Преобразователь частоты двигателя: Преобразователи частоты для асинхронного двигателя купить по выгодной цене

Содержание

Что такое преобразователь частоты и для чего он нужен?

Для регулирования работы асинхронного двигателя с целью не допустить снижения его КПД применяют специальные устройства – частотные преобразователи. Их работа заключается в том, что они плавно изменяют скорость вращения двигателя, с помощью смены частоты питающего напряжения.

В данной статье мы постараемся рассмотреть ряд незаметных, на первый взгляд, особенностей в работе асинхронного электродвигателя и проанализируем, насколько важно в ходе его эксплуатации использовать частотный преобразователь.

Что может привести к неисправности?

В асинхронном двигателе напряжение для работы чаще всего поступает через последовательно включенный автоматический выключатель. То сесть данный способ запуска двигателя по другому называется — плавный пуск. Таким образом это провоцирует высокий рост тока пусковой обмотки, что для оборудования закончится весьма плачевно.

Частотный преобразователь имеет к этому важное отношение – он контролирует ток электродвигателя. Формируя необходимое напряжение нужной амплитуды и частоты, частотник подает их на двигатель. Поясним – в процессе его запуска преобразователь отдает не полную частоту, скажем, в 50 Герц, а где-то 0,1Гц (или чуть больше). То же самое и с напряжением – не все 220 В или 380 В, а около 20-30 (смотря, какие выставлены настройки).

Принцип работы преобразователя частоты для электродвигателя

Все это позволяет пропускать через обмотку статора ток оптимального значения, не выше номинального показателя, чтобы создать магнитное поле, которое, в свою очередь, вместе с созданным в обмотке током создаст крутящий момент. Что касается принципов изменения характеристик напряжения, то подробно об этом, а также о критериях выбора частотника, вы можете прочесть здесь, в одной из других наших статей. Кстати, если говорить о критериях выбора, то отметим также, что выходные токи преобразователя частоты должны быть ниже тока полного режима нагрузки.

Выше мы описывали старт двигателя. Что касается разгона, то в ходе этого процесса преобразователь плавно повышает частоту и величину поступаемого напряжения, тем самым разгоняя двигатель. Главное – настроить частотник таким образом, чтобы времени на разгон уходило как можно меньше, а ток обмотки статора не был выше её номинального значения. Кроме того, важно поддерживать достаточный крутящий момент на валу.

Почему без преобразователя не обойтись? Главные преимущества его использования

Итак, преобразователь частоты дает следующие преимущества при управлении асинхронным двигателем:

  1. Плавный пуск и остановка электропривода
  2. Управление производительностью оборудования
  3. Установка оптимальных режимов работы
  4. Взаимное согласование электроприводов в сложных системах

Самые важные – это 1 и 2 пункты. Почему именно они?

Плавный пуск позволяет наращивать скорость постепенно, что позволяет не допустить скачков тока. Неконтролируемые скачки опасны, так как при прямом пуске они превышают номинальные показатели в 5-7 раз, что может спровоцировать высокую нагрузку на электросеть, защитит оборудование от перегрузок и сэкономит деньги на затратах электроэнергии.

Что касается управления производительностью, то в этом случае преобразователь частоты контролирует скорость работы электродвигателя с учетом «реальных нужд» в системе в целом. Это также помогает напрасно не тратить энергию и гарантирует её экономию в 30-60%.

Помимо 4-х основных преимуществ описанных выше, использование преобразователя обеспечивает следующие преимущества:

  • Понижение величины пусковых токов в 4-6 раз
  • Регулировка частоты и напряжения с экономией до 50% электроэнергии
  • Самостоятельное выключение контактора, снятие напряжения и с его плавной подачей в звено постоянного тока
  • Устранение ударных нагрузок, защита двигателя от механической перегрузки, либо недогрузки
  • Понижение общего числа ненужных отключений при ударных нагрузках
  • Обеспечение нужной величины и частоты при запуске оборудования, поддержание обратной связи смежных приводов
  • Контроль скорости вращения ротора и анализ работы двигателя

Классификация частотных преобразователей

В первую очередь, данные устройства различаются по режимам работы:

  • Амплитудно-частотное регулирование (скалярное) – применяются в обычных установках с вентиляторами, насосами, тележками, транспортерами и т.д. где не требуется стабилизация оборотов двигателя
  • Векторное регулирование – используются на любом оборудовании, где возможны резкие изменения крутящего момента на валу, причем в большом диапазоне и где нужна высокая стабильность оборотов на валу электродвигателя.

По типу питания:

  • Низковольтный 0,4 кВ
  • Среднее напряжение 0,69 кВ
  • Высоковольтный 6 и 10 кВ

Также данные устройства бывают с промежуточным звеном (связью) и без него. О характере работы таких устройств читайте тут, в ещё одной нашей статье.

Настройка

Настройка преобразователей выполняется строго по инструкции производителя и с учетом особенностей задачи, которая решается посредством оборудования, в котором установлен двигатель.

Например, если применяется асинхронный двигатель скалярного типа, то амплитуду сигнала и выходную частоту устанавливают по определенной формуле. Для других видов двигателя обычно используют датчики скорости вращения вала двигателя. Последовательность этапов алгоритма настройки мы перечислили здесь, в другом нашем материале.

Можно ли отказаться от частотных преобразователей?

Можно. Но лучше этого не делать. Безусловно, скорость вращения можно также регулировать и при помощи гидравлической муфты или механического вариатора и других. Но данные приспособления неэкономичны (а в промышленности это крайне важно!), у них узкий диапазон регулирования, что доставляет серьезные неудобства в ходе эксплуатации, а также они гораздо быстрее выйдут из строя. 

Итоги: почему нужно использовать преобразователи частоты?

Вот основной перечень преимуществ для работы оборудования, которые вы получаете, используя преобразователи:

  • Плавный пуск и плавную остановку оборудования
  • Эффективную защиту от перегрузок и бросков напряжения
  • Возможность эксплуатации оборудования с большими номинальными сетевыми напряжениями и токами
  • Понижение энергопотребления
  • Стабильность технологического процесса и улучшение КПД

Итак, это наиболее важная информация о частотных преобразователях, которую мы хотели до вас донести. В завершение скажем о том, от чего зависит стоимость и на что стоит обращать внимание при выборе. Это такие факторы, как марка производителя, модель и тип управления преобразователем. Также стоит обращать внимание при выборе на тип и уровень мощности двигателя, его диапазон и точность, а также степень точности поддержки крутящего момента.


Преобразователи частоты для асинхронных двигателей

До появления частотных преобразователей на рынке современной энергетики, электромонтёрам приходилось применять для подключения асинхронного двигателя стартовый или фазосдвигающий конденсатор большой ёмкости.

Двигатель при этом работал, но существенно терял мощность. Также, применение конденсаторов сильно разогревало обмотки двигателя, что сильно снижало его ресурс работы, и двигатели часто приходилось «перематывать». Учитывая, что обмотки асинхронного двигателя делаются из медной проволоки, то такие ремонты приносили большой ущерб.

Так как асинхронный двигатель является составной частью почти каждого современного привода, то вопрос создания частотного регулирования вставал на особый уровень. И вот, частотники уже повсеместно применяются для подключения электрического двигателя к сети и его управление.

По сути, частотный инвертор, это прибор, изменяющий частоту поданного на обмотки напряжения с ШИМ-регулированием. Благодаря частотнику, получилось подключить асинхронный двигатель к сети без ущерба его ресурсу, без перегрева, и ещё дать массу возможностей по управлению скоростью вращения вала.

Также, применяя различные интерфейсы передачи данных и команд, применение частотников позволило объединить все приводы большого предприятия в одно диспетчерскую систему управления и контроля параметров.

В мир современной автоматизации технологических процессов, это весомый аргумент.

Устройство частотных преобразователей

Современный частотный инвертер состоит из двух принципиальных блоков. Первый блок полностью сглаживает напряжение и на выходе выдаёт постоянное. Постоянное напряжение подаётся на силовой блок генерации частоты. После преобразования, на выходе из второго блока частота напряжения уже будет такая, какая задана настройкой.

За возможность изменять частоту напряжения отвечает микропроцессор, который встроен в частотник. Используя заданную программу, процессор следит за выходной частотой напряжения, а также за параметрами работы электрического двигателя.

По сути, частотные преобразователи для асинхронных двигателей принцип работы которых заключён в простом вырабатывании нужной частоты переменного тока, это модуляторы нужной природы напряжения, которая необходима для того или иного оборудования. Именно это и снизило негативное влияние на работу электрического двигателя, которое имело место быть при использовании конденсатов.

Электрический двигатель получает именно такое напряжение, которое положено ему для нормальной и полноценной работы.

Считаем нужным отметить, что и при наличии линии трёхфазного напряжения, не всегда рационально подключать электрический двигатель к сети просто через выключатель. В таком случае, двигатель будет работать, но регулировать его работу не получится. Не получится и следить за состоянием обмоток.

В промышленном исполнении можно встретить два основных типа частотных преобразователей:

  • Специальные.
  • Универсальные.

Специальный частотный преобразователь для асинхронного двигателя, схема которого несколько отличается от универсального, изготавливается под конкретное оборудование по конкретным потребностям. Как правило, это очень урезанные версии, не способные на работу с любым оборудованием.

Универсальные частотные инвертера могут работать, как и в специальном оборудовании, так и во всех остальных вариантах применения. На то они и универсальные, что их можно настраивать и программировать под любые нужды.

Поэтому, выбор частотного преобразователя для асинхронного двигателя должен быть не столько продиктован конкретными необходимостями производства, но и возможностью модернизации оборудования.

Практически во всех частотниках сегодня реализована возможность установки и контроля режима работы электрического двигателя с пульта управления. Первый интерфейс управления встроен в сам корпус частотника. Там же есть и ручка регулирования скорости вращения двигателя.

Но можно и применять выносные пульты управления. Которые можно располагать как в диспетчерской, так и непосредственно на станке, который приводится в движение электрическим двигателем.
Такое чаще встречается в ситуациях, когда станок с двигателем находится в помещении, где не рекомендуется установка частотного инвертора. И его устанавливают вдали от оборудования.

Большая часть инвертеров частоты позволяют программировать работу оборудования. Но, задать программу просто с пульта управления не получится. Для этого используется интерфейс передачи данных и настройки, который, при помощи компьютера позволяет задать нужную программу работы.

Разница типов сигналов управления

При проектировании цеха очень важно учитывать, что общение частотных преобразователей с диспетчерским пультом будет происходить при помощи электрических импульсов по проводам связи. Пи этом, не стоит забывать, что разные стандарты связи по-разному влияют друг на друга. Посему, переда данных одним способом, может существенно снижать качество передачи данных другим способом.
Поэтому, расчет частотного преобразователя для асинхронного двигателя должен производиться не только по его электротехническим показателям, но и по показателям совместимости с сетью.

Выбор мощности частотного преобразователя

Вопрос мощности частотника, скорее всего, стоит на первом плане, при расчете привода для любого станка или агрегата. Дело в том, что большинство частотных инвертеров способны выдерживать большие перегрузки до 200 – 300 %. Но, это совсем не означает, что для питания электрического двигателя можно смело покупать частотник сегментом ниже, чем требуется по планированию.

Выбор мощности частотного преобразователя осуществляется с обязательным запасом в 20 – 30%. Игнорирование этого правила может повлечь за собой выход из строя частотного преобразователя и простой оборудования.

Также важно учитывать пиковые нагрузки, которые может выдерживать частотник. Дело в том, что при старте электрического двигателя его пусковые токи могут сильно превышать номинальные. В некоторых случаях, пусковой ток превышает номинальный в шесть раз! Частотик должен быть рассчитан на такие изменения.

Каждый электрический двигатель оборудован вентилятором охлаждения. Это лопасти, которые установлены в задней части двигателя и по мере вращения вала прогоняют через корпус мотора воздух.

Если электрический двигатель работает на пониженных оборотах, то мощности потока воздуха может не хватить для охлаждения.

В этом случае, нужно выбирать частотник с датчиками температуры двигателя. Или организовать дополнительное охлаждение.

Электромагнитная совместимость преобразователей частоты

При расчёте и подключении частотника к сети и электрическому двигателю, следует помнить, что он очень подвержен помехам. Также, преобразователь частоты может и сам стать источником помех для другого оборудования. Именно поэтому, все подключения к частотнику и от него выполняются экранированными кабелями и выдерживанием дистанции в 10 см друг от друга.

По своей сути, применение частного преобразователя для питания асинхронного электрического двигателя позволило существенно продлить жизнь электрического двигателя, дало возможность регулировать работу двигателя и хорошо экономить на расходе электрической энергии.

Частотник, частотный преобразователь1ф 220 — 3ф220 для асинхронного электродвигателя


Watch this video on YouTube

Преобразователь частоты для асинхронного двигателя

Назначение частотного преобразователя для асинхронных двигателей


Использование механических устройств для регулирования может привести к ударным пусковым нагрузкам, которые окажут отрицательное влияние на их эксплуатационный срок, а также приведут к существенным энергопотерям.


     Чтобы исключить перечисленные отрицательные влияния на промышленное оборудование, была создана возможность заменить механическое регулирование на электронное. Достичь этого удалось в результате серьезных исследовательских работ.


     Так, появился преобразователь частот нового класса, предназначенный специально для асинхронных двигателей.


     Это https://techtrends.ru/catalog/preobrazovateli-chastoty/» target=»_blank»>частотные преобразователи для асинхронных двигателей с широтно-импульсным управлением (ШИМ), которые снижают пусковой ток в 4-5 раз. А также позволяют осуществить плавный пуск асинхронного двигателя. При этом управление приводом осуществляется по формуле напряжение/частота.


     Преобразователь частоты для асинхронного двигателя позволяет экономить электроэнергию на 50%. Также благодаря использованию частотника становится возможной обратная связь между смежными приводами, следовательно, оборудование самонастраивается на выполнение поставленных задач и изменяются условия работы всей системы.


Принцип работы


     Преобразователь частоты для асинхронного двигателя с ШИМ, по сути, является инвентором с двойным преобразованием напряжения.


     Входной диодный мост выпрямляет сетевое напряжение 220 или 380В, а затем сглаживает и фильтрует его посредством конденсатора.


     Далее посредством входных мостовых ключей и микросхем из постоянного напряжения формируется последовательность электрических сигналов определенной частоты и скважности. Таким образом, на выходе из частотного преобразователя образуются пучки прямоугольных импульсов. Однако, благодаря индуктивности обмоток асинхронного двигателя, они превращаются в напряжение, схожее с синусоидным.


     В устройстве также имеется микропроцессор, который дает возможность выполнять такие задачи, как:



        
  • контроль выходных параметров;

  •     
  • защита системы;

  •     
  • диагностика состояния подаваемого тока.



     Большинство преобразователей частоты для асинхронных двигателей построены на основе двойного преобразования. Среди них выделяют два основных класса:



        
  • с созданием промежуточного звена;

  •     
  • с непосредственной связью.


     Каждый из видов частотников предназначен для работы в определенных условиях, которые диктуют выбор и целесообразность использования в конкретной ситуации.


     Выпрямители управляемого типа обеспечивают непосредственную связь, отпирая группы тиристоров, и обеспечивают подвод напряжения к обмотке электродвигателя.


     Преобразование напряжения в данном случае осуществляется посредством вырезания синусоид из входного тока. При этом полученная частота находится в диапазоне от 0 до 30Гц. Для регулируемых приводов этот вариант использования не подходит.


     Для использования незапираемых тиристоров необходимо создание более сложной системы управления, которая повышает стоимость создаваемой цепи.


     В противном случае, синусоида при входе может привести:



        
  • к появлению гармоник;

  •     
  • к потерям в электродвигателе;

  •     
  • к перегреву электродвигателя;

  •     
  • к снижению показателя крутящего момента;

  •     
  • к образованию сильных помех.


     Помимо этого, компенсаторы повышают стоимость цепи, габаритов и веса, а потери снижают КПД.


     К другому классу относятся цепи питания, где используются частотные преобразователи для асинхронных двигателей с промежуточным звеном. Они обеспечивают преобразование электрического тока в два этапа.


     На первом этапе синусоидное напряжение с постоянной частотой и амплитудой преобразуется посредством выпрямления. При этом применяются специальные фильтры, сглаживающие показатели.


     На втором этапе посредством инвертора на выходе происходит преобразование энергии с изменяемым показателем частоты и амплитуды.


     Это приводит:



        
  • к снижению КПД;

  •     
  • к ухудшению показателей соотношения массы и габаритов устройства.


     Частотные преобразователи для асинхронных двигателей, работающие как тиристор, имеют следующие преимущества:



        
  • обеспечивают возможность работы в системах с большими показателями тока;

  •     
  • такая система предназначена для использования там, где имеются большие показатели тока;

  •     
  • они устойчивы к большим нагрузкам и импульсному воздействию;

  •     
  • обеспечивают высокий КПД, достигающий 98 %.


     Мы перечислили все особенности каждого типа преобразователей частоты для асинхронных двигателей, теперь, попробуем выяснить, на чем следует основываться при выборе частотника.


Критерии выбора


     Преобразователи частоты для асинхронных двигателей следует использовать лишь с учетом их технических характеристик.


     Важными характеристиками, на которые необходимо обратить внимание, являются следующие:



        
  1. Диапазон напряжения подаваемого тока. Сегодня существуют модели частотников, работающие при различном напряжении. Диапазон напряжения может составлять 100-120В или 200-240В. Исходя из этого показателя, следует выбирать преобразователь.

  2.     
  3. Номинальная мощность электродвигателя, которая измеряется в кВт.

  4.     
  5. Полная мощность электродвигателя.

  6.     
  7. Номинальный выходной ток.

  8.     
  9. Выходное напряжение, которое часто не превышает показатель напряжения источника питания, а иногда бывает и меньше.

  10.     
  11. Диапазон выходной частоты.

  12.     
  13. Допустимая сила тока на выходе.

  14.     
  15. Частота тока при входе.

  16.     
  17. Максимальный показатель отклонений, который допускается при определенных условиях.


     Эти параметры указываются в документации к преобразователю, и их необходимо учитывать. В противном случае, например, если не учтен показатель напряжения подаваемого тока, то устройство выйдет из строя.



Способы подключения


     Выбор варианта подключения преобразователя частоты для асинхронных двигателей зависит от цели его применения, например, необходимости обеспечения более легкого пуска или необходимости регулировки частоты вращения двигателя.


     Наиболее простой схемой подключения является установка автомата отключения перед частотником. При этом автомат должен быть рассчитан на номинальную величину напряжения, потребляемого электродвигателем.


     Поскольку большинство двигателей питаются от трехфазной сети, то можно выбрать трехфазный автомат, который обеспечивает отключение двух фаз в случае, когда происходит короткое замыкание в одной из фаз.


     При использовании однофазного частотного преобразователя для асинхронных двигателей, следует установить автомат, рассчитанный на утроенный ток в одной фазе.


     После установки автомата, следует осуществить подключение фазных проводов к клеммам двигателя, а также подключить в цепь тормозной ресивер. После частотного преобразователя в цепь устанавливается вольтметр, который измеряет напряжение на выходе.


     Для того чтобы осуществить правильное подключение частотного преобразователя, следует изучить инструкцию, которая прилагается к моделям частотников. Точное соблюдение инструкции позволит легко осуществить подключение преобразователя частоты к электродвигателю.

Преобразователи частоты | INSTART

Данная политика конфиденциальности относится к сайту под доменным именем instart-info.ru. Эта страница содержит сведения о том, какую информацию мы (администрация сайта) или третьи лица могут получать, когда вы пользуетесь нашим сайтом.

Данные, собираемые при посещении сайта

Персональные данные

Персональные данные при посещении сайта передаются пользователем добровольно, к ним могут относиться: имя, фамилия, отчество, номера телефонов, адреса электронной почты, адреса для доставки товаров или оказания услуг, реквизиты компании, которую представляет пользователь, должность в компании, которую представляет пользователь, аккаунты в социальных сетях; поля форм могут запрашивать и иные данные.

Эти данные собираются в целях оказания услуг или продажи товаров, связи с пользователем или иной активности пользователя на сайте, а также, чтобы отправлять пользователям информацию, которую они согласились получать.

Мы не проверяем достоверность оставляемых данных, однако не гарантируем качественного исполнения заказов или обратной связи с нами при некорректных данных.

Данные собираются имеющимися на сайте формами для заполнения (например, регистрации, оформления заказа, подписки, оставления отзыва, обратной связи и иными).

Формы, установленные на сайте, могут передавать данные как напрямую на сайт, так и на сайты сторонних организаций (скрипты сервисов сторонних организаций).

Также данные могут собираться через технологию cookies (куки) как непосредственно сайтом, так и скриптами сервисов сторонних организаций. Эти данные собираются автоматически, отправку этих данных можно запретить, отключив cookies (куки) в браузере, в котором открывается сайт.

Не персональные данные

Кроме персональных данных при посещении сайта собираются не персональные данные, их сбор происходит автоматически веб-сервером, на котором расположен сайт, средствами CMS (системы управления сайтом), скриптами сторонних организаций, установленными на сайте. К данным, собираемым автоматически, относятся: IP адрес и страна его регистрации, имя домена, с которого вы к нам пришли, переходы посетителей с одной страницы сайта на другую, информация, которую ваш браузер предоставляет добровольно при посещении сайта, cookies (куки), фиксируются посещения, иные данные, собираемые счетчиками аналитики сторонних организаций, установленными на сайте.

Эти данные носят неперсонифицированный характер и направлены на улучшение обслуживания клиентов, улучшения удобства использования сайта, анализа посещаемости.

Предоставление данных третьим лицам

Мы не раскрываем личную информацию пользователей компаниям, организациям и частным лицам, не связанным с нами. Исключение составляют случаи, перечисленные ниже.

Данные пользователей в общем доступе

Персональные данные пользователя могут публиковаться в общем доступе в соответствии с функционалом сайта, например, при оставлении отзывов, может публиковаться указанное пользователем имя, такая активность на сайте является добровольной, и пользователь своими действиями дает согласие на такую публикацию.

По требованию закона

Информация может быть раскрыта в целях воспрепятствования мошенничеству или иным противоправным действиям; по требованию законодательства и в иных случаях, предусмотренных законом.

Для оказания услуг, выполнения обязательств

Пользователь соглашается с тем, что персональная информация может быть передана третьим лицам в целях оказания заказанных на сайте услуг, выполнении иных обязательств перед пользователем. К таким лицам, например, относятся курьерская служба, почтовые службы, службы грузоперевозок и иные.

Сервисам сторонних организаций, установленным на сайте

На сайте могут быть установлены формы, собирающие персональную информацию других организаций, в этом случае сбор, хранение и защита персональной информации пользователя осуществляется сторонними организациями в соответствии с их политикой конфиденциальности.

Сбор, хранение и защита полученной от сторонней организации информации осуществляется в соответствии с настоящей политикой конфиденциальности.

Как мы защищаем вашу информацию

Мы принимаем соответствующие меры безопасности по сбору, хранению и обработке собранных данных для защиты их от несанкционированного доступа, изменения, раскрытия или уничтожения, ограничиваем нашим сотрудникам, подрядчикам и агентам доступ к персональным данным, постоянно совершенствуем способы сбора, хранения и обработки данных, включая физические меры безопасности, для противодействия несанкционированному доступу к нашим системам.

Ваше согласие с этими условиями

Используя этот сайт, вы выражаете свое согласие с этой политикой конфиденциальности. Если вы не согласны с этой политикой, пожалуйста, не используйте наш сайт. Ваше дальнейшее использование сайта после внесения изменений в настоящую политику будет рассматриваться как ваше согласие с этими изменениями.

Отказ от ответственности

Политика конфиденциальности не распространяется ни на какие другие сайты и не применима к веб-сайтам третьих лиц, которые могут содержать упоминание о нашем сайте и с которых могут делаться ссылки на сайт, а также ссылки с этого сайта на другие сайты сети Интернет. Мы не несем ответственности за действия других веб-сайтов.

Изменения в политике конфиденциальности

Мы имеем право по своему усмотрению обновлять данную политику конфиденциальности в любое время. В этом случае мы опубликуем уведомление на главной странице нашего сайта. Мы рекомендуем пользователям регулярно проверять эту страницу для того, чтобы быть в курсе любых изменений о том, как мы защищаем информацию пользователях, которую мы собираем. Используя сайт, вы соглашаетесь с принятием на себя ответственности за периодическое ознакомление с политикой конфиденциальности и изменениями в ней.

Как с нами связаться

Если у вас есть какие-либо вопросы о политике конфиденциальности, использованию сайта или иным вопросам, связанным с сайтом, свяжитесь с нами:

8 800 222 00 21

[email protected]

Защита от перегрузок по току и перегрева.

   Электронная защита частотного преобразователя от перегрузки по току и/или перегрева двигателя.

 Частой причиной аварийного отключения преобразователей частоты, является перегрузка (OL) и/или перегрев (OH) двигателя. Эти неисправности относятся к программной защите преобразователей частоты и основаны в первую очередь на измерении выходного тока. Поэтому когда Вы слышите от продавцов преобразовательной техники, что у данной модели есть «электронная защита от перегрузки», то знайте, что она есть у всех известных нам серийно выпускаемых моделей преобразователей.

 Принудительный останов двигателя с индикацией ошибки перегрузки и перегрева может быть из-за работы на пониженной частоте или из-за потребления двигателем тока выше его номинального значения (записанного в преобразователе). Поэтому так важно записать значение тока с шильдика двигателя в определенную уставку инвертора. Программа, зашитая в преобразователь, математически рассчитывает температуру двигателя исходя из значений выходной частоты и выходного тока.

 Давайте рассмотрим несколько случаев изображенных в таблице (выписки из Руководства по эксплуатации ПЧ Веспер модели EI-9011 ч.2, стр.52):

 1. Стандартный двигатель охлаждаемый крыльчаткой на валу, с нагрузкой (моментом на валу) не более 100%, т.е. ток потребляемый двигателем не превышает номинального (график 1). В таких условиях работает большинство электродвигателей управляемых преобразователем частоты.

 К примеру, если взять стандартный (50 Гц) двигатель, то согласно графику при его работе близкой к номинальной частоте вращения он будет работать продолжительное время. Однако, с уменьшением частоты должна уменьшаться и нагрузка. Объясняется это тем, что крыльчатка стандартного асинхронного двигателя рассчитана на охлаждение при работе на 50 Гц, при частоте работы ниже, охлаждение становится менее эффективно. Если же частота вращения двигателя больше его номинального значения, то перегрузка наступит гораздо раньше, независимо от работы крыльчатки на валу, т.к. при этом потребляется повышенный ток.

2. Стандартный двигатель охлаждаемый крыльчаткой на валу, с нагрузкой (моментом на валу) более 100%, т.е. ток потребляемый двигателем больше номинального (график 2). В этом случае двигатель является перегруженным и его работа продлится не более 60 секунд.

3. Специальный двигатель (предназначенный для работы с преобразователем частоты, т.е. с установленным вентилятором обдува), с нагрузкой не превышающей 100% (график 3). Такая ситуация отличается от графика 1 только тем, что при работе на пониженных частотах будет продолжительной даже при номинальной нагрузке, т.к. охлаждение является независимым. При работе на повышенной частоте ситуация не отличается от стандартного двигателя.

4. Специальный двигатель (предназначенный для работы с преобразователем частоты, т.е. с установленным вентилятором обдува), с нагрузкой более 100% (график 4). Двигатель остановится через минуту.

Исходя из вышесказанного, имеется возможность отключить защиту двигателя при работе на пониженных частотах — в константе (уставке) «выбор двигателя» нужно поставить «специальный электродвигатель для преобразователей частоты с независимым вентилятором обдува». Тоже самое следует сделать если ваш двигатель охлаждается водой и хладагентом, например погружной насос или компрессор. В этом случае остановка двигателя с индикацией перегрузки, возможно, только если превышен номинальный ток двигателя. При этом необходимо организовать независимую защиту двигателя от перегрева, например, установив термореле.

Внимание. Этот пример описан для преобразователя частоты фирмы Веспер модели EI-9011. Для других преобразователей смысл остается таким же, т.к. основана защита на параметрах стандартных асинхронных двигателей. Различия могут быть только в цифрах. Вопросы относительно рекомендованных частот работы двигателей должны быть адресованы производителям этих самых двигателей.

 

Частотные преобразователи. Тормозной резистор и тормозной прерыватель


Преобразователь частоты может осуществлять остановку или торможение двигателя. Существует
несколько вариантов остановки двигателя:

  • — Остановка на выбег, аналогично отключению двигателя от сети питания. При этом время остановки не регулируется и зависит от инерции нагрузки и самого двигателя.
  • — Торможение постоянным током останавливает двигатель без контролируемого темпа замедления, при этом снимается переменное напряжение со статора двигателя и затем подаётся постоянное напряжение. Этот метод позволит сократить время остановки механизма в сравнении с остановкой на выбег, но это вариант имеет ограничения, т.к. в роторе двигателя рассеивается большое количество энергии в виде тепла.
  • — Генераторное торможение, при котором преобразователь частоты снижает выходную частоту с заданной интенсивностью, а двигатель переходит в генераторный режим, преобразуя кинетическую энергию вращения в электрическую.

 

В случае, когда требуется время остановки меньше, чем время остановки приводимого двигателем механизма по инерции, двигателю требуется создать тормозной момент. Преобразователь частоты может создать тормозной момент порядка 20% от номинального момента двигателя, этого как правило достаточно для остановки неинерционных нагрузок или когда нет ограничения по времени остановки.

В случае с нагрузками, обладающими высокой  инерцией (кинетической энергией) или слишком коротким временем торможения, двигатель может перейти в генераторные режим работы, в результате которого возникает рекуперация энергии нагрузки. Рекуперация энергии приводит к перенапряжению в звене постоянного тока преобразователя частоты.

Для предотвращения перенапряжений в звене постоянного тока преобразователя частоты и рассеивания энергии рекуперации необходимо использовать  тормозные резисторы, которые рассеивают избыточную электрическую энергию в виде тепла.


Для коммутации тормозного резистора к звену постоянного тока преобразователя частоты применяют тормозной прерыватель (тормозной модуль), он включается, когда уровень напряжения в звене постоянного тока ПЧ превысит заданный уровень. Как правило, преобразователи частоты небольшой мощности имеют встроенный тормозной прерыватель, в этом случае тормозной резистор подключается напрямую к преобразователю частоты (см. Рис.1)

Рис.1 Подключение тормозного резистора к преобразователю частоты с встроенным тормозным прерывателем Для подключения тормозного резистора к преобразователям частоты большой мощности, потребуется внешний тормозной прерыватель. Тормозной прерыватель подключается к преобразователю частоты на клеммы звена постоянного тока, а тормозной резистор непосредственно к тормозному прерывателю (см. Рис.2).

 


Рис.2 Подключение внешнего тормозного прерывателя и тормозного резистора к преобразователю частоты.


Параметры тормозного резистора (сопротивление и мощность) зависят от максимальной энергии выделяемой приводом в момент торможения, а так же от допустимого тока тормозного прерывателя.

Применение преобразователей частоты в подъемно-транспортном оборудовании (ПТО)

В подъемно-транспортном оборудовании (все виды кранов, тельферы, кран-балки) для перемещения устройства захвата, подъема и опускания грузов используются несколько типов электродвигателей. Это двигатели с фазным ротором, двигатели постоянного тока и асинхронные двигатели с короткозамкнутым ротором. Рассмотрим особенности использования всех выше перечисленных двигателей в различных механизмах кранов.

В моторах с фазным ротором используется реостатный пуск. За счет наличия сопротивления в цепи ротора пусковые токи имеют небольшие значения. Разгон двигателей происходит с помощью специального реле времени. Недостатками такого типа двигателей являются отсутствие возможности плавной регулировки скорости, большие габариты, значительное тепловыделение резисторов, большое количество контактной аппаратуры, которая со временем требует обслуживания.

Двигатели постоянного тока используются в тех случаях, когда нужен плавный подъем груза и точное регулирование скорости вращения вала мотора. В этом случае скорость регулируется с помощью тиристорного преобразователя. Общие недостатки двигателя этого типа – большая масса и стоимость самого мотора, сложность конструкции, необходимость в регулярном обслуживании щеточного узла мотора.

Асинхронные двигатели с короткозамкнутым ротором имеют много достоинств, в частности к ним относятся надежность в эксплуатации, простота конструкции и отсутствие необходимости регулярного обслуживания. Общим недостатком асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи, которые в 6-7 раз превышают номинальные.

Внедрение преобразователей частоты (ПЧ) для питания и управления асинхроннымидвигателями с короткозамкнутым ротором позволяет более эффективно регулировать скорость вращения электродвигателей, значительно снизить их пусковые токи и потребление электроэнергии. Эти особенности привели к постепенному вытеснению из использования двигателей постоянного тока и двигателей с фазным ротором в качестве приводов в подъемно-транспортном оборудовании и их замене на асинхронные двигатели с короткозамкнутым ротором, управляемые преобразователем частоты. Применение частотных преобразователей в механизмах кранов позволяет регулировать скорость подъема груза, перемещения самого крана или тележки в процессе работы, улучшает эксплуатационные характеристики кранов, снижает затраты и упрощает техническую эксплуатацию оборудования.

Преобразователи частоты, применяемые в крановом оборудовании, должны обеспечивать динамичную работу привода и поддерживать требуемый момент на валу двигателя даже при низких частотах вращения. Так как все электродвигатели монтируются непосредственно на конструкциях кранов, подверженных вибрациям, частотные преобразователи должны быть виброустойчивы. Кроме того, ПЧ должны иметь высокую перегрузочную способность, возможность работы в широком диапазоне температур. Всем эти требованиям соответствуют векторные преобразователи частоты ERMAN, их использования для управления приводами в подъемно-транспортном оборудовании позволяет решать следующие характерные задачи.

  1. Организация простой системы управления приводами.

    Для управления преобразователем частоты используются стандартные аналоговые и дискретные сигналы, а также последовательный интерфейс RS485 с типовым протоколом информационного обмена MODBUS, используя который все ПЧ можно объединить в одну сеть.

  2. Плавное увеличение, уменьшение и программируемое изменение скорости механизмов крана.

    Алгоритм разгона, торможения и программируемого изменения скорости прописывается в самих частотных преобразователях исходя из технологических требований. Это позволяет значительно снизить ударные и механические нагрузки на конструкцию крана.

  3. Управление электромеханическим тормозом.

    ПЧ управляет электромеханическим тормозом двигателя и другим сопряженным оборудованием посредством дискретных и релейных выходов Преобразователи частоты ERMAN для кранового и подъемно-транспортного оборудования зарекомендовали себя самым наилучшим образом. На все частотные преобразователи ERMAN предоставляется гарантия 18 месяцев, при этом мы осуществляем сервисную и техническую поддержку наших клиентов в течение всего срока эксплуатации выпускаемой нами продукции.

Для подбора преобразователя частоты для вашего ПТО заполните форму «Получить коммерческое предложение».

Получить коммерческое предложениеПоворотные преобразователи частоты

— Мотор-генераторные установки

Georator — международный лидер в производстве и продаже вращающихся преобразователей частоты. Мы работаем по всему миру и гордимся своим качеством и сервисом. Обратитесь к одному из наших опытных торговых представителей сегодня, чтобы запросить расценки или дополнительную информацию.

Что такое вращающийся преобразователь частоты?

Вращающиеся преобразователи частоты (также называемые «Мотор-генераторы» или MG Sets) преобразуют поступающую мощность переменного тока в механическую энергию вращения (вращающийся двигатель), который передает свою мощность вращения генератору, который преобразует его механическую мощность в электрическую мощность переменного тока на выходе.Мощность вращения часто описывается в лошадиных силах, а электрическая мощность — в киловаттах (кВт) или киловольт-амперах (кВА). Этому процессу присуще преобразование частоты (герц — Гц), напряжения и / или фазы (3 фазы, 1 фаза).

Типы поворотных преобразователей и двигателей-генераторов

Электрогенераторные установки с ременной муфтой

Электрогенераторные установки с ременной муфтой

Самый простой способ подсоединения приводного двигателя к генератору — это использование приводных ремней и шкивов.

Подробнее

Электрогенераторные установки с прямым подключением

Электрогенераторные установки с прямым подключением

Этот метод также допускает параллельную работу нескольких преобразователей частоты.

Подробнее

Электрогенераторы с общим валом

Электрогенераторы с общим валом

Синхронный двигатель — это самый совершенный и точный преобразователь частоты вращения.

Подробнее

Бесщеточные генераторы на постоянных магнитах

Бесщеточные генераторы на постоянных магнитах

Бесщеточные преобразователи частоты с постоянным магнитом 400 Гц, также известные под торговым названием «NoBrush».

Подробнее

Что питает вращающийся преобразователь частоты?

Двигатель В генераторных установках используется несколько методов соединения приводного двигателя с генератором. Самый простой и наименее затратный метод — это преобразователи с ременной муфтой, в которых приводные ремни и шкивы используются не только для передачи энергии от двигателя к генератору, но и для изменения частоты с помощью передаточного числа шкивов. Некоторые клиенты обеспокоены долговечностью приводных ремней, но на практике приводные ремни не выходят из строя при правильной конструкции и установке.Georator имеет безупречный послужной список в этом отношении.

Другой метод — это преобразователи с прямым соединением, которые напрямую соединяют вал двигателя с валом генератора с помощью механической муфты и регулируют скорость приводного двигателя для изменения скорости вращения генератора, таким образом изменяя выходную частоту. Для этой цели используется электронный привод с регулируемой скоростью (ASD) вместо обычного пускателя двигателя.

Наконец, наиболее сложным и наиболее дорогостоящим методом является сборка двигателя и генератора на одном общем валу, называемых преобразователями частоты с общим валом.В этом случае изменение частоты осуществляется путем намотки двигателя с другим числом электрических полюсов, чем у генератора. Например, 12-полюсный двигатель и 10-полюсный генератор обеспечат преобразование 60 Гц в 50 Гц.

В некоторых приложениях требуется только изоляция линии электропередачи (полное отсутствие непрерывности на входе и выходе) или кондиционирование линии электропередачи (плохая входящая электрическая мощность преобразуется в хорошую выходную мощность). В этих изоляторах линий электропередачи между двигателем и генератором используется изолированная гибкая муфта для передачи мощности от двигателя к генератору и полной изоляции входа от выхода.Обычно частоты не меняются, хотя может потребоваться преобразование фазы или напряжения.

Каковы общие области применения поворотных преобразователей?

Роторные преобразователи частоты очень хороши при запуске и работе с типичными заводскими нагрузками. Они обладают способностью создавать высокие пусковые импульсные токи в течение коротких периодов времени, что делает их идеальными для нагрузок двигателя. Эти преобразователи очень прочные и могут выдерживать суровые условия окружающей среды. Несмотря на то, что они подвержены проливному дождю, с соответствующими кожухами эти устройства могут быть размещены на открытом воздухе и выдерживают широкий диапазон рабочих температур.

Типичные характеристики поворотных преобразователей частоты

  • Больше приспособлено к более крупным приложениям 10 кВА плюс
  • Намного лучше при пуске двигателя при нагрузках
  • Прочная конструкция для напольного монтажа
  • Обычно фиксированная выходная частота
  • Стоимость не увеличивается линейно с увеличением мощности; например, 3x мощность = 1,5x стоимость
  • Гармонические искажения и шум от входной мощности не передаются на выход
  • Может вызывать сильные токи перегрузки 2-4X на короткие периоды времени
  • КПД при полной нагрузке до 90 +% на больших агрегатах

Определение размеров двигателей и преобразователей частоты для конкретной нагрузки машины

Правильный размер двигателей и преобразователей

Производители электродвигателей и преобразователей частоты разработали различные методы для быстрого выбора размера двигателей и преобразователей частоты для конкретной нагрузки машины.Та же основная процедура используется большинством разработчиков приложений.

Расчет двигателя и преобразователя частоты для конкретной нагрузки машины (фото предоставлено focusondrives.com)

В наши дни выбор приложений обычно осуществляется на основе программного обеспечения на ПК. Однако инженерам важно четко понимать процедуру выбора.

Одна из лучших процедур использует простую номограмму , основанную на кривых предельной нагрузки , чтобы сделать базовый выбор типоразмера двигателя.Эта процедура описана ниже. Затем проверяются другие факторы, чтобы убедиться, что выбрана оптимальная комбинация двигателя и преобразователя.


4 принципа выбора

Рекомендуются пять следующих принципов выбора:


Принцип выбора 1 //

Сначала следует выбрать тип и размер двигателя. Число полюсов (базовая скорость) следует выбирать так, чтобы двигатель работал как можно дольше со скоростью, немного превышающей базовую скорость в 50 Гц.

Это желательно, потому что:

  • Тепловая мощность двигателя увеличивается при f ≥ 50 Гц из-за более эффективного охлаждения на более высоких скоростях.
  • Коммутационные потери преобразователя минимальны при работе в диапазоне ослабления поля выше 50 Гц.
  • Для нагрузки с постоянным крутящим моментом более широкий диапазон скоростей достигается, когда двигатель хорошо работает в диапазоне ослабления поля на максимальной скорости. Это означает, что наиболее эффективное использование крутящего момента / скорости привода с регулируемой скоростью.Типичные кривые крутящего момента и мощности в приложении с постоянной мощностью / крутящим моментом


    Это может означать экономию затрат за счет меньшего двигателя и преобразователя .

  • Хотя многие производители заявляют, что их преобразователи могут выдавать выходные частоты до 400 Гц, эти высокие частоты практически не используются, за исключением очень специальных (и необычных) приложений. Конструкция двигателей со стандартным сепаратором и снижение максимального крутящего момента в зоне ослабления поля ограничивают их использование на частотах выше 100 Гц.

    Максимальную скорость, на которой может работать стандартный двигатель с короткозамкнутым ротором, всегда следует уточнять у производителя, особенно для более крупных 2-полюсных (3000 об / м) двигателей мощностью более 200 кВт. Шум вентилятора, производимый двигателем, также существенно увеличивается с увеличением скорости двигателя.

  • Сравнение крутящего момента, создаваемого 4-полюсным двигателем и 6-полюсным двигателем , показано на рисунке 1. Это иллюстрирует более высокий крутящий момент 6-полюсной машины.
Рисунок 1 — Сравнение предельных кривых тепловой мощности для двух двигателей с короткозамкнутым ротором TEFC 90 кВт
  1. 4-полюсный электродвигатель 90 кВт (1475 об / мин)
  2. 6-полюсный электродвигатель 90 кВт (985 об / мин)

Принцип выбора 2 //

Выбор двигателя с увеличенным размером просто для «безопасности» обычно не рекомендуется , потому что это означает, что необходимо также выбрать преобразователь частоты с увеличенным размером.Преобразователи частоты, особенно типа ШИМ, рассчитаны на максимальное значение пикового тока, которое является суммой основного тока и гармонического тока в двигателе.

Чем больше двигатель, тем больше пиковые токи.

Во избежание превышения этим пиковым током проектного предела преобразователь никогда не следует использовать с двигателем, размер которого больше указанного . Даже когда более крупный двигатель слегка нагружен, пики гармонических токов у него высоки.


Принцип выбора 3 //

После выбора двигателя достаточно легко выбрать правильный размер преобразователя из каталога производителя .Обычно они рассчитываются с точки зрения силы тока (не кВт) на основе определенного напряжения. Это следует использовать только в качестве ориентира, потому что преобразователи всегда следует выбирать на основе максимального продолжительного тока двигателя.

Хотя большинство каталогов основано на стандартных номинальных мощностях электродвигателей (кВт) МЭК, электродвигатели разных производителей имеют несколько разные номинальные токи.

Преобразователи частоты Danfoss (фото предоставлено schulz.st)
Принцип выбора 4 //

Хотя это кажется очевидным, двигатель и преобразователь должны быть указаны в соответствии с напряжением и частотой источника питания, к которым должен быть подключен частотно-регулируемый привод.

В большинстве стран, использующих стандарты IEC, стандартное напряжение питания составляет 380 В ± 6%, 50 Гц . В Австралии это 415 В ± 6%, 50 Гц . В некоторых приложениях, где размер привода очень велик, часто экономично использовать более высокое напряжение, чтобы снизить стоимость кабелей. Другие часто используемые напряжения — 9007 9 500 В и 660 В .

В последние годы преобразователи переменного тока выпускаются для использования на 3,3 кВ и на 6,6 кВ. Преобразователи частоты спроектированы таким образом, чтобы вырабатывать такое же выходное напряжение, что и источник питания, поэтому и двигатель, и преобразователь должны быть рассчитаны на одно и то же базовое напряжение.

Хотя выходная частота преобразователя является переменной, входная частота (50 Гц или 60 Гц) должна быть четко указана , поскольку это может повлиять на конструкцию индуктивных компонентов .

Ссылка // Практические приводы с регулируемой скоростью и силовая электроника от Malcolm Barnes CPEng, BSc (ElecEng), MSEE, Automated Control Systems, Перт, Австралия (приобретите бумажную копию у Amazon)

Подходит ли ваш двигатель для преобразователя частоты Операция

Если вы думаете о подключении электродвигателя к частотно-регулируемому приводу, необходимо принять во внимание три аспекта.Эти аспекты включают напряжение изоляции, напряжение опоры и термическое напряжение.

Напряжение изоляции

При работе двигателя с частотным регулированием нагрузка на обмотку двигателя выше, чем при прямом питании от сети. Это в первую очередь связано с крутыми фронтами импульсов (du / dt) и кабелем двигателя, в зависимости от длины, типа, прокладки кабеля и т. Д.

Крутые фронты импульсов возникают из-за быстрого переключения полупроводниковых устройств в инверторном каскаде преобразователя частоты.Они работают на высокой частоте переключения в диапазоне от 2 до 20 кГц с очень коротким временем переключения для воспроизведения синусоидальной формы волны.

В сочетании с кабелем двигателя эти крутые фронты импульсов вызывают следующие эффекты на двигателе:

  • Высокие импульсные напряжения Ull на клеммах двигателя создают дополнительную нагрузку на межобмоточную изоляцию
  • Более высокие импульсные напряжения между обмотками и пластинчатым слоем создают дополнительную нагрузку на изоляцию паза.
  • Более высокие напряжения между обмотками Ûwdg создают значительно большую нагрузку на изоляцию провода в обмотках.

Напряжение подшипника

При неблагоприятных условиях двигатели с частотным регулированием могут выйти из строя из-за повреждения подшипников токами в подшипниках.Ток течет в подшипнике, когда напряжение в смазочном зазоре подшипника достаточно велико, чтобы проникнуть через изоляционный слой, образованный смазкой. В этом случае о неизбежном отказе подшипника сигнализирует все более громкий шум подшипника. К подобным токам в подшипниках относятся высокочастотные вихревые токи, токи заземления и токи ЭМП (искровая эрозия).

Какой из этих токов может привести к повреждению подшипника, зависит от следующих факторов:

  • Напряжение сети на входе преобразователя частоты
  • Крутизна фронтов импульса (du / dt)
  • Тип кабеля двигателя
  • Электрическое экранирование
  • Заземление системы
  • Размер двигателя
  • Система заземления корпуса двигателя и вала двигателя.

Подшипниковые токи можно уменьшить следующими мерами:

  • Установка выходных фильтров (выходные дроссели, фильтры du / dt или синусоидальные фильтры)
  • Установка электрически изолированных подшипников
  • Хорошее заземление всех металлических компонентов системы с помощью соединений с низким сопротивлением
  • Экранированные кабели двигателя
  • Установка фильтра подавления постоянного тока

Термическое напряжение

Работа с преобразователем частоты увеличивает рассеиваемую мощность в двигателе.Дополнительное содержание гармоник вызывает потери в стали и текущие тепловые потери в статоре и роторе. Величина потерь зависит от амплитуды и частоты гармоник частоты привода. Дополнительные текущие тепловые потери в роторе зависят от геометрии паза. Потери в стали и текущие тепловые потери в двигателях не зависят от нагрузки. Дополнительные потери в двигателе вызывают повышенную тепловую нагрузку на изоляцию обмотки. Однако в современных преобразователях частоты дополнительный нагрев стандартных двигателей (до типоразмера 315) сопоставим с дополнительным нагревом из-за допусков сетевого напряжения и, следовательно, незначителен.Производители иногда устанавливают коэффициент снижения мощности для нестандартных двигателей (типоразмер 355 и выше).

Если преобразователь не может генерировать полное сетевое напряжение при номинальной частоте сети, рекомендуется выбрать двигатель с изоляцией класса F. Работа двигателя при напряжении ниже, чем при работе от сети, увеличивает температуру двигателя до 10 К.

Если вы не уверены, можно ли использовать ваш двигатель в сочетании с преобразователем частоты, попросите производителя двигателя подтвердить, что двигатель предназначен для работы с преобразователем частоты.И проверьте допустимый диапазон рабочих скоростей (минимальная и максимальная частота вращения).

Статья Грегерс Гейлагер

Оптимизированная работа с преобразователями частоты

Для многих типов применений точное управление скоростью и крутящим моментом имеет решающее значение в повседневной работе. Например, точное управление скоростью может быть необходимо для адаптации конвейерной ленты к остальному процессу, а возможность регулировки производительности насоса может обеспечить значительную экономию энергии.В то же время возможность управления скоростью может улучшить рабочую среду за счет гашения шума и вибрации и уменьшения механической нагрузки на двигатель.

Преобразователь частоты, также называемый ЧРП (частотно-регулируемый привод), часто оказывается оптимальным решением для регулирования скорости приложения, приводимого в действие электродвигателем. Преобразователь частоты преобразует переменный ток из сети в постоянный, а затем обратно в переменный ток с регулируемой частотой и напряжением, что позволяет двигателю работать с желаемым крутящим моментом и числом оборотов.

Экономия энергии до 50 процентов

При использовании преобразователя частоты обычно достигается лучшее и более эффективное управление, чем при гидравлическом или механическом регулировании. Вместо того, чтобы двигатель работал на полную мощность и использовал такое оборудование, как клапаны или зубчатые передачи для управления скоростью и крутящим моментом, двигатель, подключенный к преобразователю частоты, потребляет ровно столько энергии, сколько требуется для процесса. В определенных типах применений, таких как центробежные вентиляторы и насосы, это может обеспечить экономию энергии почти на 50 процентов.

«Например, более энергоэффективно управлять центробежным насосом путем регулирования оборотов двигателя с помощью преобразователя частоты, чем использование клапанов для регулирования объема жидкости. В то же время это приводит к меньшему износу, а преобразователь также может обеспечить более мягкий пуск и остановку в качестве альтернативы устройству плавного пуска », — говорит Клаус Балле Томсен, менеджер по продукции Hoyer Drives & Controls.

Соединительная линия для интеллектуального управления

Еще одним важным преимуществом преобразователей частоты является то, что они могут быть адаптированы для сбора таких данных, как температура и вибрации двигателя, с помощью датчиков.Их можно использовать для контроля состояния двигателя и создания возможностей для более интеллектуального управления приложениями и профилактического обслуживания. Это также позволяет отслеживать работу через облачное решение и, в некоторых случаях, устранять неполадки, не присутствуя физически в производственной среде.

«На вашем ноутбуке можно получать такую ​​информацию, как часы работы и показания энергии, которые, например, можно использовать для диагностики изношенного оборудования за счет увеличения энергопотребления. Таким образом можно предотвратить выход из строя приложения, которое необходимо обслуживать раньше, чем планировалось, и отложить обслуживание приложений, находящихся в хорошем состоянии.Преобразователь также может изменить направление вращения двигателя и тем самым освободить заблокированный насос, если что-то застряло в корпусе насоса. Все эти функции могут помочь улучшить время безотказной работы », — объясняет Клаус Балле Томсен.

Обращение к источникам шума

Преобразователь частоты может быть встроен в двигатель (см. Видео) или подключен через кабель. Во время установки важно учитывать множество различных проблем. Преобразователь частоты может, среди прочего, создавать различные типы помех, акустический шум, гармонические помехи в сети и шум ЭМС, также называемый электромагнитной совместимостью, который может влиять на радиооборудование и передачу данных.

«Помехи от преобразователя частоты следует ограничивать с помощью фильтров и экранированных кабелей, чтобы установка соответствовала требованиям ЭМС. По этой причине при выборе преобразователей частоты всегда следует обращаться за профессиональной консультацией. Сервисный выключатель для механического обслуживания может, например, быть встроен в преобразователь, чтобы избежать типичного источника неисправности ЭМС и, в то же время, добиться экономии затрат на установку. Со стороны Хойера мы можем предоставить рекомендации по правильному экранированию и снабдить двигатель соответствующими фильтрами ЭМС, чтобы он был готов к правильному подключению вместе с преобразователем частоты », — говорит Клаус Балле Томсен.

Hoyer Drives & Controls — факты

  • С созданием Hoyer Drives & Controls компания Hoyer Motors теперь может предложить комплексное решение, охватывающее как двигатель, так и преобразователь частоты.
  • Предлагаются решения с комбинированным двигателем и частотно-регулируемым приводом от 0,37 до 1800 кВт.
  • Основное внимание уделяется OEM-решениям, в которых частотно-регулируемый привод либо интегрирован с двигателем, либо поставляется как отдельный автономный блок с высокими классами защиты (IP), либо устанавливается в шкаф.
  • Hoyer Motors работает с ведущими производителями преобразователей частоты, такими как Schneider Electric и Kostal Inveor.Предлагаются отраслевые решения.

Узнайте больше о Hoyer Drives & Controls здесь.

Поворотный преобразователь частоты

— Системы питания и управление

серии RFC

Поворотные преобразователи частоты — это машины, которые преобразуют мощность с одной частоты на другую. Это достигается путем соединения двигателя с генератором, который механически соединен и электрически изолирован. Метод соединения может быть прямым или ремнями и шкивами .Однако есть несколько с подключением коробки передач, и в этом случае они электрически не изолированы. Другими словами, это достигается либо изменением скорости вращения генератора (в версиях с ремнями и шкивами), либо коробкой передач. Двигатели и генераторы могут иметь или не иметь одинаковое количество полюсов, в зависимости от выходной частоты. В результате достигается тот же результат — получение желаемой выходной частоты. Вращающийся преобразователь частоты также может одновременно вырабатывать другое напряжение.Если вы работаете с другим напряжением, отличным от 208 В, вам нужно будет изменить напряжение.

Power Systems & Controls ’ Series RFC — это поворотные преобразователи частоты , предназначенные для преобразования электроэнергии от электросети во многие другие частоты. Например, стандартные частоты: мощность 25 Гц, 50 Гц, 60 Гц, 100 Гц и 400 Гц. Вращающийся преобразователь частоты обеспечит требуемую номинальную мощность в кВА на необходимой выходной мощности. Кроме того, двигатель и синхронный генератор обеспечат необходимую частоту и напряжение.Вращающиеся преобразователи частоты компании PS&C построены с решениями с двумя подшипниками и с четырьмя подшипниками , а также в вертикальной или горизонтальной конфигурации. Прецизионный регулятор напряжения, интегрированный в систему, поддерживает выходное напряжение на уровне (+/- 0,5%), намного превышающем отраслевой стандарт.

Поворотный преобразователь Функциональность:

При нормальной работе RFC серии защищает критическую нагрузку, защищенную от переходных процессов и отключений электросети.Однако вращающийся преобразователь частоты доступен как с синхронным, так и с асинхронным двигателем. Другими словами, это будет зависеть от того, какой продукт лучше всего подходит для данной области применения. Синхронный двигатель создает точный частотный выход без отклонений. Это идеально подходит для лабораторных испытаний, поддержки самолетов и систем вооружения . Асинхронный двигатель с малым скольжением вызывает отклонение выходной частоты (0,6 Гц). Это может быть приемлемо для проектов, требующих более экономичного решения.

Аналогичным образом, при работе с номинальной скоростью двигателя частота генератора регулируется числом оборотов двигателя. Это сделает выходную частоту переменной или неконтролируемой. Он также на 100% эффективен при простоях длительностью менее 100 мс. Кроме того, отсутствие щеток и контактных колец как в двигателе, так и в генераторе позволяет практически не требовать технического обслуживания. Кроме того, из-за его прочной конструкции средний срок службы вращающегося преобразователя частоты превышает 20 лет.Помимо всего прочего, доступно множество опций, от пультов дистанционного управления и цветных сенсорных дисплеев до специализированных корпусов NEMA и ISO.

Общие термины, связанные с преобразователем:

  • Мотор-генератор = (комплект MG)
  • Общий вал = Вал с прямым соединением с валом Комплект MG
  • Single Shaft = Набор MG представляет собой одну поковку с обмоткой двигателя и генератора на одном валу
  • Ременный привод = Комплект MG, соединенный с помощью ремней и шкивов
  • Зубчатая передача = Параллельное соединение или прямое соединение со смещенным комплектом MG, подключенное через шестеренчатый привод

Зачем покупать вращающийся преобразователь частоты:

Преобразователи частоты имеют множество применений (см. Ниже).Однако для некоторых приложений требуются машины промышленного уровня с грубой силой, в то время как для других требуется 100% изоляция. Следовательно, изоляция по своей природе производится роторной машиной. Прежде всего, электрическая изоляция достигается за счет механически соединенного двигателя-генератора, который не позволяет энергии проходить через вал. Следовательно, изоляция выполняется от двигателя к генератору и наоборот. Эти машины созданы для работы в очень суровых условиях. Они могут выжить в экстремальных условиях, когда аналог Solid State не сможет работать в том же самом.
Частотный преобразователь

Применения:
Частотный преобразователь

Преимущества:
  • 100% истинная электрическая изоляция
  • Прецизионное регулирование напряжения
  • Комплекты M-G с 2 и 4 подшипниками
  • Контроль и мониторинг неисправностей
  • Защита от переходных процессов и сбоев
  • Вертикальная и горизонтальная конфигурации
  • Конструкции с общим и одиночным валом

Обязательно ли использовать мотор-генератор:

Существует другая версия преобразования, отличная от роторного или мотор-генератора.Подобно роторной машине, PS&C производит статических преобразователя как однофазных, так и трехфазных.

База знаний о преобразователе частоты

— Мотор-генератор

Обзор двигателя-генератора

Мотор-генераторы (MG Sets) используют электромеханические средства для преобразования напряжения и частоты. Установки MG состоят из двигателя переменного тока, работающего непосредственно от линии электропередачи 60 Гц на вашем предприятии, и его вал соединен с валом синхронного генератора.Генератор выдает новые уровни частоты и напряжения.

Стабилизация выходного напряжения генератора

Выходное напряжение генератора регулируется твердотельным регулятором напряжения, который непрерывно измеряет напряжение на выходных клеммах генератора и выполняет необходимую регулировку для поддержания выходного напряжения в пределах технических характеристик. Типичное регулирование выходного напряжения составляет +/- 1% или лучше в условиях установившейся нагрузки от 0% до 100%.

Выходное напряжение генератора

может быть отрегулировано пользователем в диапазоне приблизительно +/- 8% от номинального выходного напряжения (более широкий диапазон на некоторых моделях), и это облегчается с помощью регулятора Volts Adjust, расположенного на панели управления оператора.

Регулировка выходной частоты генератора

Выходная частота синхронного генератора прямо пропорциональна частоте вращения вала генератора. В зависимости от типа двигателя, приводящего в движение вал генератора, выходная частота может оставаться точной или иметь допуск регулирования до +/- 2,5% от номинальной номинальной выходной частоты в условиях нагрузки от 0% до 100%.

Прецизионная работа синхронного двигателя

MG Set, работающий от электросети вашего предприятия 60 Гц с номинальной выходной частотой 50 Гц и использующий синхронный двигатель переменного тока, обеспечит точные 50.0 Гц при любых условиях выходной нагрузки от 0% до 100% номинальной нагрузки. Такое точное регулирование частоты возможно благодаря присущей синхронному двигателю способности поддерживать одинаковую скорость вращения при любой величине нагрузки вплоть до 100% номинальной нагрузки.

Работа асинхронного двигателя

В некоторых наборах MG используются стандартные асинхронные двигатели переменного тока (асинхронные двигатели) для привода вала синхронного генератора. Рабочие характеристики асинхронного двигателя переменного тока позволяют уменьшать частоту вращения генератора по мере увеличения нагрузки на вал.Если MG работает от вашего объекта с питанием от электросети 60 Гц и имеет номинальную выходную частоту 50 Гц, выходная частота не будет точной и обычно будет находиться в диапазоне от 50,5 Гц или выше до 49,5 Гц или ниже в зависимости от конструкции MG и уровня входного напряжения. , и количество нагрузки, подключенной к выходу генератора.

Влияние нестабильной частоты на нагрузку

В большинстве приложений нестабильная частота нежелательна. Например, в тестовой среде использование преобразователя частоты с нестабильной частотой может привести к сбою в работе тестируемого устройства (UUT) или к ошибочным данным тестирования.При простом управлении оборудованием 50 Гц на нестабильной частоте может возникнуть колебательное или резонансное взаимодействие между нагрузкой и MG Set, что может привести к неправильной работе оборудования в нагрузке.

Почти все комплекты MG, которые можно взять напрокат в нашем парке, включают в себя настоящий синхронный двигатель переменного тока, который обеспечивает стабильную частоту источника питания для нагрузки. Если комплект MG, включающий асинхронный двигатель переменного тока, предлагается любому арендатору AP&C, наш инженер-разработчик поможет обеспечить его совместимость с нагрузкой клиента.

Влияние нагрузочного оборудования на производительность комплекта MG

Типы нагрузок, подключенных к выходу преобразователя частоты, играют важную роль при выборе преобразователя частоты. Каждый тип нагрузочного оборудования или цепи демонстрирует характеристики, которые необходимо учитывать, чтобы гарантировать правильную работу оборудования или приемлемые результаты. Ниже приведены лишь некоторые из вариантов нагрузки, которые могут повлиять на производительность выхода преобразователя частоты.

Влияние пусковых токовых нагрузок

Определенные типы нагрузочного оборудования или цепей потребляют значительно больший ток при первом включении, чем во время работы.Нагрузки, содержащие двигатели, трансформаторы, электронные источники питания или преобразователи с входными конденсаторами, имеют характеристику потребления мгновенного пикового тока в течение первых 3-5 циклов, в 5-60 раз или больше, чем их номинальный ток полной нагрузки.

Когда к выходу MG подключена нагрузка пускового тока, уровень напряжения генератора на мгновение упадет пропорционально пиковому току нагрузки и интервалу. Это мгновенное напряжение может быть на 30% или более ниже номинального выходного напряжения.По истечении периода времени пускового тока регулятор напряжения будет регулировать выходное напряжение в пределах номинальных характеристик регулирования напряжения, обычно +/- 1% или меньше. Промышленность приняла 30% -ное падение максимально допустимого снижения напряжения, которое должно произойти, чтобы обеспечить нормальную работу большинства нагрузочного оборудования. Максимально допустимое падение напряжения 10% рекомендуется для более чувствительного нагрузочного оборудования, такого как некоторые медицинские или научные устройства. Наши опытные инженеры по применению помогут определить оборудование в вашей нагрузке, которое считается нагрузкой пускового тока.

Влияние однофазной нагрузки на трехфазный выход MG

Для использования с однофазными нагрузками рекомендуется использовать однофазный преобразователь выходной частоты. Однако иногда нагрузочное оборудование или проверяемое оборудование состоит из однофазных и трехфазных компонентов.

Когда однофазные нагрузки подключены к трехфазному выходу преобразователя частоты MG, они должны распределяться между тремя фазами как можно более равномерно. Помимо возможности перегрева генератора и оборудования трехфазной нагрузки, может возникнуть несимметрия напряжения.

Когда однофазная нагрузка подключена к трехфазному выходу MG Set, уровень напряжения на нагруженной фазе будет снижаться, в то время как уровень напряжения на ненагруженных фазах будет увеличиваться. По мере увеличения дисбаланса тока нагрузки на каждой фазе уровни напряжения могут становиться преувеличенными, так что выход MG Set отключается схемами безопасности, либо оборудование нагрузки или проверяемое оборудование срабатывает неправильно или выходит из строя. Превышение примерно 2% несимметрии напряжения может вызвать перегрев генератора или трехфазного нагрузочного оборудования и возможный выход из строя.

Влияние нелинейных нагрузок на выход MG Set

Нелинейные нагрузки — это нагрузки или проверяемое оборудование, которые включают в себя электронные силовые устройства, такие как диоды, тиристоры или силовые транзисторы. Эти устройства используются в таком оборудовании, как преобразователи частоты, источники бесперебойного питания, источники питания переменного / постоянного тока и инверторы.

Нелинейные нагрузки вызывают искажение синусоидального сигнала на выходе преобразователя частоты MG Set, а также дополнительный нагрев обмоток генератора. Если нелинейные нагрузки создают чрезмерное искажение синусоидальной волны на данном выходе MG Set, выходное напряжение может стать нестабильным, что приведет к сбою в работе нагрузочного оборудования или выхода MG Set из строя его схемами безопасности.

Физические характеристики мотор-генераторной установки

Мотор-генераторные установки

многие считают большими, тяжелыми и прочными по сравнению с их электронными аналогами с преобразователями частоты. Комплекты MG подходят для работы в таких средах, как защита от непогоды (не обязательно в помещении), или в помещениях, содержащих другое электрическое оборудование, такое как силовые трансформаторы и воздушные компрессоры.

Звуковой шум, создаваемый наборами MG, обычно зависит от номинальной мощности в кВА и обычно находится в диапазоне приблизительно от 70 дБА до 90 дБА при измерении на расстоянии 3 фута от оборудования.

Именно по указанным выше основным причинам при определении размеров и выборе преобразователя частоты на основе двигателя-генератора для данной нагрузки следует проконсультироваться с нашими инженерами по применению.

Заявление об ограничении ответственности: Вся описательная информация представлена ​​в виде общих неспецифических характеристик оборудования и предлагается нашим арендаторам лучше понять преобразователи частоты и их применение. Читателю следует связаться с инженерами по приложениям AP&C для получения подробной или конкретной технической информации о преобразователях частоты и их использовании.


База знаний — Электронные / статические преобразователи

Преобразователи частоты

для ваших приводов

Являясь одним из ведущих производителей приводной техники, мы также предлагаем подходящую инверторную технологию для наших механических компонентов. Мы разрабатываем и производим приводы и преобразователи частоты для управления приводными механизмами в машинах и системах. И мы делаем это для центральной установки в шкафу управления или для настенного монтажа, как и для децентрализованной установки.

Что такое преобразователь частоты?

Преобразователи частоты

— это электронные устройства, которые позволяют управлять скоростью двигателя переменного тока . Справочная информация: Если электродвигатели или электродвигатели переменного тока работают непосредственно от системы электроснабжения переменного тока, они могут использовать только фиксированную скорость, основанную на количестве полюсов и частоте питания системы электроснабжения на месте. Однако, если приложение или производственный процесс требует регулируемого напряжения переменного тока (то есть регулируемой скорости), используются преобразователи частоты.Эти преобразователи частоты могут генерировать переменное напряжение с переменной амплитудой (уровнем выходного напряжения) и частотой из постоянного переменного напряжения.

Как работает преобразователь частоты?

Таким образом, перед двигателем подключается преобразователь частоты для генерирования переменного напряжения, которое можно регулировать в соответствии с требованиями заказчика. В этом случае система электропитания больше не генерирует частоту и уровень напряжения, с которыми работает двигатель. Вместо этого преобразователь частоты берет на себя эту задачу, а регулирует выходную частоту и выходное напряжение.

Какое главное преимущество преобразователя частоты? Вы можете использовать его для плавного изменения скорости двигателя практически от нуля до требуемой номинальной скорости и получить доступ к значительно большему диапазону скоростей. Крутящий момент мотора остается без изменений. Таким образом, операторы установки могут в любое время адаптировать свою приводную технику к нужным им условиям. Преобразователь частоты также позволяет напрямую переключать направление вращения. Для изменения чередования фаз достаточно простой команды управления.Затем электродвигатель переменного тока, расположенный ниже по потоку, вращается в противоположном направлении.

Какие типы преобразователей частоты доступны?

Существует два разных типа инверторов: с управлением по току и с управлением по напряжению. Их функции различаются следующим образом:

  • Преобразователи частоты с управлением по току постоянно поддерживают постоянное отношение тока к частоте (I / f) и подходят для использования в приложениях в высоком мегаваттном диапазоне.
  • Напротив, в нижнем диапазоне мегаватт или киловатт, преобразователи частоты , регулируемые напряжением, представляют собой новейшие современные технологии.Они постоянно поддерживают соотношение напряжения к частоте на постоянном уровне: если, следовательно, двигатель, рассчитанный на напряжение 230 В и частоту 50 Гц, работает с частотой 25 Гц, напряжение также уменьшается вдвое до 115 В.

Проще говоря, для преобразователей частоты с регулируемым напряжением подходят следующие случаи: Выпрямитель преобразует переменное напряжение, подаваемое из системы питания, в постоянное напряжение. Затем промежуточное звено постоянного тока берет на себя задачу сглаживания и стабилизации этого постоянного напряжения.Затем работающий инвертор DC-AC на стороне двигателя генерирует переменное напряжение с выходной частотой, требуемой приложением. Таким образом, полученное отношение напряжения к частоте обеспечивает требуемую скорость двигателя. Интегрированный контроллер , который соединяет все узлы друг с другом, определяет или вычисляет требуемую скорость.

Где используются преобразователи частоты?

Преобразователи частоты используются в огромном разнообразии промышленных секторов и приложений .Будь то приводы для насосов и вентиляторов, обрабатывающие машины, конвейерные ленты и сборочные линии, или краны и системы транспортировки: Преобразователи частоты теперь незаменимы в промышленном производстве. В этом секторе адаптированная или бесступенчатая скорость позволяет оптимизировать производственные процессы — наряду с дополнительным преимуществом, заключающимся в том, что приводы с регулировкой скорости обеспечивают энергоэффективную работу .

Преобразователи частоты для любого типа оборудования

Наши преобразователи частоты доступны в различных исполнениях и с большим количеством дополнительных функций, которые удовлетворяют многим потребностям и требованиям.Другой решающий вопрос заключается в том, следует ли размещать преобразователь частоты на стене , в центральном и защищенном положении в шкафу управления или непосредственно в поле (то есть в децентрализованном месте). И в зависимости от того, насколько простым или амбициозным является рассматриваемое приложение, используется все больше и больше базовых преобразователей частоты или прикладных преобразователей с большим набором функций или многоосевых сервоусилителей .

SEW ‑ EURODRIVE была первой компанией , которая разработала децентрализованную технологию и представила на рынке подходящие преобразователи частоты и мехатронные приводы. Они помогают операторам установок значительно снизить затраты на установку и предоставляют различные варианты проектирования своих установок в виде модульной системы без необходимости использования шкафов управления. Наш портфель инверторных технологий также включает устройств для рекуперативных источников питания , которые можно комбинировать с одним или несколькими преобразователями частоты и приводными инверторами.Кроме того, мы предлагаем базовые пускатели двигателя для интеграции с мотор-редуктором. .

Преобразователи частоты для установки в шкафу

Преобразователи частоты для установки в шкафу управления

От базовых инверторов до стандартных инверторов или прикладных инверторов до модульных сервоусилителей, мы предлагаем вам обширный ассортимент приводной электроники — для децентрализованной установки в шкафах управления или распределительных коробках:

Преобразователи частоты для настенного монтажа

Дополнительным недорогим вариантом для централизованной установки преобразователей частоты является настенный монтаж.Это решение всегда следует рассматривать, если вы не хотите покупать дорогой шкаф управления. Наши преобразователи частоты, которые идеально подходят для этого типа установки, имеют соответствующую степень защиты от IP 54 до IP 66 (для пыльных и влажных условий окружающей среды).

Пускатели электродвигателей для децентрализованной установки

Достаточно ли одной функции инвертора для вашего приложения? Или вы просто хотите включать и выключать двигатель или изменять направление вращения двигателя слева направо? В таком случае в ассортименте SEW ‑ EURODRIVE также есть подходящие продукты:

Преобразователи частоты для децентрализованной установки

Преобразователи частоты для децентрализованной установки

Наше портфолио включает в себя широкий спектр преобразователей частоты для монтажа электроники вашего привода рядом с двигателем или мотор-редуктором: от базовых преобразователей с параметризуемыми рампами для тяжелых условий эксплуатации в простых приложениях до стандартных преобразователей с более широкими функциями управления до полностью программируемых преобразователей приложений для приложений. сложные системные архитектуры.Если вам также нужно децентрализованное решение с многоосевыми перемещениями и установки со связанными модулями станков, то многоосевые сервоусилители — ваш лучший выбор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *