Правило кирхгофа формула: Закон Киргофа. 1 и 2 закон Кирхгофа. Определение, формула

Содержание

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

∑i = 0,

или в комплексной форме

∑I = 0.

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

∑ZI = E.

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно Nу – 1, где Nу – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно

NвNу + 1, где Nв – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ
Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ направление токов и обход контуров
Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока

J1, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

I1I2I3 = 0;

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

I1I4 + I6 = 0;

для узла «3 у.»:

I2 + I

4 + I5I7 = 0;

для узла «4 у.»:

I3I5J1 = 0

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

ZC1I1 + R2I2ZL1

I4 = E1;

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

-R2I2 + R4I3 + ZC2I5 = E2;

для контура «3 к.»:

ZL1I4 + (ZL2 + R1) ∙ I6 + R3I7 = E3,

где Z

C = — 1/(ωC), ZL = ωL.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ направление токов и обход контуров

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ направление токов и обход контуров

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

>> syms R1 R2 R3 R4 Zc1 Zc2 Zl1 Zl2 J1 E1 E2 E3;
>> A = [1  -1 -1    0   0        0  0;
       -1   0  0   -1   0        1  0;
        0   1  0    1   1        0 -1;
        0   0  1    0  -1        0  0;
      Zc1  R2  0 -Zl1   0        0  0;
        0 -R2 R4    0 Zc2        0  0;
        0   0  0  Zl1   0 (R1+Zl2) R3];
>> b = [0;
        0;
        0;
       J1;
       E1;
       E2;
       E3];
>> I = A\b

В результате получим вектор-столбец I токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы
  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Если вам нравится наш контент, помогите в развитии сайта.

Рекомендуемые записи

Правила Кирхгофа — Википедия

Пра́вила Кирхго́фа (часто в литературе ошибочно называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока

[1]. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений, и соответственно, найти значения токов на всех ветвях цепи и все межузловые напряжения.

Сформулированы Густавом Кирхгофом в 1845 году[2].

Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.

Формулировка правил

Определения

Для формулировки правил Кирхгофа вводятся понятия узел, ветвь и контур электрической цепи. Ветвью называют участок электрической цепи с одним и тем же током, например, на рис. отрезок, обозначенный R1, I1 есть ветвь. Узлом называют точку соединения трех и более ветвей (на рис. обозначены жирными точками). Контур — замкнутый путь, проходящий через несколько ветвей и узлов разветвлённой электрической цепи. Термин

замкнутый путь означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.

В терминах данных определений правила Кирхгофа формулируются следующим образом.

Первое правило

Сколько тока втекает в узел, столько из него и вытекает.
i2 + i3 = i1 + i4

Первое правило Кирхгофа гласит, что алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи, равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла.

∑ j = 1 n I j = 0. {\displaystyle \sum \limits _{j=1}^{n}I_{j}=0.}

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

Второе правило

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

для постоянных напряжений ∑ k = 1 n E k = ∑ k = 1 m U k = ∑ k = 1 m R k I k ; {\displaystyle \sum _{k=1}^{n}E_{k}=\sum _{k=1}^{m}U_{k}=\sum _{k=1}^{m}R_{k}I_{k};}
для переменных напряжений ∑ k = 1 n e k = ∑ k = 1 m u k = ∑ k = 1 m R k i k + ∑ k = 1 m u L k + ∑ k = 1 m u C k . {\displaystyle \sum _{k=1}^{n}e_{k}=\sum _{k=1}^{m}u_{k}=\sum _{k=1}^{m}R_{k}i_{k}+\sum _{k=1}^{m}u_{L\,k}+\sum _{k=1}^{m}u_{C\,k}.}

Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля.

Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае (см. далее).

Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.

Особенности составления уравнений для расчёта токов и напряжений

Если цепь содержит p {\displaystyle p} узлов, то она описывается p − 1 {\displaystyle p-1} уравнениями токов. Это правило может применяться и для других физических явлений (к примеру, система трубопроводов жидкости или газа с насосами), где выполняется закон сохранения частиц среды и потока этих частиц.

Если цепь содержит m {\displaystyle m} ветвей, из которых содержат источники тока ветви в количестве m i {\displaystyle m_{i}} , то она описывается m − m i − ( p − 1 ) {\displaystyle m-m_{i}-(p-1)} уравнениями напряжений.

  • Правила Кирхгофа, записанные для p − 1 {\displaystyle p-1} узлов или m − ( p − 1 ) {\displaystyle m-(p-1)} контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и все напряжения.
  • Перед тем, как составить уравнения, нужно произвольно выбрать:
    • положительные направления токов в ветвях и обозначить их на схеме, при этом не обязательно следить, чтобы в узле направления токов были и втекающими, и вытекающими, окончательное решение системы уравнений всё равно даст правильные знаки токов узла;
    • положительные направления обхода контуров для составления уравнений по второму закону, с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке).
  • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), падение напряжения считается положительным, в противном случае — отрицательным.
  • При записи линейно независимых уравнений по второму правилу Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие).
  • В сложных непланарных графах электрических цепей человеку трудно увидеть независимые контуры и узлы, каждый независимый контур (узел) при составлении системы уравнений порождает ещё 1 линейное уравнение в определяющей задачу системе линейных уравнений. Подсчёт количества независимых контуров и их явное указание в конкретном графе развит в теории графов.

Пример

{\displaystyle m-(p-1)} На этом рисунке для каждой ветви обозначен протекающий по ней ток (буквой «I») и напряжение между соединяемыми ею узлами (буквой «U»)

Количество узлов: 3.

p − 1 = 2 {\displaystyle p-1=2}

Количество ветвей (в замкнутых контурах): 4. Количество ветвей, содержащих источник тока: 0.

m − m i − ( p − 1 ) = 2 {\displaystyle m-m_{i}-(p-1)=2}

Количество контуров: 2.

Для приведённой на рисунке цепи, в соответствии с первым правилом, выполняются следующие соотношения:

{ I 1 − I 2 − I 6 = 0 I 2 − I 4 − I 3 = 0 {\displaystyle {\begin{cases}I_{1}-I_{2}-I_{6}=0\\I_{2}-I_{4}-I_{3}=0\end{cases}}}

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например, здесь токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

Решение полученной линейной системы алгебраических уравнений позволяет определить все токи узлов и ветвей, такой подход к анализу цепи принято называть методом контурных токов.

В соответствии со вторым правилом, справедливы соотношения:

{ U 2 + U 4 − U 6 = 0 U 3 + U 5 − U 4 = 0 {\displaystyle {\begin{cases}U_{2}+U_{4}-U_{6}=0\\U_{3}+U_{5}-U_{4}=0\end{cases}}}

Полученные системы уравнений полностью описывают анализируемую цепь, и их решения определяют все токи и все напряжения ветвей. Такой подход к анализу цепи принято называть методом узловых потенциалов.

О значении для электротехники

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простоте формулировки уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

Закон излучения Кирхгофа

Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

Закон Кирхгофа в химии

Закон Кирхгофа гласит — температурный коэффициент теплового эффекта химической реакции равен изменению теплоёмкости системы в ходе реакции.

Примечания

Литература

  • Матвеев А. Н. Электричество и магнетизм : учебное пособие. — М.: Высшая школа, 1983. — 463 с.
  • Калашников С. Г. Электричество : учебное пособие. — М.: Физматлит, 2003. — 625 с.
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — 11-е издание. — М.: Гардарики, 2007.
  • Герасимов В. Г., Кузнецов Э. В., Николаева О. В. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.

Первое правило Кирхгофа, теория и примеры

При решении задачи нахождения силы токов в участках сложной цепи постоянного тока при известных сопротивлениях участков цепи и заданных электродвижущих силах (ЭДС) часто применяют правила Кирхгофа. Всего их два. Правила Кирхгофа не являются самостоятельными законами. Они всего лишь следствия закона сохранения заряда (первое правило) и закона Ома (второе правило). При любой сложности цепи можно провести все расчеты параметров сети, применяя закон Ома и закон сохранения заряда. Правила Кирхгофа используют для того, чтобы упростить процедуру написания системы линейных уравнений, в которые входят искомые токи.

Формулировка первого правила Кирхгофа

Для формулировки первого правила Кирхгофа определим, что считается узлом цепи. Узел разветвленной цепи -это точка цепи, в которой сходятся три или больше проводников с токами.

Для верной записи формулы первого правила Кирхгофа необходимо принимать во внимание направления течения токов. Следует помнить, что токи, входящие в узел и токи, выходящие из него, записываются в уравнения с разными знаками. Если в задаче направления токов не заданы, то их выбирают произвольно. Если в ходе решения задачи выясняется, что полученный ток имеет знак минус, то это означает, что истинное направление тока является противоположным. При решении задачи, следует решить, какие токи считать положительными, например, выходящие из узла, и тогда все токи в этой задаче записывать в соответствующих уравнениях со знаком плюс.

Математическая запись первого правила Кирхгофа:

   

Формула (1) значит, что сумма токов с учетом знаков в каждом узле цепи постоянного тока равна нулю.

Обычно для наглядности и простоты при составлении уравнений на схемах указывают направления течения, выбирая их произвольно.

Первое правило Кирхгофа иначе называют правилом узлов.

Это правило следствие закона сохранения электрического заряда. Сумма токов (с учетом их знаков), которая сходится в узле — это заряд, проходящий через данный узел в единицу времени. Если токи в узле не зависят от времени, то их сумма должна быть равна нулю, в противном случае, потенциал узла будет изменяться со временем, соответственно токи будут переменными. Если ток в цепи постоянный, то в цепи не может быть точек, которые бы накапливали заряд. Иначе токи будут изменяться во времени.

Используя только одно первое правило Кирхгофа не получится составить полную систему независимых уравнений, которых было бы достаточно для решения задачи нахождения всех сил токов, которые текут во всех сопротивлениях цепи при известных ЭДС и сопротивлениях. Для написания дополнительных уравнений используют второе правило Кирхгофа.

Примеры решения задач

Правила Кирхгофа, теория и примеры задач

Очень часто электрическая цепь включает несколько источников тока и сопротивлений, которые соединены разными способами. Такую цепь называют сложной разветвленной электрической цепью. Значимыми для составления систем уравнений, позволяющих провести расчеты в сети постоянного тока, являются ее узлы и замкнутые контуры. Расчеты любой сети можно проводить, используя закон Ома и закон сохранения заряда. Но использование специальных правил, которые называют правилами Кирхгофа (иногда законами Кирхгофа) позволяют упростить процедуру составления уравнений для вычислений. Всего выделяют два правила Кирхгофа.

Первое правило Кирхгофа

Довольно часто в электрической цепи в одной точке сходятся более двух проводников, по которым текут токи. Такие точки в цепи называют узлами или разветвлениями. В любом узле, если ток в цепи постоянен, полное изменение заряда за некоторый промежуток времени равно:

   

где суммирование проводят с учетом знаков силы тока. Если мы имеем дело с постоянным током в цепи, то потенциалы всех ее точек остаются неизменными. Значит, в узлах не может накапливаться заряд. Поэтому рассматривая силу тока, как алгебраическую величину запишем:

   

где N – число токов, которые сходятся в узле. Выражение (2) носит название первого правила Кирхгофа (правило узлов): сумма токов, текущих через сопротивления в цепи постоянного тока, с учетом их знака, сходящихся в узле, равна нулю.

Знак у тока (плюс или минус) выбирают произвольно, но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Допустим, все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными.

Первое правило Кирхгофа дает возможность составить независимое уравнение, если в цепи k узлов.

Второе правило Кирхгофа

Во втором правиле Кирхгофа рассматривают замкнутые контуры, поэтому оно называется правилом контуров. Формулируется это правило Кирхгофа следующим образом: Суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), которые входят в рассматриваемый контур. В математическом виде второй закон Кирхгофа записывают как:

   

Величины называют падениями напряжения. Прежде, чем применять второй закон Кирхгофа определяются с направлением положительного обхода контура. Выбирается направление произвольно, либо по часовой стрелке, либо против нее. Если направление обхода совпадает с направлением течения тока в рассматриваемом элементе контура, то падение напряжения в формулу второго закона для данного контура входит с положительным знаком. ЭДС считают положительной, если при движении по контуру (в избранном направлении) первым встречается отрицательный полюс источника. Более правильно было бы сказать, сто ЭДС считают положительной, если работа сторонних сил по перемещению единичного положительного заряда на рассматриваемом участке цепи в заданном направлении обхода контура является положительной величиной.

Второе правило Кирхгофа является следствием закона Ома.

Примеры решения задач

Первый и второй закон Кирхгофа

ads

При расчете режима работы электрической цепи очень часто необходимо определить токи, напряжения и мощности на всех ее участках при заданных ЭДС источников и сопротивлений участков цепи. Данный расчёт основан на применении законов Кирхгофа.

В этой статье предполагается, что вы знакомы с определениями узла, ветви и контура.


Содержание:


Первый закон Кирхгофа

Первый закон Кирхгофа гласит, что в ветвях образующих узел электрической цепи алгебраическая сумма токов равна нулю (токи входящие в узел считаются положительными, выходящие из узла отрицательными).

Пользуясь этим законом для узла A (рисунок 1) можно записать следующее выражение:

Первый закон КирхгофаРисунок 1 — Первый закон Кирхгофа

I1 + I2 − I3 + I4 − I5 − I6 = 0.

Попытайтесь самостоятельно применить первый закон Кирхгофа для определения тока в ветви. На приведенной выше схеме изображены шесть ветвей образующие электрический узел В, токи ветвях входят и выходят из узла. Один из токов i неизвестен. 

Первый закон Кирхгофа

#1. Запишите выражение для узла В

Первый закон Кирхгофа

#2. Найдите ток i

Результат

Отлично!

Попытайтесь снова(

Выбор направления токов

Если при расчёте цепи направление токов неизвестны, то при составлении уравнений согласно законом Кирхгофа их необходимо предварительно выбрать произвольно и обозначить на схеме стрелками. В действительности направление токов в ветвях могут отличаться от произвольно выбранных. Поэтому выбранные направления токов называют положительными направлениями. Если в результате расчёта цепи какие-либо токи будут выражены отрицательными числами, то действительные направления этих токов обратны выбранным положительным направлениям.

Например

 

Первый закон КирхгофаРисунок 2

На рисунке 2,а представлен электрический узел. Произвольно, стрелками укажем направления токов (рисунок 2,б).

Важно! При выборе направления токов в ветвях, необходимо выполнения двух условий:
1. Ток должен вытекать из узла через одну или несколько других ветвей;
2. Хотя бы один ток должен входить в узел.

Первый закон Кирхгофа выбор направления токов

Предположим, что после расчёта цепи получились следующие значения токов:

I1 = -5 А;
I2 = -2 A;
I3 = 3 А.

Так как значение тока I1 и I2 получились отрицательными, следовательно, действительно направление I1 и I2 противоположно ранее выбранным (рисунок 3).

Действительное направление токовРисунок 3 — действительное направление токов обозначено синими стрелками
  • I1 − I2 + I3 = 0;
  • -5  − (-2) +3 = 0;
  • -I1 + I2 + I3 = 0;
  • -5  + 2 +3 = 0.

Второй закон Кирхгофа.

Второй закон Кирхгофа: в контуре электрической цепи алгебраическая сумма эдс равна алгебраической сумме падений напряжения на всех сопротивлениях данного контура.Второй закон Кирхгофа

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i-й ветви.

Применение второго закона Кирхгофа

Для контура ABСDE, изображенного на рисунке 4, стрелками указаны положительные направления токов (произвольно). Составим уравнение согласно второму закону Кирхгофа. Для этого произвольно зададимся направлением обхода контура по часовой или против часовой стрелки. В данном примере направление обхода контура выберем по часовой стрелке.

Второй закон КирхгофаРисунок 4

При составлении уравнений по второму закону Кирхгофа, ЭДС записывается со знаком “+”, если ее направление совпадает с направлением произвольно выбранного обхода контура. В противном случае ЭДС записывается со знаком “-”.

Падения напряжения записываются со знаком “+”, если направление тока в нем совпадает с направлением обхода.

Начнём с эдс E1, так как её направление совпадает с обходом контура — записываем её со знаком “+” перед знаком равно.

Контур ABСDE E1 =

E2 направленна против обхода контура записываем со знаком “-” перед знаком равно.

Контур ABСDE E1 − E2 =

Так как больше ЭДС в контуре ABСDЕ нет — левая часть уравнения готова.

В правой части уравнения указываются падения напряжения контура, так как направления токов I1 и I2 совпадает с обходом контура – записываем падения напряжения со знаком “+”.

Контур ABСDЕE E1 − E2 = I1*R1 + I2*R2

Направление тока I3 не совпадет с обходом контура:

Контур ABСDE E1 − E2 = I1*R1 + I2*R2 − I3*R3.

Уравнение для контура готово.

Законы Кирхгофа являются основой для расчета электрической цепи, вот несколько методов применяющие данные законы.

Законы Кирхгофа


Конкурс

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, ЭДС и сопротивлением всей цепи или , между напряжением и сопротивлением на каком-либо участке цепи определяется законом Ома.

На практике в цепях, токи, от какой-либо точки, идут по разным путям.
Точки, где сходятся несколько проводников, называются узлами, а участки цепи, соединяющие два соседних узла, ветвями.

В замкнутой электрической цепи ни в одной ее точке не могут скапливаться электрические заряды так, как это вызвало бы изменение потенциалов точек цепи. Поэтому электрические заряды притекающие к какому-либо узлу в единицу времени, равны зарядам, утекающим от этого узла за ту же единицу.
Разветвлённая цепь.
В узле А цепь разветвляется на четыре ветви, которые сходятся в узел В.

Обозначим токи в неразветвленной части цепи — I, а в ветвях соответственно

I1

, I2, I3, I4.

У этих токов в такой цепи будет соотношение:

I = I1+I2+I3+I4;

Cумма токов, подходящих к узловой точке электрической цепи,
равна сумме токов, уходящих от этого узла.

shutka2

razvetcep

uzllovtochka

При параллельном соединении резисторов ток проходит по четырем направлениям, что уменьшает общее сопротивление или увеличивает общую проводимость цепи, которая равна сумме проводимостей ветвей.

Обозначим силу тока в неразветвленной ветви буквой I.
Силу тока в отдельных ветвях соответственно I1, I2, I3 и I4.
Напряжение между точками A и BU.
Общее сопротивление между этими точками — R.

По закону Ома напишем:

I = U/R; I1 = U/R1; I2 = U/R2; I3 = U/R3; I4 = U/R4;

Согласно первому закону Кирхгофа:

I = I1+I2+I3+I4; или U/R = U/R1+U/R2+U/R3+U/R4.

Сократив обе части полученного выражения на U получим:

1/R = 1/R1+1/R2+1/R3+1/R4, что и требовалось доказать.

Cоотношение для любого числа параллельно соединенных резисторов.
В случае, если в цепи содержится два параллельно соединенных резистора
R1 и R2, то можно написать равенство:

1/R =1/R1+1/R2;

Из этого равенства найдем сопротивление R, которым можно заменить два параллельно соединенных резистора:

formula3

Полученное выражение имеет большое практическое применение.
Благодаря этому закону производятся расчёты электрических цепей.

Второй закон Кирхгофа

В замкнутом контуре электрической цепи сумма всех эдс равна
сумме падения напряжения в сопротивлениях того же контура.


E1 + E2 + E3 +…+ En = I1R1 + I2R2 + I3R3 +…+ InRn
.При составлении уравнений выбирают направление обхода цепи и произвольно задаются направлениями токов.

Если в электрической цепи включены два источника энергии, эдс которых совпадают по направлению, т. е. согласно изо1, то эдс всей цепи равна сумме эдс этих источников,
т. е.
E = E1+E2
.

Если же в цепь включено два источника, эдс которых имеют противоположные направления, т. е. включены встречно изо2, то общая эдс цепи равна разности эдс этих источников
Е = Е1—Е2
.

soedistoch


Благодаря этим  законам производятся расчёты электрических цепей.
Существует несколько методов расчёта, один из них «Метод узловых напряжений»


Скачать можно здесь

(Подробно и доходчиво в видеокурсе «В мир электричества — как в первый раз!»)


Второй закон Кирхгофа. Второе правило Киргофа для расчета цепей постоянного тока

Второй закон Кирхгофа

  • Алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре.
  • Алгебраическая сумма падений напряжений в замкнутом контуре равна сумме действующих ЭДС в этом контуре. Если в контуре нет источников электродвижущей силы, то суммарное падение напряжений равно нулю.
  • Алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю.
  • Алгебраическая сумма падений напряжений на пассивных элементах равна алгебраической сумме ЭДС и напряжений источников тока, действующих в этом контуре.

Схема второй закон кирхгофа

Т.е. падение напряжения на R1 со своим знаком плюс падение напряжения на R2 со своим знаком равно напряжение источника эдс 1 со своим знаком  плюс напряжение на источнике электродвижущей силы 2 со своим знаком. Алгоритм расстановки знаков в уравнениях по закону Кирхгофа описан на отдельной странице.

Пример второй закон кирхгофа

Уравнение для второго закона Кирхгофа

Составлять уравнения по второму закону Кирхгофа можно разными способами. Самым удобным считается первая формула.

Второй закон кирхгофа

Так же можно уравнения писать в таком виде.

Второй закон киргофа

Физический смысл второго закона Кирхгофа

Второй закон устанавливает связь между падением напряжения на замкнутом участке электрической цепи и действием источников ЭДС на этом же замкнутом участке. Он связан с понятием работы по переносу электрического заряда. Если перемещение заряда выполняется по замкнутому контуру, возвращаясь в ту же точку, то совершенная работа равна нулю. Иначе бы не выполнялся закон сохранения энергии. Это важное свойство потенциального электрического поля описывает 2 закон Кирхгофа для электрической цепи.

Формула правила соединения Кирхгофа

В замкнутой цепи может быть любое количество элементов схемы, таких как батареи и резисторы. Цепь может разветвляться, создавая «переходы», где цепь разделяется или рекомбинирует. Сумма токов в соединении цепи и вне ее должна быть равна нулю. Это известно как правило Кирхгофа. Сила тока измеряется в амперах (А).

I = ток, (Амперы, А)

Формула правила соединения Кирхгофа Вопросы:

1) Схема на рисунке ниже состоит из двух резисторов и источника напряжения (батареи).Ток перед переходом «а» равен I a , ток через резистор R 1 равен I 1 , а ток через резистор R 2 равен I 2 . На рисунке приведены значения I a и I 2 . Исходя из этой цифры, каково значение тока I 1 ?

Ответ: Правило соединения Кирхгофа гласит, что сумма токов в переходе и на выходе должна быть равна нулю. В этом случае I 1 подключен к переходу «a», и сумма токов в переходе «a» и на выходе из него может использоваться для определения значения I 1 .Направление токов на стыке имеет значение. В этом случае показано, как ток течет по цепи по часовой стрелке. Это означает, что один ток течет внутрь, а два тока выходят из перехода «а». Сумма токов в переходе «a» и вне его составляет:

Значение I 1 можно найти, переставив формулу выше:

Значение тока I 1 равно 3.50 А (Амперы).

2) Схема на рисунке ниже состоит из трех резисторов и источника напряжения (батареи). Ток перед переходом «a» равен I a , ток перед переходом «b» равен I b , ток через резистор R 1 равен I 1 , ток через резистор R 2 равен I. 2 , а ток через резистор R 3 равен I 3 . На рисунке приведены значения I a , I 1 и I 2 .Исходя из этого числа, каково значение тока I 3 ?

Ответ: Правило соединения Кирхгофа гласит, что сумма токов в переходе и на выходе должна быть равна нулю. В этом случае I 3 подключен к разъему «b». Направление токов на стыках имеет важное значение. В этом случае показано, как ток течет по цепи по часовой стрелке. Суммы токов, протекающих через переходы «a» и «b», можно использовать для определения значения I 3 .Сумма токов в переходе «a» и вне его составляет:

Сумма токов в переходе «b» и вне его составляет:

Эти два уравнения можно объединить для решения I 3 . Обычно это выражается как «два уравнения и две неизвестные». Значения I b и I 3 неизвестны, но с двумя уравнениями информации достаточно для решения проблемы.Уравнения могут быть обозначены (1) и (2):

(1)

(2)

Уравнение (1) можно изменить, чтобы выделить I b слева от знака равенства:

Теперь это уравнение для I b может заменить I b в уравнении (2):

Теперь это можно изменить, чтобы решить для I 3 :

Значение тока I 3 равно 3.00 А (Амперы).

.

Формула правила петли Кирхгофа

В любой «петле» замкнутой цепи может быть любое количество элементов схемы, таких как батареи и резисторы. Сумма разностей напряжений на всех этих элементах схемы должна быть равна нулю. Это известно как правило петли Кирхгофа. Разница напряжений измеряется в вольтах (В). Когда ток I в контуре указан в Амперах (A), а сопротивление элементов схемы указано в Ом (Ом), разность напряжений на резисторе может быть найдена по формуле .

В = разность напряжений, (Вольт, В)

Формула правила петли Кирхгофа Вопросы:

1) Цепь на рисунке ниже состоит из трех резисторов и источника напряжения (батареи). Ток в контуре I = +4,00 А по часовой стрелке. Батарея выдает напряжение v b = 100,0 В. Значения сопротивлений для двух из трех резисторов приведены на рисунке. Какое значение имеет резистор R 3 ?

Ответ: Правило петли Кирхгофа гласит, что сумма разностей напряжений вокруг петли должна быть равна нулю.Чтобы найти сумму, необходимо выбрать направление движения. Направление положительного тока задается по часовой стрелке, поэтому проще всего использовать его в качестве направления движения, чтобы найти сумму. Источник напряжения или батарея слева на рисунке имеет положительное значение напряжения по часовой стрелке. Три резистора вызывают падение напряжения в этом направлении. Величина падений напряжения равна сопротивлению, умноженному на ток в контуре. Сумма разностей напряжений:

Значение третьего резистора можно найти, переставив формулу выше:

Номинал резистора R 3 составляет (Ом).

2) Цепь на рисунке ниже состоит из трех резисторов и источника напряжения (батареи). Ток в контуре I = +10,0 мА (миллиампер) против часовой стрелки. Значения для трех резисторов приведены на рисунке в единицах килоом (номинал резистора R 3 составляет ). Какое напряжение ( В b ) должно подаваться на аккумулятор?

Ответ: Правило петли Кирхгофа гласит, что сумма разностей напряжений вокруг петли должна быть равна нулю.Чтобы найти сумму, необходимо выбрать направление движения. Направление положительного тока задается против часовой стрелки, поэтому его проще всего использовать в качестве направления движения, чтобы найти сумму. Источник напряжения или батарея слева на рисунке имеет положительное значение напряжения в направлении против часовой стрелки. Три резистора вызывают падение напряжения в этом направлении. Величина падений напряжения равна сопротивлению, умноженному на ток в контуре, поэтому их сумма должна быть той же величины, что и напряжение от батареи.Сумма разностей напряжений в выбранном направлении движения составляет:

Чтобы умножить значения в приведенной выше формуле, необходимо преобразовать значения тока и сопротивления в базовые единицы. Для тока 1000 миллиампер равняется 1 амперу (1000 мА = 1 А), а для сопротивления 1 килоом равен 1000 Ом (). Формула принимает следующий вид:

Напряжение от аккумулятора можно найти, переставив формулу выше:

Напряжение, подаваемое батареей V b , составляет 240 В (Вольт).

.

правил Кирхгофа | физика | Britannica

Правила Кирхгофа , два утверждения о многопетлевых электрических цепях, которые воплощают законы сохранения электрического заряда и энергии и которые используются для определения значения электрического тока в каждой ветви цепи.

Подробнее по этой теме

электричество: законы электрических цепей Кирхгофа

Для определения значений токов в цепях можно использовать два простых соотношения.Они пригодятся даже в довольно сложных ситуациях, таких как …

Первое правило, теорема о переходах, гласит, что сумма токов в конкретном переходе в цепи равна сумме токов, исходящих из того же перехода. Электрический заряд сохраняется: он не появляется и не исчезает внезапно; он не накапливается в одном месте и не истончается в другом.

Второе правило, уравнение контура, утверждает, что вокруг каждого контура в электрической цепи сумма ЭДС (электродвижущих сил или напряжений источников энергии, таких как батареи и генераторы) равна сумме падений потенциала, или напряжения на каждом из сопротивлений в одном контуре.Вся энергия, передаваемая источниками энергии заряженным частицам, переносящим ток, просто эквивалентна энергии, теряемой носителями заряда при полезной работе и рассеивании тепла вокруг каждого контура цепи.

На основе двух правил Кирхгофа можно написать достаточное количество уравнений, включающих каждый из токов, так что их значения могут быть определены алгебраическим решением.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской.Подпишитесь сегодня

Правила Кирхгофа также применимы к сложным цепям переменного тока и с модификациями сложных магнитных цепей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *