устройство, принцип работы, виды, способы пуска
Способы пуска и схемы подключения
Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:
- прямой – напряжение на электродвигатель подается через пускатели или контакторы;
- переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
- понижение напряжения;
- плавный пуск;
- изменение частоты питающего напряжения.
Однофазного асинхронного двигателя.
Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:
- С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
- С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
- С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.
Трехфазного асинхронного двигателя.
Трехфазные асинхронные агрегаты могут подключаться такими способами:
- Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
- Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
- Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.
Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.
Рис. 9: прямая схема без возможности реверсированияРассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат
Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой
Понять принцип действия асинхронного двигателя не сложно, если не пользоваться учебниками для вузов и школ. Зачастую академическая литература лишь препятствует пытливому уму разобраться в работе электромоторов и часто навсегда отбивает охоту заниматься изысканиями, связанными с электротехникой и электромеханикой. В последнее время у многих людей, не связанных напрямую с наладкой и проектированием машин, появился интерес к сборке самодельных станков, механизмов, летательных аппаратов и самодвижущихся машин. Поэтому в этой статье мы попытались доступно объяснить принцип действия асинхронного электродвигателя без сложных понятий и формул. Работа любого асинхронного двигателя построена на принципе вращающегося магнитного поля. Как его можно создать? Например, можно взять постоянный магнит и начать вращать его вокруг своей оси – получится вращающееся магнитное поле. А если крутить магнит возле медного диска, то он станет вращаться вслед за магнитом, пытаясь его догнать. Со стороны наблюдателя кажется, что между магнитом и диском есть невидимая вязкая связь. Их движение не синхронно, диск крутится с некоторым отставанием. Объяснить это явление можно тем, что магнит при вращении возбуждает в структуре диска индукционные токи или токи Фуко. Они всегда движутся по замкнутому кругу — нигде не начинаясь и нигде не заканчиваясь, и являются, по сути, токами короткого замыкания, которые разогревают металл и от которых обычно пытаются избавиться. Но в нашем случае они полезны, т.к. порождают во вращаемом диске магнитное поле, которое дальше взаимодействует с полем постоянного магнита. В асинхронных электродвигателях всё происходит по тому же принципу, только чтобы получить вращающееся поле, используют не постоянный магнит, а обмотки статора, в которых создаётся поле вращения. Условия для вращения можно создать только в многофазных системах, где ток сдвинут по фазе на определённый градус. В быту используются двухфазные электродвигатели, где вторая фаза создаётся искусственно с помощью сдвигающего конденсатора, катушки или сопротивления. В промышленности применяют трёхфазные системы. Первый трёхфазный асинхронный двигатель был сделан русским учёным Доливо-Добровольским. Схема его работы показана на рисунке. Статор состоял из трёх обмоток (полюсов), отдалённых друг от друга на 120°. Вверху показан график синусоидального тока всех трёх полюсов, наложенных на один рисунок. В момент, когда ток одной из фаз равен нулю (отмечено пунктиром), две другие имеют значения близкие к максимальным и отличаются по направлению тока. Так между двумя работающими обмотками создаются магнитное поле. В следующий момент ситуация меняется – один из работающих полюсов отключается, оставшийся в работе меняет полярность (т.к. в обмотке меняется направление тока), а полюс только что включившийся в работу, поддерживает сместившееся магнитное поле. Магнитные линии пересекают часть металлического ротора и в нём генерируются вихревые токи. Они взаимодействуют с вращающимся полем статора и увлекаются за ним, пытаясь его догнать, и ротор проворачивается. Основной принцип работы асинхронного двигателя, созданного в позапрошлом веке, остаётся актуальным и для современных электродвигателей. Только вместо дисковых и цилиндровых роторов стали использовать короткозамкнутые роторы по типу «беличья клетка» и фазные роторы. Также изменилась форма обмоток статора – вместо катушек с полюсными наконечниками теперь делают радиальные обмотки, уложенные в пазы. Асинхронные двигатели хороши тем, что они не имеют скользящих контактов (ток в роторе индуцируется бесконтактно), а направление вращения легко поменять, изменив направление тока в одной из обмоток (поменяв фазы на клеммах мотора). Выше была рассмотрена работа статора с одной парой рабочих полюсов (двухполюсного с тремя обмотками). Количество оборотов в минуту такого электромотора равно частоте тока, т.е. 50 об/сек или 3000 об/мин. Изготавливают также 4-х и 6-ти полюсные электродвигатели с шестью и девятью обмотками соответственно. Частота вращения таких моторов составляет 1500 и 1000 об/мин. Подведём итоги. Принцип действия асинхронного двигателя основывается на создании в обмотках статора вращающегося магнитного поля, которое пересекает контур ротора и индуцирует в нём электродвижущую силу. Поскольку он замкнут на коротко, то в нём возникает переменный ток. Магнитное поле этого тока вместе с вращающимся магнитным полем статора создают крутящий момент. Ротор начинает крутиться и пытается сравнять свою скорость со скоростью убегающего поля статора. Но как только частота вращения ротора совпадёт с частотой вращения магнитного поля статора, в роторе затухнут все электромагнитные процессы и крутящий момент станет равным нулю. Ротор начинает отставать и магнитное поле статора снова начинает возбуждать контур ротора. Этот процесс будет повторяться всё снова и снова. Таким образом, частота вращения ротора стремится догнать частоту вращения магнитного поля статора, но всё время отстаёт, т.е. вращается не синхронно, а значит асинхронно. В станкостроении асинхронные двигатели не заменимы. Ни какой другой тип электромоторов не имеет такой высокой износоустойчивости и универсальности. Поэтому такое оборудование как станок для сетки рабицы, правильно-отрезной и просечно-вытяжной станки, выпускаемые на нашем предприятии, оснащены именно асинхронными электроприводами. На видео хорошо объясняется принцип работы асинхронного электродвигателя, его устройство и отличительные особенности • Скачать принцип работы трёхфазного асинхронного двигателя
Свежие записи: |
Принцип действия асинхронного двигателя ~ Электропривод
Самым распространенным электродвигателем, используемым в быту, промышленности, строительстве и сельском хозяйстве, на сегодняшний день, является асинхронный двигатель с короткозамкнутым ротором (АД с КЗ ротором). Основным его преимуществом, перед другими типами двигателей является простота, надежность и дешевизна.
Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором
Принцип действия трехфазного АД с КЗ ротором основан на взаимодействии вращающегося магнитного поля и расположенного в этом поле проводника. Вращающееся магнитное поле создается статором асинхронного двигателя, которая является неподвижной частью двигателя. Статор асинхронного электродвигателя представляет собой стальной сердечник, с пазами в которых расположена обмотки, намотанная медным изолированным проводом.
Это поле пересекая обмотку ротора наводит в ней ЭДС. Под действием этой ЭДС по обмотке будет протекать ток. Этот ток будет взаимодействовать с магнитным потоком. Взаимодействие вращающего магнитного поля статора с током в роторе создает вращающий момент, за счет которого ротор будет вращаться в ту же сторону, что и поле, но с небольшим отставанием.
Обмотки статора намотаны таким образом, что образуют три катушки, смещенные друг, относительно друга на 120°. Между собой их соединяют либо в «звезду», либо в «треугольник» и пропускают трехфазный переменный ток. При частоте тока 50 Гц, магнитное поле будет вращаться со скоростью 3000 об./мин. Магнитное поле, образованное тремя катушками, называется двухполюсным.
Особенностью асинхронного двигателя является то, что появление ЭДС в роторной обмотке ротора возможно только при различии частоты вращения магнитного поля ротора, обозначаемое букой n и магнитного поля статора n0. Разница n0 и n создает электромагнитный момента асинхронного двигателя. Характеризует эту разность скольжение S, определяемое по формуле:
S=( n0-n )/ n0,
где n0=60f/P синхронная частота вращения магнитного поля статора об/мин, f- частота питающей сети, Гц, p-число пар полюсов статора.
В такой конструкции двигателя, магнитное поле статора опережает скорость вращения ротора. Т.е. поле ротора вращается асинхронно со скоростью вращения поля статора. Отсюда и пошло название двигателя асинхронный двигатель переменного тока.
Если нагрузка на валу двигателя отсутствует, частота вращения поля ротора n, стремиться достичь частоты вращения поля ротора, но никогда не достигает ее, так как если n0-n=0, то и электромагнитный момент двигателя М будет равен 0.
В паспорте и на шильдике асинхронного электродвигателя производитель указывает номинальную частота вращения двигателя, замеряемую при номинальной мощности. При увеличении нагрузки на валу двигателя, частота вращения двигателя уменьшается, а ток статора увеличивается. Асинхронные двигатели могут изготовляться с 1,2,3 ,4,5,6 парами полюсов. Соответственно синхронная скорость вращения асинхронного двигателя соответственно будет составлять 3000, 1500, 1000, 750, 600 и 500 об/мин.
На смену классической конструкции асинхронного двигателя приходят энергоэффективные конструкции асинхронных двигателей обладающие более высоким КПД и технико-экономическими показателями. Применение частотно-регулируемого привода в тандеме с энергоэффективными двигателями, позволит существенно улучшить энергетические показатели и снизить затраты на электроэнергию.
Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.
Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели — это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.Устройство и принцип действия асинхронных электродвигателей
1. Устройство трехфазных асинхронных двигателей
Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.
Рис. 1 Магнитопровод статора
В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).
Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник
Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.
Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой
Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.
Рис. 4. Общий вид асинхронного двигателя серии 4А
Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.
2. Принцип действия трехфазных асинхронных двигателей
Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.
Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя
Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом — вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.
Алиев И.И.
Принцип работы и устройство асинхронного двигателя
Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.
Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.
В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.
Немного истории
Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.
А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора. Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре. Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.
Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.
Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.
Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.
Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.
Устройство трехфазного двигателя
Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:
- статор (неподвижная часть машины)
- ротор (вращающаяся часть)
Помимо этого, в современных трех фазных двигателях можно найти следующие детали:
- вал
- подшипники
- обмотку
- заземление
- корпус (в который монтируются все детали)
Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).
Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.
Ротором называют подвижную часть подобного мотора, которая необходима для плавного пуска. Устройство асинхронного двигателя с фазным ротором является полноценным, ведь именно во вращении ротора состоит основной принцип работы трехфазного мотора.
Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:
- Правило левой руки буравчика.
- Закон электромагнитной индукции Фарадея.
Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.
Короткозамкнутым называют ротор, состоящий из множества стальных частей. Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка». Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.
Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.
Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:
- Двигатель.
- Самый частый вид использования механизма.
- Генератор.
- Действие машины можно обратить, то есть механическую энергию, приложенную к сердцевине можно превратить в электрический ток. Для этого центральной части нужно вращаться быстрей магнитного поля. Потребляя механическую энергию генератор начнет создавать тормозной момент, возвращая электрическую энергию.
- Электромагнитный тормоз.
Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент. Собранная энергия приводит к нагреву машины.
Принцип работы трехфазного двигателя
Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.
Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.
Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.
Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.
Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.
Для создания асинхронной работы нужно сделать так, чтобы напряжение статора и общий магнитный поток соответствовали значению переменного тока.
Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.
Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента. Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети. Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия. Поэтому на практике используют устройство плавного пуска.
Устройство плавного пуска
Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.
Пусковая характеристика асинхронного двигателя предназначена:
- для плавного разгона асинхронного двигателя
- для плавной остановки
- для снижения тока во время пуска
- для синхронизации нагрузки и крутящего момента
Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.
Хорошие и плохие свойства асинхронных моторов
Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки. Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно. Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.
Плюсы:
- Короткозамкнутым и фазным устройствам свойственна простота конструкции.
- Так как принцип действия очень прост, устройства получаются дешевыми.
- Простота пуска и высокие эксплуатационные характеристики.
- Простота пуска обеспечивает легкое управление.
- Принцип действия и работы таков, что асинхронные моторы могут работать в тяжелых условиях.
Минусы:
- Принцип работы основан на том, что при изменении скорости, теряется мощность.
- Когда увеличивается нагрузка, практически сразу начинает снижаться крутящий момент.
- В момент плавного пуска, мощность асинхронного мотора достаточно низкая.
Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.
Назначение и принцип действия асинхронного двигателя
Назначение асинхронного электродвигателя
Система трехфазного переменного тока, позволившая создать устройства для получения вращающегося магнитного потока, вызвала появление наиболее распространенного в данное время электродвигателя, называемого асинхронным. Это название обусловлено тем, что вращающаяся часть машины — ротор — всегда вращается со скоростью, не равной скорости магнитного потока, т.е. не синхронно с ним. Изготовляемый на мощности от долей ватта до тысяч киловатт при напряжениях 127, 220, 380, 500, 600, 3000, 6000, 10000 В, этот электродвигатель прост по конструкции, надежен в эксплуатации и дешев по сравнению с другими типами. Он применяется во всех видах работ, где не требуется поддержания постоянной скорости вращения, а также в быту, в однофазном исполнении для малой мощности.
Принцип действия асинхронного двигателя
Рассмотрим устройство, показанное на рис. Оно состоит из постоянного магнита 1, медного диска 2, рукоятки 3 и подшипников 4. Если вращать магнит при помощи рукоятки, то медный диск начинает вращаться в ту же сторону, но с меньшей частотой. Медный диск можно рассматривать как бесчисленное множество замкнутых витков; при вращении магнита 1 его магнитные силовые линии (м.с.л.) пересекают витки диска, и в витках наводится электродвижущая
Модель асинхронного двигателя
Обозначим:
п, — частота вращения магнита (синхронная частота), об/мин;
п2 — частота вращения диска, об/мин; п — разность частот вращения магнита и диска, об/мин.
Частота вращения диска меньше частоты вращения магнита, и, следовательно, диск вращается с несинхронной (асинхронной) частотой. Разница частот магнита и диска представляет собой частоту, с которой м.с.л. пересекают витки диска. Отношение разницы частот к синхронной частоте называется скольжением. Скольжение может быть выражено в долях единицы или в процентах:
В двигателях вращающееся магнитное поле создается трехфазным током, протекающим по обмотке статора, а роль диска выполняет обмотка ротора. Активная сталь статора и ротора служит магнитопроводом, уменьшающим в сотни раз сопротивление магнитному потоку.
Под влиянием подведенного к статору напряжения сети Ul в его обмотке протекает ток I,. Этот ток создает вращающийся магнитный поток Ф, замыкающийся через статор и ротор. Поток создает в обеих обмотках э.д.с. Е{ и Е2, как в первичной и вторичной обмотках трансформатора. Таким образом, асинхронный двигатель подобен трехфазному трансформатору, в котором э.д.с. создаются вращающимся магнитным потоком.
Рис. 2 . Работа асинхронного двигателя при cos ф2 = 1
Пусть поток вращается в направлении движения стрелки часов. Под влиянием э.д.с. Е2 в обмотке ротора пойдет ток I2, направление которого показано на рис. 2. Предположим, что он совпадает по фазе с Е2. Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образов, асинхронный двигатель представляет собой трансформатор с вращающейся вторичной обмоткой и способный поэтому превращать электрическую мощность E2I2 cos ф в механическую.
Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э.д.с. Е2, а следовательно, ток 12 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящие ток от сети к статору. В этом случае меняется порядок следования фаз ABC на АСВ или ВАС, и поток вращается в обратную сторону.
Ротор двигателя вращается с асинхронной частотой п2, поэтому и двигатель называется асинхронным. Частоту вращения магнитного потока называют синхронной частотой п1. Частота вращенияротора
Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска п2 — 0; а если вообразить, что ротор вращается синхронно с потоком, п2 = пх.
Чем больше нагрузка на валу, тем меньше скорость ротора п2 и следовательно больше S, так как больший тормозной момент должен уравновеситься вращающим моментом; последнее возможно только при увеличении Е2 и I2, а значит и S. Скольжение при номинальной нагрузке SH у асинхронных двигателей равно от 1 до 7%; меньшая цифра относится к мощным двигателям.
§75. Принцип действия асинхронного двигателя
Принцип действия асинхронного двигателя. Трехфазные асинхронные двигатели являются самыми распространенными электрическими двигателями и применяются для привода различных станков, насосов, вентиляторов, компрессоров, грузоподъемных механизмов, а также на э. п. с. переменного тока в качестве двигателей вспомогательных машин..
Асинхронный двигатель состоит из неподвижной части статора 1 (рис. 248, а), на котором расположены обмотка 2 статора, и вращающейся части — ротора 3 с обмоткой 4. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка 2 статора представляет собой трехфазную или в общем случае многофазную обмотку, катушки которой размещают равномерно вдоль окружности статора. Фазы этой обмотки А-Х, B-Y и C-Z размещены равномерно по окружности статора; они соединяются «звездой» (рис. 248,б) или «треугольником» и подключаются к сети трехфазного тока. Обмотку 4 размещают равно-
Рис. 248. Электромагнитная схема асинхронного двигателя (а), схема включения его обмоток (б) и пространственное распределение вращающего магнитного поля (в) в двухполюсной машине
мерно вдоль окружности ротора. При работе двигателя она замкнута накоротко.
При подключении обмотки статора к сети создается синусоидально распределенное вращающееся магнитное поле 5 (рис. 248, в). Оно индуцирует в обмотках статора и ротора э. д. с. e1 и е2. Под действием э. д.с. е2 по проводникам ротора будет проходить электрический ток i2. На рис. 248, а показано согласно правилу правой руки направление э. д. с. е2, индуцированной в проводниках ротора при вращении магнитного потока Ф, по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения п меньше синхронной частоты n1, активная составляющая тока ротора совпадает по фазе с индуцированной э. д. с. е2, при этом условные обозначения (крестики и точки) показывают одновременно и направление активной составляющей тока i2.
На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарная сила Fрез, приложенная ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента М тормозному, приложенному к валу от приводимого во вращение механизма и внутренних сил трения.
Э.д.с, индуцированная в проводниках обмотки ротора, зависит от частоты их пересечения вращающимся полем, т. е. от разности частот вращения магнитного поля n1 и ротора n. Чем больше разность n1— n, тем больше э. д. с. е2. Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающего момента является неравенство частот вращения n1 и n. Только при этом условии в обмотке ротора индуцируется э. д. с. и возникает ток i и электромагнитный момент М. По этой причине машина называется асинхронной (ротор ее вращается несинхронно с полем). Иногда ее называют индукционной ввиду того, что ток в роторе возникает индуктивным путем, а не подается от какого-либо внешнего источника.
Для характеристики отставания частоты вращения ротора двигателя от частоты вращения магнитного поля служит скольжение, его выражают в относительных единицах или процентах:
s = (n1— n) /n1 или s = [(n1— n) /n1] 100% (81)
Если, например, четырехполюсный двигатель имеет s = 4%, то частота вращения его ротора равна 1440 об/мин (частота вращения поля при частоте 50 Гц составляет 1500 об/мин, а отставание ротора от частоты поля равно 4 % от 1500 об/мин, т. е. 60 об/мин). В двухполюсном двигателе при s = 4% частота вращения ротора составляет 2880 об/мин (3000—0,04*3000 = 2880).
Частота вращения ротора, выраженная через скольжение,
n = n1(1 – s) (82)
По своей конструкции различают двигатели с фазным ротором (с контактными кольцами) и с короткозамкнутым ротором. Они имеют одинаковую конструкцию статора и отличаются выполнением ротора. Пусковые свойства этих двигателей различны.
Строительство, работа, различия и применение
В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также с асинхронным двигателем с их применением. Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.
Что такое асинхронный двигатель?
Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора.В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.
Асинхронный двигательЭто наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера.полюсов.
Конструкция асинхронного двигателя
В этой конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора.Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени. Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».
Конструкция асинхронного двигателяАсинхронный двигатель работает
Принцип работы этого двигателя почти такой же, как и у двигателя синхронного типа, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает электричество через проводимость, как в случае двигателей постоянного тока.У этих двигателей нет внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.
Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.
Разница между синхронным и асинхронным двигателем
Различия между синхронным и асинхронным двигателем указаны в следующей таблице.
Функция | Синхронный двигатель | Асинхронный двигатель |
Определение | Это один из видов машин, в котором скорость ротора и скорость магнитного поля статора эквивалентны. N = NS = 120f / P | Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью. N меньше NS |
Тип | Типы синхронных: переменное сопротивление, бесщеточный, гистерезисное и переключаемое сопротивление. | Асинхронный двигательAC также известен как асинхронный двигатель. |
Клинья | Значение скольжения этого двигателя равно нулю | Значение скольжения этого двигателя не равно нулю |
Стоимость | Дорого | Меньше стоимости |
КПД | Высокоэффективный | Низкоэффективный |
Скорость | Скорость двигателя не зависит от разницы в нагрузке. | Скорость двигателя уменьшается при увеличении нагрузки. |
Электропитание | Электропитание может подаваться на ротор двигателя | Ротор в этом двигателе не нуждается в токе. |
Самозапуск | Этот двигатель не запускается автоматически | Этот двигатель самозапускается |
Эффект крутящего момента | Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя | Как только приложенное напряжение изменится, это повлияет на крутящий момент этого двигателя |
Коэффициент мощности | Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. | Он просто работает с отстающим коэффициентом мощности. |
Приложения | Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве регулятора напряжения. | Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, лифтах, компрессорах, текстильных фабриках и т. Д. |
Преимущества
К преимуществам асинхронного двигателя можно отнести следующее.
- Стоимость за вычетом
- Простота обслуживания
- КПД высокий при работе с частичной нагрузкой
- Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER
Приложения
Большинство двигателей, используемых в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.
- Центробежные насосы
- Воздуходувки
- Вентиляторы
- Конвейеры
- Компрессоры
- Краны большой грузоподъемности
- Подъемники
- Станки токарные
- Бумажные фабрики
- Масляные заводы
- Текстиль
Часто задаваемые вопросы
1). Почему асинхронный двигатель еще называют асинхронным двигателем?
Асинхронный двигатель зависит от индуцированного тока внутри ротора от вращающегося магнитного поля в статоре.
2). Какие бывают типы асинхронных двигателей?
Это однофазные и трехфазные двигатели
3). В чем главная особенность асинхронного двигателя?
Основной особенностью этого двигателя является то, что скорость не может изменяться.
4). Каков коэффициент мощности асинхронного двигателя?
Этот мотор работает просто на отстающей п.ф.
Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?
Асинхронный двигатель| Асинхронный двигатель
Наиболее часто используемым двигателем в мире является асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте будет обсуждаться асинхронный двигатель (асинхронные двигатели), его типы, то есть однофазный, трехфазный, короткозамкнутый корпус, контактное кольцо и т. Д., Особенности, принцип работы, применение, преимущества и недостатки.
Что такое асинхронный двигатель (асинхронный двигатель)Асинхронный двигатель или асинхронный двигатель — это самый основной и распространенный тип электродвигателя, который имеет только обмотки Armortisseur , что означает вспомогательную обмотку только на якоре. В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя передает электромагнитное поле своей обмоткой на роторную часть двигателя. Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение.
Рис. 1 — Введение в асинхронный двигатель (асинхронный двигатель)
Он упоминается как «Асинхронный двигатель », поскольку он всегда будет работать со скоростью, меньшей, чем его синхронная скорость. Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.
Так как в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, существует задержка между токами в статоре и роторе.Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.
Рис. 2 — Детали асинхронного двигателя (асинхронный двигатель)
Конструкция асинхронного двигателя (асинхронный двигатель)
Он состоит в основном из двух частей, а именно:
Статор
Это стационарная часть электродвигатель. Эта часть обеспечивает электромагнитное поле, необходимое для вращения вращающейся части двигателя.Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена от другой обмотки на 120 градусов.
Ротор
Это вращающаяся часть двигателя. Более распространенный тип ротора в асинхронных двигателях (или асинхронных двигателях) — это ротор с короткозамкнутым ротором. Ротор имеет форму якоря с сердечником цилиндрической формы. Вокруг сердечника расположены параллельные прорези, через которые проходит ток. Сердечник имеет стержень из алюминия, меди или сплава.
Рис. 3 — Базовый ротор и статор
Типы асинхронных двигателей (асинхронных двигателей)Он подразделяется на два типа:
- Однофазный асинхронный двигатель
- Трехфазный асинхронный двигатель
- Двигатель с расщепленной фазой
- Двигатель с экранированными полюсами
- Конденсаторный пусковой двигатель
- Конденсаторный пусковой двигатель и конденсаторный двигатель
- Асинхронный двигатель с короткозамкнутым ротором
- Асинхронный двигатель с скользящим кольцом или двигатель с фазным ротором
- Здесь мы выделим некоторые характеристики, которые применимы только к однофазным асинхронным двигателям:
- Однофазные асинхронные двигатели не самозапускаются и используют однофазное питание для вращения.
- Чтобы изменить направление вращения в однофазных двигателях, лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, на которое необходимо изменить вращение.
- Для запуска двигателя вам потребуется конденсатор и / или центробежный переключатель.
- Пусковой крутящий момент у этих двигателей низкий.
- Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.
- Имеются три однофазных линии с разностью фаз 120 градусов.
- Он имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
- Пусковой момент у этих двигателей выше, чем у однофазных двигателей.
- Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.
Однофазный асинхронный двигатель
Однофазный асинхронный двигательне является самозапускающимся двигателем. Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток к основной обмотке.Поскольку источник переменного тока представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.
Пульсирующие магнитные поля — это два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор необходимо переместить в любом направлении извне, чтобы двигатель заработал. Однофазный индуктор отсюда; Могут быть разные разновидности в зависимости от устройства, которое используется для запуска двигателя, а именно:
Фиг.4 — Принципиальная схема (a) Однофазного (b) Трехфазного асинхронного двигателя
Трехфазного асинхронного двигателя (асинхронного двигателя)
Эти двигатели не требуют каких-либо внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка для запуск. Принцип работы этого двигателя основан на использовании трех однофазных фаз, разность фаз между которыми составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разность фаз между ними, это заставит ротор двигаться без какого-либо внешнего крутящего момента.
Для дальнейшего упрощения предположим, что это три фазы: phase1, phase2 и phase3. Итак, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого будет возбуждена фаза 2, и тогда ротор будет притягиваться к фазе 2, а затем, наконец, к фазе 3. Таким образом, ротор продолжит вращаться.
Далее они подразделяются на категории в зависимости от типа используемого ротора:
Асинхронный двигатель с короткозамкнутым ротором
В этом типе ротор имеет форму Беличья клетка, отсюда и название.Ротор изготовлен из стали с очень токопроводящими металлами, такими как алюминий и медь на его поверхности. Скорость асинхронного двигателя этого типа очень легко изменить, просто изменив форму стержней в роторе.
Рис. 5 — Асинхронный двигатель с короткозамкнутым ротором
Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором
Он также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключен к внешнему сопротивлению через контактные кольца.Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку этот двигатель имеет больше обмоток, чем асинхронный двигатель с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.
Рис. 6 — Асинхронный двигатель с контактным кольцом
Характеристики асинхронного двигателя (асинхронный двигатель)Ниже приведены характеристики двух различных типов асинхронных двигателей.
Характеристики однофазного асинхронного двигателяНиже перечислены некоторые особенности трехфазного асинхронного двигателя, которые отличает его от однофазного двигателя: специальные закуски.
Явление, которое заставляет асинхронные двигатели работать, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно для статора, а другое для ротора.Но в этих двигателях мы должны отдавать это только статору, что делает это уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте предпримем ряд шагов, которые происходят при вращении этого двигателя:
- Питание подается на обмотки статора, возникает ток и создается магнитный поток.
- Обмотка в роторе устроена таким образом, что каждая катушка закорачивается.
- Короткозамкнутая обмотка ротора обрезается магнитным потоком статора.
Рис. 7 — Работа асинхронного двигателя
Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущую силу). Итак, в соответствии с этим законом в катушках ротора начинает течь ток.
- Ток в роторе генерирует другой поток.
- Теперь есть два потока, один в статоре, а другой в роторе.
- Поток ротора отстает от магнитного потока статора, что создает крутящий момент в роторе в направлении магнитного поля.
Области применения включают:
- Они широко используются в смесителях, игрушках, вентиляторах и т. Д.
- Они также используются в насосах и компрессорах.
- Малые асинхронные двигатели используются в электробритвах.
- Они используются в сверлильных станках, лифтах, кранах и дробилках.
- Они подходят для приводов текстильных фабрик и маслоэкстракционных заводов.
Ниже приведены некоторые преимущества асинхронных двигателей:
- Высокоэффективный и простой в конструкции.
- Очень прочный и может работать в любых условиях.
- Низкие эксплуатационные расходы, поскольку в них не так много деталей, как коммутаторы или щетки.
- Они могут развивать очень высокую скорость, не беспокоясь о том, что они износятся, поскольку у них нет щеток.
- Они просты в эксплуатации, поскольку к ротору не подключены электрические разъемы.
- Поскольку у них нет щеток, искры не боятся, поэтому их можно использовать в загрязненных или взрывоопасных средах.
- Скорость от малой нагрузки до номинальной изменяется меньше.
Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, перечисленных ниже. контроль скорости.
См. Также: Видео на Youtube по асинхронным двигателям
Также прочтите: Маховик как накопитель энергии, расчеты и требования к ротору Повышающий трансформатор - работа, конструкция, применение и преимущества Синхронный двигатель - конструкция, принцип, типы, характеристики Что такое токоизмерительные клещи (клещевые щупы) - типы, принцип работы и правила эксплуатации Асинхронный двигатель
: как он работает? (Основы и типы)
Что такое асинхронный двигатель?
Асинхронный двигатель (также известный как асинхронный двигатель ) — широко используемый электродвигатель переменного тока.В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.
Асинхронные двигатели называют «асинхронными двигателями», потому что они работают со скоростью, меньшей, чем их синхронная скорость. Итак, первое, что нужно понять — что такое синхронная скорость? Типичный асинхронный двигатель
Синхронная скорость
Синхронная скорость — это скорость вращения магнитного поля во вращающейся машине, и она зависит от частоты и числа полюсов двигателя. машина.Асинхронный двигатель всегда работает со скоростью меньше, чем его синхронная скорость.
Вращающееся магнитное поле, создаваемое в статоре, создает магнитный поток в роторе, следовательно, заставляя ротор вращаться. Из-за запаздывания между магнитным потоком в роторе и магнитным потоком в статоре ротор никогда не достигнет своей скорости вращения магнитного поля (т. Е. Синхронной скорости).
Существует два основных типа асинхронных двигателей . Типы асинхронных двигателей зависят от входного источника питания.Есть однофазные асинхронные двигатели и трехфазные асинхронные двигатели. Однофазные асинхронные двигатели не являются самозапускающимися двигателями, а трехфазные асинхронные двигатели — самозапускающимися двигателями.
Принцип работы асинхронного двигателя
Нам нужно дать двойное возбуждение, чтобы двигатель постоянного тока вращался. В двигателе постоянного тока мы подаем одно питание на статор, а другое — на ротор через щеточное устройство. Но в асинхронном двигателе мы даем только один источник питания, поэтому интересно узнать, как работает асинхронный двигатель.
Это просто, из самого названия мы можем понять, что здесь задействован процесс индукции. Когда мы подаем питание на обмотку статора, в статоре создается магнитный поток из-за протекания тока в катушке. Обмотка ротора устроена так, что каждая катушка замыкается накоротко.
Поток от статора разрезает короткозамкнутую катушку в роторе. Поскольку катушки ротора закорочены, согласно закону электромагнитной индукции Фарадея, ток начнет течь через катушку ротора.Когда ток через катушки ротора течет, в роторе генерируется другой поток.
Теперь есть два потока, один поток статора, а другой поток ротора. Поток ротора будет отставать от потока статора. Из-за этого ротор будет ощущать крутящий момент, который заставит ротор вращаться в направлении вращающегося магнитного поля. Это принцип работы как однофазных, так и трехфазных асинхронных двигателей.
Типы асинхронных двигателей
Типы асинхронных двигателей можно классифицировать в зависимости от того, являются ли они однофазными или трехфазными асинхронными двигателями.
Однофазный асинхронный двигатель
Типы однофазных асинхронных двигателей включают:
- Асинхронный двигатель с разделенной фазой
- Асинхронный двигатель с конденсаторным запуском
- Асинхронный двигатель с конденсаторным запуском и конденсаторным запуском
- Трехфазный асинхронный двигатель с экранированными полюсами
Асинхронный двигатель
Типы трехфазных асинхронных двигателей включают:
- Асинхронный двигатель с короткозамкнутым ротором
- Асинхронный двигатель с контактным кольцом
Мы уже упоминали выше, что однофазный асинхронный двигатель не является самозапускаемым двигателем, и что трехфазный асинхронный двигатель самозапускается.Итак, , что такое самозапускающийся двигатель?
Когда двигатель запускается автоматически без приложения какой-либо внешней силы к машине, тогда двигатель называется «самозапуском». Например, мы видим, что когда мы включаем выключатель, вентилятор начинает вращаться автоматически, так что это самозапускающийся механизм.
Следует отметить, что вентилятор, используемый в бытовой технике, представляет собой однофазный асинхронный двигатель, который по своей природе не запускается автоматически. Как? Возникает вопрос, как это работает? Обсудим это сейчас.
Почему трехфазный асинхронный двигатель самозапускается?
В трехфазной системе есть три однофазные линии с разностью фаз 120 °. Таким образом, вращающееся магнитное поле имеет ту же разность фаз, которая заставляет ротор двигаться.
Если мы рассмотрим три фазы a, b и c, когда фаза a намагничивается, ротор будет двигаться к фазе a обмотки a, в следующий момент фаза b намагнитится и притянет ротор, а затем фаза c . Таким образом, ротор продолжит вращаться.
Принцип работы трехфазного асинхронного двигателя — видео
Почему однофазный асинхронный двигатель не запускается автоматически?
У него только одна фаза, но она заставляет ротор вращаться, так что это довольно интересно. Перед этим нам нужно знать, почему однофазный асинхронный двигатель не является самозапускающимся двигателем и как решить эту проблему. Мы знаем, что источник переменного тока представляет собой синусоидальную волну и создает пульсирующее магнитное поле в равномерно распределенной обмотке статора.
Так как мы можем принять пульсирующее магнитное поле как два противоположно вращающихся магнитных поля, при пуске не будет результирующего крутящего момента, и, следовательно, двигатель не работает. Если после подачи питания ротор вращается в любом направлении под действием внешней силы, то двигатель начнет работать. Эту проблему можно решить, разделив обмотку статора на две обмотки — одна основная обмотка, а другая вспомогательная.
Один конденсатор подключаем последовательно со вспомогательной обмоткой.Конденсатор будет создавать разность фаз, когда ток течет через обе катушки. Когда есть разность фаз, ротор генерирует пусковой крутящий момент, и он начинает вращаться.
Практически мы видим, что вентилятор не вращается, когда конденсатор отсоединяется от двигателя, но если мы вращаем рукой, он начинает вращаться. Вот почему мы используем конденсатор в однофазном асинхронном двигателе.
Из-за различных преимуществ асинхронного двигателя существует широкий спектр применения асинхронного двигателя.Одно из их самых больших преимуществ — их высокий КПД, который может доходить до 97%. Основным недостатком асинхронного двигателя является то, что скорость двигателя зависит от приложенной нагрузки.
Направление вращения асинхронного двигателя можно легко изменить, изменив последовательность фаз трехфазного источника питания, то есть, если RYB находится в прямом направлении, RBY заставит двигатель вращаться в обратном направлении. Это в случае трехфазного двигателя, но в однофазном двигателе направление можно изменить, поменяв местами выводы конденсатора в обмотке.
Принцип работы асинхронного двигателя
Двигатель, работающий по принципу электромагнитной индукции , известен как асинхронный двигатель. Электромагнитная индукция — это явление, при котором электродвижущая сила индуцирует электрический проводник, когда он находится во вращающемся магнитном поле.
Статор и ротор — две важные части двигателя. Статор является неподвижной частью, и он несет перекрывающиеся обмотки, в то время как ротор несет основную обмотку или обмотку возбуждения.Обмотки статора равномерно смещены друг от друга на угол 120 °.
Асинхронный двигатель — это двигатель с одним возбуждением, то есть питание подается только на одну часть, то есть на статор . Термин «возбуждение» означает процесс создания магнитного поля на частях двигателя.
Когда на статор подается трехфазное питание, на нем создается вращающееся магнитное поле. На рисунке ниже показано вращающееся магнитное поле, созданное в статоре:
Считайте, что вращающееся магнитное поле индуцирует против часовой стрелки.Вращающееся магнитное поле имеет подвижные полярности. Полярность магнитного поля меняется в зависимости от положительного и отрицательного полупериода питания. Изменение полярности заставляет магнитное поле вращаться.
Проводники ротора неподвижны. Этот неподвижный проводник отсекает вращающееся магнитное поле статора, и из-за электромагнитной индукции в роторе возникает ЭДС. Эта ЭДС известна как ЭДС, индуцированная ротором, и возникает из-за явления электромагнитной индукции.
Проводники ротора закорачиваются либо концевыми кольцами, либо с помощью внешнего сопротивления. Относительное движение между вращающимся магнитным полем и проводником ротора индуцирует ток в проводниках ротора. Когда ток течет по проводнику, на нем наводится магнитный поток. Направление потока ротора такое же, как и направление тока ротора.
Теперь у нас есть два потока: один из-за ротора, а другой из-за статора. Эти потоки взаимодействуют друг с другом.На одном конце проводника потоки нейтрализуют друг друга, а на другом конце плотность потока очень высока. Таким образом, поток высокой плотности пытается подтолкнуть проводник ротора к области потока низкой плотности. Это явление вызывает крутящий момент на проводнике, и этот крутящий момент известен как электромагнитный крутящий момент.
Направление электромагнитного момента и вращающегося магнитного поля одинаковы. Таким образом, ротор начинает вращаться в том же направлении, что и вращающееся магнитное поле.
Скорость ротора всегда меньше вращающегося магнитного поля или синхронной скорости. Ротор пытается вращаться со скоростью ротора, но всегда ускользает. Таким образом, двигатель никогда не работает со скоростью вращающегося магнитного поля, и по этой причине асинхронный двигатель также известен как асинхронный двигатель.
Почему ротор никогда не работает с синхронной скоростью?
Если скорость ротора равна синхронной скорости, относительного движения между вращающимся магнитным полем статора и проводниками ротора не происходит.Таким образом, на проводнике не наводится ЭДС, и в нем возникает нулевой ток. Без тока крутящий момент также не создается.
По вышеуказанным причинам ротор никогда не вращается с синхронной скоростью. Скорость ротора всегда меньше скорости вращающегося магнитного поля.
В качестве альтернативы принцип работы асинхронного двигателя можно также объяснить следующим образом.
Давайте разберемся в этом, рассмотрев единственный проводник на неподвижном роторе.Этот проводник рассекает вращающееся магнитное поле статора. Учтите, что вращающееся магнитное поле вращается по часовой стрелке. Согласно закону электромагнитной индукции Фарадея, в проводнике индуцируется ЭДС.
Когда цепь ротора замыкается внешним сопротивлением или концевым кольцом, ротор индуцирует ЭДС, которая вызывает ток в цепи. Направление индукционного тока ротора противоположно направлению вращающегося магнитного поля. Ток ротора индуцирует магнитный поток в роторе.Направление потока ротора такое же, как у тока.
Взаимодействие потоков ротора и статора создает силу, которая действует на проводники ротора. Сила действует на ротор по касательной и, следовательно, вызывает крутящий момент. Крутящий момент толкает проводники ротора, и, таким образом, ротор начинает двигаться в направлении вращающегося магнитного поля. Ротор начинает движение без какой-либо дополнительной системы возбуждения, поэтому двигатель называется самозапускающимся двигателем .
Работа двигателя зависит от напряжения, наведенного на ротор, поэтому он называется асинхронным двигателем .
Каков принцип работы асинхронного двигателя | by Starlight Generator
Асинхронный двигатель
Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.
Статор — это не вращающаяся часть двигателя. Основная задача — создать вращающееся магнитное поле. Вращающееся магнитное поле не достигается механически. Вместо этого он соединен с парой электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.
Принцип работы
Вращающееся магнитное поле, создаваемое статором (скорость вращения — это синхронная скорость вращения n1) и относительное движение обмотки ротора, линия магнитной индукции, режущая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора.Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный крутящий момент также соответственно уменьшается. Когда асинхронный двигатель работает в режиме двигателя, скорость ротора меньше синхронной скорости.
Разница между синхронным двигателем и асинхронным двигателем
Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. Напротив, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.
Маленькие синхронные двигатели используются в системах хронометража, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости — это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.
Синхронные двигатели доступны от самовозбуждающихся субфракционных размеров в лошадиных силах до мощных промышленных размеров.
Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]
В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и тем самым обеспечивать коррекцию коэффициента мощности.
Каков принцип работы трехфазного асинхронного двигателя?
Электродвигатель преобразует электрическую энергию в механическую, которая затем подается на различные типы нагрузок. Двигатели переменного тока работают от А.C. питания, и они подразделяются на синхронные, однофазные и трехфазные асинхронные двигатели и двигатели специального назначения. Из всех типов трехфазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что для них не требуется пусковое устройство.
Трехфазный асинхронный двигатель получил свое название от того факта, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.
Принцип действия трехфазного асинхронного двигателя основан на создании вращающегося магнитного поля (r.м.ф.).
Создание вращающегося магнитного поля
Статор асинхронного двигателя состоит из нескольких перекрывающихся обмоток, смещенных на электрический угол 120 °. Когда первичная обмотка или статор подключены к трехфазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.
Направление вращения двигателя зависит от последовательности фаз линий питания и порядка, в котором эти линии подключены к статору.Таким образом, изменение мест подключения любых двух первичных клемм к источнику питания изменит направление вращения на противоположное.
Число полюсов и частота приложенного напряжения определяют синхронную скорость вращения статора двигателя. Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость, термин, обозначающий скорость вращения поля, создаваемого первичными токами, определяется следующим выражением.
Синхронная скорость вращения = (120 x частота питания) / Число полюсов статора
Производство магнитного потока
Вращающееся магнитное поле в статоре — это первая часть работы.Чтобы создать крутящий момент и, таким образом, вращаться, роторы должны пропускать ток. В асинхронных двигателях этот ток исходит от проводников ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает токопроводящие стержни ротора и индуцирует электродвижущую силу (ЭДС).
Обмотки ротора асинхронного двигателя либо замкнуты через внешнее сопротивление, либо напрямую закорочены. Следовательно, ЭДС, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к скручивающему движению или крутящему моменту в роторе.
Как следствие, скорость ротора не достигает синхронной скорости среднеквадратичного значения статора. Если бы скорости совпадали, ЭДС не было бы. индуцированный в роторе, ток не будет течь, и, следовательно, не будет создаваться крутящий момент. Разница между скоростями статора (синхронной скорости) и ротора называется скольжением.
Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.
В результате получается мотор:- Самозапускающийся
- Взрывозащищенный (из-за отсутствия контактных колец или коммутаторов и щеток, которые могут вызвать искрение)
- Прочная конструкция
- Недорого
- Легче в обслуживании
Электродвигатель | Британника
Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.
Принцип работы асинхронного двигателя может быть разработан, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке ток в фазе a является максимально положительным, а в фазах b и c — это половина отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасВращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора для моментов времени t 1 . Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.
Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.
Британская энциклопедия, Inc.Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей для создания магнитного поля и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.
Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.
За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.
В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.
Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °.