий, мы называем это «вовремя». Для описания количества «вовремя» мы используем понятие рабочего цикла. Рабочий цикл измеряется в процентах. Процент рабочего цикла конкретно описывает процент времени, в течение которого цифровой сигнал остается включенным в интервале или периоде времени.Этот период обратно пропорционален частоте сигнала.

    Если цифровой сигнал проводит половину времени включенным, а другую половину — выключенным, мы бы сказали, что цифровой сигнал имеет рабочий цикл 50% и напоминает идеальную прямоугольную волну. Если процентное значение выше 50%, цифровой сигнал проводит больше времени в высоком состоянии, чем в низком, и наоборот, если рабочий цикл меньше 50%. Вот график, иллюстрирующий эти три сценария:

    Примеры рабочего цикла 50%, 75% и 25%

    100% рабочий цикл будет таким же, как установка напряжения на 5 В (высокое).Рабочий цикл 0% будет таким же, как заземление сигнала.

    Примеры

    Яркость светодиода можно регулировать, регулируя рабочий цикл.

    ШИМ используется для управления яркостью светодиода

    С помощью светодиода RGB (красный, зеленый, синий) вы можете контролировать, какое количество каждого из трех цветов вы хотите в смешении цветов, уменьшая их яркость с разной степенью яркости.

    Основы смешения цветов

    Если все три горят в равной степени, в результате будет белый свет различной яркости.Синий, равно смешанный с зеленым, станет бирюзовым. В качестве чуть более сложного примера попробуйте полностью включить красный, зеленый 50% рабочего цикла и полностью выключить синий, чтобы получить оранжевый цвет.

    PWM можно использовать для смешивания цветов RGB

    Частота прямоугольной волны должна быть достаточно высокой при управлении светодиодами, чтобы получить надлежащий эффект затемнения. Волна 20% рабочего цикла при 1 Гц будет очевидна, что она включается и выключается для ваших глаз, в то время как 20% рабочий цикл при 100 Гц или выше будет выглядеть более тусклым, чем полностью включенным.По сути, период не может быть слишком большим, если вы стремитесь к эффекту затемнения с помощью светодиодов.

    Вы также можете использовать широтно-импульсную модуляцию для управления углом серводвигателя, прикрепленного к чему-то механическому, например, манипулятору робота. Сервоприводы имеют вал, который поворачивается в определенное положение в зависимости от его линии управления. Наши серводвигатели имеют диапазон около 180 градусов.

    Частота / период зависят от управления конкретным сервоприводом. Ожидается, что типичный серводвигатель будет обновляться каждые 20 мс с импульсом от 1 до 2 мс, или, другими словами, от 5 до 10% рабочего цикла на форме волны 50 Гц.С импульсом 1,5 мс серводвигатель будет в естественном положении на 90 градусов. С импульсом 1 мс сервопривод будет в положении 0 градусов, а с импульсом 2 мс сервопривод будет в положении 180 градусов. Вы можете получить полный диапазон движения, обновив сервопривод промежуточным значением.

    ШИМ используется для удержания серводвигателя под углом 90 градусов относительно его кронштейна

    Ресурсы и дальнейшее развитие

    Широтно-импульсная модуляция используется в различных приложениях, в частности, для управления.Вы уже знаете, что его можно использовать для затемнения светодиодов и управления углом наклона серводвигателей, и теперь вы можете начать исследовать другие возможные применения. Если вы чувствуете себя потерянным, не стесняйтесь проверить SparkFun Inventor’s Kit, в котором есть примеры использования широтно-импульсной модуляции. Если вы готовы немедленно перейти к кодированию и иметь Arduino, посмотрите здесь пример кодирования PWM.

    Не стесняйтесь исследовать:

    PWM Inverter — Определение, принципиальная схема, работа и применение

    Инверторы с широтно-импульсной модуляцией (PWM) пришли на смену более старым версиям инверторов и имеют широкий спектр применений.Практически они используются в схемах силовой электроники. Инверторы, основанные на технологии PWM, имеют полевые МОП-транзисторы в каскаде переключения выхода. Большинство доступных в настоящее время инверторов обладают этой технологией ШИМ и способны генерировать переменное напряжение различной величины и частоты. В этих типах инверторов имеется несколько схем защиты и управления. Реализация технологии ШИМ в инверторах делает ее подходящей и идеальной для различных подключенных нагрузок.


    Что такое инвертор PWM?

    Инвертор, функциональность которого зависит от технологии широтно-импульсной модуляции, называется инвертором PWM. Они способны поддерживать выходное напряжение в качестве номинального напряжения в зависимости от страны, независимо от типа подключенной нагрузки. Это может быть достигнуто путем изменения ширины частоты переключения на генераторе.

    Схема цепи инвертора PWM

    Принципиальная схема инвертора PWM приведена на схеме ниже


    Схема цепи инвертора PWM

    В инверторах PWM используются различные схемы.Некоторые из них перечислены ниже.

    Цепь датчика тока зарядки аккумулятора

    Целью этой схемы является определение тока, используемого при зарядке аккумулятора, и поддержание его на номинальном уровне. Важно избегать колебаний, чтобы сохранить срок годности батарей.

    Схема измерения напряжения аккумулятора

    Эта схема используется для определения напряжения, необходимого для зарядки аккумулятора, когда он разряжен, и начала непрерывной зарядки аккумулятора после его полной зарядки.

    Цепь измерения сети переменного тока

    Эта цепь предназначена для определения наличия сети переменного тока . Если он доступен, то инвертор будет в состоянии зарядки, а при отсутствии сети инвертор будет работать от батареи.

    Схема плавного пуска

    Используется для задержки зарядки на 8–10 секунд после возобновления подачи питания. Он предназначен для защиты полевых МОП-транзисторов от высоких токов. Это также называется задержкой сети.

    Схема переключения

    В зависимости от наличия сети эта схема переключает работу инвертора между режимами батареи и режимами зарядки.

    Цепь выключения

    Эта схема предназначена для тщательного контроля инвертора и его отключения при возникновении любых отклонений от нормы.

    Схема контроллера ШИМ

    Этот контроллер используется для регулирования напряжения на выходе. Схема, необходимая для выполнения операций ШИМ, встроена в ИС, и они присутствуют в этой схеме.

    Схема зарядки аккумулятора

    Эта схема управляет процессом зарядки аккумулятора в инверторе. Выходной сигнал, генерируемый цепью считывания сети и цепями датчиков батареи, является входом для этой цепи.

    Цепь осциллятора

    Эта схема объединена с ИС ШИМ. Он используется для генерации частот переключения.

    Схема драйвера

    Выход инвертора управляется этой схемой на основе генерируемого сигнала переключения частоты. Он похож на схему предусилителя.

    Секция вывода

    Эта секция вывода содержит повышающий трансформатор и используется для управления нагрузкой.

    Принцип работы

    При проектировании инвертора используются различные топологии силовых цепей и методы управления напряжением.Наиболее концентрированной частью инвертора является его форма волны, генерируемая на выходе. Для фильтрации формы сигнала используются индукторы и конденсаторы. Для уменьшения гармоник на выходе используются фильтры нижних частот.

    Если инвертор имеет фиксированное значение выходных частот, используются резонансные фильтры. Для регулируемых частот на выходе фильтры настраиваются выше максимального значения основной частоты. Технология PWM изменяет характеристики прямоугольной волны.Импульсы, используемые для переключения, модулируются и регулируются перед подачей на подключенную нагрузку. Когда нет требований к контролю напряжения, используется фиксированная ширина импульса.

    Типы и формы сигналов инвертора ШИМ

    Метод ШИМ в инверторе состоит из двух сигналов. Один сигнал является справочным, а другой — несущим. Импульс, необходимый для переключения режима инвертора, может быть сгенерирован путем сравнения этих двух сигналов. Существуют различные техники ШИМ.

    Широтно-импульсная модуляция (SPWM)

    Для каждого полупериода доступен только один импульс для управления техникой. Сигнал прямоугольной формы используется для справки, а треугольная волна — в качестве несущей. Сгенерированный стробирующий импульс будет результатом сравнения несущего и опорного сигналов. Высшие гармоники — главный недостаток этой техники.

    Широтно-импульсная модуляция
    Широтно-импульсная модуляция (MPWM)

    Метод MPWM используется для преодоления недостатка SPWM.Вместо одного импульса используется несколько импульсов для каждого полупериода напряжения на выходе. Частота на выходе регулируется путем управления частотой несущей.

    Множественная широтно-импульсная модуляция
    Синусоидальная широтно-импульсная модуляция

    В этом типе метода ШИМ вместо прямоугольной волны в качестве эталона используется синусоидальная волна, а несущей будет треугольная волна. Синусоидальная волна будет выходным сигналом, и ее среднеквадратичное значение напряжения контролируется индексом модуляции.

    Синусоидальная широтно-импульсная модуляция
    Модифицированная синусоидальная широтно-импульсная модуляция

    Несущая волна применяется для первого и последнего 60-градусного интервала в каждом полупериоде. Данная модификация введена для улучшения гармонических характеристик. Это уменьшает потери из-за переключения и увеличивает основную составляющую.

    Модифицированная синусоидальная широтно-импульсная модуляция

    Приложения

    Чаще всего в скоростных приводах переменного тока используются ШИМ-инверторы, где скорость привода зависит от изменения частоты приложенного напряжения.В основном цепями силовой электроники можно управлять с помощью сигналов ШИМ. Для генерации сигналов в аналоговой форме от цифровых устройств, таких как микроконтроллеры, полезен метод ШИМ. Кроме того, существуют различные приложения, в которых технология ШИМ используется в разных схемах.

    Итак, это все об обзоре инвертора PWM, типов, работы и их применения. Можете ли вы описать, как технология ШИМ используется в телекоммуникациях?

    Введение в широтно-импульсную модуляцию, управление скоростью и приложения

    Использование ШИМ в качестве метода переключения

    Широтно-импульсная модуляция (ШИМ) — это широко используемый метод для общего управления мощностью постоянного тока на электрическое устройство, реализованный на практике современной электроникой. выключатели питания.Однако он также находит свое место в прерывателях переменного тока. Среднее значение тока, подаваемого на нагрузку, регулируется положением переключателя и продолжительностью его состояния. Если период включения переключателя больше по сравнению с периодом выключения, нагрузка получает сравнительно более высокую мощность. Таким образом, частота переключения ШИМ должна быть выше.


    Обычно переключение должно производиться несколько раз в минуту в электрической плите, 120 Гц в диммере лампы, от нескольких килогерц (кГц) до десятков кГц для моторного привода.Частота коммутации усилителей звука и компьютерных блоков питания составляет от десяти до сотен кГц. Отношение времени включения к периоду импульса известно как рабочий цикл. Если рабочий цикл низкий, это означает низкую мощность.

    Потери мощности в коммутационном устройстве очень низкие из-за почти незначительного тока, протекающего в выключенном состоянии устройства, и незначительного падения напряжения в выключенном состоянии. Цифровое управление также использует метод ШИМ. ШИМ также использовался в некоторых системах связи, где его рабочий цикл использовался для передачи информации по каналу связи.


    ШИМ может использоваться для регулировки общего количества мощности, подаваемой на нагрузку, без потерь, обычно возникающих, когда передача мощности ограничивается резистивными средствами. К недостаткам относятся пульсации, определяемые рабочим циклом, частотой переключения и свойствами нагрузки. При достаточно высокой частоте переключения и, при необходимости, использовании дополнительных пассивных электронных фильтров последовательность импульсов может быть сглажена и восстановлена ​​средняя аналоговая форма волны. Системы управления с высокочастотной ШИМ могут быть легко реализованы с использованием полупроводниковых переключателей.

    Как уже было сказано выше, переключатель почти не рассеивает мощность ни в состоянии, ни в выключенном состоянии. Однако во время переходов между включенным и выключенным состояниями как напряжение, так и ток не равны нулю, и, таким образом, значительная мощность рассеивается в переключателях. К счастью, изменение состояния между полностью включенным и полностью выключенным происходит довольно быстро (обычно менее 100 наносекунд) по сравнению с типичным временем включения или выключения, поэтому средняя рассеиваемая мощность довольно низка по сравнению с мощностью, подаваемой даже при высоких частотах переключения. используются.

    Использование ШИМ для подачи питания постоянного тока на нагрузку

    Большая часть промышленных процессов требует выполнения определенных параметров, касающихся скорости привода. Системы электропривода, используемые во многих промышленных приложениях, требуют более высокой производительности, надежности, регулируемой скорости из-за простоты управления. Регулировка скорости двигателя постоянного тока важна в приложениях, где точность и защита имеют решающее значение. Назначение регулятора скорости двигателя — принять сигнал, представляющий требуемую скорость, и привести двигатель в движение с этой скоростью.

    Широтно-импульсная модуляция (ШИМ) применительно к управлению двигателем — это способ передачи энергии посредством последовательности импульсов, а не непрерывно изменяющегося (аналогового) сигнала. Увеличивая или уменьшая ширину импульса, контроллер регулирует поток энергии на вал двигателя. Собственная индуктивность двигателя действует как фильтр, накапливая энергию во время цикла «ВКЛ», высвобождая ее со скоростью, соответствующей входному или опорному сигналу. Другими словами, энергия поступает в нагрузку не столько с частотой переключения, сколько с опорной частотой.

    Схема используется для управления скоростью двигателя постоянного тока с помощью метода ШИМ. Контроллер двигателя постоянного тока с регулируемой скоростью 12 В использует микросхему таймера 555 в качестве генератора импульсов ШИМ для регулирования скорости двигателя 12 В постоянного тока. IC 555 — это популярная микросхема таймера, используемая для создания схем таймера. Он был представлен в 1972 году компанией Signetics. Он называется 555, потому что внутри находятся три резистора по 5 кОм. ИС состоит из двух компараторов, цепи резисторов, триггера и выходного каскада. Он работает в трех основных режимах: нестабильный, моностабильный (в котором он действует как генератор однократных импульсов) и бистабильный режим.То есть, когда он срабатывает; выходной сигнал становится высоким в течение периода, зависящего от значений резистора синхронизации и конденсатора. В нестабильном режиме (AMV) ИС работает как автономный мультивибратор. Выходной сигнал постоянно меняется на высокий и низкий, давая пульсирующий выход в качестве генератора. В бистабильном режиме, также известном как триггер Шмитта, ИС работает как триггер с высоким или низким выходом на каждом триггере и сбросе.

    В этой схеме используется МОП-транзистор IRF540. Это усовершенствованный N-канальный МОП-транзистор.Это усовершенствованный силовой полевой МОП-транзистор, разработанный, испытанный и гарантированно выдерживающий заданный уровень энергии в лавинном режиме пробоя. Эти силовые полевые МОП-транзисторы предназначены для таких приложений, как импульсные регуляторы, переключающие преобразователи, драйверы двигателей, релейные драйверы и драйверы для мощных биполярных переключающих транзисторов, требующих высокой скорости и низкой мощности управления затвором. Эти типы могут управляться напрямую от интегральных схем. Рабочее напряжение этой цепи можно регулировать в соответствии с потребностями управляемого двигателя постоянного тока.Эта схема может работать от 5-18 В постоянного тока.

    Вышеупомянутая схема, то есть управление скоростью двигателя постоянного тока с помощью метода ШИМ, изменяет рабочий цикл, который, в свою очередь, управляет скоростью двигателя. IC 555 подключен в нестабильном режиме к автономному мультивибратору. Схема состоит из потенциометра и двух диодов, которые используются для изменения рабочего цикла и поддержания постоянной частоты. При изменении сопротивления переменного резистора или потенциометра рабочий цикл импульсов, подаваемых на полевой МОП-транзистор, изменяется, и, соответственно, изменяется мощность постоянного тока на двигатель, и, таким образом, его скорость увеличивается с увеличением рабочего цикла.

    Использование ШИМ для подачи питания переменного тока на нагрузку

    Современные полупроводниковые переключатели, такие как полевые МОП-транзисторы или биполярные транзисторы с изолированным затвором (IGBT), являются идеальными компонентами. Таким образом могут быть созданы контроллеры с высокой эффективностью. Обычно преобразователи частоты, используемые для управления двигателями переменного тока, имеют КПД выше 98%. Импульсные источники питания имеют более низкий КПД из-за низкого уровня выходного напряжения (часто требуется даже менее 2 В для микропроцессоров), но все же можно достичь КПД более 70-80%.

    Этот вид управления переменным током представляет собой метод измерения угла задержки зажигания, известный по мощности. Он дешевле и генерирует много электрических шумов и гармоник по сравнению с настоящим ШИМ-регулятором, который создает незначительный шум.

    Во многих приложениях, таких как промышленное отопление, управление освещением, асинхронные двигатели с плавным пуском и регуляторы скорости для вентиляторов и насосов, требуется переменное напряжение переменного тока от постоянного источника переменного тока. Для этих требований широко используется регулирование фазового угла регуляторов.Он предлагает некоторые преимущества, такие как простота и возможность экономичного управления большим количеством энергии. Однако запаздывающий угол зажигания вызывает прерывистость и обилие гармоник в токе нагрузки, а на стороне переменного тока возникает запаздывающий коэффициент мощности при увеличении угла зажигания.

    Эти проблемы можно решить, используя прерыватель переменного тока с ШИМ. Этот прерыватель переменного тока с ШИМ имеет несколько преимуществ, таких как синусоидальный входной ток с коэффициентом мощности, близким к единице. Однако, чтобы уменьшить размер фильтра и улучшить качество выходного регулятора, следует увеличить частоту переключения.Это вызывает большие потери при переключении. Другая проблема — это коммутация переключателя S1 с переключателем свободного хода S2. Это вызывает всплеск тока, если оба переключателя включены одновременно (короткое замыкание), и всплеск напряжения, если оба переключателя выключены (нет свободного пути). Чтобы избежать этих проблем, использовался демпфер RC. Однако это увеличивает потери мощности в цепи и является сложным, дорогим, громоздким и неэффективным для приложений с большой мощностью. Предлагается прерыватель переменного тока с переключением напряжения нулевого тока (ZCS-ZVS).Его регулятор выходного напряжения должен изменять время выключения, контролируемое ШИМ-сигналом. Таким образом, необходимо использовать регулирование частоты для достижения мягкого переключения, а в общих системах управления используются методы ШИМ, определяющие время включения. Этот метод имеет такие преимущества, как простое управление с сигма-дельта модуляцией и постоянный входной ток. Ниже представлены особенности предлагаемой схемы и схемы с прерыванием ШИМ.

    Широтно-импульсная модуляция (ШИМ) | Видео о круговых соревнованиях Collin Cunningham

    ШИМ-контроллер: устройства управления с помощью цифрового сигнала

    Коллин Каннингем.

    Широтно-импульсная модуляция (ШИМ) — очень умный способ использовать электричество для управления аналоговыми устройствами через цифровой сигнал.Это очень простой метод, который очень эффективен при управлении двигателями, лампами, светодиодами и многим другим!

    Прекрасный пример использования ШИМ — это если вы когда-либо приглушали светодиод с помощью Arduino:

    Затухание — Демонстрирует использование функции analogWrite () для затухания и включения светодиода. AnalogWrite использует широтно-импульсную модуляцию (PWM), очень быстро включающую и выключающую цифровой вывод для создания эффекта затухания.

    Однако вам не нужен микроконтроллер для генерации сигнала ШИМ.Микросхему таймера 555 можно настроить так, чтобы ее выходной рабочий цикл зависел от потенциометра — с помощью некоторых простых схем.


    Создайте свой собственный комплект широтно-импульсного модулятора «Навыки схемы: видео с широтно-импульсной модуляцией»


    Для более надежного решения вы можете рассмотреть комплект DC to Pulse Width Modulator, подходящий для передачи тока до 6,5 А и построенный на базе Motorola SG3525 — микросхемы посвященный искусству ШИМ.

    Конечно, Коллин отрицал бы свою природу, если бы не упомянул хотя бы одно приложение, связанное со звуком. ШИМ пригодится для генерации простых звуков и мелодий с микроконтроллера.

    Arduino Simple Sounds
    Wavetable Melody Generator

    Щелкните здесь для просмотра технических данных Velleman K8004.

    Другие схемы навыков DIY Видео от Collin:

    Травление печатной платы
    Функциональный генератор и корпуса
    Инфракрасный световой барьер
    Светодиодный цветной орган
    Создание прототипов перфокарт
    Источник питания
    Устройства для поверхностного монтажа
    Волоконная оптика
    Комплект светодиодной матрицы

    Если вы решите создать модульный комплект для преобразования постоянного тока в широтно-импульсный, мы хотели бы услышать о ваших результатах! Отправьте свою историю на [адрес электронной почты] .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *