Полярные конденсаторы маркировка: Электролитические конденсаторы, маркировка электролитических конденсаторов, полярные конденсаторы 220 мкф

Содержание

Полярные и неполярные конденсаторы — в чем отличие. Маркировка конденсаторов

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 — 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатораТип конденсатора
КерамическийЭлектролитическийНа основе металлизированной пленки
От 2,2 пФ до 10 нФОт 100 нФ до 68 мкФ1 мкФ до 16 мкФ
± 10 и ± 20-10 и +50± 20
50 — 2506,3 — 400250 — 600
Стабильность конденсатораДостаточнаяПлохаяДостаточная
От -85 до +85От -40 до +85От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатора
Тип конденсатора
СлюдянойНа основе полиэстераНа основе полипропилена
Диапазон изменения емкости конденсаторовОт 2,2 пФ до 10 нФОт 10 нФ до 2,2 мкФОт 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), %± 1± 20± 20
Рабочее напряжение конденсаторов, В3502501000
Стабильность конденсатораОтличнаяХорошаяХорошая
Диапазон изменения температуры окружающей среды, о СОт -40 до +85От -40 до +100От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторовОт 10 нФ до 10 мкФОт 10 пФ до 10 нФОт 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), %± 20± 2,5± 20
Рабочее напряжение конденсаторов, В63 — 6301606,3 — 35
Стабильность конденсатораОтличнаяХорошаяДостаточная
Диапазон изменения температуры окружающей среды, о СОт -55 до +100От -40 до +70От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М — 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора — 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10 -6 Ф), нанофарадах (1нФ = 10 -9 Ф) или пикофарадах (1пФ=10 -12 Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».


Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.


Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости .

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы . Емкость их изменяется при помощи отвертки.

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.


Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.


Отдельно выделяются конденсаторы для поверхностного монтажа или . Они технологичны для монтажа на автоматических конвейерных линиях, а размеры позволяют минимизировать габаритные размеры устройств.

Классификация конденсаторов по виду диэлектрика

Воздух в качестве диэлектрика использовался только для конденсаторов переменной емкости старого образца. Чем меньше материал между обкладками конденсатора проводит электрический ток, тем меньших размеров может быть изготовлен этот элемент на то же рабочее напряжение. При использовании определенных материалов можно получить конденсаторы с необходимыми свойствами.

В зависимости от материала диэлектрика между обкладками выпускаются конденсаторы:

Из всего этого перечня самыми распространенными в электротехнике являются бумажные и металлобумажные конденсаторы, использующиеся для схем запуска однофазных двигателей и для компенсации реактивной мощности. Всем известны электролитические конденсаторы, используемые в выпрямителях для сглаживающих фильтров. Их главная особенность – невозможность работы на переменном токе.


При ошибках в полярности подключения электролитических конденсаторов они выходят из строя, иногда – со взрывом. То же произойдет при превышении номинального напряжения электролитического и металлобумажного конденсатора, так как они выпускаются в герметичных корпусах.

Условные обозначения конденсаторов

Подстроечный конденсатор
Электролитический конденсатор
Два конденсатора в общей обкладкой в одном корпусе

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Разновидности конденсаторов по типу диэлектрика

Электролитические конденсаторы

В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.

Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор. Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.

В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.


Радиальный электролитический конденсатор

У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.


Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS

В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.

Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.

Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).

Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.

Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.

Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.

Перед повторным применением стоит тщательно проверить конденсатор, ранее бывший в употреблении.

Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.

В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.


Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD — привода

Также существуют миниатюрные танталовые конденсаторы. Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.


Танталовые электролитические конденсаторы на печатной плате MP-3 плеера

Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.


Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода

В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.

Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода. Плюсовым выводом – анодом — в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.

На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.

Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.

Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.


Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт

Среди электролитических конденсаторов есть и неполярные. Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Танталовые конденсаторы [подробная статья] — маркировка, типы (smd/чип), полярность, особенности применения

Наверное, у каждого радиолюбителя хоть раз да взрывался танталовый конденсатор из-за неправильной переплюсовки.

В этой статье я расскажу, что такое танталовый конденсатор, зачем он нужен и как вообще с ним работать.

Если после прочтения у вас останутся вопросы – смело задавайте их в комментариях, а я постараюсь ответить.

Содержание статьи

Твердотельные танталовые конденсаторы по большинству параметров соответствуют требованиям к современным электронным устройствам. Они отличаются малыми габаритами, высокой удельной емкостью, надежностью (при соблюдении правил на всех этапах их жизни) и совместимостью с общепринятыми технологиями монтажа. Преимуществом является и то, что важный параметр конденсатора – ESR (эквивалентное последовательное сопротивление) – с ростом частоты не возрастает, а в некоторых случаях даже уменьшается. Чтобы сократить число отказов и продлить рабочий период устройства, необходимо учитывать его индивидуальные особенности при изготовлении, хранении, монтаже и во время работы.

Так выглядят танталовые конденсаторы

Почему тантал используют для производства конденсаторов

Тантал способен при окислении формировать плотную оксидную пленку, толщину которой можно регулировать с помощью технологических приемов, тем самым изменяя параметры конденсатора.

Помимо тантала конденсаторы делают из керамики, слюды, бумаги и алюминиевой фольги.

Описание и назначение танталовых конденсаторов

Современные танталовые конденсаторы имеют малые размеры и относятся к чип-компонентам, которые предназначены для монтажа на плате. Иначе такие детали называются SMD, что расшифровывается как «компоненты поверхностного монтажа». SMD детали удобны для автоматизированных процессов монтажа и пайки на печатные платы.

Основное назначение электролитических поляризованных танталовых конденсаторов – действовать в комплексе с резистором с целью обработки сигнала и сглаживания его пиков и острых импульсов.

Конденсаторы широко используются в автомобильной, промышленной, цифровой, аэрокосмической технике.

Устройство танталовых твердотельных конденсаторов

Танталовый конденсатор относится к электролитическому типу. В его состав входят 4 основные части: анод, диэлектрик, твердый электролит, катод. Изготовление танталового конденсатора состоит из ряда достаточно сложных технологических операций.

Изготовление анода

Пористую гранулированную структуру получают прессованием из высокоочищенного танталового порошка. В процессе спекания в условиях глубокого вакуума при температурах +1300…+2000°C из порошка образуется губчатая структура с развитой площадью поверхности. Благодаря ей, обеспечивается высокая емкость при небольшом объеме. Танталовый конденсатор при одинаковой с алюминиевым устройством емкости имеет гораздо меньший объем.

Формирование диэлектрического слоя

Диэлектрический оксидный слой выращивают на поверхности анода из пентаоксида тантала в процессе электрохимического окисления. Толщину оксида можно регулировать изменением напряжения. Обычно толщина диэлектрической пленки составляет доли микрометра. Оксидный слой имеет не кристаллическую, а аморфную структуру, которая обладает значительным электросопротивлением.

Получение электролита

Электролитом служит твердотельный полупроводник – диоксид марганца, – который получают термообработкой солей марганца в ходе окислительно-восстановительного процесса. Для этого анодный губчатый слой покрывают солями марганца, а затем нагревают их до получения диоксида марганца. Процесс повторяют несколько раз до полного покрытия анода.

Формирование катодного слоя

Для улучшения контакта электролит покрывают графитовым, а затем металлическим слоем. В качестве металла обычно используют серебро. Сформированный композит запрессовывают в компаунд.

Особенности танталовых конденсаторов

  • Доступная емкость этих радиодеталей – от 1 до нескольких сотен мкФ
  • Относительно низкое эквивалентное последовательное сопротивление (ESR) и наименьшее значение утечки. Благодаря этим свойствам, танталовые конденсаторы успешно работают в качественной аудиоаппаратуре, тестовых и измерительных приборах.
  • Тонкий оксидный слой, который обеспечивает высокую диэлектрическую проницаемость. Сочетание значительной площади поверхности губчатого анода с хорошей диэлектрической проницаемостью обеспечивает хранение большого запаса энергии.
  • В отличие от электролитических, танталовые конденсаторы при переплюсовке или пробое взрываются. Сила взрыва зависит от размеров конденсатора и может повредить как соседние элементы, так и монтажную плату.

    Пробои танталовых конденсаторов

    При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

    Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

    Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

    Другие дефекты танталовых конденсаторов

    Кроме пробоя, в результате неправильной производственной технологии и нарушения правил транспортировки и хранения в конденсаторе возникают и другие дефекты:

    • Механические. Первый вид таких дефектов может появиться на выращенном диэлектрике в результате его резкого удара о твердую поверхность. Второй – при образовании электролитного слоя из-за совместного действия теплового удара и внутреннего давления газов в порах.
    • Примеси и включения. При нарушении производственной технологии на поверхности тантала могут появиться посторонние вещества – углерод, железо, кальций, которые приводят к неравномерности диэлектрического слоя.
    • Кристаллизованные участки диэлектрика, которые появились при изготовлении устройства. Кристаллизация может происходить из-за несоответствия состава электролита технологическим требованиям и неправильного температурного режима процесса.

    Недостатки танталовых конденсаторов

  • постепенная деградация структуры;
  • зависимость емкости от частоты, при частотах выше 150 кГц эти устройства вообще неэффективны из-за существенного уменьшения емкости;
  • низкая устойчивость к токам пульсации и перегреву;
  • пожарная опасность.
  • Танталово-полимерные конденсаторы

    Большая часть проблем, характерных для танталовых конденсаторов, решена в танталово-полимерных аналогах. В качестве электролита в танталово-полимерных конденсаторах вместо диоксида марганца используется токопроводящий полимер. Он дает минимальный ESR, что позволяет пропускать гораздо большие токи, по сравнению с танталовыми предшественниками. Танталово-полимерные устройства успешно применяются в качестве сглаживающих конденсаторов в источниках питания и преобразователях напряжения.

    Токопроводящий полимер обеспечивает низкую чувствительность к импульсам тока, стойкость к внешним факторам, отсутствие деградации структуры, более высокий срок службы. Высокая стабильность емкости в широком интервале частот и температур позволяет применять танталово-полимерные устройства в промышленной, телекоммуникационной и автомобильной электронике и других областях, для которых характерно колебание рабочих температур.

    Основные параметры танталовых конденсаторов

    Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:

    • Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
    • Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
    • Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
    • Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.

    Особенности проектирования плат и монтажа танталовых конденсаторов

    Для этих устройств подходят практически все материалы печатных плат – FR4, FR5, G10, фторопласт, алюминий. Форма, размер посадочного места и способ монтажа указываются производителями деталей. Изменить рекомендуемые параметры монтажа может специалист, имеющий достаточно знаний и навыков, чтобы правильно скорректировать температуру пайки.

    Перед монтажом на плату наносят паяльную пасту. Толщина слоя – 0,178+/-0,025 мм. Для того чтобы флюс, находящийся в пасте, эффективно растворил оксиды с мест контакта, подбирают оптимальный температурный режим пайки. Обычно это делают опытным путем.

    Монтаж на плату осуществляется вручную или с помощью автоматизированного оборудования любого типа, применяемого сегодня. Пайка производится: вручную, волновым способом, в инфракрасных или конвекционных печах. Температурный режим предподогрева и пайки обычно предоставляют производители конкретной продукции.

    Маркировка танталовых конденсаторов

    В маркировке конденсаторов указывают стандартные параметры: емкость, номинальное напряжение, полярность. На корпусах типов B, C, D, E, V отображают все параметры, а на корпусе типа A вместо номинала напряжения указывают его буквенный код. В маркировке может указываться дополнительная информация – логотип производителя, код даты производства и другая.

    Таблица буквенных кодов напряжения для корпусов типа A

    Номинальное напряжение

    Код

    Номинальное напряжение

    Код

    4,0

    G

    20

    D

    6,3

    J

    25

    E

    10

    A

    35

    V

    16

    C

    50

    T

    Типы корпусов танталовых конденсаторов и их размеры

    Обозначение танталовых конденсаторов на схеме

    На схеме электролитические поляризованные конденсаторы, к которым относится танталовое устройство, обозначаются двумя параллельными линиями, идущими от них выводами и значком «+».

    Обозначение конденсаторов на схеме (по ГОСТу)

    Особенности хранения

    Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.

    Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:

    • Соблюдение требований техпроцессов;
    • Многоступенчатый контроль качества продукции;
    • Соблюдение условий хранения;
    • Выполнение требований к организации рабочего места для монтажа устройств на плату;
    • Соблюдение рекомендуемого температурного режима пайки;
    • Правильный выбор безопасных рабочих режимов;
    • Соблюдение требований по эксплуатации.

    Заключение

    Постарался подробно объяснить, что представляет из себя танталовый конденсатор и для чего он нужен.

    Если у вас есть какие-либо замечания или вопросы по теме – смело задавайте их в комментариях, постараюсь ответить!


    Была ли статья полезна?

    Да

    Нет

    Оцените статью

    Что вам не понравилось?


    Другие материалы по теме


    Анатолий Мельник

    Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


    Как определить полярность конденсатора и не перепутать?

    Все конденсаторы имеют высокий показатель удельной емкости. Это объяснятся применением оксидной пленки в качестве диэлектрика, который располагается между обкладками. Этот слой появляется на поверхности металла – AL, Ta, Nb. Она характеризуется большой электрической прочностью, а также своими вентильными свойствами. Ее толщина колеблется от 0,01 до 1мкм.

    Если создается напряжение в 100 вольт, создается напряженность на этом слое в 107В на см. Таким образом приближается к максимальному пределу своей прочность, исходя из теории ионной кристаллов.

    В статье разобраны все аспекты как определить полярность конденсаторы и что такое полярность конденсаторов. В качестве дополнения есть ролик и скачиваемый файл на эту тему.

    Полярность конденсаторов.

    Параметры, которыми характеризуется конденсаторы

    Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.

    Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.

    Маркировка конденсаторов.

    Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.

    Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

    Параллельное соединение

    Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

    Материал в тему: все о переменном конденсаторе.

    На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

    Соединения конденсаторов.

    Что будет если перепутать полярность

    Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут  корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

    При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

    Как определить полярность электролитического конденсатора

    Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.

    Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.

    В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.

    Как определить полярность электролитического конденсатора.

    Полярные и неполярные конденсаторы – в чем отличие

    Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

    В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

    Интересный материал для ознакомления: что такое вариасторы.

    Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

    Полярные и неполярные конденсаторы.

    Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

    Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

    Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

    Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

    Полярность конденсатора.

    А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

    На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

    Полярный и неполярный конденсатор

    Полярные (электролитические) конденсаторы

    Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

    Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.

    полярный и неполярный конденсатор

    Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с большим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

    В данной статье были рассмотрены основные особенности трансформаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике Электрические конденсаторы В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

    www.nauchebe.net

    www.masterkit.ru

    www.radiostorage.net

    www.texnic.ru

    www.radioelementy.ru

    Предыдущая

    КонденсаторыЧто такое плоские конденсаторы

    Следующая

    КонденсаторыСколько стоят керамические конденсаторы?

    Маркировка конденсаторов на плате

    Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

    Как определить полярность электролитического конденсатора?

    Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

    • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
    • по внешнему виду;
    • с помощью универсального измерительного прибора – мультиметра.

    Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

    По маркировке

    Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

    Обозначение плюса конденсатора

    На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

    На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

    Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

    Обозначение минуса

    Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

    Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

    Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

    Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

    На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

    По внешнему виду

    Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

    У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

    Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

    С помощью мультиметра

    Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

    Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

    Потребуются следующие устройства и компоненты:

    • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
    • мультиметр;
    • резистор;
    • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
    • маркер для нанесения знаков полярности на корпус проверяемого электролита.

    Затем следует собрать электрическую схему:

    • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
    • плюсовую клемму ИП соединить с выводом резистора;
    • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

    Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

    Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

    Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

    После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

    Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

    Как определить полярность электролитического конденсатора?

    Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

    • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
    • по внешнему виду;
    • с помощью универсального измерительного прибора – мультиметра.

    Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

    По маркировке

    Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

    Обозначение плюса конденсатора

    На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

    На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

    Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

    Обозначение минуса

    Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

    Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

    Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

    Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

    На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

    По внешнему виду

    Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

    У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

    Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

    С помощью мультиметра

    Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

    Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

    Потребуются следующие устройства и компоненты:

    • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
    • мультиметр;
    • резистор;
    • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
    • маркер для нанесения знаков полярности на корпус проверяемого электролита.

    Затем следует собрать электрическую схему:

    • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
    • плюсовую клемму ИП соединить с выводом резистора;
    • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

    Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

    Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

    Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

    После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

    В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

    Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

    Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

    Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

    В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

    Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

    Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

    Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший ) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

    Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

    Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

    После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

    При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

    После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка , которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

    Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

    Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

    Замена конденсатора без выпаивания с платы

    Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате – это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

    Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

    А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

    Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

    Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

    Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

    На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

    Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

    Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

    Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

    Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

    Маркировка электролитических конденсаторов расшифровка

    Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

    С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

    Зачем нужна маркировка?

    Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

    • данные о ёмкости конденсатора – главной характеристике элемента;
    • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
    • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
    • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
    • дату выпуска.

    Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

    Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

    Маркировка отечественных конденсаторов

    Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

    Ёмкость

    Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

    Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

    • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
    • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
    • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
    • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

    Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

    В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

    Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

    Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

    Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

    Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

    Номинальное напряжение

    Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

    Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

    Дата выпуска

    Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

    “4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

    4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

    Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

    ГодКод
    1990A
    1991B
    1992C
    1993D
    1994E
    1995F
    1996H
    1997I
    1998K
    1999L
    2000M
    2001N
    2002P
    2003R
    2004S
    2005T
    2006U
    2007V
    2008W
    2009X
    2010A
    2011B
    2012C
    2013D
    2014E
    2015F
    2016H
    2017I
    2018K
    2019L

    Расположение маркировки на корпусе

    Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.

    По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.

    Цветовая маркировка отечественных радиоэлементов

    При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.

    На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.

    Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.

    Маркировка конденсаторов импортного производства

    На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

    Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

    Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

    Цветовая маркировка импортных конденсаторов

    Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

    Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.

    Маркировка smd компонентов

    Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.

    Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.

    Заключение

    Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.

    Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

    Как маркируются большие конденсаторы

    Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

    При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

    Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

    Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

    В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

    При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

    При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

    При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

    Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

    Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

    Расшифровка маркировки конденсаторов

    Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

    Обозначение цифр

    Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

    Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.

    Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

    После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

    Обозначение букв

    После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

    При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

    Маркировка керамических конденсаторов

    Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

    Смешанная буквенно-цифровая маркировка

    Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.

    Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

    Прочие маркировки

    Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

    В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

    Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

    Правила маркировки конденсаторов постоянной ёмкости

    При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

    Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

    Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

    При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

    У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

    Итак, разберёмся в том, как маркируют конденсаторы.

    Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

    Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


    Конденсаторы серии К73 и их маркировка

    Правила маркировки.

    Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.

    Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
    330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

    Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

    Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.

    Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
    Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

    Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.

    Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

    На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


    Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

    Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

    Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

    Буквенный код отклонения ёмкости (допуск).

    Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

    Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

    Допуск в % Буквенное обозначение
    лат.рус.
    ± 0,05pA
    ± 0,1pBЖ
    ± 0,25pCУ
    ± 0,5pDД
    ± 1,0FР
    ± 2,0GЛ
    ± 2,5H
    ± 5,0JИ
    ± 10KС
    ± 15L
    ± 20MВ
    ± 30NФ
    -0. +100P
    -10. +30Q
    ± 22S
    -0. +50T
    -0. +75UЭ
    -10. +100WЮ
    -20. +5YБ
    -20. +80ZА

    Маркировка конденсаторов по рабочему напряжению.

    Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

    Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

    Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

    Номинальное рабочее напряжение, B Буквенный код
    1,0I
    1,6R
    2,5M
    3,2A
    4,0C
    6,3B
    10D
    16E
    20F
    25G
    32H
    40S
    50J
    63K
    80L
    100N
    125P
    160Q
    200Z
    250W
    315X
    350T
    400Y
    450U
    500V

    Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

    Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

    Как определить полярность конденсатора и не перепутать


    Способы определения полярности конденсатора

    По маркировке

    У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

    Примеры обозначения плюса конденсатора

    • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
    • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

    • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

    Обозначение минуса

    Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

    По геометрии

    Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

    С помощью мультиметра

    Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

    или источник постоянного тока + милливольтметр + нагрузка

    Что сделать

    • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
    • Подключить емкость в разрыв цепи.
    • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
    • Разрядить.
    • Снова включить в схему.
    • Считать показания прибора.

    Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

    По маркировке

    У отечественных электролитов концы расположены в разных сторонах устройства, либо на одной стороне. На корпусе прибора изображают знак «плюс». Определить, какой конец является частью анода можно, посмотрев на расположение «плюса». К какому выводу он изображен ближе, тот конец и относится к аноду. Старые образцы приборов чешского производства имеют точно такое же обозначение.

    Устройства типа К50-16 изготовлены из пластмассы. На них уже указана информация о полярности. Однако иногда знаки «+» и «—» расположены таким образом, что концы пересекают их центры.

    Некоторые устройства имеют нестандартную конструкцию, предусматривающую соединение с шасси. Их используют в качестве элементов для осветительных ламп. Катод этих приборов подключается отрицательно и выведен на корпус, в то время как анод выходит из элемента.

    Существует серия конденсаторов ЭТО. Некоторые путают их с диодами. Эти приборы маркируются, но иногда обозначения стираются. Что определить местоположение анода, нужно посмотреть на вывод, который выходит из утолщения корпуса.

    Полярность конденсаторов, выпускаемых сегодня, определяют по полосе рядом с выводом «минус». Обозначение изображено краской и выглядит как прерывистая линия.

    Как определить полярность конденсатора, если маркировка стерта? Конденсатор разряжают и замыкают его ножки отверткой. К устройству подсоединяют батарейку, резистор, микроамперметр и милливольтметр. На схему подают напряжение. Конденсатор начинает накапливать заряд.

    Когда зарядка закончится, фиксируют показания прибора по измерению тока. Конденсатор разряжают. Для этого два выхода подсоединяют к лампе. Если она гаснет – прибор разрядился.

    Схему собирают повторно и заново снимают показания. Данные первого измерения сравнивают со вторым. Если «плюс» был соединен с «плюсом» милливольтметра, то сведения не будут отличаться друг от друга. Противоположный итог свидетельствует о том, что полярность установлена неверно.

    Электролит теряет емкость, если заряжается от источника 9-12 Вт. Такой элемент для сборки схемы не используют, иначе прибор сломается.

    С помощью чего измеряют полярность у конденсатора

    Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

    • Переключатель прибора ставят в положение измерения сопротивления.
    • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
    • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
    • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

    Вам это будет интересно Особенности кабеля Frls

    Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

    Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции.

    Что будет если перепутать полярность

    Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

    Будет интересно➡ Сколько стоят керамические конденсаторы?

    При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

    Обозначение плюса конденсатора

    На отечественных советских изделиях обозначался только положительный контакт — знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

    На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

    Полярные и неполярные конденсаторы – в чем отличие

    Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

    Будет интересно➡ Чем отличаются параллельное и последовательное соединение конденсаторов

    В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

    Интересный материал для ознакомления: что такое вариасторы.

    Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

    Полярные и неполярные конденсаторы.

    Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

    Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

    Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

    Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

    Полярность конденсатора.

    А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

    Будет интересно➡ Что такое ионистор?

    На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

    Полярный и неполярный конденсатор

    Характеристики конденсатора

    Основной характеристикой любого конденсатора является его емкость, которая определяет количество накопленного заряда. Емкость зависит от площади обкладок и толщины слоя диэлектрика.

    Внимание! Площадь пластин нельзя увеличивать бесконечно, поскольку это приводит к росту габаритов и массы устройства.

    Толщину диэлектрического слоя также можно снижать только до определенного значения, поскольку любой изолятор имеет свой предел электрической прочности. В связи с этим второй основной характеристикой является рабочее напряжение, при котором конденсатор сохраняет свои свойства на протяжении всего срока службы.

    Превышение рабочего напряжения приводит к электрическому пробою и нарушению функционирования прибора, в частности, в некоторых областях применения требуется учитывать дополнительные параметры, а именно:

    • Температурный коэффициент, учитывающий влияние нагрева на емкость радиоэлемента;
    • Тангенс угла диэлектрических потерь, характеризующий свойства радиоэлемента при работе на высоких частотах;
    • Полярность включения, возникающая вследствие конструктивных особенностей некоторых типов устройств.

    Для увеличения емкости при сохранении приемлемых габаритов, приходится применять различные технические тонкости. Например, в электролитических конденсаторах в качестве одной из обкладок используется узкая и длинная полоса из алюминиевой фольги. Тонкий слой оксида на поверхности фольги является изолятором, а вместо второй обкладки используется жидкий электролит. При изготовлении такого конденсатора лист фольги скручивается в тонкий цилиндр, который затем помещается в корпус.

    Вам это будет интересно Как выбрать цветовую температуру


    Электролитический конденсатор

    Подобная конструкция совмещает большую площадь обкладок и малую толщину диэлектрика, что позволяет получать очень большие значения емкости при малых габаритах.

    Основным недостатком таких конденсаторов является необходимость строгого соблюдения полярности подключения. Невыполнение этого требования приводит к возникновению больших токов, утечкам и разрушению конструкции. Электролитические конденсаторы должны иметь маркировку полярности для правильного подключения.

    Обозначение минуса

    Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

    Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

    Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

    Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

    Общие сведения

    При включении в электрическую цепь определение полярности для таких элементов не нужно. Но существуют электролитические конденсаторы, которые считаются необычными электронными компонентами, так как сочетают в себе функции не только накапливающего элемента, но и полупроводникового прибора. Они характеризуются большей емкостью, по сравнению с остальными, и малыми габаритными размерами. Сами выводы у конденсатора располагаются радиально (на разных сторонах прибора) или аксиально (на одной стороне).

    Эти устройства широко используются во многих электро,- и радиотехнических приборах, в компьютерах, в измерительных приборах и т.д. Для них определение полярности и правильное подключение в сеть обязательны.

    Обратите внимание! Они могут взорваться, если на них ошибочно подать напряжение, выше рассчитанного. Его значение в основном указывается производителем на корпусе изделия.

    Замена конденсаторов

    Дорожки и контактные площадки на современных платах становятся все меньше, а сами платы зачастую являются многослойными. Все это значительно усложняет процесс отсоединения элемента с целью контроля его работоспособности. Потому актуальным становится вопрос: как проверить конденсатор мультиметром не выпаивая его? Попробуем найти решение.

    По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы.

    Неполярные электролитические конденсаторы

    Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов температурные характеристики, тип корпуса и так далее , которые делают тот или иной тип конденсаторов электролитический, керамический и пр. В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника. Конденсаторы Рис.

    Регистрация Вход.

    По внешнему виду

    Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

    Их чего состоят

    Больших емкостей можно добиться только с помощью химических источников.

    Электролитические конденсаторы являются химическими источниками тока. У них, как и у аккумуляторов, есть катод, анод и электролит. А также те же самые недостатки, что и у аккумуляторов.

    Поэтому, такие конденсаторы и называются электролитическими. Среди радиолюбителей и электронщиков они сокращенно называются электролитами.

    По составу электролита они бывают: жидкого и сухого типа. Еще есть оксидно-полупроводниковые, а также оксидно-металлические. Обозначаются на принципиальных схемах также, как и обычный, но только с указанием полярности в виде знака +.

    ESR конденсатора

    ESR – оно же эквивалентное последовательное сопротивление – это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

    Реальные параметры конденсатора

    Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем “Прогресс”. Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

    r – это сопротивление диэлектрика и корпуса между обкладками конденсатора

    С – собственно сама емкость конденсатора

    ESR – эквивалентное последовательное сопротивление

    ESI (чаще его называют ESL) – эквивалентная последовательная индуктивность

    Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

    r – сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

    С – емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

    ESI(ESL) – последовательная индуктивность – это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

    Где “прячется” ESR в конденсаторе

    ESR представляет из себя сопротивление выводов и обкладок

    Как вы знаете, сопротивление проводника можно узнать по формуле:

    ρ – это удельное сопротивление проводника

    l – длина проводника

    S – площадь поперечного сечения проводника

    Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок

    Полярность конденсатора

    для различных типов в зависимости от его маркировки

    Полярность конденсатора

    — важный момент, который следует учитывать при подключении. Существуют различные конденсаторы, некоторые из них «поляризованные», а некоторые относятся к категории «неполяризованных». Оба типа имеют «два терминала». Разница между этими двумя типами конденсаторов очень проста. Если рассматриваемые конденсаторы поляризованы, то клеммы, классифицируемые как «анод» и «катод».Они должны быть подключены с учетом полярности источника питания. Если рассматриваемые конденсаторы неполяризованные. Эти конденсаторы можно подключать без учета полярности.

    Конденсаторы изначально классифицируются на основе значения емкости. Если емкость фиксированная, они классифицируются как «фиксированные конденсаторы». Если емкость переменная, то они классифицируются как «переменные конденсаторы». Эти фиксированные конденсаторы подразделяются на «поляризованные» и «неполяризованные».Каждый тип конденсатора выбирается исходя из требований к емкости.

    Что такое полярность конденсатора?

    Конденсатор, состоящий из клемм, имеющих определенные значения напряжения, которые могут быть положительными или отрицательными. Классификация клемм этого типа приводит к определению конденсатора с полярностью или без полярности.

    Символ поляризованного конденсатора

    Указанное выше символическое представление также известно как схема полярности конденсатора.

    Как определяется полярность конденсатора?

    Есть несколько способов определения полярности конденсаторов. Один из них — «Маркировка» конденсаторов.

    • Некоторые конденсаторы имеют разную высоту клемм.
    • На неполяризованном изображении упоминается как «NP» и «BP».
    • Некоторые из них помечены знаком «Позитив». В некоторых случаях стрелки играют жизненно важную роль в определении полярности конденсаторов.

    Выше приведены некоторые способы определения полярности конденсатора.Клемма с положительной полярностью известна как Анод , а другая клемма — Катод .

    Керамический конденсатор

    Это наиболее популярные конденсаторы из-за их «малых размеров». Кроме того, когда нам требуется конденсатор с большей емкостью для хранения зарядов, предпочтение отдается керамическим конденсаторам. Этот компонент разработан с использованием пары электродов для проводимости. Эта пара разделена средой из непроводящего керамического материала, называемого диэлектриком.Это набор конденсаторов, который относится к категории неполяризованных конденсаторов.

    Керамический конденсатор

    Следовательно, он не имеет полярности. Это обеспечивает гибкость подключения этого конденсатора в схему.

    Пленочный конденсатор

    Даже эти конденсаторы не имеют полярности. В зависимости от конструкции они подразделяются на различные типы. Эти типы также не обладают никакой полярностью.

    Пленочный конденсатор

    Электролитический конденсатор

    Обсуждаемые выше конденсаторы считаются «конденсатором без полярности».Эти конденсаторы определяются по маркировке. Наличие полосы указывает на то, что конкретный терминал является отрицательным. В типе «Осевой» предусмотрена стрелка для определения наличия отрицательного вывода в конденсаторе. Это также указывает направление потока заряда в соответствующем конденсаторе.

    Если вы могли наблюдать несколько конденсаторов, у некоторых конденсаторов положительный вывод длиннее, чем отрицательный. Танталовый конденсатор, который относится к категории электролитических конденсаторов, на его клеммах можно определить по присутствующему на нем значку плюса.

    Неполяризованные конденсаторы могут быть подключены без каких-либо проблем с идентификацией клемм перед подключением. Но поляризованные должны быть связаны с вниманием, потому что это может привести к повреждению схемы. Даже это приводит к перегреву контура.

    Маркировка полярности конденсаторов

    Маркировка на конденсаторах помогает определить полярность.

    1. Полярность на большом конденсаторе.

    Индикация полярности конденсатора

    Знак «плюс» рядом с выводом указывает, что соответствующий вывод является положительным.Итак, он считается анодом. Другой вывод следует рассматривать как катод.

    1. Полярность конденсатора можно определить по стрелке.

    Полярность конденсатора по стрелке

    Стрелка, указывающая на клемму, считается отрицательной.

    Это процесс, описанный в «Идентификации полярности конденсатора», который может быть выполнен. Но для неполяризованных конденсаторов должна быть какая-то идентификация. В случае неполяризованных конденсаторов он обозначается как NP на конденсаторе, например NPA или NPR, где NP означает неполяризованный, A означает осевой, а R означает радиальный.

    Следовательно, существуют различные способы определения полярности конденсатора. В процессе изготовления на нем могут быть обозначения. Некоторые конденсаторы даже отмечены полосой. Тем не менее, необходимо соблюдать осторожность при фиксации этого в схемах. Какие из перечисленных выше конденсаторов вы предпочитаете поляризованные или неполяризованные для высоковольтных устройств?

    Определение поляризации конденсатора | DigiKey

    Поляризованные конденсаторы всегда имеют какой-нибудь обозначение, указывающее полярность.Это важно, потому что подключать один назад может быть опасно.

    Алюминиевые колпачки можно маркировать разными способами. Радиальные банки со сквозным отверстием обычно имеют линию на отрицательной стороне корпуса, причем отрицательный вывод также короче. Радиальные банки для поверхностного монтажа будут иметь сверху цветную часть, обозначающую отрицательную площадку. На осевых банках с одной стороны будет линия со стрелками, указывающими на отрицательный вывод, или полоса с отступом, обозначающая положительный вывод.

    Танталовые чипы для поверхностного монтажа будут иметь линию и / или выемку на положительном конце. Axial будет иметь выемку с положительной стороны. Радиальный имеет стрелку или положительный индикатор над положительным выводом.

    Ниже приведены некоторые изображения приведенных выше примеров с полным описанием каждого из них. Если вы работаете с этими продуктами и не уверены или затрудняетесь расшифровать их, вы всегда можете обратиться к таблице данных или обратиться за помощью к кому-нибудь.

    Рисунок 1: Линия и короткий провод указывают на отрицательный провод

    Рисунок 2: Цветной блок сверху указывает на отрицательный провод

    Рисунок 3: Линия со стрелками указывает на отрицательный вывод

    Рисунок 4: Зубчатая полоса и знаки + указывают на положительный вывод

    Рисунок 5: Край со скошенной кромкой и линия указывают на плюсовой провод

    Рисунок 6: Скошенная кромка указывает на положительный вывод

    Рис. 7: Линия и символ + здесь трудно увидеть, но если вы видите их на изображении, они указывают на положительный вывод.

    Об авторе

    Эшли Аволт (Ashley Awalt) — разработчик технического контента, работающая в Digi-Key Electronics с 2011 года. Она получила степень младшего специалиста по прикладным наукам в области электронных технологий и автоматизированных систем в Общественном и техническом колледже Northland через стипендиальную программу Digi-Key. В настоящее время ее роль заключается в оказании помощи в создании уникальных технических проектов, документировании процесса и, в конечном итоге, в участии в производстве видеоматериалов, освещающих эти проекты.В свободное время Эшли любит — подожди, а есть ли свободное время, когда ты мама?

    Полярность

    — learn.sparkfun.com

    Добавлено в избранное Любимый 46

    Что такое полярность?

    В области электроники полярность указывает, является ли компонент схемы симметричным или нет. Неполяризованный компонент — деталь без полярности — может быть подключен в любом направлении и по-прежнему работать так, как должен.Симметричный компонент редко имеет более двух выводов, и каждый вывод на компоненте эквивалентен. Вы можете подключить неполяризованный компонент в любом направлении, и он будет работать точно так же.

    Поляризованный компонент — деталь с полярностью — может быть подключен к цепи только в одном направлении. Поляризованный компонент может иметь два, двадцать или даже двести контактов, и каждый из них имеет уникальную функцию и / или положение. Если поляризованный компонент был неправильно подключен к цепи, в лучшем случае он не будет работать должным образом.В худшем случае неправильно подключенный поляризованный компонент будет дымить, искры и быть очень мертвой деталью.

    Ассортимент поляризованных компонентов: батареи, интегральные схемы, транзисторы, регуляторы напряжения, электролитические конденсаторы и диоды, среди прочего.

    Полярность — очень важная концепция, особенно когда речь идет о физическом построении цепей. Включаете ли вы детали в макет, припаиваете их к печатной плате или вшиваете их в проект электронного текстиля, очень важно уметь идентифицировать поляризованные компоненты и соединять их в правильном направлении.Так вот для чего мы здесь! В этом руководстве мы обсудим, какие компоненты имеют полярность, а какие нет, как определить полярность компонентов и как проверить некоторые компоненты на полярность.

    Подумайте о прочтении

    Если ваша голова еще не кружится, возможно, можно безопасно прочитать оставшуюся часть этого руководства. Полярность — это концепция, которая основывается на некоторых концепциях электроники более низкого уровня и усиливает некоторые другие. Если вы еще этого не сделали, подумайте о том, чтобы ознакомиться с некоторыми из приведенных ниже руководств, прежде чем читать это.

    Что такое схема?

    Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.

    Как использовать макетную плату

    Добро пожаловать в чудесный мир макетов. Здесь мы узнаем, что такое макетная плата и как с ее помощью построить вашу самую первую схему.

    Как пользоваться мультиметром

    Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

    Полярность диодов и светодиодов

    Примечание: Мы будем иметь в виду поток тока относительно положительных зарядов (т. Е. Обычного тока) в цепи.

    Диоды пропускают ток только в одном направлении, и они всегда поляризованы . У диода два вывода. Положительная сторона называется анодом , а отрицательная — катодом .

    Обозначение диодной цепи с маркировкой анода и катода.

    Ток через диод может течь только от анода к катоду, что объясняет, почему важно, чтобы диод был подключен в правильном направлении. Физически каждый диод должен иметь какую-то индикацию анода или катода. Обычно диод имеет линию рядом с выводом катода , которая соответствует вертикальной линии в символе цепи диода.

    Ниже приведены несколько примеров диодов. Верхний диод, выпрямитель 1N4001, имеет серое кольцо возле катода.Ниже на сигнальном диоде 1N4148 используется черное кольцо для маркировки катода. Внизу находится пара диодов для поверхностного монтажа, каждый из которых использует линию, чтобы отметить, какой вывод является катодом.

    Обратите внимание на линии на каждом устройстве, обозначающие сторону катода, которые соответствуют линии на изображении выше.

    Светодиоды

    LED означает светоизлучающий диод , что означает, что, как и их диодные собратья, они поляризованы. Есть несколько идентификаторов для поиска положительных и отрицательных контактов на светодиодах.Вы можете попробовать найти более длинную ногу , которая должна указывать на положительный анодный штифт.

    Или, если кто-то подрезал ножки, попробуйте найти плоский край на внешнем корпусе светодиода. Контакт, ближайший к плоскому краю , будет отрицательным катодным контактом.

    Могут быть и другие индикаторы. SMD-диоды имеют ряд идентификаторов анода / катода. Иногда проще всего проверить полярность с помощью мультиметра. Установите мультиметр в положение диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода.Если светодиод горит, положительный датчик касается анода, а отрицательный датчик касается катода. Если он не загорается, попробуйте поменять зонды местами.

    Полярность крошечного желтого светодиода для поверхностного монтажа проверяется с помощью мультиметра. Если положительный вывод касается анода, а отрицательный — катода, светодиод должен загореться.


    Диоды, конечно же, не единственный поляризованный компонент. Есть масса деталей, которые не будут работать при неправильном подключении.Далее мы обсудим некоторые другие распространенные поляризованные компоненты, начиная с интегральных схем.

    Полярность интегральной схемы

    Интегральные схемы (ИС)

    могут иметь восемь или восемьдесят контактов, и каждый контакт на ИС имеет уникальную функцию и положение. При использовании микросхем очень важно соблюдать полярность. Есть большая вероятность, что они задымятся, растают и испортятся при неправильном подключении.

    ИС со сквозным отверстием обычно поставляются в двухрядном корпусе (DIP) — два ряда выводов, каждый с интервалом 0.1 дюйм шириной, достаточной для того, чтобы охватить центр макета. Микросхемы DIP обычно имеют выемку , чтобы указать, какой из множества контактов является первым. Если не выемка, на ИС может быть выгравирована точка , точка в корпусе рядом с контактом 1.

    ИС с точкой и меткой для обозначения полярности. Иногда вы получаете и то, и другое, иногда только одно или другое.

    Для всех корпусов ИС номера выводов последовательно увеличиваются при перемещении против часовой стрелки от вывода 1.

    ИС для поверхностного монтажа могут иметь QFN, SOIC, SSOP или ряд других форм-факторов. Эти микросхемы обычно имеют точек рядом с контактом 1.

    ATmega32U4 в корпусе TQFP, рядом с распиновкой таблицы данных.

    Конденсаторы электролитические

    Не все конденсаторы поляризованы, но когда они поляризованы, очень важно, не перепутать полярность.

    Керамические конденсаторы — маленькие (1 мкФ и менее), обычно желтые, — , а не поляризованные.Вы можете придерживаться их любым способом.

    Керамические конденсаторы для сквозного монтажа и поверхностного монтажа 0,1 мкФ. Они НЕ поляризованы.

    Колпачки электролитические (в них есть электролиты), похожие на консервные банки, поляризованы . Отрицательный штифт крышки обычно обозначается знаком «-» с отметкой и / или цветной полосой вдоль банки. У них также может быть на более длинная положительная ветвь .

    Ниже представлены электролитические конденсаторы емкостью 10 мкФ (слева) и 1 мФ, на каждом из которых имеется символ тире, обозначающий отрицательный вывод, а также более длинный положительный вывод.

    Подача отрицательного напряжения на электролитический конденсатор в течение длительного времени приводит к кратковременному, но катастрофическому отказу. Они сделают pop , и верхняя часть колпачка либо разбухнет, либо лопнет. С этого момента крышка будет практически мертвой, действуя как короткое замыкание.

    Другие поляризованные компоненты

    Батареи и блоки питания

    Правильная полярность в вашей цепи начинается и заканчивается правильным подключением источника питания.Независимо от того, получает ли вы питание от настенной бородавки или от LiPo-аккумулятора, очень важно убедиться, что вы случайно не подключили их обратно и случайно не подали 9 В или 4,2 В.

    Любой, кто когда-либо заменял батарейки, знает, как определить их полярность. На большинстве батарей положительные и отрицательные клеммы обозначаются символом «+» или «-». В других случаях это может быть красный провод для положительного и черный провод для отрицательного.

    Набор аккумуляторов.Литий-полимерный, батарейка типа «таблетка», щелочная батарея 9 В, щелочная батарея AA и никель-металл-гидридная батарея AA. У каждого есть способ представить положительные или отрицательные клеммы. Блоки питания

    обычно имеют стандартный разъем, который обычно должен иметь полярность. У бочкообразного домкрата, например, два проводника: внешний и внутренний; внутренний / центральный провод обычно является положительной клеммой. Другие разъемы, такие как JST, имеют ключ с ключом , поэтому вы просто не можете подключить их в обратном направлении.

    Для дополнительной защиты от обратной полярности источника питания вы можете добавить защиту от обратной полярности с помощью диода или полевого МОП-транзистора.

    Транзисторы, полевые МОП-транзисторы и регуляторы напряжения

    Эти (традиционно) трехполюсные поляризованные компоненты объединяются вместе, потому что они имеют одинаковые типы корпусов. Транзисторы со сквозным отверстием, полевые МОП-транзисторы и регуляторы напряжения обычно поставляются в корпусах TO-92 или TO-220, как показано ниже. Чтобы определить, какой из выводов является каким, найдите плоский край на корпусе TO-92 или металлический радиатор на TO-220 и сопоставьте его с выводом в таблице данных.

    Выше транзистор 2N3904 в корпусе TO-92, обратите внимание на изогнутые и прямые края.Регулятор 3,3 В в корпусе TO-220, обратите внимание на металлический радиатор сзади.

    и т. Д.

    Это лишь верхушка айсберга поляризованных компонентов. Даже неполяризованные компоненты, такие как резисторы, могут поставляться в поляризованных корпусах. Блок резисторов — группа из пяти или около того предварительно установленных резисторов — является одним из таких примеров.

    Комплект поляризованных резисторов. Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце. Точка представляет собой первый общий штифт.

    К счастью, каждый поляризованный компонент должен каким-то образом сообщать вам, какой контакт какой.Обязательно всегда читайте таблицы и проверяйте корпус на наличие точек или других маркеров.

    Ресурсы и дальнейшее развитие

    Теперь, когда вы знаете, что такое полярность и как ее определить, почему бы не ознакомиться с некоторыми из этих руководств по теме:

    • Основные сведения о разъемах — существует ряд разъемов, имеющих собственную полярность. Обычно это отличный способ убедиться, что вы не подаете питание или какой-либо другой сигнал в обратном направлении.
    • Диоды — наш яркий пример полярности компонентов. В этом руководстве подробно рассказывается, как работают диоды и какие типы диодов существуют.
    • LilyPad Design Kit Эксперимент 1. Схемы существуют не только на макетных и печатных платах, вы также можете вшивать их в рубашки и другие ткани! Ознакомьтесь с руководствами по LilyPad Design Kit, чтобы узнать, как начать работу. Знание полярности очень важно для правильного подключения этих светодиодов.

    Поляризованные конденсаторы

    : объяснение полярности электролитических конденсаторов | Стрелка.com

    Помимо обманчиво простого схематического символа поляризованного конденсатора (см. Рисунок 1), есть сложный, жизненно важный компонент многих электронных схем. Этот конденсатор, часто называемый электролитическим конденсатором или просто «электролитическим» из-за его конструкции, играет важную роль в обеспечении того, чтобы выходной сигнал источника питания мог обеспечивать необходимый ток при номинальном постоянном напряжении питания.


    Рисунок 1: Наиболее распространенный символ поляризованного конденсатора в a) U.С., и б) Европа; есть много вариаций.

    Разъяснение полярности электролитического конденсатора

    Зачем нужен такой конденсатор и почему он поляризован? Основная роль этого конденсатора заключается в том, чтобы действовать как резервный накопитель электрической энергии для нагрузки, даже если на выходе самого источника питания — обычно источника переменного / постоянного тока — есть пульсации с частотой 60/120 Гц (50/100 Гц в некоторых регионах мира) из-за характера схемы регулирования мощности.

    Посмотреть связанный продукт

    Алюминиевый конденсатор емкостью 33 мкФ от Lelon Electronics.

    Конденсатор аналогичен резервуару: ядро ​​источника питания закачивает энергию (воду) в резервуар, но не с постоянной скоростью. Нагрузка (пользователи) забирает воду с разной скоростью, иногда с медленными изменениями, а иногда с внезапным кратковременным увеличением спроса. Им необходимо это сделать, несмотря на колебания в главном водопроводе, ведущем от водоочистной установки. Они не хотят видеть колебания давления (напряжения) воды, несмотря на изменения расхода (тока) в источнике или нагрузке.

    Конденсатор является амортизатором или буфером электрической энергии и выполняет две функции: он сглаживает пульсации на выходе базового регулятора при постоянной нагрузке и подает энергию по мере необходимости при изменении самой нагрузки. По этим причинам электролитические конденсаторы большой емкости, используемые на выходе источников питания, часто называют компонентами «накопителя» и действуют как базовые фильтры против нежелательных колебаний выходного напряжения питания, несмотря на изменения входного напряжения регулятора или нагрузки.

    Как изготавливаются электролитические конденсаторы?

    В принципе, конденсатор состоит из двух проводящих поверхностей, разделенных диэлектриком. Этот диэлектрик может быть воздушным, бумажным, керамическим или специальной электролитической химической пленкой. Большинство электролитических конденсаторов состоят из двух очень тонких слоев металлической фольги (алюминия, тантала или ниобия) со слоем диэлектрического оксида, который наносится на один слой, а затем весь узел свертывается (рис. 2).


    Рисунок 2: Внутренняя конструкция электролитического конденсатора на основе алюминия показывает слои, разделенные диэлектриком, а затем свернутые в цилиндрический корпус.(Источник: Nichicon Corp.)

    Последний блок герметизирован специальным покрытием, которое может быть пластиком, эпоксидной смолой, металлом или другим материалом, чтобы не допустить попадания влаги и удерживать электролитический материал внутри в случае химической «утечки» или выхода из строя корпуса (рис. 3).

    Рис. 3: Готовый электролитический конденсатор, готовый к использованию; он рассчитан на 10 000 мкФ (0,1 F), 15 В постоянного тока и имеет высоту 40 мм и диаметр 18 мм. (Источник: Kemet Corp.)

    Почему мы используем электролитический конденсатор в блоке питания

    Конденсатор с нехимическим диэлектриком не поляризован и может использоваться с сигналами переменного тока; кроме того, он может быть вставлен в цепь любым способом.Однако из-за химической природы пленки и конструкции, используемой для электролитических конденсаторов, существует полярность установки и использования. Перенастройка напряжения, например, на устройство, выйдет из строя, а затем выйдет из строя.

    Учитывая это ограничение, зачем вообще использовать поляризованные электролитические конденсаторы? Ответ прост: добиться высокой емкостной плотности и связанного с ней значения. Большинству источников питания переменного / постоянного тока требуется емкость порядка от нескольких сотен до десяти тысяч микрофарад (мкФ), и это может быть достигнуто только в компоненте разумного размера с использованием конструкции с электролитическим конденсатором.Использование керамики или воздуха в качестве диэлектрика потребует емкости конденсатора в пределах от 100 до 1000 раз больше.

    Стоимость также является важным фактором — для конденсатора большего размера потребуется больше материала, поэтому будут более высокие прямые затраты, а также более высокая «стоимость» использования большего пространства на печатной плате или большего общего источника питания. Суперконденсаторы могут показаться лучшей альтернативой меньшего размера, поскольку они могут легко обеспечить номинальные значения в несколько фарад, но они не могут справиться с пульсациями тока или характером заряда / разряда регулятора источника питания и его нагрузки.

    Выбор электролитического конденсатора: конструктивные параметры

    Основным параметром этих накопителей, конечно же, является их емкость. Номиналы электролитических конденсаторов начинаются с 1 мкФ и доходят до тысяч мкФ. Если требуется большая емкость, чем может обеспечить отдельный компонент, конечно, можно использовать конденсаторы параллельно.

    Следующим параметром, который должен выбрать разработчик, является рабочее напряжение, обычно обозначаемое как WVDC (рабочее напряжение постоянного тока).Это максимальное номинальное напряжение постоянного тока, при котором конденсатор будет надежно работать, и зависит от конструкции и корпуса. Для более высокого WVDC требуется устройство большего физического размера, чтобы выдерживать внутреннюю дугу и пробивку, и оно более дорогое, поэтому разработчик должен быть осторожен, чтобы не переоценить этот коэффициент. Большинство разработчиков используют 2-кратный запас прочности на WVDC для компенсации любых пульсаций или переходных процессов на конденсаторе от источника питания; таким образом, конденсатор WVDC на 25 В будет использоваться с номинальным источником питания 12 В постоянного тока.

    Хотя в идеале конденсатор был бы именно таким; в действительности, каждый конденсатор имеет эквивалентное последовательное сопротивление (ESR) и самоиндуктивность. ESR качественного конденсатора составляет от 0,1 до 1 Ом; чем выше ESR, тем меньше конденсатор будет работать как идеальное устройство, и это может фактически вызвать неисправность схемы регулятора. В электролитических конденсаторах более низкого качества ESR будет увеличиваться со временем и при повышении температуры и может даже достигать десятков Ом с пагубными последствиями.Конденсаторы также имеют небольшой ток утечки из-за несовершенного диэлектрика.

    Далее, каждый реальный компонент, конечно же, имеет паразитную индуктивность; для конденсаторов эта индуктивность составляет порядка нескольких миллигенри (мГн). Хотя такое низкое значение обычно не является проблемой для частот сети переменного тока, это может быть проблемой при увеличении рабочей частоты источника питания и может вызвать нестабильность в цепи и даже отказ.

    Допуск электролитического конденсатора

    Электролитические конденсаторы также имеют допуски, как и все компоненты; Допуск ± 20 процентов является обычным явлением, хотя некоторые указаны с более жесткими допусками.Хотя это может показаться большим допуском, для применения это приемлемо.

    Чтобы поддержать анализ производительности и стабильности разработчика, большинство поставщиков конденсаторов предоставляют модели, которые включают в себя ESR, индуктивность, сопротивление утечки и любые другие неидеальные атрибуты (рисунок 4). Они могут показывать это на частоте сети, а также на более высоких частотах, а также при различных температурах.


    Рис. 4. Упрощенная низкочастотная модель электролитического конденсатора показывает основной конденсатор вместе с сопротивлением утечки, эквивалентным последовательным сопротивлением и индуктивностью; для использования в радиочастотах модель будет добавлять различные внутренние паразитные параметры, а также паразитную индуктивность и емкость выводов.

    Деградация электролитического конденсатора

    Обычно предполагается, что электролитические конденсаторы будут работать в соответствии со спецификациями в течение многих тысяч часов, хотя они часто используются сверх максимального срока службы с приемлемыми результатами. (Представьте себе источник питания в настольном ПК, который долго работает, и который большую часть времени находится во включенном состоянии.)

    Помимо очевидной работы за пределами установленных номиналов, каждый электронный компонент подвержен воздействию факторов, влияющих на его надежность и срок службы, и электролитические конденсаторы не исключение.

    Тепло является наиболее частым фактором сокращения срока их службы: конденсатор, рассчитанный на 10 000 часов при 25 ° C, потребует снижения номинальных характеристик при повышении температуры и может быть рассчитан только на 1 000 часов при 85 ° C и даже меньше при 105 ° C. Поскольку большинство этих конденсаторов используется с источниками питания, которые обычно нагреваются и имеют локализованное повышение температуры выше, чем у всего корпуса, срок службы таких накопителей будет короче. Поставщики предлагают конденсаторы, рассчитанные на длительный срок службы при более высоких температурах, чтобы решить эту проблему.(Обратите внимание, что повышенная нерабочая температура хранения также является проблемой, влияющей на их срок службы, но это другой сценарий и другие спецификации.)

    Второй фактор, сокращающий срок службы электролитических конденсаторов, — это пульсирующий ток, который они должны выдерживать. Этот ток представляет собой неизбежное колебание на выходе регулятора напряжения, которое конденсатор заряжается сглаживающим. По сложным электрохимическим причинам пульсирующий ток снижает срок службы конденсатора и его электролита; чем выше пульсирующий ток, тем сильнее и быстрее деградация.Чувствительность к току пульсаций зависит от конструкции и используемых материалов; поставщики указывают срок службы с разными значениями пульсаций тока.

    Существует один фактор нетехнического характера, который проектировщики также должны учитывать после выбора подходящего конденсатора и соответствующей модели поставщика. Относительно легко использовать некачественные, заменяющие или откровенно контрафактные детали в процессе производства и сборки. Это связано с тем, что относительно легко сделать соответствующий конденсатор, который будет работать достаточно хорошо, по крайней мере, какое-то время.Однако срок службы самого продукта в полевых условиях сократится, но к тому времени будет уже слишком поздно, и он станет серьезной головной болью.

    Имейте в виду, что у группы закупок производственного предприятия также есть соблазн заменить конденсатор «похожим» на конденсатор, указанный в спецификации проектировщиком, но с такими же техническими характеристиками верхнего уровня: емкость, WVDC и размер. Тем не менее, он может иметь другие второстепенные, но все же важные характеристики, такие как ESR или устойчивость к пульсирующим токам, и изменение спецификации может повлиять на производительность или надежность системы.Для инженеров жизненно важно работать с производственной цепочкой поставок, чтобы гарантировать целостность и прослеживаемость конденсатора до указанного поставщика источника.

    Электролитические конденсаторы, расположенные между стабилизатором питания и нагрузкой, могут показаться обыденными и даже рутинными. Тем не менее, они необходимы для обеспечения стабильной шины постоянного тока для цепи. В результате проектировщикам необходимо указать и выбрать их на основе их основных и дополнительных параметров и операционной ситуации, а также помнить о менее очевидных проблемах цепочки поставок.

    Что такое танталовый конденсатор?

    Каталог


    Ⅰ Что такое танталовый конденсатор

    Танталовые конденсаторы имеют танталовый анод и являются электролитическими конденсаторами. Это поляризованные конденсаторы с отличной частотой и стабильностью. Электролитические конденсаторы с танталом в качестве компонента известны как танталовые конденсаторы. Они сделаны из металлического тантала, который служит анодом, со слоем оксида, действующим как диэлектрик, и проводящим катодом, окружающим его.

    Тантал используется для создания очень тонкого диэлектрического слоя. В результате значение емкости на единицу объема выше, частотные характеристики превосходят многие другие типы конденсаторов, а конденсатор имеет превосходную долговременную стабильность. Танталовые конденсаторы обычно поляризованы, что означает, что их можно подключать к источнику постоянного тока только при соблюдении полярности клемм.

    Недостатком использования танталовых конденсаторов является то, что они имеют неблагоприятный режим отказа, который может привести к тепловому разгоне, пожару и незначительным взрывам.Этого можно избежать, используя внешние отказоустойчивые устройства, такие как ограничители тока или плавкие предохранители.

    Танталовые конденсаторы теперь могут использоваться в широком диапазоне схем, включая компьютеры, автомобили, сотовые телефоны и другие электронные устройства, чаще всего устройств поверхностного монтажа (SMD) . Эти танталовые конденсаторы для поверхностного монтажа занимают значительно меньше места на печатной плате, что обеспечивает более высокую плотность упаковки.

    Стоит отметить, что, как и резисторы, бывают как постоянные, так и переменные конденсаторы.Конденсаторы с фиксированными номиналами классифицируются как неполяризованные или поляризованные, в зависимости от их полярности. Три наиболее распространенных типа конденсаторов представлены электрическими символами на рисунке ниже.

    Танталовый конденсатор-конденсатор Обозначения


    Ⅱ Конструкция и свойства танталового конденсатора

    Тантал (Ta) — это серебристо-серый металл с атомным номером 73. Если посмотреть на вид в поперечном разрезе танталового конденсатора, такого как стандартный танталовый конденсатор с электролитическим кристаллом SMD с твердый электролит, показанный на рисунке ниже, положительный (анодный) вывод представляет собой танталовый порошок, спрессованный и спеченный в поддон.Диэлектрик образован изолирующим оксидным слоем, покрывающим положительный (анодный) вывод, а отрицательный (катодный) вывод образован твердым электролитом из диоксида марганца.

    Конденсатор танталовый — конструкция танталового конденсатора

    В случае твердотельных танталовых конденсаторов электролит добавляется к аноду путем пиролиза. Для создания покрытия из диоксида марганца твердые танталовые конденсаторы погружают в специальный раствор и запекают в духовке.Процедура повторяется до тех пор, пока гранула не будет иметь плотного покрытия как на внутренней, так и на внешней поверхности. Наконец, чтобы обеспечить прочное катодное соединение, таблетку, используемую в твердотельных танталовых конденсаторах, окунают в графит и серебро. В мокрых танталовых конденсаторах, в отличие от твердотельных танталовых конденсаторов, используется жидкий электролит. Анод погружается в жидкий электролит внутри корпуса после того, как он был спечен и диэлектрический слой вырос. В мокрых танталовых конденсаторах корпус и электролит служат катодом.

    Танталовые конденсаторы имеют высокую емкость на единицу объема и веса из-за их тонкого диэлектрического листа с высокой диэлектрической проницаемостью, что отличает их от других электролитических конденсаторов. Танталовые электролитические конденсаторы также идеально подходят для пропускания или обхода низкочастотных сигналов и хранения значительного количества электроэнергии из-за их большой емкости.


    Ⅲ Характеристики танталового конденсатора

    3.1 Общие характеристики

    Танталовые конденсаторы имеют значения емкости от 1 нФ до 72 мФ и значительно меньше алюминиевых электролитических конденсаторов той же емкости.Танталовые конденсаторы имеют номинальное напряжение от 2 В до более 500 В. Их эквивалентное последовательное сопротивление (ESR) в десять раз ниже, чем у алюминиевых электролитических конденсаторов, что позволяет пропускать через конденсатор более высокие токи при меньшем тепловыделении. По сравнению с алюминиевыми электролитическими конденсаторами танталовые конденсаторы очень стабильны во времени, и их емкость с возрастом существенно не меняется. При правильном обращении они чрезвычайно надежны, а срок их хранения практически безграничен.

    3.2 Полярность

    Танталовые электролитические конденсаторы имеют очень высокую поляризацию. Хотя поляризованные алюминиевые электролитические конденсаторы могут выдерживать кратковременное обратное напряжение, танталовые конденсаторы чрезвычайно чувствительны к обратной поляризации. При приложении напряжения противоположной полярности диэлектрический оксид разрушается, что приводит к короткому замыканию. Это короткое замыкание может привести к тепловому выходу из строя и разрушению конденсатора в будущем.

    По сравнению с алюминиевыми электролитическими конденсаторами, отрицательная клемма которых обозначена на корпусе, танталовые конденсаторы обычно имеют маркировку положительной клеммы.

    3.3 Режим отказа танталового конденсатора

    Согласно статье, опубликованной ASM International, режим отказа танталового конденсатора делится на три основные группы.

    • Высокая утечка / короткое замыкание

    Высокие токи утечки могут возникать в результате подачи обратного напряжения, которое часто встречается во время поиска и устранения неисправностей, неисправностей и / или стендовых испытаний. Поскольку горячие точки, образующиеся во время кристаллизации, нагревают катод, танталовые конденсаторы при кристаллизации вызывают короткое замыкание.

    • Высокое эквивалентное последовательное сопротивление (ESR)

    Когда конденсатор подвергается монтажу на плате, перестановке, оплавлению и сроку службы, механические / термомеханические характеристики оказывают значительное влияние на его ESR. В результате этого стресса часто страдают внешние и / или внутренние отношения, что приводит к высокому СОЭ.

    • Низкая емкость / открытый

    Отказ случается редко, поскольку емкость танталового конденсатора не изменяется при нормальных условиях эксплуатации.Более низкая емкость танталового конденсатора в любом применении может указывать на короткое замыкание конденсатора, в то время как обрыв цепи может быть вызван повреждением положительного вывода и перемычки.

    Танталовые конденсаторы, как мы все знаем, имеют потенциально опасный режим отказа. Анод из тантала может контактировать с катодом из диоксида марганца во время скачков напряжения, и, если энергия скачка достаточна, может начаться химическая реакция. Эта химическая реакция генерирует тепло и является самоподдерживающейся, также как и возможность образования дыма и пламени.Внешние отказоустойчивые схемы, такие как ограничители тока и плавкие предохранители, следует использовать в сочетании с танталовыми конденсаторами, чтобы избежать теплового разгона.


    Ⅳ Классификация танталовых конденсаторов

    4.1 Танталовые конденсаторы с выводами

    Во избежание повреждений танталовые конденсаторы с выводами обычно упаковываются в небольшую коробку из эпоксидной смолы. Конденсаторы с танталовыми шариками — это название, данное им из-за их формы.

    Хотя когда-то была распространена схема цветовой кодировки, и некоторые конденсаторы до сих пор ее используют, маркировка конденсаторов обычно наносится непосредственно на корпус в виде цифр.

    Танталовые конденсаторы с выводами

    4.2 Танталовые конденсаторы SMD

    Танталовые конденсаторы с поверхностным монтажом широко используются в современной электронике. При проектировании с достаточными запасами они обеспечивают надежное обслуживание и позволяют достичь высоких значений емкости в небольших корпусах, необходимых для современного оборудования.

    Из-за их неспособности выдерживать температуры, необходимые для пайки, алюминиевые электролиты изначально не были доступны в корпусах для поверхностного монтажа.В результате танталовые конденсаторы, которые выдерживали процесс пайки, были почти единственным выбором для дорогостоящих конденсаторов в сборках для поверхностного монтажа. Несмотря на доступность электролитов для поверхностного монтажа, тантал остается предпочтительным конденсатором для поверхностного монтажа из-за его превосходной стоимости, размера и рабочих характеристик.

    Танталовый конденсатор SMD

    • Маркировка танталовых конденсаторов SMD

    Танталовые конденсаторы

    SMD обычно имеют на маркировке три числа.Основные цифры — это первые два, а множитель — третий. Значения указаны в пикофарадах. В результате емкость танталового конденсатора SMD составляет 47 x 105 пФ, что равно 4,7Ф.

    Как видно на рисунке ниже, значения часто обозначаются более прямо. Маркировка указывает стоимость.

    Маркировка танталовых конденсаторов SMD


    Ⅴ Применение танталовых конденсаторов

    Танталовые конденсаторы имеют множество преимуществ и используются в различных приложениях, включая современную электронику, где они обеспечивают более высокую стабильность в широком диапазоне температур и частот, долговременную надежность и рекордно высокие показатели. объемный КПД.

    Танталовые конденсаторы

    используются в приложениях из-за их низкого тока утечки, большой емкости, а также долговременной стабильности и надежности. Они используются, например, в схемах выборки и удержания, где требуется низкий ток утечки для достижения большой продолжительности удержания. Из-за их небольшого размера и долговременной надежности они часто широко используются для фильтрации источников питания на материнских платах компьютеров и мобильных телефонах, чаще всего для поверхностного монтажа.

    Применение танталовых конденсаторов

    Также доступны танталовые конденсаторы

    , соответствующие военным стандартам (MIL-SPEC), с более жесткими допусками и более широким диапазоном рабочих температур.Поскольку они не высыхают и не изменяют емкость с течением времени, они часто заменяют алюминиевый электролит в военных приложениях.

    Тантал также используется в медицинской электронике из-за его высокой стабильности. Танталовые конденсаторы часто используются в усилителях звука, где важна стабильность. Танталовый конденсатор — это сложный компонент, используемый в кардиоимплантатах для обнаружения нерегулярных сердечных сокращений и создания электрического контршока за несколько секунд. Медицина, телекоммуникации, авиакосмическая промышленность, военная промышленность, автомобилестроение и компьютеры — это лишь некоторые отрасли, в которых используется этот конденсатор.


    Ⅵ Разница между танталом и керамическим конденсатором

    Танталовые конденсаторы используются в широком диапазоне цепей, хотя обычно им требуется внешняя отказоустойчивая система для предотвращения проблем, вызванных их режимом отказа. ПК, ноутбуки, медицинское оборудование, усилители звука, автомобильные схемы, мобильные телефоны и другие устройства для поверхностного монтажа — это лишь несколько примеров (SMD). Танталовый электролит является распространенной альтернативой алюминиевому электролиту в военных приложениях, поскольку он не высыхает и не изменяет емкость с течением времени.

    Керамические конденсаторы используются в широком спектре приложений, наиболее популярными из которых являются личные электронные устройства. MLCC являются наиболее широко используемыми конденсаторами, составляя около 1 миллиарда электронных устройств в год. Печатные платы (ПП), индукционные печи, преобразователи постоянного тока в постоянный и силовые выключатели — вот некоторые примеры применения. Поскольку керамические конденсаторы неполяризованы и бывают самых разных емкостей, номинальных напряжений и размеров, они часто используются в качестве конденсаторов общего назначения.

    Танталовые конденсаторы и керамические конденсаторы

    Хотя танталовые и керамические конденсаторы имеют схожие функции, методы их изготовления, материалы и характеристики сильно различаются. Танталовые и керамические конденсаторы различаются по нескольким основным характеристикам:

    • Старение

    Когда дело доходит до конденсаторов, старение означает логарифмическое падение емкости с течением времени. Танталовые конденсаторы не стареют, в то время как керамические конденсаторы.Механизм износа танталовых конденсаторов неизвестен.

    • Поляризация

    Большинство танталовых конденсаторов поляризованы. Это означает, что их можно подключать к источнику постоянного тока только при соблюдении правильной полярности клемм. С другой стороны, неполяризованные керамические конденсаторы можно безопасно подключать к источнику переменного тока. Керамические конденсаторы имеют более высокую частотную характеристику, потому что они не поляризованы.

    • Температурный отклик

    Танталовые конденсаторы имеют линейное изменение емкости при изменении температуры, тогда как керамические конденсаторы имеют нелинейный отклик.С другой стороны, керамические конденсаторы могут иметь линейный тренд, сужая диапазоны рабочих температур и принимая во внимание температурный отклик на этапе проектирования.

    • Отклик по напряжению

    У танталовых конденсаторов

    есть явные изменения емкости в зависимости от приложенного напряжения, тогда как у керамических конденсаторов нет. Диэлектрическая проницаемость диэлектрика уменьшается внутри керамического конденсатора в ответ на более высокие приложенные напряжения, вызывая изменения емкости.В то время как большинство изменений емкости керамических конденсаторов линейны и легко учитываются, некоторые диэлектрики с более высокой диэлектрической проницаемостью могут терять до 70% своей начальной емкости при работе при номинальном напряжении.


    Ⅶ FAQ

    1. Каковы преимущества и недостатки танталового конденсатора?

    В перечень достоинств и недостатков твердотельного танталового конденсатора входят следующие

    Преимущества: длительный срок службы, устойчивость к высоким температурам, отличные характеристики, высокая точность, эффективность фильтрации высокочастотных гармоник.

    Недостатки: наличие очень тонкого оксидного слоя, который не является прочным, не может выдерживать напряжение выше пределов, низкий уровень пульсаций тока.

    2. Когда использовать танталовый конденсатор?

    Когда вам нужна максимальная емкость в небольшом пространстве, например, развязка рядом с микрочипом, отличная стабильность в диапазоне температур или напряжений, и вы знаете об их уникальных характеристиках, чтобы их можно было правильно спроектировать и не подвергать вашу систему серьезному отказу .

    3. Что такое импульсное напряжение с точки зрения танталового конденсатора?

    Импульсное напряжение — это максимальное напряжение, которое может быть приложено к конденсатору в течение более короткого периода в цепях с минимальным последовательным сопротивлением.

    4. Чем отличаются танталовые конденсаторы от электролитических?

    Электролитические конденсаторы из алюминия (или алюминия) обычно дешевле, чем из тантала.Танталовые конденсаторы имеют более высокую емкость на единицу объема. Конденсаторы из тантала могут быть как полярными, так и неполярными, хотя поляризованная форма более распространена.

    5. Почему выходят из строя танталовые конденсаторы?

    Переходное напряжение или скачок тока, приложенные к танталовым электролитическим конденсаторам с твердым электролитом из диоксида марганца, могут вызвать выход из строя некоторых танталовых конденсаторов и могут непосредственно привести к короткому замыканию.

    6. Каков срок службы танталовых конденсаторов?

    Стабильность емкости полимерных танталовых конденсаторов выше, чем у MLCC во времени, температуре и напряжении.В то время как MLCC подвержены старению, полимерные танталы обеспечивают долгосрочную стабильность в течение 20 лет эксплуатации.

    7. Все ли танталовые конденсаторы поляризованы?

    Танталовые конденсаторы по своей природе поляризованы. Обратное напряжение может разрушить конденсатор. Неполярные или биполярные танталовые конденсаторы изготавливаются путем последовательного соединения двух поляризованных конденсаторов с анодами, ориентированными в противоположных направлениях.

    8.Для чего нужен танталовый конденсатор?

    В приложениях, использующих танталовые конденсаторы, используются преимущества их низкого тока утечки, высокой емкости, долговременной стабильности и надежности. Например, они используются в схемах выборки и удержания, которые полагаются на низкий ток утечки для достижения большой продолжительности удержания.

    9. Можно ли заменить танталовый конденсатор электролитическим?

    Танталовый конденсатор также относится к типу электролитических конденсаторов, однако из-за низкой утечки они более точны и надежны, чем варианты цилиндрических электролитических конденсаторов.Если коэффициент утечки не слишком критичен, вы можете легко заменить танталовый конденсатор другим обычным электролитическим конденсатором.

    10. Что такое мокрый танталовый конденсатор?

    Влажные танталовые конденсаторы — это пассивные устройства, обеспечивающие емкостное сопротивление цепям. Это электролитические конденсаторы с мокрым электролитом, анодом и катодом. Они используются вместо конденсаторов других типов благодаря превосходным характеристикам, включая объемный КПД, высокую надежность, электрическую стабильность в широком диапазоне температур и длительный срок службы.Технология влажных танталовых конденсаторов лучше всего подходит для таких приложений, как военная, аэрокосмическая, спутниковая и тяжелая промышленность.

    Альтернативные модели

    Часть Сравнить Производители Категория Описание
    ПроизводительНомер детали: FM18W08-PG Сравнить: Текущая часть Производители: Cypress Semiconductor Категория: Чип памяти Описание: NVRAM FRAM Параллельный 256 Кбит 3.3V 28Pin PDIP
    Производитель Номер детали: FM25V05-G Сравнить: FM18W08-PG VS FM25V05-G Производители: Cypress Semiconductor Категория: Чип памяти Описание: FRAM 512Kbit Serial-SPI 3V / 3.Трубка SOIC, 3 В, 8 контактов,
    Производитель № детали: FM25V05-GTR Сравнить: FM18W08-PG VS FM25V05-GTR Производители: Cypress Semiconductor Категория: Чип памяти Описание: FRAM 512Kbit Serial-SPI 3V / 3.3 В 8 контактов SOIC T / R
    Производитель Номер детали: FM1808-70-PG Сравнить: FM18W08-PG VS FM1808-70-PG Производитель: Ramtron Категория: Чип памяти Описание: Схема памяти, 32KX8, CMOS, PDIP28, GREEN, MS-011, DIP-28

    OSCAR — Разное035 — Конденсаторы

    Конденсаторы

    Конденсатор — это устройство, которое накапливает энергию в электрическом поле, созданном между парой проводников.Конденсаторы иногда называют конденсаторами.

    Конденсаторы можно найти во множестве приложений:

    • Конденсатор может накапливать электронную энергию при отключении от цепи зарядки, поэтому его можно использовать как быструю батарею.
    • В цепях переменного тока или сигнальных цепях конденсатор индуцирует разность фаз в 90 градусов, опережающее по току напряжение.
    • Конденсаторы обычно используются в источниках питания, где они сглаживают выход полнополупериодного или полуволнового выпрямителя.
    • Поскольку конденсаторы пропускают переменный ток, но блокируют сигналы постоянного тока, они часто используются для разделения компонентов переменного и постоянного тока сигнала. Этот метод известен как связь по переменному току.

    Существует широкий спектр конструкций конденсаторов. Технические характеристики конденсатора могут включать:

    • Емкость памяти, указанная в фарадах. Поскольку фарад — очень большая единица измерения, значения конденсаторов обычно выражаются в микрофарадах (Ф), нанофарадах (нФ) или пикофарадах (пФ).
    • Рабочее напряжение, допустимое напряжение, которое может быть приложено к клеммам конденсатора.
    • Поляризация указывает, чувствительно ли устройство к полярности приложенного напряжения.
    • Между пластинами используется диэлектрик или изоляционный материал.

    Типичные конструкции состоят из двух электродов или пластин, разделенных изолятором или диэлектриком. Поскольку проводники разделены изолятором, электроны не могут напрямую проходить через диэлектрик от одной пластины конденсатора к другой.Когда напряжение подается на конденсатор через внешнюю цепь, ток течет к одной пластине, заряжая ее. Следовательно, ток течет от другой пластины, создавая противоположный заряд. Другими словами, когда напряжение на конденсаторе изменяется, конденсатор будет заряжаться или разряжаться.

    Равновесие достигается при постоянном напряжении (DC), при котором ток в цепи больше не течет. Поэтому постоянный ток не проходит, и конденсатор выглядит как неполный контур цепи.Переменный ток (AC) может проходить, потому что постоянно меняющееся напряжение заряжает или разряжает пластины. Конденсатор, однако, может ограничивать количество переменного тока, проходящего через него. Это ограничение (аналогично резистору) называется реактивным сопротивлением и изменяется в зависимости от частоты применяемого переменного тока. Когда частота приближается к нулю, реактивное сопротивление становится высоким. На более высоких частотах реактивное сопротивление становится небольшим. Емкостное реактивное сопротивление определяется по этой формуле:

    Xc = 1 / (2 * π * f * C) где:
    Xc = емкостное реактивное сопротивление, измеренное в омах
    f = частота переменного тока в герцах
    C = емкость в фарадах

    Поляризованный («полярный») конденсатор — это тип конденсатора, который имеет неявную полярность — он может быть подключен только одним способом в цепи.Положительный вывод показан на схеме (и часто на конденсаторе) небольшим символом «+». Отрицательный вывод обычно не показан на схеме, но может быть отмечен на конденсаторе полосой или символом «-». Поляризованные конденсаторы обычно являются электролитическими.

    Обратите внимание, что вам действительно нужно обратить внимание на правильное подключение поляризованного конденсатора (как в отношении полярности, так и в отношении того, чтобы конденсатор не превышал его номинальное напряжение). Если вы достаточно сильно «толкнете» поляризованный конденсатор, можно начать «электролиз» влажного электролита.Современные электролитические конденсаторы обычно имеют вентиляционное отверстие для сброса давления, чтобы предотвратить катастрофическое повреждение алюминиевой банки (но не ставьте на это свое зрение).

    Неполяризованный («неполярный») конденсатор — это тип конденсатора, который не имеет явной полярности — он может быть подключен любым способом в цепи. Керамические, слюдяные и некоторые электролитические конденсаторы неполяризованы. Иногда вы также слышите, как люди называют их «биполярными» конденсаторами.

    В продаже имеются дискретные конденсаторы различных типов с емкостью от пФ до более чем фарад и номинальным напряжением до сотен вольт.Как правило, чем выше номинальная емкость и напряжение, тем больше физический размер конденсатора и тем выше его стоимость. Конденсаторы часто классифицируют в зависимости от материала, используемого в качестве диэлектрика:

    • Керамический чип: точность 1%, значения до 1 F, обычно изготавливается из сегнетоэлектрической керамики из цирконата-титаната свинца (PZT). Керамические конденсаторы, как правило, имеют низкую индуктивность из-за своего небольшого размера.
      • C0G или NP0 — Обычно от 4,7 пФ до 0,047 F, 5%.Высокая переносимость и температурные характеристики. Больше и дороже. Диэлектрики COG и NPO имеют самые низкие потери и используются в фильтрах в качестве элементов синхронизации и для балансировки кварцевых генераторов.
      • X7R — Типичное значение от 3300 пФ до 0,33 F, 10%. Подходит для некритичных соединений, синхронизации.
      • Z5U — Обычно от 0,01 F до 2,2 F, 20%. Подходит для байпаса и сопряжения. Низкая цена и небольшие размеры.
    • Полистирол: (обычно в диапазоне пикофарад) стабильные сигнальные конденсаторы.
    • Полиэстер, майлар: (от 1 нФ до 1 Ф) сигнальные конденсаторы. Полипропиленовые с низкими потерями, высоковольтные, устойчивые к пробою, сигнальные конденсаторы.
    • ПТФЭ или тефлон: более эффективные и более дорогие, чем другие пластмассовые диэлектрики.
    • Бумага: обычная для старинного радиооборудования, бумажные слои диэлектрика и алюминиевой фольги, свернутые в цилиндр и запечатанные воском. Низкие значения до нескольких F, рабочее напряжение до нескольких сотен вольт, ванны с масляной пропиткой до 5000 В.
    • Тантал: компактные низковольтные устройства до примерно 100 F, более низкая плотность энергии и более точная, чем алюминиевые электролиты, но менее точная и более высокая плотность энергии, чем сигнальные конденсаторы. Поскольку в этих конденсаторах используется электролит, они поляризованы, что означает, что они могут поддерживать потенциал только в одном направлении и подходят только для приложений постоянного тока.
    • Алюминий электролитический: компактный, но с потерями, в диапазоне от 1 F до 1 000 000 F, до нескольких сотен вольт.Диэлектрик представляет собой тонкий оксидный слой. Как и танталовые конденсаторы, они поляризованы. Они содержат агрессивную жидкость и могут лопнуть при обратном подключении устройства. Через долгое время жидкость может высохнуть, что приведет к выходу конденсатора из строя. Биполярные электролиты содержат два конденсатора, соединенных последовательно друг с другом, и используются для связи сигналов переменного тока.
    • Серебряная слюда: они быстрые и стабильные для ВЧ- и низкочастотных радиочастотных цепей, но дороги

    Последовательное подключение конденсаторов может увеличить общее номинальное напряжение.Когда конденсаторы соединены друг с другом (последовательно), эквивалентное значение емкости рассчитывается по формуле:

    Ceq = (1 / C1) + (1 / C2) + (1 / C3) + …

    В последовательной конфигурации ток через каждый конденсатор одинаков. Однако напряжение на каждом конденсаторе может быть разным. Чтобы контролировать напряжение на каждом конденсаторе, к каждому конденсатору можно подключить очень большой резистор. Если этого не сделать, напряжение на отдельном конденсаторе может превысить его рабочее напряжение.

    Несколько конденсаторов могут быть подключены друг к другу (параллельно) для получения нового значения емкости. При параллельном подключении конденсаторов значения каждого конденсатора суммируются.

    Ceq = C1 + C2 + C3 + …

    К сожалению, для обозначения конденсаторов используется большое количество маркировок. На больших конденсаторах указано значение, например 10 мкФ (десять микрофарад). Меньшие размеры обычно имеют комбинацию букв и цифр.Наиболее распространенная схема кодирования использует 2 или 3 цифры.

    Большинство из них будет иметь три числа, обозначающих емкость в пикофарадах (пФ). Первые две — это 1-я и 2-я значащие цифры, а третья — это код множителя. В большинстве случаев последняя цифра говорит вам, сколько нулей следует записать после первых двух цифр, но не всегда. Также может быть буква, обозначающая допуск номинала конденсатора. Приведенную ниже таблицу можно использовать для определения надлежащего номинала и допуска конденсатора на основе маркировки.Если есть только два числа, множитель отсутствует, и обозначение следует читать как пикофарады. Некоторые примеры:
    • Конденсатор с маркировкой 104 — это 10 с еще 4 нулями. Первые две цифры — «1» и «0», затем умножьте на 10 000, чтобы получить 100 000 пФ. Этот размер иначе называется конденсатором 0,1 мкФ.
    • 47, напечатанное на маленьком диске, можно предположить, что это 47 пикофарад (или 47 затяжек, как некоторые любят говорить).
    • Маркировка 103J указывает на 10 000 пФ с допуском +/- 5%.
    Разрядные множители Буквенный код допуска
    3-я цифра Множитель Письмо Допуск
    0 1 B +/- 0,10%
    1 10 C +/- 0.На 25% F +/- 1%
    5 100000 G +/- 2%
    6 не используется H +//-
    7 не используется J +/- 5%
    8.01 K +/- 10%
    9,1 M +/- 20%
    N 907-11 907-11 907
    P + 100%; -0%
    Z + 80%; -20%

    На рисунках ниже представлены различные системы маркировки, которые можно увидеть.

    Конденсаторы

    • • Определите распространенные типы конденсаторов и способы их использования.
    • • Основные обозначения схем конденсаторов

    Рис. 2.1.1 Базовые обозначения схем конденсаторов

    Конденсаторы (и катушки индуктивности) обладают способностью накапливать электрическую энергию, катушки индуктивности накапливают энергию в виде магнитного поля вокруг компонента, но конденсатор хранит электрическую энергию в виде ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, которое создается между двумя тонкими листами металла, называемыми «пластинами», которые у каждого свой электрический потенциал (или напряжение).

    На рис. 2.1.1 показаны обозначения схем в Великобритании и США для различных типов конденсаторов. Основной тип конденсатора с фиксированным номиналом состоит из двух пластин из металлической фольги, разделенных изолятором. Это может быть сделано из различных изоляционных материалов с хорошими ДИЭЛЕКТРИЧЕСКИМИ свойствами. Некоторые основные типы конструкции конденсатора показаны на рис. 2.1.2a.

    Рис. 2.1.2 Общие типы конденсаторов

    Конденсаторы

    имеют много применений.

    Конденсаторы

    находят множество применений в электронных схемах.Каждая цель использует одну или несколько функций, описанных в этом модуле. На рис. 2.1.2 показаны различные конденсаторы. Типичное использование:

    • Высоковольтный электролитик, используемый в источниках питания.
    • Аксиальный электролитический; меньшее напряжение меньшего размера для общего назначения, где требуются большие значения емкости.
    • Диск керамический высоковольтный; малый размер и значение емкости, отличные характеристики допуска.
    • Металлизированный полипропилен; небольшой размер для значений до 2 мкФ, хорошая надежность.
    • Субминиатюрный конденсатор с многослойным керамическим чипом (поверхностный монтаж). относительно высокая емкость для размера, достигаемая за счет нескольких слоев. Фактически несколько конденсаторов параллельно.

    Рис. 2.1.3 Конструкция — Конденсаторы постоянной величины

    Конструкция конденсатора

    Конструкция неполяризованных конденсаторов во многих типах аналогична. Различия заключаются в площади пластин и типе диэлектрического материала, используемого для данной емкости; В идеале диэлектрик, выбранный для любого конденсатора, должен соответствовать трем основным критериям.

    1. Он будет максимально тонким, потому что емкость обратно пропорциональна расстоянию между пластинами.

    2. Диэлектрическая проницаемость материала должна быть максимально высокой, поскольку диэлектрическая проницаемость напрямую влияет на эффективность диэлектрика.

    3. Диэлектрическая прочность должна быть достаточной, чтобы выдерживать требуемое номинальное напряжение конденсатора.

    Каждый из основных типов конденсаторов, показанных на рис. 2.1.3 (кроме типов миниатюрных керамических чипов), будет покрыт изолирующим слоем (часто эпоксидной смолой).

    Рис. 2.1.4 Конструкция электролитического конденсатора

    Конденсаторы электролитические

    Конструкция электролитических конденсаторов в некоторой степени похожа на конденсатор из катанной фольги. За исключением того, что, как показано на рис. 2.1.4, слои между фольгой теперь представляют собой два очень тонких слоя бумаги, один из которых образует изолятор (3), разделяющий свернутые пары слоев, а другой — слой ткани (4). между положительной (1) и отрицательной (2) пластиной из фольги, пропитанной электролитом, который делает ткань проводящей!

    Из предыдущего абзаца может показаться, что намокшая ткань вызывает короткое замыкание между пластинами.Но настоящий диэлектрический слой создается после завершения строительства в процессе, называемом «Формование». Через конденсатор проходит ток, и под действием электролита на положительной пластине накапливается очень тонкий слой оксида алюминия (5). Именно этот чрезвычайно тонкий слой используется в качестве изолирующего диэлектрика. Это обеспечивает конденсатор очень эффективным диэлектриком, что дает значения емкости во много сотен раз больше, чем это возможно с обычным пластиковым пленочным конденсатором аналогичного физического размера.

    Обратной стороной этого процесса является то, что конденсатор поляризован и не должен иметь напряжения обратной полярности. Если это происходит, изолирующий оксидный слой очень быстро отделяется от положительной пластины, позволяя конденсатору пропускать большой ток. Когда это происходит в запечатанном контейнере, «жидкий» электролит быстро закипает и быстро расширяется. Это может привести к сильному взрыву в считанные секунды! НИКОГДА не подключайте электролитический конденсатор неправильно! Из-за этой опасности на электролитических конденсаторах есть маркировка, показывающая полярность их соединительных проводов.Общая маркировка полярности (6) показана на рис. 2.1.4 и состоит из полосы минус (-) символов, обозначающих отрицательный вывод конденсатора.

    Также обратите внимание, что на конце конденсатора есть три канавки для обеспечения слабого места в герметичном корпусе, так что в случае взрыва верхняя часть корпуса выйдет из строя, что, как мы надеемся, сводит к минимуму повреждение окружающих компонентов.

    Все конденсаторы, независимо от их типа, также имеют максимально безопасное рабочее напряжение (Vwkg). Если напряжение, указанное на конденсаторе (7), превышено, существует высокий риск того, что изоляция диэлектрического слоя, разделяющего две пластины, выйдет из строя и вызовет короткое замыкание между пластинами, это также может вызвать быстрый и сильный перегрев, приводящий к возможный взрыв.

    Рис. 2.1.5 Переменные конденсаторы

    Конденсаторы переменной емкости

    Переменные конденсаторы, показанные на рис. 2.1.5 используются в качестве настроечных конденсаторов в радиоприемниках AM, хотя они в значительной степени были заменены диодами «варикап» (переменной емкости), имеющими небольшую емкость, которую можно изменять, прикладывая переменное напряжение. но конденсаторы с механической регулировкой по-прежнему можно найти на принципиальных схемах и в каталогах поставщиков для замены.

    Настроечные конденсаторы, независимо от их типа, обычно имеют очень малые значения емкости, обычно от нескольких пФ до нескольких десятков пФ. Большие типы воздушных диэлектриков, подобные анимированному на рис. 2.1.5, были заменены миниатюрными типами диэлектриков из ПВХ, как показано в правом верхнем углу на рис. 2.1.5. Виды спереди и сзади показывают крошечные предустановленные или подстроечные конденсаторы, доступ к которым осуществляется через отверстия в задней части корпуса).

    Обозначения переменных конденсаторов

    Рис. 2.1.6 Обозначения переменных и предварительно установленных конденсаторов

    Обозначения для переменных конденсаторов приведены на рис. 2.1.6. Переменные конденсаторы часто доступны как компоненты GANGED. Обычно два переменных конденсатора регулируются с помощью одного управляющего винта. Символ стрелки указывает на переменный конденсатор (настраивается пользователем оборудования, а диагональ Т-образной формы указывает на предварительно установленный конденсатор, только для технической настройки. Пунктирная линия, соединяющая пару переменных конденсаторов, указывает на то, что они объединены в группу.

    Эти небольшие предустановленные конденсаторы доступны во множестве очень маленьких конструкций и работают аналогично более крупным переменным, с крошечными вращающимися пластинами и, как правило, диэлектрическими слоями из ПВХ-пленки между ними.Их емкость составляет всего несколько пикофарад, и они часто используются в сочетании с более крупными переменными конденсаторами (и даже устанавливаются внутри корпуса настроечных конденсаторов) для повышения точности.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *