Схемы подключения электродвигателя, подключение трехфазного двигателя к трехфазной сети 380 В
На производственном предприятии регулярно возникает необходимость подключения или переподключения трехфазного электродвигателя к трехфазной сети 380 В, 660 В или однофазной 220 В, но не всегда есть опыт грамотно работать со всеми возможными схемами подключения трехфазного электродвигателя. В зависимости от цели эксплуатации электродвигателя, ниже приведены схемы подключения трехфазного двигателя со всеми достоинствами и недостатками. При покупке электродвигателя не всегда обращают внимание на схему подключения на именной табличке или на задней крышке клемной коробки, а подключают новый двигатель по привычке как старый и это является чуть ли не основной причиной сгоревших моторов. Следует отметить что трехфазные электродвигатели встречаются трех модификаций по возможности подключения:
- 380 В — 3 вывода, схема «звезда» (Y)
- 220 / 380 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)
- 380 / 660 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)
ВНИМАНИЕ! Работа с электрическими двигателями без заземления, пусковой и защитной автоматики запрещена. Неквалифицированное обращение с высоким напряжением может нанести вред здоровью и летальному исходу.
Схема подключения электродвигателя 380В — 3 вывода
Это самый простой тип подключения, когда заводом изготовителем заранее собрано схему «звезда» (Y) и в клемной коробке предстоит подсоединить всего три провода (3 фазы) без наличия перемычек меж клеммами.
Преимущество данной схемы:
- Простота подключения электродвигателя.
- Надежная работа с максимальным КПД и мощностью в номинальном режиме.
Недостаток такого исполнения:
- Невозможность использовать электродвигатель от однофазной сети 220 В с максимальной мощностью до 70%
- Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.
Схема подключения электродвигателя «220/380В» треугольник / звезда — 6 выводов
Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и подключается в трехфазную сеть 380 Вольт по схеме (Y) «звезда» см. Рис.1, которая собрана по умолчанию на заводе изготовителе. В таком исполнении завод изготовитель выпускает чаще всего маломощные трехфазные электродвигатели от 0,12 кВт до 7,5 кВт или же габариты двигателей от АИР 56 до АИР 112.
- Высокая надежность работы электромотора.
- Максимальное КПД двигателя.
- Устойчивость к кратковременным перегрузам электродвигателя.
Преимущества схемы «треугольник» (Δ) для 220/380 В:
- При необходимости данный электродвигатель может быть использован подключением от сети 220 В по схеме «треугольник» (Δ) с использование рабочего конденсатора и если потребуется дополнительно пускового конденсатора. В этом случае двигатель будет работать на 70% от заявленной мощности. Этот вариант подключения со всеми преимуществами и недостатками подробно разберем в следующей статье.
Недостатки исполнения электродвигателя 220/380 В:
- Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.
Схемы подключения трехфазных электродвигателей «380/660В» треугольник / звезда — 6 выводов
Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и чаще всего в новом электродвигателе в заводском исполнении производителем заранее собрана по умолчанию схема «звезда» (Y) см. Рис.1. Исполнение 380/660 чаще всего идет на средней и большой мощности электродвигателей от 4 кВт до 315 кВт и более или от габарита АИР 132 до АИР 355 и более. В связи с универсальностью в эксплуатации данного исполнения электродвигателей средней и высокой мощности низковольтного оборудования можно смело заявить о достоинствах без недостатков. Трехфазные электродвигатели можно подключать к трехфазной сети 380/660 В по следующим схемам:
- схема «звезда» (Y) или 660В используется для плавного пуска избегая тяжелого пуска (высокий пусковой момент) и высоких пусковых токов.
- схема «треугольник» (Δ) работа от стандартной сети 380В в номинальном режиме эксплуатации электродвигателя.
- схема «звезда-треугольник» (Y/Δ) комбинированная схема подключения для автоматического перехода с плавного пуска на 660В на рабочий режим 380В
Схема «звезда» для 380/660 В
Подключение звездой применяют для того, чтобы пуск электродвигателя сделать плавным за счет снижения пусковых токов. Но в ней есть один существенный минус для продолжительной работы: двигатель будет работать с мощностью на 30% меньшей от указанной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда» показано на Рис.1.
Схема «треугольник» для 380/660 В
Подключение треугольником к сети 380 В позволяет использовать всю заявленную мощность электродвигателя. Но и она имеет недостаток для пускового момента: во время пуска мотора сила тока очень высока и как результат в двигателе под тяжелой пусковой нагрузкой может подгореть изоляция обмоток. Как подключить трехфазный асинхронный электродвигатель по схеме «треугольник» показано на Рис.1.
Схема «звезда-треугольник» для 380/660 В
380/660 |
Подключение двигателей к различным видам ПЧ
Рассмотрим схемы включения асинхронных двигателей «звезда» и «треугольник» в контексте их питания от преобразователей частоты. Для начала немного освежим в памяти теорию.
Что такое «звезда» и «треугольник»
Обычно используются асинхронные двигатели с тремя обмотками, которые можно подключить двумя способами — по схеме «звезда» (обозначается символом «Y») или «треугольник» («Δ» или «D»). Схема соединения должна обеспечивать нормальную работу двигателя при имеющемся напряжении питания.
Первое, от чего необходимо отталкиваться при выборе схемы — информация на шильдике двигателя. На нем указываются параметры для обеих схем. Наиболее важный параметр — напряжение питания. Напряжение «звезды» в 1,73 раза (точнее в квадратный корень из 3) больше, чем «треугольника». Например, если указано, что напряжение питания двигателя, включенного по схеме «звезда», составляет 380 В, то можно точно сказать, даже не глядя на шильдик, что для включения по схеме «треугольник» необходимо напряжение 220 В. В данном случае напряжение 380 В соответствует линейному напряжению в стандартной сети, и двигатель можно подключать по схеме «звезда» через контактор либо через частотный преобразователь. То же самое справедливо и для случаев, когда напряжение «треугольника», указанное на шильдике, равно 380 В. Тогда, умножая на 1,73, получаем напряжение «звезды» равным 660 В.
Эти два типа двигателей, отличающиеся напряжениями питания (220/380 и 380/660 В), в подавляющем большинстве случаев используются на практике и имеют свои особенности подключения, которые мы рассмотрим ниже.
Классическая схема «звезда» / «треугольник»
При питании «напрямую» от промышленной сети с линейным напряжением 380 В подойдут оба типа двигателей. Нужно лишь убедиться, что схема включения обмоток собрана на нужное напряжение.
Однако на практике для питания в схеме «звезда» / «треугольник» применяют второй тип приводов (380/660 В). Данная схема используется для уменьшения пускового тока мощных двигателей, который может превышать рабочий в несколько раз. Несмотря на то, что этот ток кратковременный, в течение разгона питающая сеть и привод испытывают значительные электрические и механические перегрузки – ведь в первую долю секунды ток двигателя может в 10 раз превышать номинал, плавно снижаясь в процессе разгона.
Схема подключения «звезда» / «треугольник» приведена во многих источниках, поэтому лишь напомним коротко, как она работает.
Чтобы сделать процесс пуска более щадящим, сначала напряжение 380 В подают на обмотки двигателя, включенные по схеме «звезда». Поскольку рабочее напряжение этой схемы должно быть больше (660 В), двигатель работает на пониженной мощности. Через несколько секунд, после того, как привод раскрутится, включается «треугольник», для которого 380 В является рабочим напряжением, и двигатель выходит на номинальную мощность.
Классическую схему мы рассмотрели, а теперь разберём, в каких случаях использовать подключение двигателей в «звезде» и «треугольнике» при питании от преобразователя частоты.
Преобразователи частоты на 220 В
При питании преобразователя частоты от одной фазы (фазное напряжение 220 В) линейное напряжение на его выходе не может быть более 220 В. Поэтому для питания асинхронного двигателя от однофазного ПЧ нужно подключить обмотки привода с напряжениями 380/220 В по схеме «треугольник». Этот же двигатель, подключенный по схеме «звезда», будет работать с пониженной мощностью.
Преобразователи частоты на 380 В
Трехфазные ПЧ являются более универсальными с точки зрения подключения двигателей с разным напряжением питания. Главное – собрать в клеммнике (борно) двигателя схему на напряжение 380 В. Именно этот вариант используется в большинстве частотных преобразователей, работающих в промышленном оборудовании.
ПЧ с возможностью переключения «звезда» / «треугольник»
В некоторых преобразователях, работающих с мощными двигателями, имеется возможность оперативного переключения схемы работы. Это делается с целью расширения диапазона регулировки скорости двигателя вверх от номинальной. Метод основан на том факте, что подключение «звездой» обеспечивает более высокий момент на малой скорости, а подключение «треугольником» — высокую скорость. Можно задавать выходную частоту, на которой происходит переключение, время паузы (задержки) переключения, параметры двигателя для первого и второго режимов.
У частотных преобразователей такого типа имеются выходы для включения соответствующих контакторов, обеспечивающих формирование нужных схем включения.
Настройки ПЧ для схем «звезда» и «треугольник»
Когда выбирается схема подключения, нужно помнить о том, что некоторые параметры в настройках ПЧ чувствительны к выбору вида схемы, например, номинальное напряжение и номинальный ток.
Бывает так, что необходимо подключить двигатель, собранный по схеме «треугольник» на напряжение 220 В, к выходу трехфазного ПЧ, линейное напряжение которого при частоте 50 Гц равно 380 В. Понятно, что в этом случае двигатель нужно включить в «звезду», но иногда этого сделать невозможно.
Выход есть. Необходимо указать номинальную частоту двигателя равной не 50 Гц, как указано на шильдике, а 87 Гц (в 1,73 раза больше). Аналогичным образом нужно задать и максимальную выходную частоту преобразователя. В результате того, что отношение V/F на выходе ПЧ остается неизменным, на частоте 50 Гц напряжение на обмотках двигателя составит как раз 220 В. При этом верхнюю рабочую частоту двигателя необходимо установить на значение 50 Гц.
Преимуществом такого подключения является возможность повышения рабочей частоты двигателя выше 50 Гц, при этом вплоть до 87 Гц двигатель не будет терять рабочий момент. В данном случае важно следить за механическим износом системы и за нагревом привода.
Другие полезные материалы:
Обзор устройств плавного пуска Siemens
Назначение сетевых и моторных дросселей
FAQ по электродвигателям
Как подключить трехфазный электродвигатель в сеть 220 В
Особенности и способы подключения к однофазной сети
Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.
Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:
- Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
- Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.
Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.
https://youtube.com/watch?v=ukl8nctMpTI
Схемы подключения
Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.
Существует две схемы подключения:
- Звезда.
- Треугольник.
Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.
Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.
Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора
Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.
Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.
Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.
При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.
Схема звезда-треугольник
Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.
Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.
Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.
Переключение на нужное напряжение
Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?
Увеличение напряжения
Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.
В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы
Теперь важно не перепутать
Подключаем так: начало одной катушки соединяем с концом другой, и так далее.
Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.
Уменьшение напряжения
Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо
А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи
Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.
Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.
В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.
Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.
Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.
Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.
Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).
Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.
Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они бывают на 2 вида напряжения – 220/380 и 380/660 В.
В чем отличия? В номинальных напряжениях питания. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.
Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.
Подробнее рассмотрим работу на этих напряжениях.
220/380 В
Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты
И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!
Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”
Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.
Реальные примеры движков 220-380:
Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”
Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит!!!
Как будет выглядеть подключение подобного двигателя в коробке:
Подключение в “Звезду” двигателя на 220 – 380 В
Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.
380/660 В
Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.
Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”
Напряжение питания 660 В в реальной жизни не используется, а схема, показанная справа, используется для “раскрутки” ротора.
Реальные примеры:
Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”
Вот этот же двигатель, его коробка борно, подключен в треугольник:
Обмотки двигателя подключены в треугольник на 380 В
Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.
О конденсаторах
Значение конденсатора в сети
В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит снижение таких показателей, как электрическая мощность и мощность вала движка.
Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от остальных обмоток была максимальная отдача, их нужно использовать совмещенно при подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.
Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.
Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.
Еще одна особенность конденсатора при подключении к трехфазной сети это его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы можете управлять движением вала.
Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу. Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на месте конденсатора будет подключен дроссель. То он будет способствовать значительному уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.
Поэтому конденсатор является единственным элементом пригодным для эффективного перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.
Виды конденсаторов
Для подключения электрических агрегатов 380 на 220 Вольт в основном используют следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.
Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.
Подключение электродвигателя: с чего следует начать
Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.
Начало подключения – первые два провода на месте
Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.
Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет
Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.
Меры предосторожности при работе с конденсаторами
При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.
Схемы “Звезда” и “Треугольник”
У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.
Схема обмоток статора с выводами для трехфазного асинхронного двигателя
Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?
Это простейшая логическая задача, у которой есть два решения – “Звезда” и “Треугольник”:
Схема соединения обмоток статора “звездой”
Схема соединения обмоток статора “треугольником”
В результате имеем у каждой схемы три вывода, которые можно подключать к источнику питания. А вот почему напрямую подключать не всегда возможно, об этом статья.
Эти схемы также имеют названия “Delta” и “Star“, и могут обозначаться на схемах как D и S. Но чаще обозначение идёт от вида схем – Δ и Υ. Или D и Y.
На обратной крышке борно обычно указывают схемы подключения и обозначения выводов:
Схемы подключения выводов двигателя: Звезда и Треугольник. Отличия видны сразу
По по схемам мы плотно пройдёмся ниже.
И ещё немного теории.
Мощность на валу при подаче номинального напряжения будет одинакова хоть в Звезде, хоть в Треугольнике. А токи разные, ведь P=UI. Это происходит потому, что Напряжение питания в этих схемах отличается в √3 раз, ток – тоже. В “звезде” напряжение питания двигателя (линейное) больше номинала катушки, а в “треугольнике” ток питания двигателя больше тока катушки в 1,73 раза.
Другими словами, если “базовое” рабочее напряжение катушки равно 220 В, то напряжение в “Звезде” будет 1,73 · 220 = 380 В. Другими словами, Uл=1,73Uф, где Uф – это номинальное напряжение катушки, Uл – номинальное напряжение питания. Для треугольника ситуация повторяется, но только для тока.
Таким образом, если написано одно из напряжений, можно легко узнать другое напряжение и ток:
Указано напряжение только в треугольнике 400 В
Вот этот же двигатель, вид на клеммы в коробке:
Подключение обмоток статора треугольником – клеммы двигателя
В данном случае на шильде приведён только треугольник, но чудес не бывает – этот двигатель может работать и в звезде, главное переключить правильно обмотки. Напряжение “Звезды” будет 1,73 · 400 = 690 В, ток в то же число меньше.
Кто хочет копнуть поглубже – в конце выложу для скачивания умные книги.
Этапы переделки
Чтобы переделать электродвигатель с 380 Вольт на 220 сначала откиньте крышку мотора, чтобы посмотреть, сколько снаружи концов у статорных намоток. Их может быть 6 или 3. Если 6, то есть возможность поменять схему соединения: если была «звезда», можно перейти на «треугольник», и наоборот.
Если конца всего 3, значит, внутри короба намотки уже соединяются либо «звездой», либо «треугольником» (всего 6 концов, которые попарно объединяются клеммами, их и будет 3, так как на каждую клемму – 2 конца). В таком случае придется оставить прежнюю схему.
Соединение обмоток
Неважно, каков источник питания, трехфазный или однофазный, соединять статорные намотки можно любым из способов (можете прочитать подробнее про способы подключения электродвигателей):
- Звезда;
- Треугольник.
Звездой обычно соединяют намотки, если двигатель будет питаться от сети 380 В. Благодаря этому пуск становится плавным, хотя теряется треть мощности. Треугольник же рекомендуется при запитывании от 220 Вольт. Пусковые токи при этом не так высоки по сравнению с теми, что возникают от трехфазного питания. Зато мощность равна той, что дает «звездное» соединение, если мотор подключен к 380 В.
Схемы посмотрите ниже. Разница в том, что в первом случае соединяются все начала так, что получается трехконечная звезда. А во втором – конец одной обмотки соединяется с началом следующей так, что образуется фигура с тремя вершинами (треугольник).
Расчет конденсаторов
Когда концы намоток соединяют звездой или треугольником, образуется 3 места, где они стыкуются. На этих местах ставят клеммы. При питании от 380 Вольт на каждую из них подают фазу. Но наша задача, имея те же 3 контакта, подать лишь 1 фазу 220 Вольт и нуль. Это можно реализовать своими руками, компенсировав отсутствие трехфазного питания конденсаторами. Пусковой будет активным только на время запуска, а рабочий – постоянно.
Чтобы электрический двигатель хорошо запускался и работал, нужно правильно подобрать емкость конденсаторов. У рабочего накопителя она зависит от схемы соединения. Если это звезда, то работает формула:
Если треугольник, то формула преобразует свой вид:
Ср – искомая емкость рабочего накопительного элемента. U – напряжение в сети (220 Вольт). I – сила тока, которую находят по формуле:
Р – мощность, U – уже известное нам напряжение, ƞ – КПД, косинус «фи» — коэффициент мощности. Все эти значения можно посмотреть в техническом паспорте от вашего трехфазного мотора.
Расчет емкости пускового конденсатора (Сп) прост: умножьте Ср на 1,5 или 2. Если Ср=50 мкФ, то Сп будет от 75 до 100 мкФ. Поочередно ставьте то одну емкость, то другую, запуская каждый раз мотор. По звуку хода слушайте: если нет гула, то все в порядке.
Сборка по схеме
Схема выше показывает, как правильно соединить своими руками намотки статора с конденсаторами и проводами сети 220 В. К одной из вершин треугольника или звезды нужно подключить накопительные элементы параллельно друг другу (предусмотрите ключ для ручного отключения пускового накопителя после разгона)
Затем их выводят либо на фазу, либо на ноль: неважно. От этого будет зависеть только направление вращения вала
Как устроен трехфазный асинхронный двигатель
В большинстве случаев асинхронные двигатели используют конденсаторный запуск, однако бывают и другие способы пуска. В трехфазных электродвигателях в отличие от однофазных имеется три обмотки статора, которые сдвинуты под определённым углом. Угол намотки обмоток статора трехфазного двигателя — 120 градусов, что позволяет создавать вокруг ротора мощное магнитное поле.
Конструкция статора трехфазного электродвигателя состоит из таких элементов:
- Корпуса;
- Магнитопровода и сердечника с обмотками;
- Клеммной коробки.
Стандартное соединение обмоток трехфазного электродвигателя выполнено по схеме «звезда». Также существует менее распространённым способ соединения обмоток трехфазного двигателя, а именно — «треугольник». В любом случае, каждая обмотка статора имеет определённое направление, а также, начало и конец.
Для нумерации обмоток статора электродвигателя используются арабские цифры: 1, 2, 3. Концы обмоток обозначаются буквой и цифрой: К1, К2, К3, а их начало — Н1, Н2, Н3. В некоторых типах электродвигателей маркировка обмоток статора может иметь другое обозначение, например: С1, С2, С3 и С4, С5, С6.
Стандартное подключение
Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.
По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.
Соединение обмоток
Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.
Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.
В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.
В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда». По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.
Разновидности частотных преобразователей
Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:
Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.
Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.
Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.
- Транзисторные частотные преобразователи
Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.
Схемы подключения
Существуют две основные схемы, по которым производится подключение электрического мотора к сети переменного тока 220 вольт:
- Треугольник.
- Звезда.
Необходимо отметить тот факт, что любое изменение в подключениях электродвигателей несет за собой снижение их мощности. И если потери этого показателя в схеме треугольник составляют всего лишь 30%, то в схеме звезда уже 50%. Поэтому специалисты рекомендуют использовать именно треугольник. Хотя при соединении звездой электродвигатель работает мягко и плавно. Что касается частоты вращения ротора, то при подключении к сети 220 вольт этот показатель практически не изменяется.
Чтобы было понятно, как выглядят оба вида подключения, предлагаем посмотреть на два нижних рисунка, где позиция (а) это принципиальная электрическая схема, а (б) это монтажная схема подключения. Первый рисунок – это соединение треугольник, второй – звезда.
Соединение треугольник
Сразу оговоримся, что переделать подключение с 380 на 220 вольт можно двигатель, у которого из клеммной коробки торчит шесть концов. При этом на принципиальной схеме концы обозначаются по-разному. Старое обозначение (оно среди электриков используется и сейчас) – это начало обмоток С1, С2, С3, конец – это С4, С5, С6. Согласно ГОСТа 26772-85 буквенные обозначение были изменены на начало обмоток – U1, V1, W1, конец – U2, V2, W2.
Соединение звезда
Чтобы провести пуск 3-фазного электродвигателя малой мощности рабочего конденсатора будет достаточно. Но если мощность мотора превышает 1,5 кВт, то он или не запустится вообще, или запуск будет производиться медленно и трудно. Поэтому рекомендуется установить в схему еще один конденсатор – пусковой. Он будет отвечать только за пуск 3-х фазного двигателя. В самой его работе он участвовать не будет, то есть, тут же отключится после завершения запуска. На это уходит две-три секунды.
Вот снизу схема подключения, где установлен пусковой конденсатор (Cn).
Данные двигателя
На что стоит обратить внимание при включении в однофазную сеть 3ех фазных электродвигателей:
- полезная мощность снижается до 70–80%,
- при рабочих значениях 380/220,Ỵ/Δ, подключать на одну фазу нужно треугольником. При соединении звездой не будет максимальной мощности,
- если на шильде указано только одно значение – 380В, звезда, тогда придется двигатель разбирать, чтобы сделать переключение на треугольник, что не совсем удобно. При возможности стоит поискать другой двигатель.
Реверс в однофазной сети
Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.
Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.
Подведём итог проделанной работе
При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.
Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.
Предыдущая ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius
Следующая ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius
Подключение трехфазного двигателя звездой и треугольником разница
Вся нагрузка в трёхфазных цепях соединяется по схеме звезда или треугольник. В зависимости от вида потребителей электроэнергии и напряжения в электросети и выбирают соответствующий вариант. Если говорить об электродвигателях, то от выбора варианта соединения обмоток зависит возможность его работы в конкретной сети с номинальными характеристиками. В статье мы рассмотрим, чем отличаются звезда и треугольник в электродвигателе, на что они влияют и какой принцип подключения проводов в клеммнике трёхфазного двигателя.
Теория
Как уже было сказано, схемы соединения звезда и треугольник характерны не только для электродвигателя, но и для обмоток трансформатора, нагревательных элементов (например, тэнов электрокотла) и другой нагрузки.
Чтобы понять почему эти схемы соединения элементов трёхфазной цепи так называются, нужно их несколько видоизменить.
В «звезде», нагрузка каждой из фаз соединена между собой одним из выводов, это называется нейтральная точка. В «треугольнике» каждый из выводов нагрузки подключается к разноимённым фазам.
Всё сказанное в статье далее справедливо для трёхфазных асинхронных и синхронных машин.
Рассмотрим этот вопрос на примере соединения обмоток трёхфазного трансформатора или трёхфазного двигателя (в этом контексте это не имеет значения).
На этом рисунке отличия более заметны, в «звезде» начала обмоток подключаются к фазным проводникам, а концы соединяются вместе, в большинстве случаев к этой же точке нагрузки подключается нулевой провод от питающего генератора или трансформатора.
Точкой обозначены начала обмоток.
То есть в «треугольнике» конец предыдущей обмотки и начало следующей соединяются, и к этой точке подключается питающая фаза. Если перепутать конец и начало — подключаемая машина не будет работать.
В чем разница
Если говорить о подключении однофазных потребителей, кратко разберем на примере трёх электротенов, то в «звезде», если сгорит один из них продолжат работать два оставшихся. Если сгорит два из трёх – вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение.
В схеме треугольника даже при перегорании 2 тэнов – третий продолжит работать. В ней нет нулевого провода, его просто некуда подключать. А в «звезде» его подключают к нейтральной точке, и нужен он для уравнивания токов фаз и их симметрии в случае разной нагрузки по фазам (например, в одной из веток подключен 1 ТЭН, а в остальных по 2 параллельно).
Но если при таком соединении (с разной нагрузкой по фазам) отгорит ноль, то напряжения будут неодинаковы (там, где больше нагрузка просядет, а где меньше – возрастёт). Подробнее об этом мы писали в статье о перекосе фаз.
При этом нужно учесть, что подключать обычные однофазные приборы (220В) между фазами, на 380В, нельзя. Либо приборы должны быть рассчитаны на такое питание, либо сеть должна быть с Uлинейным 220В (как в электросетях с изолированной нейтралью некоторых специфичных объектов, например, кораблей).
Но, при подключении трёхфазного двигателя, ноль к средней точке звезды часто не подключают, так как это симметричная нагрузка.
Формулы мощности, тока и напряжения
Начнем с того что в схеме звезды есть два разных напряжения – линейное (между линейными или фазными проводами) и фазное (между фазой и нулём). Uлинейное в 1,73 (корень из 3) раз больше Uфазного. При этом линейный и фазный токи равны.
То есть линейное и фазное напряжение соотносятся так, что при линейном в 380В, фазное равно 220В.
В «треугольнике» Uлинейное и Uфазное равны, а токи отличаются в 1,73 раза.
Мощность в обоих случаях считают по одинаковым формулам:
- полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
- активная P = √3*Uл*I*cos φ;
- реактивная Q = √3*Uл*I*sin φ.
При подключении одной и той же нагрузки на те же Uфазное и Uлинейное, мощность подключённых приборов будет отличаться в 3 раза.
Допустим, есть двигатель, который работает от трёхфазной сети 380/220В, а его обмотки рассчитаны на подключение по «звезде» к электросети с Uлинейным в 660В. Тогда при подключении в «треугольник» питающее Uлинейное должно быть в 1,73 раза меньше, то есть 380В, что подходит для подключения к нашей сети.
Приведем расчеты, чтобы показать, какие отличия для двигателя будут при переключении обмоток с одной схемы на другую.
Допустим, что ток статора при подключении в треугольник в сеть 380В был 5А, тогда полная его мощность равняется:
Переключим электродвигатель на «звезду» и мощность снизится в 3 раза, так как напряжение на каждой обмотке снизилось в 1,73 раза (было 380 на обмотку, а стало 220), и ток тоже в 1,73 раза: 1,73*1,73=3. Значит с учетом пониженных величин проведем расчет полной мощности.
Как видите – мощность упала в 3 раза!
Но что будет, если есть другой электродвигатель и он работал в «звезде» в сети 380В и током статора в те же 5А, соответственно и обмотки рассчитаны для подключения в «треугольник» на 220В (3 фазы), но по какой-то причине их соединили именно в «треугольник» и подключили к 380В?
В этом случае мощность вырастет 3 раза, так как напряжение на обмотку теперь наоборот увеличилось в 1,73 раза и ток во столько же.
Мощность двигателя стала больше номинальной в эти самые 3 раза. Значит он просто сгорит!
Поэтому нужно подключать электродвигатель по той схеме соединения обмоток, которая соответствует их номинальному напряжению.
Практика — как выбрать схему для конкретного случая
Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.
В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.
Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.
Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.
Обычно маркировка имеет вид:
Это расшифровывается так:
Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.
Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:
Переключение со звезды на треугольник для плавного пуска
При запуске электродвигателя наблюдаются высокие пусковые токи. Поэтому для снижения пусковых токов асинхронных двигателей используется схема пуска с переключением обмоток со звезды на треугольник. При этом, как было сказано выше, электродвигатель должен быть рассчитан подключение в «треугольник» и работе под Uлинейным вашей сети.
Таким образом в наших трёхфазных электросетях (380/220В) для таких случаев используют двигатели номинальными «380/660» Вольт, для «Δ/Y» соответственно.
При пуске обмотки включаются «звездой» на пониженное напряжение 380В (относительно номинальных 660В), двигатель начинает набирать обороты и в определенный момент времени (обычно по таймеру, в усложненных вариантах — по сигналу датчиков тока и оборотов) обмотки переключаются в «треугольник» и работают уже на своих номинальных 380 вольтах.
На иллюстрации выше описан такой способ пуска двигателей, но в качестве примера изображен перекидной рубильник, на практике же используют два дополнительных контактора (КМ2 и КМ3), она хоть и сложнее обычной схемы подключения электродвигателя, но это не является её недостатком. Зато у неё целый ряд преимуществ:
- Меньше нагрузка на электросеть от пусковых токов.
- Соответственно меньшие просадки напряжения и уменьшается вероятность остановки сопутствующего оборудования.
- Мягкий пуск двигателя.
Есть два главных недостатка этого решения:
- Нужно прокладывать два трёхжильных кабеля от места расположения контакторов непосредственно до клемм двигателя.
- Падает пусковой момент.
Заключение
Как таковые различия в рабочих характеристиках при подключении одного и того же электродвигателя по схеме звезда или треугольник нет (он просто сгорит, если вы ошибетесь при выборе). Также, как и нет преимуществ и недостатков какой-либо из схем. Некоторые авторы приводят в качестве аргумента то, что в «звезде» ток меньше. Но при аналогичной мощности двух разных двигателей, один из которых рассчитан на подключение в «звезде», а второй в «треугольнике» к сети, например, 380В — ток будет одинаковым. А один и тот же двигатель нельзя переключать «как попало» и «непонятно для чего», так как он просто сгорит. Главное выбирать тот вариант, который соответствует напряжению питающей сети.
Надеемся, теперь вы стало больше понятно про то, что собой представляет схема звезда и треугольник в электродвигателе, какая разница в подключении каждым из способов и как выбрать схему для конкретного случая. Надеемся, предоставленная информация была для вас полезной и интересной!
Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.
В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.
Соединение обмоток звездой и треугольником
У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.
При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.
Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.
Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.
Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.
Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.
Запуск трехфазного электродвигателя с переключением со звезды на треугольник
Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнит ные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.
Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.
Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.
Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.
Когда нужно переключаться с треугольника в звезду
Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.
Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.
На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.
Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.
Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.
При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.
Как подключить электродвигатель правильно – знает опытный электрик.
Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.
Определение типа способа соединения
Выбор того или иного подсоединения зависит от:
- надежности энергосети;
- номинальной мощности;
- технических характеристик самого двигателя.
Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.
При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.
Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.
Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.
Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.
Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.
Зависимость выбора от напряжения
Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).
Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.
Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».
Так электромотор прослужит долго и проработает без сбоев.
Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.
Как снизить пусковые токи электродвигателя?
Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.
Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.
Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.
Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:
При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.
Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.
Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.
И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.
Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.
Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.
Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).
Подключение электродвигателя
Подключение асинхронного двигателя
Трехфазный переменный ток
Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.
Трехфазный ток (разница фаз 120°)
Звезда и треугольник
Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).
Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.
Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).
Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.
Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А. Полная потребляемая мощность:S = 1,73∙380∙1 = 658 Вт.
Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:
S = 1,73∙380∙3 = 1975 Вт.
Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.
Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.
Подключение электродвигателя по схеме звезда и треугольник
Обозначение выводов статора трехфазного электродвигателя
Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | U1 | U2 |
вторая фаза | V1 | V2 |
третья фаза | W1 | W2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | U | |
вторая фаза | V | |
третья фаза | W | |
точка звезды (нулевая точка) | N | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | U | |
второй вывод | V | |
третий вывод | W |
Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | C1 | C4 |
вторая фаза | C2 | C5 |
третья фаза | C3 | C6 |
Соединение звездой (число выводов 3 или 4) | ||
первая фаза | C1 | |
вторая фаза | C2 | |
третья фаза | C3 | |
нулевая точка | 0 | |
Соединение треугольником (число выводов 3) | ||
первый вывод | C1 | |
второй вывод | C2 | |
третий вывод | C3 |
Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).
Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети
Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.
Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:
- ,где Cраб — емкость рабочего конденсатора, мкФ,
- Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
- U1 – напряжение однофазной сети, В.
Управление асинхронным двигателем
Прямое подключение к сети питания
Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.
С помощью магнитных пускателей можно реализовать схему:
- нереверсивного пуска: пуск и остановка;
- реверсивного пуска: пуск, остановка и реверс.
Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.
Нереверсивная схема
Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель
Реверсивная схема
Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, Mм — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы
Частотное управление асинхронным электродвигателем
Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.
Функциональная схема частотно-регулируемого привода
- В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
- скалярное управление;
- векторное управление.
Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).
Скалярное управление асинхронным двигателем с датчиком скорости
Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.
Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.
Полеориентированное управления асинхронным электродвигателем по датчику положения ротора
Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.
- По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
- полеориентированное управление по датчику;
- полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
Полеориентированное управления асинхронным электродвигателем без датчика положения ротора
Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.
Трехфазный двигатель в однофазной сети не запускается. Подключение трёхфазного двигателя к однофазной сети
Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.
Схемы подключения трехфазного двигателяИз множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
- Схема звезды.
- Схема треугольника.
Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.
Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.
Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.
Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.
Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.
Проверка схемы подключения мотораПредставим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.
Метод определения фаз статораПосле разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.
Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.
Полярность обмотокЧтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
- Подключить импульсный постоянный ток.
- Подключить переменный источник тока.
Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.
Как проверить полярность обмоток батарейкой и тестеромНа контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.
Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.
Проверка переменным токомДве любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.
Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.
Схема звездыЭтот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.
Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.
Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:
С = (2800 · I) / UДля схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.
Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.
В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».
Схема треугольникаСхемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.
Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:
С = (4800 · I) / UПравильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.
Двигатель с магнитным пускателемТрехфазный электродвигатель работает через по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.
Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.
В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.
Подключение мотора от автоматаОбщий вариант такой схемы подключения выглядит как на рисунке:
Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.
Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.
Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.
При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.
Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.
Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
- Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
- Нельзя дистанционно выключить и включить электродвигатель.
Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода — фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.
Подключение 3х фазного двигателя на 220 без конденсаторов
Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности — от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.
В этих схемах применяются , под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.
Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.
Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа — параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.
Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.
Подключение электродвигателя 380в на 220в через конденсатор
Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.
Расчет конденсатора для трехфазного двигателя в однофазной сети:
- При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
- Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов — рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
- Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй — к нулевому, а третий — к фазному проводу. Если подобная схема способствует или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.
Подключение 3х фазного двигателя на 220 без потери мощности
Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.
Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.
При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.
Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.
Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В . Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Онлайн расчет емкости конденсатора мотора
Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:
Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.
Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.
Пусковые конденсаторы для моторов
Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.
Реверс направления движения двигателя
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
1. Подключение трехфазного электродвигателя – общая схема
Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.
Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что . Что поделать, приелось это название.
В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.
Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.
Подключение трехфазного двигателя
Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.
Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.
В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?
2. Подключение двигателя через рубильник или выключатель
Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.
Схема подключения трехфазного двигателя в сеть через автоматический выключатель
Поэтому более подробно общий случай будет выглядеть так:
3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА
На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.
Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.
Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.
Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).
Она прекрасно работает, так же, как по многу лет . И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.
Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.
Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.
Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –
А что там свежего в группе ВК СамЭлектрик.ру ?
Подписывайся, и читай статью дальше:
- Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
- Невозможность дистанционного и автоматического включения/выключения двигателя.
Эти недостатки можно устранить, в схемах ниже будет показано как.
Ручной пускатель, или мотор-автомат – более совершенное устройство. На нём есть кнопки “Пуск” и “Стоп”, либо ручка “Вкл-Выкл”. Его плюс – он специально разработан для пуска и защиты двигателя. Пуск по-прежнему ручной, а вот ток срабатывания можно регулировать в некоторых пределах.
4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА
Поскольку у двигателей обычно , то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.
Вот что у него на боковой стенке:
Автомат защиты двигателя – характеристики на боковой стенке
Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.
В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.
Плюс схемы – можно регулировать уставку теплового тока. Минус – тот же, что и в предыдущей схеме, нет дистанционного включения.
Схема подключения двигателя через магнитный пускатель
Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.
Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.
Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск ” и “Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.
5. Схема подключения двигателя через пускатель с кнопками пуск стоп
Здесь питание цепи управления поступает с фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2 ).
Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.
Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.
Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью . Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.
Подключение трехфазного двигателя через электронные устройства
Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.
Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:
- Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. .
- Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему . Практическое применение устройств плавного пуска – .
Старый специфический способ подключения двухскоростных двигателей описан в статье . Ключевые слова – Раритет, Ретро, СССР.
На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Как подключить трехфазный двигатель?
При подключении трехфазного двигателя на паспортной табличке указано различное напряжение для треугольника: 380–400 В и 660–690 В для звезды. Какой вариант следует выбрать? Напряжение питания от линии к линии составляет 380-400. Каждая обмотка статора двигателя выдерживает напряжение 380-400 В.
Таким образом, если вы подключаете двигатель (статор двигателя) по схеме треугольник, он должен быть подключен к линейному напряжению 380-400 В.
С другой стороны, если вы подключите обмотку статора вашего двигателя в Y, вы сможете подключить двигатель к линейному напряжению, которое составляет sqrt (3) x 380-400 В = 660-690. В.
Фактическая выходная мощность (для стандартного трехфазного двигателя переменного тока с короткозамкнутым ротором) определяется не самим двигателем, а нагрузкой, которую он приводит. Двигатель будет пытаться работать со скоростью, близкой к синхронной, и передавать мощность, необходимую для ведомого оборудования, на этой скорости. Это означает, что ток, потребляемый двигателем при любом заданном напряжении, будет почти одинаковым, независимо от того, подключен ли он звездой или треугольником. Таким образом, если вы подключаете двигатель звездой, запитывая его напряжением, на которое он рассчитан при подключении по схеме треугольника, ток через каждую обмотку будет в квадрате (3) раз больше, чем рассчитана обмотка.Это снова означает, что рассеивание тепла в обмотке будет примерно в 3 раза больше, чем она рассчитана, и, следовательно, она сгорит, если вы загрузите двигатель его номинальной нагрузкой.
Мы должны знать, что мощность двигателя, указанная на его паспортной табличке, в зависимости от доступной мощности панели MCC, к которой он подключен, являются важными факторами при выборе типа запуска двигателя. Примите во внимание тот факт, что при прямом пуске двигателя в треугольник (что является правильным в зависимости от напряжения вашей сети) токи могут достигать 8-кратного номинала двигателя, и если ваш MCC не способен выдерживать этот ток ( уменьшая его напряжение питания), вы можете выйти из строя с типом пуска DOL Delta.Вот почему, исходя из мощности двигателей, во избежание высоких токов во время пуска рекомендуется соединение Y / D. Ограничения пусковых токов по Y / D значительны, если сначала уменьшить ток с помощью sqrt3, потому что напряжение питания не равно 660 В (вы питаете двигатель напряжением 380-400 В), а исходный ток по Y равен sqrt3 Свойства звезды и треугольника
Питание асинхронный электродвигатель от трехфазной сети переменного напряжения.Такой двигатель при простой схеме подключения оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.
Концы фазных обмоток электродвигателя выведены на специальный «башмак». Это сделано для удобства подключения. В электротехнике используются два основных способа подключения асинхронных электродвигателей: метод соединения «треугольник» и метод «звезда».При соединении концов используйте специально разработанную для этого перемычку.
Отличия между «звездой» и «треугольником»
Основанный на теории и практических знаниях основ электротехники, метод соединения «звездой» позволяет электродвигателю работать более плавно и мягко. Но в то же время этот способ не позволяет двигателю выйти на полную мощность, указанную в технических характеристиках.
Соединив фазные обмотки по схеме «треугольник», двигатель может быстро выйти на максимальную рабочую мощность.Это позволяет использовать полный КПД электродвигателя, согласно техническому паспорту. Но у такой схемы подключения есть свой недостаток: большие пусковые токи. Для уменьшения значения тока используется пусковой реостат, обеспечивающий более плавный пуск двигателя.
Соединение звездой и его преимущества
Каждая из трех рабочих обмоток электродвигателя имеет два выхода, соответственно начало и конец. Концы всех трех обмоток подключены к одной общей точке, так называемой нейтрали.
Если в цепи есть нейтральный провод, схема называется 4-проводной, в противном случае она будет считаться 3-проводной.
Начало выводов подключаем к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества использования схемы «звезда»:
- Стабильный и продолжительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность за счет снижения мощности оборудования;
- Максимально плавный пуск электропривода;
- Возможность кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Имеется оборудование с внутренним соединением концов обмоток. На колодке такого оборудования будет выведено всего три вывода, что не позволяет использовать другие способы подключения. Выполненное в таком виде электрооборудование, для его подключения не требуется грамотных специалистов.
Треугольное соединение и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В.А потом по аналогии — конец одной обмотки началом другой. В результате конец обмотки фазы С замыкает электрическую цепь, создавая сплошной контур. Эту схему можно было бы назвать круговой, если бы не конструкция крепления. Форма треугольника выдает эргономичное расположение соединения обмоток.
При соединении «треугольником» на каждой из обмоток имеется линейное напряжение, равное 220В или 380В.
Основные преимущества использования схемы «треугольник»:
- Увеличение максимальной мощности электрооборудования;
- Использование пускового реостата;
- Повышенный крутящий момент;
- Отличная тяга.
Недостатки:
- Повышенный пусковой ток;
- При длительной работе двигателя он очень горячий.
Способ соединения обмоток двигателя «треугольником» широко применяется при работе с мощными механизмами и наличии высоких пусковых нагрузок. Большой крутящий момент создается за счет увеличения значений самоиндукции ЭДС, вызванного протекающими большими токами.
Тип соединения звезда-треугольник
В сложных механизмах часто используется комбинированная схема звезда-треугольник.С таким переключателем мощность резко возрастает, и если по техническим характеристикам двигателя он не рассчитан на работу по «треугольному» методу, то он перегреется и сгорит.
Двигатели повышенной мощности имеют большие пусковые токи, в результате при пуске часто перегорают предохранители, отключается автоматика. Для понижения линейного напряжения в обмотках статора используются автотрансформаторы, универсальные дроссели, пусковые реостаты или соединение «звезда».
В этом случае напряжение на соединении каждой обмотки будет равно 1.В 73 раза меньше, следовательно, ток, протекающий в этот период, будет меньше. Далее частота увеличивается, а текущее показание уменьшается. Тогда по релейно-контактной схеме произойдет переключение со «звезды» на «треугольник».
В итоге, используя эту комбинацию, мы получим максимальную надежность и эффективную производительность используемого электрооборудования, не опасаясь его вывести из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с легким пусковым режимом. Этот метод неприменим, если необходимо снизить пусковой ток и в то же время не уменьшить высокий пусковой момент. В этом случае используется двигатель с фазным ротором с пусковым реостатом.
Основными преимуществами комбинации являются:
- Увеличенный срок службы. Плавный пуск позволяет избежать неравномерной нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
- В момент пуска электродвигателя его пусковой ток в 7 раз превышает рабочий ток.
- Мощность в 1,5 раза больше при соединении обмоток методом «треугольник».
- Для обеспечения плавного пуска и защиты двигателя от перегрузок часто используются частотные провода.
- При использовании способа подключения «звезда» особое внимание уделяется отсутствию «перекоса фазы», иначе оборудование может выйти из строя.
- Линейные и фазные напряжения при соединении «треугольником» — равны между собой, как и линейный и фазный токи при соединении «звезда».
- Для подключения двигателя к бытовой сети часто используется фазовращающий конденсатор .
Обмотки генераторов, трансформаторов, электродвигателей и других электроприемников при подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут разные токовые нагрузки. Поэтому возникает необходимость разобраться в вопросе, как соединить звезду и треугольник — в чем разница?
Какие бывают схемы
Соединением обмоток звездой считается их соединение в одной точке, которая называется нулевой точкой или нейтралью.Обозначается буквой «О».
Схема соединения треугольником — это последовательное соединение концов рабочих обмоток, при котором начало одной обмотки соединено с концом другой.
Разница очевидна. Но какую цель преследуют эти типы подключения, почему звездный треугольник применяется в разных электроустановках, в которых эффективность и того, и другого. По этой теме очень много вопросов, их нужно понять.
Начнем с того, что при запуске того же электродвигателя ток, называемый пусковым током, имеет высокое значение, которое превышает его номинальное значение каждые шесть или восемь. Если это маломощный агрегат, то этот ток может его защитить, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. А это обязательно вызовет «просадку» напряжения и выход из строя предохранителей или автоматов защиты. Сам двигатель начнет вращаться на небольшой скорости, отличной от паспортной.То есть проблем с пусковым током много.
Следовательно, его надо просто уменьшить. Для этого есть несколько способов:
- установить в системе подключения электродвигателя одно из перечисленных устройств: трансформатор, дроссель, реостат;
- изменена схема соединения обмоток ротора.
Это второй вариант, используемый в производстве, как наиболее простой и эффективный. Он просто превращает звезду в треугольник. То есть в момент пуска двигателя его обмотки подключаются по схеме звезды, затем, как только мотор набирает обороты, переключается на треугольник.Процесс переключения звезды на треугольник происходит автоматически.
В электродвигателях, где используются одновременно два варианта подключения — звезда-треугольник, к соединению обмоток по схеме звезды, то есть к их общей точке подключения, подключать нейтраль от сети. Для чего нужно делать? Дело в том, что при работе над этим вариантом подключения возникает большая вероятность асимметрии амплитуд разных фаз.Именно нейтраль будет компенсировать эту асимметрию, которая обычно возникает из-за того, что обмотки статора могут иметь разное индуктивное сопротивление.
Преимущества двух схем
Звездная схема имеет довольно серьезные достоинства:
- плавный пуск электродвигателя;
- его номинальная емкость будет соответствовать паспортным данным;
- двигатель будет нормально работать и при кратковременных высоких нагрузках, и при длительных небольших перегрузках;
- во время работы корпус мотора не будет перегреваться.
Что касается схемы «треугольник», то ее главным преимуществом является достижение электродвигателем при его работе максимальной мощности. Но при этом рекомендуется строго придерживаться условий эксплуатации, которые расписаны в паспорте мотора. Испытания электродвигателей, соединенных по схеме треугольника, показали, что его мощность в три раза выше, чем у звезды, включенной по схеме.
Если говорить о генераторах, дающих ток в питающую сеть, то схемы подключения звезды и треугольника по своим техническим параметрам абсолютно одинаковы.То есть выходное напряжение треугольника будет больше, но не в три раза, а не менее 1,73 раза. Фактически получается, что напряжение генератора на звезде, равное 220 вольт, преобразуется в 380 вольт, если переключаться с одного варианта на другой. Но следует отметить, что мощность самого блока остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и ток обратно пропорциональны. То есть увеличение напряжения в 1,73 раза снижает ток точно на такую же величину.
Отсюда вывод: если в клеммной коробке генератора расположены все шесть концов обмотки, то можно будет получить напряжение двух номиналов, отличающихся друг от друга на коэффициент 1,73.
Сделайте выводы
Почему сегодня во всех современных мощных электродвигателях присутствуют соединения треугольником и звездой? Из всего вышесказанного становится понятно, что главное требование ситуации — снижение токовой нагрузки, возникающей при пуске самого агрегата.
Если выписать формулы такого подключения, они будут выглядеть так:
Uf = Uil / 1,73 = 380 / 1,73 = 220, где Uf — напряжение в фазах, Ul — на питающей сети. Эта связь — звезда.
После того, как электроагрегат будет разогнан, то есть скорость его вращения будет соответствовать паспортным данным, произойдет переход от звезды к треугольнику. Таким образом, фазовое напряжение становится равным линейному.
Похожие записи:
Для увеличения мощности передачи без увеличения напряжения сети, уменьшения пульсаций напряжения в источниках питания, уменьшения количества проводов при подключении нагрузки к источнику питания используют различные схемы подключения обмоток источников питания и потребителей.
СхемаОбмотки генераторов и приемников при работе с 3-х фазными сетями можно соединять по двум цепям: звездой и треугольником. Такие схемы имеют между собой несколько отличий, отличаются еще и токовой нагрузкой. Поэтому перед подключением электрических машин необходимо выяснить, чем отличаются эти две схемы.
Схема звездыСоединение разных обмоток по схеме «звезда» предполагает их соединение в одной точке, называемой нулевой (нейтралью), и имеет обозначение на схемах «О» или x, y, z.Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение присутствует. Если такое подключение есть, то эта система считается 4-х проводной, а если такого подключения нет — 3-х проводной.
Схема треугольникаПри данной схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть получается схема, внешне похожая на треугольник, а соединение обмоток в ней идет последовательно друг с другом.Следует отметить, что отличие от схемы «звезда» состоит в том, что на треугольной схеме система только 3-проводная, так как общей точки нет.
В схеме треугольника с выключенной нагрузкой и симметричной ЭДС равна 0.
В 3-х фазных питающих сетях есть два вида тока и напряжения — фазное и линейное. Фазовое напряжение — это его значение между концом и началом фазы приемника.Фазный ток протекает в одной фазе приемника.
При применении звездообразной схемы фазные напряжения равны U a, U b, U c , а фазные токи — I a, I b, I c . При применении треугольной схемы для обмоток нагрузки или генератора U a b, U b c, U c a , фазные токи — I ac, I bc, I c a .
Значения линейного напряжения измеряются между фазами начала или между линейными проводниками. В проводниках между источником питания и нагрузкой протекает линейный ток.
В случае звездообразной схемы линейные токи равны фазным токам, а линейные напряжения равны U ab, U bc, U ca . На схеме треугольника все наоборот — фазное и линейное напряжения равны, а линейные токи равны I a, I b, I c .
Большое значение придается направлению ЭДС напряжений и токов при анализе и расчете 3-х фазных цепей, так как его направление влияет на соотношение между векторами на схеме.
Элементы на схемеМежду этими схемами есть существенная разница. Разберемся, почему в разных электроустановках используются разные схемы, и в чем их особенности.
При пуске электродвигателя пусковой ток имеет повышенное значение, в несколько раз превышающее его номинальное значение. Если это маломощный механизм, то защита может не сработать. При включении мощного электродвигателя обязательно сработает защита, отключит питание, что вызовет на какое-то время падение напряжения и перегорание предохранителя или отключение электрических машин.Электродвигатель будет работать на низкой скорости, которая меньше номинальной скорости.
Видно, что из-за большого пускового тока возникает много проблем. Необходимо как-то снизить его стоимость.
Для этого можно применить несколько методов:
- Подключите для запуска электродвигателя, дроссельной заслонки.
- Изменить тип соединения обмоток ротора двигателя.
В промышленности в основном используется второй метод, так как он наиболее простой и дает высокую эффективность.Здесь работает принцип переключения обмоток электродвигателя на такие схемы как звезда и треугольник. То есть при запуске двигателя его обмотки имеют соединение «звезда», после набора рабочих скоростей схема соединения меняется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.
Желательно использовать сразу две схемы: звезду и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как при использовании таких схем повышается вероятность искажения амплитуды фазы.Нейтраль источника компенсирует эту асимметрию, которая возникает из-за различного индуктивного сопротивления обмоток статора.
Преимущества схемЗвездообразное соединение имеет важные преимущества:
- Плавный пуск электродвигателя.
- Позволяет электродвигателю работать с заявленной номинальной мощностью, соответствующей паспорту.
- Электродвигатель будет иметь нормальный режим работы в различных ситуациях: при больших кратковременных перегрузках, при длительных небольших перегрузках.
- Во время работы корпус мотора не перегревается.
Основным преимуществом треугольной схемы является получение от электродвигателя максимально возможной мощности срабатывания. В этом случае желательно выдерживать режимы работы согласно паспорту двигателя. При исследовании электродвигателей со схемой треугольника было установлено, что его мощность увеличена в 3 раза, по сравнению со схемой звезды.
Если рассматривать генераторы, схемы — звезда и треугольник по параметрам схожи в работе электродвигателей.Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако при повышении напряжения ток уменьшается, так как по закону Ома эти параметры обратно пропорциональны друг другу.
Таким образом, можно сделать вывод, что для разных соединений концов обмоток генератора можно получить два разных номинальных напряжения. В современных электродвигателях большой мощности при запуске схемы происходит автоматическое переключение звезды и треугольника, поскольку это снижает токовую нагрузку, возникающую при запуске двигателя.
Процессы, возникающие при изменении схемы звезды и треугольника в разных случаяхЗдесь изменение схемы — это включение плат и в клеммных коробках электроприборов при условии наличия выводов обмоток.
Обмотки генератора и трансформатораПри переходе от звезды к треугольнику напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не меняется, хотя линейный ток увеличивается на 1.73 раза.
При обратном переключении происходят обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не меняются, а линейные токи уменьшаются в 1,73 раза. Следовательно, можно сделать вывод, что если есть вывод всех концов обмоток, то на вторичные обмотки трансформатора и генераторов можно подавать два типа напряжения, которые различаются в 1,73 раза.
Лампы для освещенияПри переходе со звезды на треугольник лампы горят.При обратном переключении, при условии, что лампы в треугольнике исправны, лампы будут гореть тускло. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и равномерно распределяется между фазами. Это соединение используется в театральных люстрах.
При создании любого устройства важно не только подобрать необходимые детали, но и правильно их все соединить. И в рамках этой статьи будет рассказано о связи звезды и треугольника.Где это применимо? Как это действие выглядит? На эти и другие вопросы мы ответим в рамках статьи.
Что такое трехфазная система электроснабжения?
Частный случай электрических цепей многофазных строительных систем на переменный ток. В них действуют синусоидальные ЭДС, созданные с помощью общего источника питания, имеющего одинаковую частоту. Но они сдвинуты друг относительно друга на определенное значение фазового угла.В трехфазной системе он равен 120 градусам. Шестипроводная (часто также называемая многопроволочной) конструкция переменного тока была изобретена в свое время Николаем Тесла. Также значительный вклад в его развитие внес Доливо-Добровольский, который первым предложил трех- и четырехпроводные системы. Он также обнаружил ряд преимуществ, которые имеют трехфазные конструкции. Какие бывают схемы включения?
Схема «звезда»
Это название соединения, при котором концы фаз обмоток генератора соединяются в общую точку.Это называется нейтральным. Концы фаз обмоток потребителей также подключаются к одной общей точке. Теперь о проводах, которые их соединяют. Если он находится между началом фаз потребителя и генератора, он называется линейным. Провод, соединяющий нейтраль, помечен как нейтраль. От этого зависит и название сети. Если есть нейтраль, схема называется четырехпроводной. В противном случае он будет трехпроводным.
Треугольник
Это тип соединения, при котором начало (H) и конец (K) цепи находятся в одной и той же точке.Таким образом, вторая фаза соединяется с первой фазой. Ее K соединяется с H третьей. И его конец связан с началом первого. Такую схему можно было бы назвать кругом, если бы не особенность ее крепления, когда эргономичнее разместить в виде треугольника. Чтобы узнать обо всех особенностях подключения, см. Перечисленные ниже типы подключений. Но перед этим еще немного информации. В чем разница между звездой и треугольником? Разница между ними в том, что фазы подключаются по-разному.Есть и отличия в эргономике.
Виды
Как видно из рисунков, существует довольно много вариантов реализации включения деталей. Возникающие в таких случаях сопротивления называют фазами нагрузки. Существует пять типов соединений, для которых генератор может быть подключен к нагрузке. Это:
- Звезда-звезда. Второй используется с нулевым проводом.
- Звезда-звезда. Второй используется без нулевого провода.
- Треугольник-треугольник.
- Звезда-треугольник.
- Треугольник-звезда.
А что это за оговорки в первом и втором абзацах? Если вам уже удалось задать этот вопрос, ознакомьтесь с информацией, которая идет к схеме звездочки: ответ есть. Но тут хочется сделать небольшое дополнение: начало фаз генераторов указывается заглавными буквами, а нагрузки — заглавными. Это относительно схематичное изображение. Теперь из опыта использования: при выборе направления протекания тока в линейных проводах его делают так, чтобы он был направлен со стороны генератора на нагрузку.С нулем они поступают наоборот. Посмотрите, как выглядит соединение звезда-треугольник. Цифры очень наглядно показывают, как и что должно быть. Схема подключения обмоток звезда / треугольник представлена в разных ракурсах, и проблем с их пониманием возникнуть не должно.
Преимущества
Каждая EMF работает на определенной фазе пакетного процесса. Для обозначения проводников используются латинские буквы A, B, C, L и цифры 1, 2 и 3. Говоря о трехфазных системах, обычно выделяют их преимущества:
- Экономичен при передаче электроэнергии на значительные расстояния, что обеспечивает связь между звездой и треугольником.
- Трехфазные трансформаторы с низким расходом материалов.
- Равновесие системы. Этот пункт является одним из важнейших, так как позволяет избежать неравномерной механической нагрузки на генераторную установку. Это означает более длительный срок службы.
- Малая материальная емкость — силовые кабели. Благодаря этому при одинаковой потребляемой мощности по сравнению с однофазными цепями уменьшаются токи, которые необходимы для сохранения связи между звездой и треугольником.
- Можно без значительных усилий получить круговое вращающееся магнитное поле, которое необходимо для работы электродвигателя и ряда других электрических устройств, работающих подобным образом.Это достигается за счет возможности создания более простой и эффективной конструкции, что, в свою очередь, является результатом показателей эффективности. Это еще один существенный плюс, в котором сочетаются звезда и треугольник.
- В одной установке можно получить два рабочих напряжения — фазное и линейное. Также можно сделать два уровня мощности при подключении по принципу «треугольник» или «звезда».
- Вы можете значительно уменьшить мерцание и стробоскопический эффект светильников, работающих с люминесцентными лампами, следуя способу размещения в нем устройств, которые питаются от разных фаз.
Благодаря перечисленным выше семи преимуществам, трехфазные системы сейчас являются наиболее распространенными в современной электронике. Соединение обмоток трансформатора звезда / треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. Кроме того, бесценно влиять на напряжение, передаваемое по сетям в дома жителей.
Заключение
Эти системы подключения являются наиболее популярными благодаря своей эффективности. Но следует помнить, что работа проходит под высоким напряжением, и нужно соблюдать особую осторожность.
Здравствуйте, уважаемые гости и посетители сайта «Записки электрика».
В прошлой статье я рассказал вам о приложении и его устройстве, а также познакомился с двумя разновидностями асинхронного двигателя.
Сегодня я расскажу вам о соединении звездообразной и треугольной обмоток асинхронных двигателей, т.к. это один из самых распространенных вопросов, которые мне задают в личной почте.
Напомним вкратце. Питание такого двигателя обеспечивается сетью трехфазного переменного напряжения.В статоре 3 обмотки, которые смещены друг относительно друга на 120 градусов. Это сделано для создания вращающегося магнитного поля.
Выходы обмоток статора асинхронных двигателей обозначены следующим образом:
С1, С2, С3 — начало обмоток, С4, С5, С6 — конец обмоток. Но сейчас все чаще используется новая маркировка выводов по ГОСТ 26772-85. U1, V1, W1 — начало обмоток, U2, V2, W2 — конец обмоток.
Выводы фазных обмоток асинхронного двигателя выведены на клеммную колодку или клеммную колодку и расположены таким образом, что соединения звездой или треугольником можно удобно выполнять без пересечения с помощью специальных перемычек.
Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже — сбоку. Некоторые клеммные колодки можно повернуть на 180 градусов для облегчения подключения силовых кабелей.
На клеммную колодку можно выводить 3 или 6 контактов фазных обмоток статора.
Разберем каждый случай отдельно.
Пример
Если на клеммную колодку выведено 6 обмоток статора, асинхронный двигатель может быть подключен к сети с 2 различными уровнями напряжения, различающимися в 1,73 раза (√3).
Для наглядности рассмотрим пример. Допустим, у нас есть, на пластине которой указано напряжение 220/380 (В).
Что это значит?
А это значит, что если уровень линейного напряжения в сети составляет 380 (В), то обмотки статора необходимо подключать по схеме звезды.
Соединение в звезду фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток необходимо соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше. И на их начало подавать трехфазное напряжение сети.
На рисунке выше показано, что напряжение на фазной обмотке составляет 220 (В), а линейное напряжение между двумя фазными обмотками составляет 380 (В).
На клеммной колодке соединение обмоток звездой будет выглядеть следующим образом.
Вернемся к нашему примеру.
Если уровень линейного напряжения в сети составляет 220 (В), то обмотки статора необходимо подключить по схеме треугольника.
Треугольник соединение фазных обмоток статора асинхронного двигателя выполняется следующим образом.
- конец обмотки фазы «A» C4 (U2) должен быть соединен с началом обмотки фазы «B» C2 (V1)
- конец обмотки фазы «B» C5 (V2) должен быть соединен с началом обмотки фазы «C» C3 (W1)
- конец обмотки фазы «C» C6 (W2) должен быть соединен с началом обмотки фазы «A» C1 (U1)
Места их подключения подключены к соответствующим фазам трехфазного питающего напряжения.
Из рисунка видно, что при линейном напряжении 220 (В) напряжение на фазной обмотке тоже 220 (В).
На клеммной колодке при соединении обмоток статора асинхронного двигателя треугольником следует установить специальные перемычки:
В нашем примере при соединении звезда-треугольник напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).
Особый случай
Бывают ситуации, когда на клеммную колодку асинхронного двигателя выводятся только 3 клеммы вместо 6.В этом случае соединение звездой или треугольником выполняется внутри двигателя на передней (торцевой) его части.
Такой асинхронный двигатель можно подключать к сети только с одним напряжением, указанным на паспортной табличке.
В нашем примере обмотки статора асинхронного двигателя соединены по схеме звезды и могут быть подключены к сети с напряжением 380 (В).
выводы
В конце статьи о соединении звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.
При подключении звезды к обмоткам асинхронного двигателя наблюдается более мягкий пуск и плавная работа, а также возможность кратковременной перегрузки.
Когда треугольник соединяет обмотки асинхронного двигателя, достигается его максимальная мощность, но во время пуска большое значение имеют пусковые токи. Также замечено, что при подключении треугольника двигатель греется больше (определялся тепловизором с такой же нагрузкой).
В связи с вышеизложенным асинхронные двигатели средней мощности и выше работают по схеме звезды.При наборе номинальной скорости в автоматическом режиме переключается на треугольную диаграмму. Эту схему мы рассмотрим в следующих статьях. Следите за обновлениями на сайте.
П.С. А что делать, если вывод фазных обмоток асинхронного двигателя не маркирован соответствующим образом? Об этом вы узнаете из моей статьи. Чтобы не пропустить выход новой статьи, тогда подпишитесь. Форма подписки находится в конце статьи или в правой панели сайта.
Коэффициент мощности — индуктивная нагрузка
Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где
- Активная (действительная или истинная) мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
- Полная мощность измеряется в вольт-амперах (ВА) и представляет собой напряжение в системе переменного тока, умноженное на всем током, который в нем течет.Это векторная сумма активной и реактивной мощности
- Реактивная мощность измеряется в вольт-амперах реактивной ( VAR ). Реактивная мощность — это энергия, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.
Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает количество полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.
Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .
Коэффициент мощности
Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:
PF = cos φ
где
PF = коэффициент мощности
φ = фазовый угол между напряжением и током
Коэффициент мощности, определенный IEEE и IEC, представляет собой соотношение между приложенной активной (истинной) мощностью — и полная мощность , и в общем случае может быть выражена как:
PF = P / S (1)
, где
PF = коэффициент мощности
P = активная (истинная или действительная) мощность (Вт)
S = полная мощность (ВА, вольт-амперы)
Низкий коэффициент мощности — это результат lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.
Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что
- общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен обеспечить большую генерирующую мощность, чем фактически требуется
- искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем
Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.
Пример — коэффициент мощности
Промышленное предприятие потребляет 200 A при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА .
Если коэффициент мощности — PF — нагрузки составляет 0,7 — только
80 кВА × 0,7
= 56 кВт
реальной мощности потребляется системой. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.
- Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем тот, который был бы необходим при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
Зависимость поперечного сечения проводника от коэффициента мощности
Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:
Коэффициент мощности | 1 | 0,9 | 0.8 | 0,7 | 0,6 | 0,5 | 0,4 | 0,3 |
Поперечное сечение | 1 | 1,2 | 1,6 | 2,04 | 2,8 | 2,8 | 2,8 |
Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит распределительную способность электрической системы из-за увеличения тока и падения напряжения.
«Опережающий» или «запаздывающий» коэффициенты мощности
Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.
- При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет равен 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
- Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
- Емкостные нагрузки — конденсаторные батареи или проложенные кабели — генерируют реактивную мощность, причем фаза тока опережает напряжение.
Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. В течение остальных циклов энергия возвращается обратно в источник питания.
В системах с преимущественно индуктивной нагрузкой — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.
Коэффициент мощности трехфазного двигателя
Общая мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из
- Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
- Реактивная мощность — Нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)
Коэффициент мощности трехфазного электродвигателя может быть выражен как:
PF = P / [(3) 1/2 UI] (2)
где
PF = коэффициент мощности
P = приложенная мощность (Вт, Вт)
U = напряжение (В)
I = ток (А, амперы)
— или альтернативно:
P = (3) 1/2 UI PF
= (3) 1/2 U I cos φ (2b)
U, l и cos φ обычно указаны на паспортной табличке двигателя.
Типичный коэффициент мощности двигателя
Мощность (л.с.) | Скорость (об / мин) | Коэффициент мощности (cos φ ) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Без нагрузки | без нагрузки | 1/2 нагрузки | 3/4 нагрузки | полная нагрузка | ||||||||||
0-5 | 1800 | 0,15 — 0,20 | 0,5 — 0,6 | 0,72 | 0,82 | 0,84 | — 20 | 1800 | 0.15 — 0,20 | 0,5 — 0,6 | 0,74 | 0,84 | 0,86 | |
20-100 | 1800 | 0,15 — 0,20 | 0,5 — 0,6 | 0,79 | 0,86 | 0,86 | 100-300 | 1800 | 0,15 — 0,20 | 0,5 — 0,6 | 0,81 | 0,88 | 0,91 |
Коэффициент мощности по отраслям
Типичные неулучшенные коэффициенты мощности:
Преимущества коррекции коэффициента мощности
- Снижение счетов за электроэнергию — отсутствие штрафа за низкий коэффициент мощности со стороны энергокомпании
- Повышенная мощность системы — дополнительные нагрузки может быть добавлен без перегрузки системы
- улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
- улучшенные рабочие характеристики системы за счет увеличения напряжения — предотвращение чрезмерных падений напряжения
Коррекция коэффициента мощности с помощью конденсатора
Поправочный коэффициент конденсатора | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Коэффициент мощности до улучшения (cosΦ) | Коэффициент мощности после улучшения (cosΦ) | |||||||||||||||||||||||
1.0 | 0,99 | 0,98 | 0,97 | 0,96 | 0,95 | 0,94 | 0,93 | 0,92 | 0,91 | 0,90 | 0,90 | 0,90 | ||||||||||||
1,44 | 1,40 | 1,37 | 1,34 | 1,30 | 1,28 | 1,25 | ||||||||||||||||||
0,55 | 1,52 | 1.38 | 1,32 | 1,28 | 1,23 | 1,19 | 1,16 | 1,12 | 1,09 | 1,06 | 1,04 | |||||||||||||
0,60 | 1,3 | |||||||||||||||||||||||
0,60 | 1,0 1,01 | 0,97 | 0,94 | 0,91 | 0,88 | 0,85 | ||||||||||||||||||
0,65 | 1,17 | 1,03 | 0.97 | 0,92 | 0,88 | 0,84 | 0,81 | 0,77 | 0,74 | 0,71 | 0,69 | |||||||||||||
0,70 | 0,69 | |||||||||||||||||||||||
0,70 | 1,02 | 0,88 | 0,88 | 0,88 9068 0,66 | 0,62 | 0,59 | 0,56 | 0,54 | ||||||||||||||||
0,75 | 0,88 | 0,74 | 0,67 | 0.63 | 0,58 | 0,55 | 0,52 | 0,49 | 0,45 | 0,43 | 0,40 | |||||||||||||
0,80 | 0,75 | 0,61 | 0,49 | 0,54 | 0,61 | 0,54 | 0,54 | 0,61 | 0,54 9068 0,35 | 0,32 | 0,29 | 0,27 | ||||||||||||
0,85 | 0,62 | 0,48 | 0,42 | 0,37 | 0.33 | 0,29 | 0,26 | 0,22 | 0,19 | 0,16 | 0,14 | |||||||||||||
0,90 | 0,48 | 0,34 | 0,28 | 0,19 | 0,19 | 0,23 9068 0,06 | 0,02 | |||||||||||||||||
0,91 | 0,45 | 0,31 | 0,25 | 0,21 | 0,16 | 0,13 | 0.09 | 0,06 | 0,02 | |||||||||||||||
0,92 | 0,43 | 0,28 | 0,22 | 0,18 | 0,13 | 0,18 | 0,13 | 0,10 | 0,06 | 0,06 | 0,25 | 0,19 | 0,15 | 0,10 | 0,07 | 0,03 | ||||||||
0,94 | 0.36 | 0,22 | 0,16 | 0,11 | 0,07 | 0,04 | ||||||||||||||||||
0,95 | 0,33 | 0,18 | 0,33 | 0,18 | 0,128 | 0,96 | 0,29 | 0,15 | 0,09 | 0,04 | ||||||||||||||
0.97 | 0,25 | 0,11 | 0,05 | |||||||||||||||||||||
0,98 | 0,20 | 0,06 |
Пример — Повышение коэффициента мощности с помощью конденсатора
Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .
Для необходимого коэффициента мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора равен 0,58 .
Требуемая мощность KVAR может быть рассчитана как
C = (150 кВт) 0,58
= 87 KVAR
Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B
Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.
Мощность асинхронного двигателя (л.с.) | Номинальная скорость двигателя (об / мин) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3600 | 1800 | 1200 | ||||||||||||||||||
Мощность конденсатора Ред. Ток (%) | Номинал конденсатора (кВАр) | Снижение линейного тока (%) | Номинал конденсатора (кВАр) | Снижение линейного тока | ||||||||||||||||
3 | 1.5 | 14 | 1,5 | 23 | 2,5 | 28 | ||||||||||||||
5 | 2 | 14 | 2,5 | 22 | 3 | 26 | 2,5 | 3 | 20 | 4 | 21 | |||||||||
10 | 4 | 14 | 4 | 18 | 5 | 21 | 15682 | 15682 | 15682 | 15682 | 18 | 6 | 20 | |||||||
20 | 6 | 12 | 6 | 17 | 7.5 | 19 | ||||||||||||||
25 | 7,5 | 12 | 7,5 | 17 | 8 | 19 | ||||||||||||||
30 | 8 | 11 | 11 | 8 | 11 | |||||||||||||||
40 | 12 | 12 | 13 | 15 | 16 | 19 | ||||||||||||||
50 | 15 | 12 | 18 | 15682 | 18 | 15682 60 | 18 | 12 | 21 | 14 | 22.5 | 17 | ||||||||
75 | 20 | 12 | 23 | 14 | 25 | 15 | ||||||||||||||
100 | 22,5 | 11 14 | 11 | |||||||||||||||||
125 | 25 | 10 | 36 | 12 | 35 | 12 | ||||||||||||||
150 | 30 | 10 | 42 | 9068 200 | 35 | 10 | 50 | 11 | 50 | 10 | ||||||||||
250 | 40 | 11 | 60 | 10 | 62.5 | 10 | ||||||||||||||
300 | 45 | 11 | 68 | 10 | 75 | 12 | ||||||||||||||
350 | 50 | 12 | ||||||||||||||||||
400 | 75 | 10 | 80 | 8 | 100 | 12 | ||||||||||||||
450 | 80 | 8 | 90 | 8 500 | 100 | 8 | 120 | 9 | 150 | 12 |
Может ли двигатель 380 В работать от источника питания 440 В? — Мворганизация.org
Может ли двигатель 380 В работать от источника питания 440 В?
Во-первых, двигатель 380 В, 50 Гц будет вполне нормально работать на 440 В, 60 Гц — обычно поэтому они имеют такие двойные номиналы — поскольку импеданс более или менее линейно зависит от частоты 380 × 60 ÷ 50 = 456 В без проблем. Однако он будет работать на 20% быстрее (и развивать на 20% больше мощности).
Может ли двигатель 460 В работать от 380 В?
Трехфазный двигатель на 460 В, работающий на частоте 60 Гц, имеет такое же соотношение В / Гц, как двигатель на 380 В, работающий на частоте 50 Гц — примерно 7.6 В / Гц. Пока крутящий момент нагрузки не изменяется между двумя скоростями (60 Гц / 50 Гц), двигатель будет потреблять одинаковый ток на обеих скоростях, и двигатель не пострадает.
Можно ли запустить двигатель 380 В на 220 В?
Как указано выше, вы можете взять двигатель 380 В, 3-фазный, соединенный звездой, и запустить его как двигатель 220 В, соединенный трехфазным треугольником. Возвращаясь к основам, это ток, управляемый напряжением, который создает магнитный поток. В заключение, есть однофазные входы для трехфазных частотно-регулируемых приводов (VFD).
Что такое 3 фазы 220 В?
Если у вас есть 220 вольт и трехфазное питание, печь будет поставляться с трехпроводным блоком питания для трех горячих проводов, обеспечивающих трехфазное напряжение. Между каждым проводом под напряжением можно измерить 220 вольт.
Как преобразовать трехфазный двигатель в однофазный?
По сути, все, что вам нужно сделать, это подключить однофазное питание ко входу вашего частотно-регулируемого привода, а затем подключить трехфазное питание вашего двигателя к выходной секции привода.Вот и все!
Может ли двигатель 220 В работать от 240 В?
Запуск старого двигателя 220 В на 230 или 240 работает нормально. Если двигатель нужно было перемотать, магазин мог изменить обмотку на приложенное напряжение или перемотать, как было. Изменить обмотку с 220 на 240; Уменьшите размер провода на 9% или, если позволяет место, оставьте то же самое.
240 В и 220 В — одно и то же?
В Северной Америке термины 220 В, 230 В и 240 В относятся к одному и тому же уровню напряжения системы. При электрических нагрузках напряжение будет падать, поэтому обычно используются напряжения ниже 120 и 240, например 110, 115, 220 и 230.
Что произойдет, если вы запустите двигатель 220 В на 110 В?
Если вы подключите устройство 220 В к розетке 110 В, обычно оно прослужит немного дольше, прежде чем разрядится. Но: Механический привод переменного тока может не запуститься, или он может потреблять больше тока, чем он предназначен, и в конечном итоге сгореть. Изоляция обычно не является проблемой, если в конструкции нет серьезных недостатков.
Однофазный частотно-регулируемый приводс входом / выходом 220 В
Этот документ является общим руководством или учебным пособием по установке частотно-регулируемых приводов на однофазных источниках питания.Два обсуждаемых напряжения питания будут включать системы однопроводного заземления (SWER) 220 В (230 В, 240 В) и 480 В. Мощность однофазных частотно-регулируемых приводоввключает: 1 л.с., 2 л.с., 3 л.с. и 5 л.с., которые вы можете купить такие однофазные частотно-регулируемые приводы на ATO.com .
ЧРП (частотно-регулируемый привод) дает множество преимуществ, в том числе:
- Плавный запуск двигателя и уменьшение нагрузки, снижение механических нагрузок и уменьшение гидравлического удара с помощью насосов.
- Значительно уменьшите пусковой ток с 600-800% до <110-150% двигателей с номиналом FLC.
- Автоматизация и управление технологическим процессом с использованием встроенной электроники для обеспечения систем постоянного давления / расхода для орошения или других насосных приложений.
- Возможность контролировать скорость мотора.
- Экономия энергии: Существенная экономия энергии может быть достигнута при нагрузках с вентиляторами и насосами.
Комбинация мощности, двигателя и частотно-регулируемого привода
Требуемый частотно-регулируемый привод будет зависеть как от двигателя, так и от источника питания.Общее правило, о котором следует помнить, заключается в том, что частотно-регулируемый привод может преобразовывать однофазное питание в трехфазное, но он не может обеспечить более высокое выходное напряжение, чем то, которое вы вводите. Поэтому, если у вас есть только однофазный вход источника питания 220 В, вы не можете получить трехфазное напряжение 415 В. выход. Он будет обеспечивать только трехфазный выход 220 В. Если у вас есть источник питания 480 В, вы можете выводить трехфазный 415 В — более низкое напряжение.
В основном у вас могут быть 4 ситуации:
Блок питания | Двигатель | Комментарии |
220 В однофазный | 220 В треугольник / 415 В звезда | Частотно-регулируемый привод 220В; подключить мотор для 220V Delta |
220 В однофазный | 415V Delta | Для двигателя, рассчитанного только на 415 В, потребуется повышающий трансформатор для увеличения входного напряжения до> 415 В и частотно-регулируемый привод на 415 В с дросселем шины постоянного тока. |
480 В, однофазный, однопроводной, заземление, возврат | 415V Delta | Частотно-регулируемый привод 480 В с дросселем звена постоянного тока; подключить двигатель для 415V Delta |
480 В, однофазный, однопроводной, заземление, возврат | 220 В треугольник / 415 В звезда | Частотно-регулируемый привод 480 В с дросселем звена постоянного тока; подключить двигатель для 415V Star |
Частотно-регулируемый привод
Стандартный частотно-регулируемый привод разработан для работы как от однофазного, так и от трехфазного источника питания, что делает его идеальным для одножильных заземляющих обратных линий или однофазных систем питания.
- Стандартный частотно-регулируемый привод может работать от однофазного источника питания 480 В переменного тока (однопроводной заземляющий возврат) и обеспечивать управляемый трехфазный выход 415 В на двигатель.
- Стандартный частотно-регулируемый привод (или аналог) может работать от однофазного источника питания 220 В переменного тока и обеспечивать управляемый трехфазный выход 220 В на двигатель.
Это особенно важно, когда двигатель 415 В звезда / 220 В треугольник используется в однофазной системе питания 220 В.
Например. 1,5 кВт; 3,4 А 415 В, звезда
Соединение звездой:
IL = IP
VL = 3 x VP
При соединении треугольником:
VL = VP
IL = 3 x IP
Следовательно, линейный ток или ток полной нагрузки двигателя при однофазном подключении по схеме 220 В, треугольник, равен 5.9Ампер. Требуется частотно-регулируемый привод с непрерывной выходной мощностью 5,9 А.
Проблемы использования частотно-регулируемых приводов в однофазных источниках питания
Эксплуатация частотно-регулируемого привода на однофазной линии питания проста, но вам нужно знать о некоторых проблемах и способах их решения.
1. Соответствие требованиям по электромагнитной совместимости:
Все частотно-регулируемые приводы удовлетворяют требованиям определенных стандартов. Для достижения этих стандартов необходимо установить оборудование в соответствии с инструкциями производителя.Для этого могут потребоваться экранированные кабели частотно-регулируемого привода от частотно-регулируемого привода к двигателю. Для установок, чувствительных к радиопомехам, могут потребоваться дополнительные меры. Доступны дополнительные меры и альтернативы экранированным кабелям частотно-регулируемого привода, например, высокопроизводительный выходной фильтр.
2. Гармоники
Все частотно-регулируемые приводы генерируют в сети те или иные гармоники, которые значительно увеличиваются при работе от однофазного источника питания и, в частности, при однопроводном заземлении или в сельской местности, где нагрузка на меньшие источники питания может быть относительно высокой.Дроссель шины постоянного тока является обязательным для преобразователей частоты, работающих от источника питания с однопроводным заземлением. Когда речь идет о гармониках, необходимо принимать во внимание размер трансформатора и нагрузку частотно-регулируемого привода / двигателя на источник питания. Влияние чрезмерных гармоник может вызвать перегрев электрических компонентов, таких как трансформаторы и кабели. Для двигателей меньшего размера, работающих от однофазного источника питания 220 В, гармоники несколько ниже, и дроссель шины постоянного тока может не потребоваться.
3. Температурный режим
Поскольку однопроводные системы обратного заземления используются только в сельской местности, где могут наблюдаться более высокие температуры окружающей среды, необходимо учитывать температуру окружающей среды. Некоторые производители предлагают частотно-регулируемые приводы с постоянной температурой окружающей среды 50 ° C. Также доступен закрытый частотно-регулируемый привод со степенью защиты IP66, поэтому оборудование можно монтировать прямо на стене без дополнительного ограждения. Это способствует лучшему охлаждению и более низким внутренним рабочим температурам.
4. Дроссель шины постоянного тока
Дроссель шины постоянного тока обязателен для работы от источника питания с однопроводным заземлением 480 В и некоторых однофазных установок на 220 В в зависимости от размера двигателя.Дроссель шины постоянного тока дает множество преимуществ, в том числе:
- Снижение гармоник линии электропередачи
- Улучшенный коэффициент мощности
- Переходный фильтр
- Снижение пиковых пусковых токов
Поскольку частотно-регулируемый привод действует как инвертор и вырабатывает трехфазный источник питания из однофазного источника, ожидается, что ток на входе будет выше, чем на выходе.Поэтому важно определить, какой уровень тока питания требуется для предполагаемого двигателя. Ориентировочно допустимое среднеквадратичное значение переменного линейного тока в 1,84 раза превышает фазный ток двигателя.
6. Рейтинг ЧРП
Когда частотно-регулируемый привод работает от однофазного источника питания с однопроводным заземлением, стандартный частотно-регулируемый привод должен иметь соответствующие характеристики. Другие соображения при выборе наиболее подходящего частотно-регулируемого привода — это температура окружающей среды и тип нагрузки. Производители ваших частотно-регулируемых приводов могут помочь с выбором правильного частотно-регулируемого привода для вашего приложения.ЧРП следует выбирать в зависимости от тока полной нагрузки при подключении двигателя.
7. Пригодность двигателя
Двигатель должен подходить для работы с частотно-регулируемым приводом и соответствовать определенным стандартам.
Однофазный ЧРП
ЧРП работает от однофазной линии питания, подключенной к L1 и L2.
1. Однопроводное заземление на 480 В: преобразователь частоты принимает однофазное питание переменного тока 480 В и преобразует его в трехфазный выход, подходящий для стандартного трехфазного двигателя 415 В.
2. Однофазное питание 220 В: преобразователь частоты принимает однофазное питание переменного тока 220 В и преобразует его в трехфазный выход, подходящий для стандартного трехфазного двигателя 220 В (см. Однофазный в трехфазный частотно-регулируемый привод).
Больше преимуществ от VFD
На самом деле VFD делает больше, чем просто преобразует однофазное питание в трехфазное. Частотно-регулируемый привод управляет формой выходного сигнала, позволяя регулировать скорость, изменяя частоту двигателя от 0 до 200 Гц.Нормальная частота сети составляет 50 Гц, поэтому частотно-регулируемый привод позволяет при желании увеличить скорость двигателя. С полным контролем скорости двигателя вы можете напрямую управлять нагрузкой, обеспечивая ручное или автоматическое управление процессом, например давлением или расходом воды. ЧРП также полностью контролирует скорость разгона и замедления двигателя, обеспечивая плавный управляемый плавный пуск и плавный останов.
ЧРП имеет прочный корпус IP66 и температуру 50 ° C.
- Допускает непосредственный монтаж рядом с двигателем (требуется защита от солнечных лучей)
- Защита от попадания пыли и влаги
- Более эффективное охлаждение и снижение внутренней рабочей температуры
- Увеличенный срок службы электронных компонентов
- Нет воздушных фильтров, которые нужно чистить, что устраняет неприятные ощущения при перегреве из-за плохой вентиляции.
- Прочный металлический корпус
В ЧРП встроена технология для обеспечения автоматизированных систем управления и взаимодействия с внешними системами управления.
В том числе:
- Цифровые и аналоговые входы / выходы для дистанционного управления и взаимодействия с системами управления.
- ПИД-регулирование для автоматизированного управления технологическим процессом, например, системы постоянного давления.
- Режим гибернации для автоматического включения и выключения вывода по запросу.
Установка частотно-регулируемого привода
Как показано на рисунке, установка частотно-регулируемого привода проста.
Регулировка скорости может осуществляться вручную с помощью предоставленных средств управления или удаленного потенциометра скорости. Система контроля давления может быть легко реализована с использованием внутреннего ПИД-регулирования частотно-регулируемого привода и внешнего датчика давления.
Подробные сведения об установке, в частности с использованием экранированных кабелей двигателя, см. В руководстве по эксплуатации.
Выбор частотно-регулируемого привода и требования к питанию
За помощью в выборе подходящего частотно-регулируемого привода обращайтесь к своим поставщикам.
Факторы, которые необходимо учитывать:
- Паспортная табличка двигателя: ток и напряжение полной нагрузки (FLC).
- Тип нагрузки.
- Окружение:
- Степень защиты корпуса IP.
- Температура окружающей среды.
- Защита от солнечного света и других источников тепла.
- Фактическое напряжение питания.
- Соответствующее снижение номинальных характеристик для однофазной работы.
- Имеется адекватная производственная мощность.
- Преобразователь частоты Требуются дополнительные опции.
- Особые требования от производителя двигателя или насоса.
Схема подключения трехфазного электродвигателя
Оставьте свои комментарии?
Трехфазная проводка для чайников — Знакомство с двигателем
9 часов назад Как подключить Подключить к трехфазному двигателю . Электродвигатель с тремя фазами — должен быть подключен в соответствии со схемой на лицевой панели. Первый шаг — выяснить напряжение ваших фаз.В Соединенных Штатах для низковольтных двигателей (ниже 600 В) можно ожидать либо 230 В, либо 460 В. При этом существует широкий спектр различных двигателей и то, что у вас есть под рукой
Веб-сайт: Elechut.com
Категория : Используйте для в предложении
Как подключить 3-фазный асинхронный двигатель? YouTube
3 часа назад В этом видео объясняется, как подключить три — фаз индукционный двигатель к внешнему источнику электроэнергии.Он также показывает разницу между Delta и Star connect
Автор: Engineering
Просмотры: 175K
Веб-сайт: Youtube.com
Категория : Использование в предложении
ThreePhase Электрические схемы
4 часа назад Конденсатор Двигатель Однофазное подключение Схемы ВСЕГДА ИСПОЛЬЗУЙТЕ ЭЛЕКТРОПРОВОДКУ СХЕМА , ПОСТАВЛЯЕМАЯ НА ДВИГАТЕЛЕ ТАБЛИЧКА . W2 CJ2 UI VI WI W2 CJ2 UI VI WI A cow НАПРЯЖЕНИЕ Y ВЫСОКОЕ НАПРЯЖЕНИЕ z T4 Til T12 10 Til T4 T5 ALI L2 T12 TI-BLU T2-WHT T3.ORG T4-YEL T5-BLK T6-GRY T7-PNK T8-RED T9-BRK RED TIO-CURRY TII-GRN T12-VLT z T4 Til T12
Размер файла: 497KB
Количество страниц: 3
Веб-сайт: Catalog.wegelectric.com
Категория : Используйте слова в предложении
Концентратор электроники с трехфазным подключением
1 час назад Трехфазный 4 Наиболее часто используется провод соединение, которое состоит из трехфазных, проводников и одного нейтрального проводника.В этой трехфазной проводке , освещение, малые бытовые нагрузки и розетки часто подключаются между фазой и нейтралью, в то время как более крупное оборудование, такое как кондиционеры и электрические обогреватели , подключаются между двумя фазами (т. Е. Фаза с по ). фаза ).
Расчетное время чтения: 7 минут
Веб-сайт: Electronicshub.org
Категория : Используйте слова в предложении
Как подключить трехфазный мотор-тройник
9 часов назад Двигатели — фазы более эффективны, чем однофазные двигатели , и обычно используются в приложениях, требующих более 7.5 лошадиных сил. Хотя национальный кодекс Electric не определяет конкретные цвета проводников для трех фаз — , обычно используются черный, красный и синий провода для обозначения линий L1, L2 и L3 соответственно.
Веб-сайт: Hunker.com
Категория : Используйте в предложении
Схемы подключения питания и управления трехфазным двигателем
7 часов назад Multi Speed 3 — Фазный двигатель , 3 скорости, 1 направление — схемы питания и управления; Однолинейная схема цепи простого контактора. Трехфазная электрическая проводка Установка в домашних условиях — IEC & NEC; Как подключить портативный генератор к домашней системе электроснабжения ( три метода ) Простая принципиальная схема контактора с трехфазным двигателем . Ресурсы:
Веб-сайт: Electricaltechnology.org
Категория : Используйте слова в предложении
Схема подключения трехфазного двигателя 6 Провод — Сборная проводка
7 часов назад Схема подключения трехфазного двигателя Схема 6 Провод от i1.wp.com. Распечатайте схему подключения и используйте маркеры, чтобы отслеживать последовательность действий. Когда вы используете свой палец или придерживаетесь схемы вместе с глазами, легко ошибиться при отслеживании схемы. 1 трюк, что I 2 напечатать аналогичное изображение , отключив изображение дважды.
Веб-сайт: Headcontrolsystem.com
Категория : Используйте слова в предложении
Как подключить 3-фазный двигатель к системе 240 В (ШАГ…
3 часа назад В этом видео показано, как подключить к 3-фазному двигателю 9 к системе 3 фазы 240 Вольт.Следите за моим техническим советом до конца. Если вы выступаете на месте, обязательно
Веб-сайт: Youtube.com
Категория : Используйте в предложении
Как подключить трехфазный двигатель Baldor: 13 шагов (с…
1 час назад На 12--проводном двигателе , подключенном к высокому напряжению (т. Е. 480 В), 10T, 11T и 12T должны быть соединены вместе, но не подключены ни к чему другому. Остальные 9 проводов будут подключен, как в двигателе с проводами 9- (обратите внимание, что в двигателе с проводами 9- , эквиваленты T10, T11 и T12 соединены внутри друг с другом).L1 — T1, L2 — T2, L3 — T3, T4 — T7, T5 — T8 и T6
Рейтинг : 69% (61)Расчетное время чтения: 5 минут
Веб-сайт: Wikihow.com
Категория : Используйте в предложении
Учебное пособие по подключению 3-фазного двигателя Электромонтажник
3 часа назад Добро пожаловать на наш канал YouTube Channel Oil and Gas Information. Здесь Saqib Khan.EEE Tutorial: 13 Phase Motor Control Wiring Tutorial in Hindi / Urdu: This Tutorial is
Website: Youtube.com
Категория : Используйте слова в предложении
Установка трехфазной электропроводки в доме NEC и IEC
9 часов назад В трехфазной сети , двигатели и большие электрические нагреватели могут быть напрямую подключены к трем фазам (нейтраль не требуется во всех случаях), в то время как в одиночной фазе цепи нагрузки (свет, вентилятор и т. д.) могут быть подключены между фазой и нейтралью с помощью соответствующих защитных устройств. e.грамм. заземление провод . В США нагрузка 240V Single phase может быть подключена к двум фазам без нейтрального провода .
Расчетное время чтения: 7 минут
Веб-сайт: Electricaltechnology.org
Категория : Использование в предложении
СХЕМА ЭЛЕКТРОПРОВОДКИ СТАНДАРТНЫХ ДВИГАТЕЛЕЙ
6 часов назад Для всех остальных ОДНОФАЗНЫХ схем подключения обратитесь к данным производителя на двигатель .Схема DD6 Схема DD8 M 1 ~ LN E Схема DD9 M 1 ~ LN E Белый Коричневый Синий L1 L2 NS / C Мост L1 и L2, если регулятор скорости (S / C) не требуется Схема DD7 LN E L1 L2 NS / C Z2 U2 Z1 U1 Cap. Термоконтакты (TB)
Размер файла: 245KB
Количество страниц: 4
Веб-сайт: Fantech.com.au
Категория : Используйте слова в предложении
3 Схемы электрических соединений двигателя Домашняя электрическая проводка
9 часов назад Электропроводка трехфазного двигателя Схемы Электрическая часть Информация PICS.Просматривайте этот и другие пины на доске Non-Stop Engineering пользователя DIY IDEAS COLLECTION, SCHOOL, HOME, OFFICES. Электрическая схема Принципиальная схема. Электропроводка Схема. Электрика Работа. Электрооборудование Проекты. Электрооборудование Установка. Электронные схемы. Электроинженерия.
Расчетное время чтения: 9 минут
Веб-сайт: Pinterest.com
Категория : Используйте слова в предложении
Базовая проводка для управления двигателем, электрические и промышленные
Только сейчас 3 — Фазовый двигатель A1 A2 95 Сброс L1 L2 L3 Общее управление Отдельное управление 1/ 3 /5 / T1 T2 T3 T1 T2 T3 96 97 98 3 2 µC ”Устройства дистанционного управления 2- Провод Управление 3 — Провод Control Start Stop 3 2 1 1 3 Не для использования с реле автоматического сброса OL.2/4/6 / M 1 OL 3 — Фазовый двигатель A1 A2 Удалите провод «C», если он входит в комплект поставки. Подключите отдельные линии управления к номеру
Веб-сайт: Eaton.com
Категория : Используйте для в предложении
Схема подключения трехфазного двигателя 12 выводов Пример подключения
2 часа назад Схема подключения трехфазного двигателя Схема 12 выводов. СКАЧАТЬ. Электропроводка Детали схем: Название: Электропроводка трехфазного двигателя Схема 12 выводов — Название motcon10 Виды Размер 24 0 KB.Тип файла: JPG. Источник: форумы.mikeholt.com. Размер: 79,50 КБ. Размер: 350 х 313. СКАЧАТЬ.
Расчетное время чтения: 3 минуты
Веб-сайт: Faceitsalon.com
Категория : Используйте слова в предложении
Как преобразовать трехфазный двигатель в однофазный
9 часов назад Варианты источников питания для трехфазного двигателя Электрический Вопрос: У меня есть немецкий деревообрабатывающий станок, который питается от трехфазного двигателя 380 В, мощностью 3 кВт, 50 Гц 6. 3 Ампер. Я наводил справки о том, как запитать этот двигатель от однофазного источника питания 240 В, , и я был бы рад любым советам по вариантам, которые, как мне кажется, у меня есть.
Веб-сайт: Ask-the-electrician.com
Категория : Использовать в предложении
3 кВт
3-фазная 6-контактная электрическая схема Электросхема 3-фазная 6-фазная Схема подключения 3-х фазной 6-й фазы назад
6-отводный Электропроводка двигателя Схема — 3-фазный 6-проводной Электропроводка схема, 480 В 3-фазный 6-проводной Электропроводка Схема , 6-проводной 3-фазный 2-скоростной Электропроводка двигателя схема, каждые электрическая конструкция состоит из различных частей.Каждую часть следует размещать и соединять с другими частями определенным образом. В противном случае аранжировка не будет работать должным образом.Веб-сайт: Wirings-diagram.com
Категория : Используйте слова в предложении
Данные двигателя Трехфазные двигатели переменного тока Калькулятор размера провода
Только сейчас Для цепей с несколькими двигателями , номинальная допустимая нагрузка провода должен составлять не менее 125% от тока полной нагрузки самого большого двигателя , плюс сумма токов полной нагрузки для остальных двигателей .Например, если в цепи три 15-амперных двигателя , номинальная допустимая нагрузка провода , питающего цепь, должна превышать 15 + 15 + (15 * 1,25
Веб-сайт: Wiresizecalculator.net
Категория : Используйте слова в предложении
Электромонтаж двигателей (высокое или низкое напряжение?) Обсуждение электрика
1 час назад «Двигатель имеет паспортную табличку , схема подключения , как показано ниже.(Диаграмма — звезда с 9 отведениями). Выберите правильное подключение проводов, где они подключены к имеющейся ответвительной цепи 208, 3 — , «. Итак, это 120/208 3 — фаза 4 провод » звезда «правильно? И чтобы получить 208 Я просто подключил последовательно, правильно? Цените вашу помощь, я думаю, что теперь понимаю, хотя
Веб-сайт: Electriciantalk.com
Категория : использовать или в предложении
Подключение 3 фазный двигатель с однофазным питанием YouTube
3 часа назад Если у вас в доме только однофазный двигатель , вы все равно можете подключить трехфазный двигатель с помощью этого руководства.
Веб-сайт: Youtube.com
Категория : Используйте a в предложении
Калькулятор размера провода двигателя
9 часов назад Провод двигателя Калькулятор размеров. Калькулятор размера провода двигателя рассчитает правильный размер провода для данного двигателя мощностью л.с. и напряжения. Это относится к трехфазным — электродвигателям переменного тока . Этот калькулятор также даст вам двигатель ампер и рекомендуемый размер выключателя, размер стартера, размер нагревателя и размер кабелепровода.
Веб-сайт: Wiresizecalculator.net
Категория : Используйте слова в предложении
Схема подключения электродвигателя 3-фазная база данных Электропроводка
1 час назад Электропроводка электродвигателя Схема
3 фазы . Распечатайте схему подключения и используйте маркеры, чтобы проследить цепь. Когда вы касаетесь пальцем или даже проводите глазами по контуру, легко ошибиться.1 трюк, который мы 2 для того, чтобы напечатать аналогичную схему подключения дважды. На одном я прослежу текущий тираж, какРасчетное время чтения: 4 минуты
Веб-сайт: Faceitsalon.com
Категория : Используйте слова в предложении
3 Wire Single Подключение фазного двигателя / проводка?
7 часов назад Я видел 3-проводные однофазные двигатели на устройствах смены инструмента. Обычно отведения 3 означают, что они двусторонние.Один провод обычный. Вы подаете питание на один из других проводов в зависимости от того, в каком направлении вы хотите, чтобы он шел. Некоторые также могут выполнять торможение, используя обе обмотки одновременно. 05.02.2017, 15:26 # 3 . cyanidekid.
Веб-сайт: Practicalmachinist.com
Категория : Используйте слова в предложении
Электрическая схема Схема подключения трехфазного двигателя
1 час назад 3-фазный двигатель Control Электромонтажные работы Facebook .Электроника arduino rasbery pi ex 3 фазы звезда-треугольник схема подключения двигателя схема трехпроводной схемы управления для манекенов реверсивный переключатель 230 в madcomics электрический датчик нагрузки на 1 индукционный электродвигатель асинхронное ручное переключение погружной насос микроконтроллер самый большой практичный механизм авто с одиночным и как…
Расчетное время чтения: 2 минуты
Веб-сайт: Схема подключения. 2 битбур.com
Категория : Используйте слова в предложении
СХЕМА ЭЛЕКТРОПРОВОДКИ СТАНДАРТНЫЕ ДВИГАТЕЛИ
2 часа назад ДВУХСКОРОСТНЫЕ ДВИГАТЕЛИ Для всех остальных ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ данные на схемах производителей см. на схемах производителей . мотор . Схема DD6 Схема DD7 M 1 ~ LN E Схема DD8 LN E L1 L2 L3 S / C Z1 U2 Z2 U1 Кол. Термоконтакты (TB) белый M 1 ~ Z2 — желтый Z1 — синий U2 — черный U1 — красный мост L1 и L2, если регулятор скорости (S / C) не требуется M 1 ~ LN E Белый
Размер файла: 179 КБ
Количество страниц: 4
Веб-сайт: Fantech.com.au
Категория : Используйте слова в предложении
Как проверить обмотки трехфазного двигателя с помощью омметра
7 часов назад Набор клемм W2U2V2 является звездой трехфазного двигателя в то время как U1VIW1 — это сторона треугольника двигателя , подключенного к напряжению питания. Трехфазный двигатель представляет собой прочное оборудование, но, как и все, что создано человеком, наступает время, когда это прекрасное оборудование выходит из строя либо из-за старости, неправильного применения, неправильной эксплуатации, либо
Веб-сайт: Electricalengineeringtoolbox.com
Категория : Используйте в предложении
Основное руководство по проектированию электродвигателяPDF Обмотки
3 часа назад Легко предсказать производительность двигателя для трехфазного двигателя — обмоток, что заведомо сложно для однофазных — фаз исполнения. Ограниченная доступность роторов, изготовленных из меди. По-прежнему популярный выбор для новых 400 Гц военных и коммерческих аэрокосмических приложений. Низкие производственные затраты…
Расчетное время чтения: 7 минут
Веб-сайт: Обмотки.com
Категория : Используйте слова в предложении
Схема подключения трехфазного двигателя Baldor Схема подключения
5 часов назад Схема Схема подключения трехфазного двигателя Baldor Схемы Teri Villaarvedi It. Схема 230 460 проводка двигателя baldor 5hp single phase how to wire a 3 13 ajax 5 hp electric 7 1 2 230v madcomics крупнейшие схемы форума по производственным технологиям для двигателей 115 franklin установка руководство по техническому обслуживанию часть ec m изменение напряжения mike cat нет практического машиниста as93737 подключение тормоза abb…
Расчетное время чтения: 3 минуты
Веб-сайт: Схема подключения.2bitboer.com
Категория : Используйте слова в предложении
European and American Motor Connections Holland Industrial
4 часа назад EUROPEAN MOTOR CONNECTIONS Volume 2 Issue No. 2 May, 2003 Holland Industrial, 518 West Монтгомери-стрит, Хендерсон, Северная Каролина, 27536 Тел. 1-800-232-7541, факс 1-252-492-2444, электронная почта: sales @ holland-Ниже показаны схемы подключения к европейским клеммным колодкам двигателя ДВОЙНОЕ НАПРЯЖЕНИЕ — ОДНА СКОРОСТЬ -6 ДВИГАТЕЛЬ ВЫВОДЫ — 6 КЛЕММ
Веб-сайт: Hollandindustrial.com
Категория : Использование и в предложении
МАРКИРОВКА КЛЕММОВ И СХЕМЫ ВНУТРЕННЕЙ ПРОВОДКИ…
2 часа назад МАРКИРОВКА КЛЕММ И ВНУТРЕННЯЯ ПРОВОДКА ПРОВОДКА СХЕМА С ОДНИМ СОЕДИНЕНИЕМ СООТВЕТСТВИЕ См. Рис. 2-11, на котором вектор 1 опережает вектор 2 на 120 градусов, а последовательность фазы равна 1, 2, 3 . (См. MG 1-2.21.) * MG 1-2.24 Направление вращения
Веб-сайт: Rses.org
Категория : Используйте слова в предложении
Схема электрических соединений трехфазного асинхронного двигателя Teco
9 часов назад Привод Teco и двигатель w machmotion ol x0154 модель 1 Westinghouse Company Трехфазная проводка для чайников, понимающих соединения electric hut s0104 nv0152c схема полная версия hd качество sgdiagram conservatoriobuzzolla запускается с диаграмм manualslb artsconnection инструкции по обслуживанию установки три индукционных двигателя ep15025 n3 руководство по эксплуатации2bitboer.com
Категория : Используйте слова в предложении
Разница между однофазным и трехфазным
Только сейчас разница между однофазным и трехфазным и трехфазным электрическим подключением . Разница между трехфазным и однофазным заключается в основном в напряжении, которое принимается через каждый тип провода . Не существует такой вещи, как двухфазное питание , что для некоторых является неожиданностью.Одно- фаза мощность обычно называется
Веб-сайт: Sciencing.com
Категория : Используйте слова в предложении
Электрическая схема электродвигателя Baldor Электрическая схема
3 часа назад Схема подключения Электродвигатель Однофазный Электрический Power Baldor Electric Company Трехфазный электрический Угол торможения мощности Белый текст Png Pngwing from w7.pngwing.com Они предлагают водителям множество преимуществ по сравнению с традиционными двигателями, от экономии денег до…
Веб-сайт: Drawingsalina.blogspot.com
Категория : Используйте слова в предложении
Трехфазная электроэнергия Википедия
6 часов назад Трехфазное электрическое питание (сокращенно 3Φ) — это распространенный тип переменного тока, используемый в производстве, передаче и распределении электроэнергии. Это тип многофазной системы, в которой используются 3 провода (или 4 провода, включая дополнительный нейтральный обратный провод ), и это наиболее распространенный метод, используемый в электрических сетях по всему миру для передачи энергии.. Три — фазы, электрические. Мощность была разработана в 1880-х годах компанией
Веб-сайт: En.wikipedia.org
Категория : Используйте мощность в одном предложении
Учебное пособие по подключению однофазного электродвигателя: Baldor , WEG
3 часа назад В этом видео Джейми показывает вам, как читать схему подключения и основы подключения электрического компрессора , двигателя . Эти советы можно использовать на большинстве веб-сайтов
: Youtube.com
Категория : Используйте слова в предложении
Электромагнитный тормоз Схема подключения двигателя с трехфазным тормозом
4 часа назад Электромагнитный тормоз 3 фазы Тормоз Подключение двигателя Схема — Управление рекуперативным торможением энергии в формате PDF Электрические транспортные средства с использованием трехфазных бесщеточных двигателей постоянного тока :. у меня нет три . Ознакомьтесь с этим руководством по проблемам с электропроводкой духовки и по поиску тех схем электропроводки духовки , которые вам нужны.Затяните, скручивая провод плоскогубцами.
Веб-сайт: Shizugallery01.blogspot.com
Категория : Используйте слова в предложении
Baldor Motor Basics: силовые системы и напряжение
3 часа назад Baldor Motor Electric Basics: and Power Systems и Electric Motors and Voltage Edward Cowern, PE часто встречаются спецификации, указывающие, что 3 фазные двигатели — намотаны для 220/380.2203 Фаза 3 Провод Дельта-соединение 440 3-фазное 3-х проводное соединение 440 440 Дельта-соединение (B)
Размер файла: 196 КБ
Количество страниц: 4
Веб-сайт: Powertransmission.com
Категория : Использование и в предложении
Подключение электродвигателя с конденсатором: внутренняя проводка
2 часа назад Эти фотографии электродвигателя перенесут вас внутрь типичного игрушечного двигателя .Может ли электромотор 3 /4 л.с. (4 л.с.) (от старого открывателя ворот гаража) иметь достаточно мощности, чтобы поместиться в байк и получить от него не менее 10 миль в час. Прежде чем приступить к работе над проектами по электрике , вы должны иметь базовое представление о проводке и о том, как все работает.
Веб-сайт: Takamichicollection04.blogspot.com
Категория : Используйте слова в предложении
Weg 12 Lead Motor Wiring Diagram schematron.org
Just Now V Только 60 Гц. 7+ 8+ 3 +5. 1 + 6. 2 + 4. 9 + 11. Три — Схема подключения фаз Схемы. ВСЕГДА ИСПОЛЬЗУЙТЕ ЭЛЕКТРОПРОВОДКУ СХЕМА , ПОСТАВЛЯЕМАЯ НА ДВИГАТЕЛЕ С ИСПОЛЬЗОВАНИЕМ ТАБЛИЧКИ . — цветные провода применимы только к НОВОМУ. Схема подключения трехфазного двигателя Weg Схема с маркировкой weg Схема подключения двигателя Схема фазный двигатель простой 3 12 проводов weg Схема подключения двигателя красивая 6 3 .
Веб-сайт: Schematron.org
Категория : Используйте слова в предложении
Сборник электрических схем стартера трехфазного электродвигателя
Только сейчас Размер: 37,74 КБ. Размер: 250 х 325. СКАЧАТЬ. Электромонтажные схемы Подробные сведения: Название: Трехфазный электродвигатель Стартер Схема — Объясните работу этой цепи с момента нажатия переключателя «Пуск» до момента, когда переключатель «Стоп» находится в положении…
Приблизительное время чтения: 7 минут
Веб-сайт: Faceitsalon.com
Категория : Используйте слова в предложении
Электромотор A 220 Электродвигатель Leeson 50 Гц 1 2 л.с. 3
3 часа назад Электромотор A 220 Электродвигатель — Leeson 50 Гц Двигатель 1 2 л.с. 3 фазы Паспортная табличка об / мин 1425 Напряжение 220380 440 В переменного тока 56c Рама Cw Ccw 4guv6 114891 00 Grainger /. Потолочные светильники для расшифровки аудиозаписей бывают разных форм, и есть много разных способов…
Веб-сайт: Img-chapin.blogspot.com
Категория : Используйте слова в предложении
Электросхема Книга Daltco Electric
8 часов назад Таблица 11 Номинальные характеристики для 120/240 В, 3 — Провод , одно- фазы Dwelling Services101 Таблица 12 AWG и метрическая система Wire Данные 102 Таблица 13 Электрические формулы для амперов, лошадиных сил, киловатт и кВА 103 Таблица 14 Номинальные характеристики для 3 — Фазы , односкоростные магнитные контроллеры полного напряжения для Работа без подключения к сети и без толчков 103 Таблица 15 Номинальные характеристики для 3 — Фаза , односкоростной,
Размер файла: 2 МБ
Количество страниц: 109
Веб-сайт: Daltco.com
Категория : Используйте слова в предложении
ПОГРУЖНЫЕ ДВИГАТЕЛИ Franklin Electric
8 часов назад Таблица 4 ссылается на двигатель с номинальной мощностью лошадиных сил, однофазный и три — фазы требуется общая эффективная кВА и наименьший трансформатор, необходимый для открытого или закрытого трансформатора. Мощность трансформатора — однофазный или Три – фазы ПРИМЕЧАНИЕ. Показаны стандартные номинальные значения кВА.Если опыт и практика энергетической компании позволяют нагрузку трансформатора выше
Веб-сайт: Franklinwater.com
Категория : Используйте слова в предложении
Схема подключения трехфазного реверсивного барабанного переключателя
Только сейчас Реле 5 рупий Органы управления 2 л.с. 3 Электродвигатель Сохранено положение переключателя барабана заднего хода. Схема 3-фазный двигатель Реверсивный переключатель Электропроводка Бесплатная картинка Полная версия Hd Quality Outletdiagram Sitrend It.1 5 л.с. 2 Электродвигатель Реверсивный барабанный переключатель Одиночный Фаза Только положение. Крупнейший форум по производственным технологиям в Интернете для практиков-машинистов.
Расчетное время чтения: 3 минуты
Веб-сайт: Wiringdiagram.2bitboer.com
Категория : Используйте слова в предложении
Схемы однофазных электродвигателей
9 часов назад Электродвигатель — это однофазный асинхронный двигатель , снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки.Используется несколько различных методов строительства, но основной принцип тот же.
Веб-сайт: Mrelectrician.tv
Категория : Используйте слова в предложении
Высокое напряжение против низкого напряжения 3 фазы Pmac / Marathon 1/2 hp
6 часов назад Так же, как и более высокое напряжение может помочь снизить рабочие температуры двигателя , низкое напряжение является основной причиной перегрева двигателя и преждевременного выхода из строя.Напряжение якоря и электрический крутящий момент также увеличиваются с увеличением скорости. Номинальный двигатель напряжение настолько высокое…
Веб-сайт: Bowmansafectsely.blogspot.com
Категория : Используйте слова в предложении
Асинхронные электродвигатели — соединение «звезда» и «треугольник»
Электродвигатель трехфазный — электрическая моторная машина, предназначенная для работы в трехфазных сетях переменного тока. Такой двигатель состоит из статора и ротора.Статор имеет три обмотки, смещенные на сто двадцать градусов. При появлении в цепи обмоток трехфазного напряжения на полюсах формируются магнитные потоки, вращается ротор. Электродвигатели бывают синхронными и асинхронными. Трехфазные асинхронные двигатели широко используются в промышленности и в быту. Такие двигатели бывают односкоростными, при этом обмотки двигателя соединены по схеме «звезда» или «треугольник», и многоскоростные. Последние блоки переключаемые, при этом происходит переход с одной схемы подключения на другую.
Электродвигатели трехфазные делятся по схемам обмоточных соединений. Возможны две схемы подключения — «звезда» и «треугольник». Соединение обмоток двигателя «звездой» — это соединение концов обмоток двигателя в одну точку (нулевой узел): получается дополнительный выход — ноль. Свободные концы подключаются к фазам сети электрического тока 380 В. Внешне это соединение напоминает трехконечную звезду. На фото представлена следующая схема: подключение по схеме «звезда» и «треугольник». Соединение обмоток двигателя по типу «Треугольник» представляет собой последовательное соединение обмоток: конец первой соединяется с началом второй обмотки, конец второй — с началом третьей, а конец второй — с началом третьей. конец третьего с началом первого. На узлы соединения обмоток подается трехфазное напряжение. При таком соединении обмоток нулевой выход отсутствует. Внешне он напоминает треугольник.
Связь между «звездой» и «треугольником» одинакова, они не сильно отличаются.Для подключения обмоток по типу «звезда» (при работе двигателя в номинальном режиме) линейное напряжение должно быть больше, чем при подключении по типу «треугольник». Поэтому в характеристиках трехфазного двигателя номинальное напряжение указывается следующим образом: 220/380 В или 127/220 В. При необходимости подключения двигателя к сети 380 В с номинальным напряжением 220 / 380 В, обмотки необходимо соединить звездой, а номинальное напряжение двигателя составит 380/660 В (по типу «треугольник»).
Следует отметить, что часто используется комбинированное соединение «звезда» и «треугольник». Это сделано для плавного пуска электродвигателя. При запуске используется соединение звездой, а затем специальное реле переключается на «треугольник», тем самым снижая пусковой ток. Такие схемы рекомендуется использовать для пуска электродвигателей большой мощности, требующих большого пускового тока. Важно помнить, что пусковой ток в семь раз превышает номинальный.
Возможны и другие комбинации при подключении электродвигателей, например, соединение «звезда» и «треугольник» можно заменить двойной, тройной «звездой», а также другие варианты подключения. Такие методы используются для многоскоростных (двух-, четырех- и др.) Электродвигателей. .