Подбор автоматического выключателя по мощности: Онлайн расчет автомата по мощности

Содержание

Выбор автоматического выключателя по току, мощности и сечению кабеля

Для чего служит автомат

В цепи электропитания автомат ставят для предупреждения перегрева проводки. Любая проводка рассчитана на прохождение какого-то определенного тока. Если пропускаемый ток превышает это значение, проводник начинает слишком сильно греться. Если такая ситуация сохраняется достаточный промежуток времени, начинает плавиться проводка, что приводит к короткому замыканию. Автомат защиты ставят чтобы предотвратить эту ситуацию.

Пакетник или автомат защиты необходим для предотвращения перегрева проводников и отключения в случае КЗ

Вторая задача автомата защиты — при возникновении тока короткого замыкания (КЗ) отключить питание. При замыкании токи в цепи возрастают многократно и могут достигать тысяч ампер. Чтобы они не разрушили проводку и не повредили аппаратуру, включенную в линию, автомат защиты должен отключить питание как можно быстрее — как только ток превысит определенный предел.

Чтобы защитный автоматический выключатель исправно выполнял свои функции, необходимо правильно сделать выбор автомата по всем параметрам. Их не так много — всего три, но с каждой надо разбираться.

Какие бывают автоматы защиты

Для защиты проводников однофазной сети 220 В есть отключающие устройства однополюсные и двухполюсные. К однополюсным подключается только один проводник — фазный, к двухполюсным и фаза и ноль. Однополюсные автоматы ставят на цепи 220 В внутреннего освещения, на розеточные группы в помещениях с нормальными условиями эксплуатации. Их также ставят на некоторые виды нагрузки в трехфазных сетях, подключая одну из фаз.

Для трехфазных сетей (380 В) есть трех и четырех полюсные. Вот эти автоматы защиты (правильное название автоматический выключатель) ставят на трехфазную нагрузку (духовки, варочные панели и другое оборудование которое работает от сети 380 В).

В помещениях с повышенной влажностью (ванная комната, баня, бассейн и т.д.) ставят двухполюсные автоматические выключатели.

Их также рекомендуют устанавливать на мощную технику — на стиральные и посудомоечные машины, бойлеры, духовые шкафы и т.д.

Просто в аварийных ситуациях — при коротком замыкании или пробое изоляции — на нулевой провод может попасть фазное напряжение. Если на линии питания установлен однополюсный аппарат, он отключит фазный провод, а ноль с опасным напряжением так и останется подключенным. А значит, остается вероятность поражения током при прикосновении. То есть, выбор автомата прост — на часть линий ставятся однополюсные выключатели, на часть — двухполюсные. Конкретное количество зависит от состояния сети.

Автоматы для однофазной сети

Для трехфазной сети существуют трехполюсные автоматические выключатели. Такой автомат ставится на входе и на потребителях, к которым подводятся все три фазы — электроплита, трехфазная варочная панель, духовой шкаф и т.д. На остальных потребителей ставят двухполюсные автоматы защиты. Они в обязательном порядке должны отключать и фазу и нейтраль.

Пример разводки трехфазной сети — типы автоматов защиты

Выбор номинала автомата защиты от количества подключаемых к нему проводов не зависит.

Выбираем отключающую способность

Выше описан выбор пакетника по максимально допустимому току нагрузки. Но автомат защиты сети также должен отключаться при возникновении с сети КЗ (короткого замыкания). Эту характеристику называют отключающей способностью. Она отображается в тысячах ампер — именного такого порядка могут достигать токи при коротком замыкании. Выбор автомата по отключающей способности не очень сложен.

Эта характеристика показывает, при каком максимальном значении тока КЗ автомат сохраняет свою работоспособность, то есть, он сможет не только отключится, но и будет работать после повторного включения. Эта характеристика зависит от многих факторов и для точного подбора необходимо определять токи КЗ. Но для проводки в доме или квартире такие расчеты делают очень редко, а ориентируются на удаленность от трансформаторной подстанции.

Отключающая способность автоматических защитных выключателей

Если подстанция находится недалеко от ввода в ваш дом/квартиру, берут автомат с отключающей способностью 10 000 А, для всех остальных городских квартир достаточно 6 000 А. Если же дом находится в сельской местности иди вы выбираете автомат защиты электросети для дачи, вполне может хватить и отключающей способности в 4 500 А. Сети тут обычно старые и токи КЗ большими не бывают. А так как с возрастанием отключающей способности цена возрастает значительно, можно применить принцип разумной экономии.

Можно ли в городских квартирах ставить пакетики с более низкой отключающей способностью. В принципе, можно, но никто не гарантирует, что после первого же КЗ вам не придется его менять. Он может успеть отключить сеть, но окажется при этом неработоспособным. В худшем варианте контакты расплавятся и отключиться автомат не успеет. Тогда проводка расплавится и может возникнуть пожар.

Шкала номинальных токов автоматических выключателей

На корпусе автоматических выключателей производителем всегда указываются главные характеристики устройства, его модель, серийный номер и бренд.

Главной и самой важной характеристикой автомата является значение номинального тока. Она показывает максимально допустимый ток, который может долго проходить через автоматический выключатель без его нагрева и отключения. Значение тока измеряется и указывается в Амперах (А). Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь.

Модели автоматов имеют стандарт значений номинального тока и бывают 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А. Бывают и более мощные приборы, но в быту они не используются и предназначены только для специальных задач в промышленности.

Согласно нормативно-технической документации номинальный ток для любого автоматического выключателя указывается для работы прибора при температуре окружающей среды +30 градусов Цельсия.

Устанавливают автоматы в электрощитах на дин-рейку по несколько штук в зависимости от количества защищаемых линий. При одновременном расположении нескольких устройств вплотную друг к другу они «подогревают» друг друга, это приводит к уменьшению значения тока, который они могут пропустить без отключения.

В связи с этим в каталогах и инструкциях к приборам защиты производители часто указывают поправочные коэффициенты для размещения групп выключателей.

Важность время-токовой характеристики

Некоторые электрические приборы имеют высокий пусковой ток при включении. Его значение бывает выше номинального тока автомата, но действует он краткое время. Для электрического кабеля такой ток не представляет опасности (если его величина в разумных пределах соотносится с типом кабеля), но автомат может срабатывать при пусковом токе, воспринимая это как перегрузку.

Для того чтобы не происходило постоянных отключений из-за запуска устройств с высокими пусковыми токами, автоматы имеют разделение на типы по время-токовой характеристике.

Конструктивно автоматический выключатель состоит из двух расцепителей: электромагнитного и теплового.

Электромагнитный расцепитель предназначен для отключения устройства при коротком замыкании. Для работы такого механизма отключения в автомате используется электромагнитная катушка и соленоид. При многократном превышении значения электрического тока появляется магнитное поле в катушке, та задействует соленоид и он отключает автомат.

Автоматические выключатели имеют характеристику по току короткого замыкания (предельный ток отключения), которая по номиналу бывает в 3, 4,5, 6 и 10кА. Для бытовых целей при устройстве защиты в квартире или доме чаще всего применяют автоматы с номиналом тока КЗ 6кА.

Тепловой расцепитель – это пластина, состоящая из двух различных металлов. При длительной нагрузке, превышающей номинальный ток, эта пластина нагревается, выгибается, воздействует на рычаг расцепителя и устройство отключается. Главная задача такого механизма – защищать линию от долговременных перегрузок выше номинального тока автомата.

Чтобы не думать о том, какую нагрузку включить в розетку, не рассчитывать постоянно суммарную мощность приборов и не думать о пусковых токах была придумана характеристика по времени-току.

Данная характеристика показывает время и ток, которые влияют на отключение аппарата.

На автоматах она указывается буквой В, С или D.

Автоматические выключатели с одинаковыми номиналами и различной время–токовой характеристикой будут отключаться в разное время и с разным током превышения.

Такое разделение автоматов является очень удобным и позволяет уменьшить количество ложных отключений.

В соответствии с ГОСТ Р 50345-2010 существует три стандарта время-токовых характеристик:

  1. B – превышение в 3 — 5 раз от номинального тока, самые чувствительные автоматы имеют такую характеристику и применяются в сетях с приборами не имеющими больших пусковых токов.
  2. C – превышение в 5 — 10 раз от номинального тока, самая популярные автоматы с такой характеристикой, они используются в квартирах и частных домах.
  3. D – превышение в 10 — 20 раз от номинального тока, используется для защиты сетей с оборудованием имеющим высокие пусковые токи и кратковременные перегрузки.

Почему автомат С16 не отключится при токе 16 Ампер?

Теперь давайте попробуем понять, почему при сечении электрического кабеля 2,5 кв. мм, который выдерживает ток 25А (ПУЭ таблица 1.3.6) должен защищать автоматический выключатель на 16А, а не на 25А.

Все дело в тепловом расцепителе, который нагревается со временем при воздействии нагрузки и защищает от длительного превышения тока. Длительность этого времени может занимать и 10 минут и 1 час.

Автоматические выключатели имеют такую характеристику, как «ток неотключения», он рассчитан и составляет 1,13 от номинального тока (смотри ГОСТ Р 50345-2010 п.8.6.2). Эта характеристика означает, что автомат не отключится при этом значении тока в течение часа.

Например, автомат на 16А не отключится, при протекании через него тока в 18,08 А в течение часа, это заложено в работу теплового расцепителя устройства.

Еще одной характеристикой автоматов является «условный ток отключения» и он тоже стандартен для всех защитных автоматов и равен 1,45 от номинального тока. При токе, например, 36,25А автомат на 25А обязательно отключится в течение часа. Это правило действует только при условии, что изначально автоматы были холодными.

Поэтому нужно иметь в виду, что автоматические выключатели не отключаются при достижении значения тока их номинала. Они могут работать и дольше, поэтому всегда выбирают защитное устройство с номиналом ниже, чем пропускающая способность кабеля.

Выбор автомата по мощности нагрузки

Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 6,0 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.

Можно посчитать точнее и посчитать ток по закону ома I=P/U —  I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В.

Можно посчитать еще точнее и учесть cos φ — I=P/U*cos φ.

Коэффициент мощности

это безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ

Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

Значение Cos φ в зависимости от типа электроприемника

Тип электроприемника cos φ
Холодильное  оборудование
предприятий торговли и
общественного питания,
насосов, вентиляторов и
кондиционеров воздуха
при мощности
электродвигателей, кВт:
до 1 0,65
от 1 до 4 0,75
свыше 4 0,85
Лифты и другое
подъемное оборудование
0,65
Вычислительные машины
(без технологического
кондиционирования воздуха)
0,65
Коэффициенты мощности
для расчета сетей освещения
следует принимать с лампами:
люминесцентными 0,92
накаливания 1,0
ДРЛ и ДРИ с компенсированными ПРА 0,85
то же, с некомпенсированными ПРА 0,3-0,5
газосветных рекламных установок 0,35-0,4

Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.
Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.

Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.


Автоматические выключатели EKF

Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший  номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.

ВАЖНО!

Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к возникновению пожара. Необходимо при выборе учитывать еще и сечение провода или кабеля.

По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием ПУЭ (Правила Устройства Электроустановок), а точнее в главе 1.3. В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.

Выбор автомата по сечению кабеля

Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3. 1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.


Расчет сечения жил кабеля и провода

Напряжение 220В.

– однофазная сеть используется в основном для розеток и освещения.
380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.

Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).

Автоматический выключатель «автомат»

это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.

Короткое замыкание (КЗ)

э- лектрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

Ток перегрузки

– превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.

Длительно допустимый ток кабеля или провода

– величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева.


Кабели ВВГнг с медными жилами

Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже. Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.

Сечение
токо-
проводящей
жилы, мм
Длительно допустимый
ток, А, для проводов
и кабелей с медными жилами.
Длительно допустимый
ток, А, для проводов
и кабелей с алюминиевыми жилами.
1,5 19
2,5 25 19
4 35 27
6 42 32
10 55 42
16 75 60
25 95 75
35 120 90
50 145 110

Выбор автомата по току короткого замыкания КЗ

Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.

Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.

Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.

Соблюдение принципов селективности

При наличии разветвленной электрической цепи можно организовать защиту таким образом, чтобы при коротком замыкании произошло отключение только той ветви, на которой возникла аварийная ситуация. Для этого применяют принцип селективности выключателей.


Наглядная схема, показывающая принцип работы системы автоматических выключателей с реализованной функцией селективности (выборочности) срабатывания при возникновении короткого замыкания

Для обеспечения выборочного отключения на нижних ступенях устанавливают автоматы с мгновенной отсечкой, размыкающие цепь за 0.02 – 0.2 секунды. Выключатель, размещенный на вышестоящей ступени, или имеет выдержку по срабатыванию в 0.25 – 0.6 с или выполнен по специальной “селективной” схеме в соответствии со стандартом DIN VDE 0641-21.

Для гарантированного обеспечения селективной работы автоматов лучше использовать автоматы от одного производителя. Для выключателей единого модельного ряда существуют таблицы селективности, которые указывают возможные комбинации.

Простейшие правила установки

Участок цепи, который необходимо защитить выключателем может быть одно- или трехфазным, иметь нейтраль, а также провод PE (“земля”). Поэтому автоматы имеют от 1 до 4 полюсов, к которым подводят токопроводящую жилу. При создании условий для расцепления происходит одновременное отключение всех контактов.


Автоматы в щитке крепят на специально отведенную для этого DIN-рейку. Она обеспечивает компактность и безопасность подключения, а также удобный доступ к выключателю

Автоматы устанавливают следующим образом:

  • однополюсные на фазу;
  • двухполюсные на фазу и нейтраль;
  • трехполюсные на 3 фазы;
  • четырехполюсные на 3 фазы и нейтраль.

При этом запрещено делать следующее:

  • устанавливать однополюсные автоматы на нейтраль;
  • заводить в автомат провод PE;
  • устанавливать вместо одного трехполюсного автомата три однополюсных, если в цепь подключен хотя бы один трехфазный потребитель.

Все эти требования прописаны в ПУЭ и их необходимо соблюдать.

В каждом доме или помещении, к которому подведено электричество, устанавливают вводной автомат. Его номинал определяет поставщик и это значение прописано в договоре на подключение электроэнергии. Предназначение такого выключателя – защита участка от трансформатора до потребителя.

После вводного автомата к линии подключают счетчик (одно- или трехфазный) и устройство защитного отключения, функции которого отличаются от работы автоматического и дифференциального выключателя.

Если в помещении выполнена разводка на несколько контуров, то каждый из них защищают отдельным автоматом, мощность которого указана в маркировке. Их номиналы и классы определяет владелец помещения с учетом существующей проводки или мощности подключаемых приборов.


Счетчик электроэнергии и автоматические выключатели устанавливают в распределительном щите, который отвечает всем требованиям безопасности и легко может быть вписан в интерьер помещения

При выборе места для размещения распределительного щита необходимо помнить, что на свойства теплового расцепителя влияет температура воздуха. Поэтому желательно располагать рейку с автоматами внутри самого помещения.

Активная и номинальная компонента

Для любого прибора, работающего от электричества, производитель обязан указать активную мощность (P). Эта величина определяет количество энергии, которая будет безвозвратно преобразована в результате работы аппарата и за которую пользователь будет платить по счетчику.

Но для приборов с наличием конденсаторов или катушки индуктивности есть еще одна мощность с ненулевым значением, которую называют реактивной (Q). Она доходит до устройства и практически мгновенно возвращается обратно.

Реактивная компонента не участвует при подсчете использованной электроэнергии, но совместно с активной формирует так называемую “полную” или “номинальную” мощность (S), которая дает нагрузку на цепь.


cos(f) – параметр, с помощью которого можно определить полную (номинальную мощность) по активной (потребляемой). Если он не равен единице, то его указывают в технической документации к электроприбору

Считать вклад отдельного устройства в общую нагрузку на токопроводящие жилы и автомат необходимо по его полной мощности: S = P / cos(f).

Ошибки при выборе, которые нужно учитывать

Напоследок рассмотрим самые распространенные ошибки, которые допускаются при выборе автоматического выключателя.

Ошибка 1.

Выбирая автомат, руководствуются суммарной мощностью потребителей, что является одной из самых грубых ошибок.

Автомат только защищает проводку от перегрузок, изменить ее характеристики он неспособен.

Если поставить мощный автомат на слабую проводку и подключить к ней сильный потребитель энергии, это неизбежно приведет к повреждению проводки, при этом автомат не сможет выполнить свою работу.

Поэтому всегда нужно ориентироваться по сечению провода и его пропускной способности, а не по мощности потребителей.

Ошибка 2.

Зачастую все ветки сети оснащаются одинаковыми автоматами, а затем пытаются использовать одну из ветвей в качестве сильнонагруженной.

Еще на стадии монтажа электрической сети желательно позаботиться о том, чтобы хоть одна из веток имела повышенные параметры и была оснащена автоматом, рассчитанным на значительные нагрузки.

К примеру, в гараже частного дома возможно использование приборов, создающих значительную нагрузку.

Эту ветвь лучше заранее усилить, чем потом переделывать или надеяться, что автомат или проводка «выдержат».

Ошибка 3.

При приобретении автоматических выключателей покупатели стараются минимизировать затраты. На безопасности лучше не экономить.

Покупать такие устройства следует только у хорошо зарекомендованных фирм в специализированных магазинах, а еще лучше у официального дистрибьютора.

Надеемся, что данные выше советы помогут вам правильно подобрать автоматический выключатель для своего дома.

Провода должны соответствовать нагрузке

Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.

Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток.

Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.

Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.

Расчет автомата по сечению электропроводки

Чтобы выбрать автомат можно воспользоваться таблицей. Выбранный по сечению электропроводки ток, уменьшают до нижней величины тока автомата, для снижения нагрузки электропроводки.

Мощность нагрузки в зависимости от номинального тока
автоматического выключателя и сечения кабеля

Сечение кабеля, кв.ммНоминальный ток автомата, АМощность 1-фазной нагрузки при 220В, кВтМощность 3-фазной нагрузки при 380В, кВт

Медь Алюминий
1 2.5 6 1.3 3.2
1.5 2.5 10 2.2 5.3
1.5 2.5 16 3.5 8.4
2.5 4 20 4.4 10.5
4 6 25 5.5 13.2
6 10 32 7 16.8
10 16 40 8.8 21.1
10 16 50 11 26. 3
16 25 63 13.9 33.2

Для розеток автоматы берут на ток 16 ампер, так как розетки рассчитаны на ток 16 ампер, для освещения оптимальный вариант автомата 10 ампер. Если вы не знаете сечение электропроводки, тогда его нетрудно рассчитать по формуле:

    где:
  • S – сечение провода в мм²;
  • D – диаметр провода без изоляции в мм.

Метод расчета автоматического выключателя по сечению является более предпочтительным, так как он защищает схему электропроводки в помещении.

Формула расчета мощности по току и напряжению

Как рассчитать мощность по току? В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей.

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т. д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:

S = √P2+Q2, – для полной мощности;
и Q = U*I*cos⁡ φ , и P = U*I*sin φ – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Недопустимые ошибки при покупке

Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т.д.

Чтобы такого не произошло, рекомендуем ознакомиться со следующими ошибками, что позволит в будущем правильно выбрать автоматический выключатель для своего дома либо квартиры:

  • Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку. Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
  • Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
  • Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
  • Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
  • Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
  • Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.

Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!

Рекомендуем прочитать:

  • Выбивает автомат — что делать
  • Как подключить стабилизатор напряжения
  • Почему срабатывает УЗО в щитке

Как правильно подобрать подходящий номинал коммутационного аппарата для дома и квартиры?

Блиц-советы

  • Выбирая автомат, не дешевите и не экономьте на здоровье. Китайский хлам не даст вам 100%-ной гарантии, что защита сработает в нужный момент. Отдавайте предпочтение немецкой фирме Шнайдер или АББ, хоть они и дороже, но надежнее.
  • Тщательно подберите все параметры на соответствие номиналу.
  • Обеспечьте селективность, так как электрики смогут починить вашу проводку не ранее, чем через день, вы же не хотите сидеть два дня без света? А если выходные?

Источники

  • https://kak-sdelano.ru/elektrica/vyibor-avtomaticheskogo-vyiklyuchatelya
  • https://electricvdome.ru/avtomaticheskie-vikluchateli/vybor-avtomata-po-secheniju-kabelja.html
  • https://VolgaProekt.ru/stati/vybor-avtomata-po-moshchnosti-nagruzki. html
  • https://sovet-ingenera.com/elektrika/uzo-schet/vybor-avtomata-po-moshhnosti-nagruzki.html
  • https://ElektrikExpert.ru/kak-vybrat-avtomaticheskij-vyklyuchatel.html
  • https://first-apartment.ru/vybor-avtomata.html
  • https://samelectrik.ru/6-vazhnyx-kriteriev-vybora-avtomaticheskogo-vyklyuchatelya.html
  • https://housetronic.ru/electro/avtomaticheskie-vyklyuchateli.html

[свернуть]

Выбор автоматического выключателя | Руководство по устройству электроустановок | Оборудование

Страница 47 из 77

Выбор типа автоматических выключателей определяется: электрическими характеристиками электроустановки, условиями эксплуатации, нагрузками и необходимостью дистанционного управления вместе с типом предусматриваемой в будущем телекоммуникационной системы.
Автоматические выключатели с некомпенсируемыми комбинированными расцепителями имеют уровень тока отключения, зависящий от окружающей температуры.
4. 4 Выбор автоматического выключателя
Критерии выбора автоматического выключателя
Выбор автоматического выключателя производится с учетом:
электрических характеристик электроустановки, для которой предназначен этот автоматический выключатель
условий его эксплуатации: температуры окружающей среды, размещения в здании подстанции или корпусе распределительного щита, климатических условий и др.
требований к включающей и отключающей способности при коротких замыканиях, эксплуатационных требований: селективного отключения, требований к дистанционному управлению и индикации и соответствующим вспомогательным контактам, дополнительным расцепителям, соединениям.
правил устройства электроустановок, в частности требований в отношении обеспечения защиты людей
характеристик нагрузки, например электродвигателей, люминесцентного освещения, разделительных трансформаторов с обмотками низкого напряжения
Следующие замечания относятся к выбору низковольтного автоматического выключателя для использования в распределительных системах.
Выбор номинального тока с учетом окружающей температуры
Номинальный ток автоматического выключателя определяется для работы при определенной температуре окружающей среды, которая обычно составляет:
30°С для бытовых автоматических выключателей
40°С для промышленных автоматических выключателей
Функционирование этих автоматических выключателей при другой окружающей температуре зависит главным образом от технологии применяемых расцепителей (рис. h50).
Некомпенсируемые термомагнитные комбинированные расцепители

Автоматические выключатели с некомпенсируемыми термомагнитными расцепителями имеют порог тока отключения, который зависит от окружающей температуры. Если автоматический выключатель установлен в оболочке или в помещении с высокой температурой (например, в котельной), то ток, необходимый для отключения (срабатывания) этого автоматического выключателя при перегрузке, будет заметно ниже. Когда температура среды, в которой расположен автоматический выключатель, превышает оговоренную изготовителем температуру, его характеристики окажутся «заниженными». По этой причине изготовители автоматических выключателей приводят таблицы с поправочными коэффициентами, которые необходимо применять при температурах, отличных от оговоренной температуры функционирования автоматического выключателя. Из типичных примеров таких таблиц (рис. h51) следует, что при температуре ниже оговоренной изготовителем происходит повышение порога отключающего тока соответствующего автоматического выключателя. Кроме того, небольшие модульные автоматические выключатели, установленные бок о бок (рис. h37), обычно монтируются в небольшом закрытом металлическом корпусе. В таком случае вследствие взаимного нагрева при прохождении обычных токов нагрузки к их параметрам необходимо применять поправочный коэффициент 0,8.


Рис. h50. Температура окружающей среды
Автоматические выключатели C60a, C60H: кривая C. C60N: кривые B и C (Стандарт. температура: 30°С)


Ном. ток, А

20 °C

25 °C

30 C

35 C

40 C

45 °C

50 °C

55 C

60 °C

1

1. 05

1.02

1.00

0.98

0.95

0.93

0.90

0.88

0.85

2

2.08

2.04

2.00

1.96

1.92

1.88

1.84

1.80

1.74

3

3.18

3.09

3.00

2.91

2.82

2. 70

2.61

2.49

2.37

4

4.24

4.12

4.00

3.88

3.76

3.64

3.52

3.36

3.24

6

6.24

6.12

6.00

5.88

5.76

5.64

5.52

5.40

5.30

10

10. 6

10.3

10.0

9.70

9.30

9.00

8.60

8.20

7.80

16

16.8

16.5

16.0

15.5

15.2

14.7

14.2

13.8

13.5

20

21.0

20.6

20.0

19.4

19.0

18. 4

17.8

17.4

16.8

25

26.2

25.7

25.0

24.2

23.7

23.0

22.2

21.5

20.7

32

33.5

32.9

32.0

31.4

30.4

29.8

28.4

28.2

27.5

40

42. 0

41.2

40.0

38.8

38.0

36.8

35.6

34.4

33.2

50

52.5

51.5

50.0

48.5

47.4

45.5

44.0

42.5

40.5

63

66.2

64.9

63.0

61.1

58.0

56. 7

54.2

51.7

49.2

NS250N/H/L (Стандартная температура: 40°C)


Ном. ток, А

40 °C

45 C

50 °C

55 C

60 °C

TM160D

160

156

152

147

144

TM200D

200

195

190

185

180

TM250D

250

244

238

231

225

    ** Для промышленного использования значения не регламентируются стандартами IEC. Указанные выше значения соответствуют тем, которые обычно используются.

* «О» означает операцию отключения.
«CO» означает операцию включения, за которой следует операция
отключения.

Рис. h51. Примеры таблицдля определения коэффициентов понижения/повышения уставок по току отключения, которые должны применяться к автоматическим выключателям с некомпенсируемыми тепловыми расцепителями в зависимости от температуры
Пример
Какой номинальный ток (In) следует выбрать для автоматического выключателя C60 N? Этот аппарат:
обеспечивает защиту цепи, в которой максимальный расчетный ток нагрузки составляет 34 А
установлен вплотную к другим автоматическим выключателям в закрытой распределительной коробке
эксплуатируется при окружающей температуре 50°С.
При окружающей температуре 50°С уставка автоматического выключателя C60N с номинальным током 40 А снизится до 35,6 А (см. таблицу на рис. h51). Взаимный нагрев в замкнутом пространстве учитывается поправочным коэффициентом 0,8. Таким образом, получим 35,6 x 0,8 = 28,5 А, что не приемлемо для тока нагрузки 34 А.
Поэтому будет выбран автоматический выключатель на 50 А и соответствующая скорректированная уставка по току составит 44 x 0,8 = 35,2 А.
Компенсированные комбинированные расцепители
Эти расцепители содержат биметаллическую компенсирующую пластину, которая обеспечивает возможность регулировки уставки по току отключения при перегрузке (Ir или Irth) в установленных пределах независимо от температуры окружающей среды. Например:
в некоторых странах система заземления TT является стандартной в низковольтных распределительных системах, а бытовые (и аналогичные) электроустановки защищаются в месте ввода автоматическим выключателем, который устанавливается соответствующей энерго- снабжающей организацией. Такой автоматический выключатель, помимо защиты от косвенного прикосновения, обеспечит отключение цепей при перегрузках, если потребитель превысит уровень потребляемого тока, оговоренный в его контракте с энергоснабжающей организацией. Регулировка уставок автоматического выключателя с номинальным током менее 60 А возможна в диапазоне температур от -5 до +40°С.
Электронные расцепители
Важным преимуществом электронных расцепителей является их устойчивая работа при изменении температурных условий. Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому изготовители обычно приводят рабочую диаграмму, на которой указываются максимальные значения допустимых уровней отключающих токов в зависимости от окружающей температуры (рис. h52).
Электронные расцепители устойчиво функционируют при изменении окружающей температуры


Вариант исполнения выключателя Masterpact NW20

40°C

45°C

50°C

55°C

60°C

h2/h3/h4

Выкатного типа

In (А)

2,000

2,000

2,000

1,980

1,890

 

с горизонтальными

Максимальная

1

1

1

0. 99

0.95

 

контакт. пластинами

регулировка тока Ir

 

 

 

 

 

L1

Выкатного типа

In (А)

2,000

200

1,900

1,850

1,800

 

с вертикальными

Максимальная

1

1

0.95

0. 93

0.90

 

контакт. пластинами

регулировка тока Ir

 

 

 

 

 


Рис. h52. Снижение уровня уставки автоматического выключателя Masterpact NW20 в зависимости от температуры
низковольтные автоматические выключатели с номинальным током менее 630 А обычно оснаща­ются компенсируемыми расцепителями для этого температурного диапазона (-5 до +40 °С).
Выбор уставок срабатывания без выдержки времени или с кратковременной выдержкой
Ниже на рис. h53 представлены сводные основные характеристики расцепителей, срабатывающих мгновенно или с короткой выдержкой времени.

Рис. h53. Различные расцепители (мгновенного действия или срабатывающие с короткой выдержкой времени)

Для установки низковольтного автоматического выключателя требуется, чтобы его отключающая способность (или отключающая способность выключателя вместе с соответствующим устройством) была бы равна или превышала расчетный ожидаемый ток короткого замыкания в месте его установки.
Автоматический выключатель, установленный на вы/ходе самого маленького трансформатора, должен иметь отключающую способность по короткому замыканию, которая превышает отключающую способность любого из других низковольтных автоматических вы/ключателей трансформаторов.
Выбор автоматического выключателя с учетом требований по отключающей способности при КЗ
Автоматический выключатель, предназначенный для использования в низковольтной электроустановке, должен удовлетворять одному из двух следующих условий:
или иметь номинальную отключающую способность Icu (or Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для этого места установки, или
если это не выполняется, то использоваться совместно с другим устройством, расположенным выше по цепи и имеющим требуемую отключающую способность.
Во втором случае характеристики этих двух устройств должны быть согласованы так, чтобы ток, который может проходить через вышерасположенное устройство, не превышал максимальный ток, который способны выдержать нижерасположенный выключатель и все соответствующие кабели, провода и другие элементы цепи без какого-либо повреждения. Данный метод целесообразен при использовании:
комбинаций плавких предохранителей и автоматических выключателей
комбинаций токоограничивающих автоматических выключателей и стандартных автоматических выключателей. Этот метод называют «каскадированием» (см. подпункт 4.5 данной главы)
Выбор автоматических выключателей вводных и отходящих линий Случай применения одного трансформатора
Если трансформатор расположен на потребительской подстанции, то в некоторых националь­ных стандартах требуется применение низковольтного автоматического выключателя, в котором были бы явно видны разомкнутые контакты, такого как, например, Compact NS выкатной выключатель.
Пример (рис. h54 на противоположной странице)
Какой тип автоматического выключателя пригоден для главного автомата защиты электроустановки, питаемой от трехфазного понижающего трансформатора мощностью 250 кВА и напряжением во вторичной обмотке 400 В, установленного на потребительской подстанции? Ток трансформатора In = 360 А Ток (трехфазный) Isc = 8,9 кА
Для таких условий подходящим вариантом будет автоматический выключатель Compact NS400N с диапазоном регулировки расцепителя 160 А — 400 А и отключающей способностью (Icu) 45 кА.

Несколько трансформаторов, включенных параллельно (рис. h55)
Каждый из автоматических выключателей CBP, установленных на линиях, отходящих от низковольтного распределительного щита, должен быть способен отключать суммарный ток короткого замыкания от всех трансформаторов, подсоединенных к шинам, т.е. Isc1 + Isc2 + Isc3.
Автоматические выключатели CBM, каждый из которых контролирует выход соответствующего трансформатора, должны быть способны отключать максимальный ток короткого замыкания, например, только ток Isc2 + Isc3 если короткое замыкании возникло в месте, расположенном выше выключателя CBM1.
Из этих соображений понятно, что в таких обстоятельствах автоматический выключатель самого маленького трансформатора будет подвергаться самому большому току короткого замыкания, а автоматический выключатель самого большого трансформатора будет пропускать наименьший ток короткого замыкания.
Номинальные токи отключения автоматических выключателей CBM должны выбираться в зависимости от номинальной мощности к КВА соответствующих трансформаторов.
Примечание: Необходимыми условиями для успешной параллельной работы трехфазных трансформаторов являются следующие:
фазовый сдвиг напряжений во вторичной и первичной обмотках должен быть одинаков во всех параллельно включенных трансформаторах
Отношение напряжений холостого хода в первичной и вторичной обмотках должно быть одинаковым для всех трансформаторов.
Напряжения короткого замыкания (Zsc%) должно быть одинаковыми для всех трансформаторов.
Например, трансформатор мощностью 750 кВА с Zsc = 6% будет правильно делить нагрузку с трансформатором мощностью 1000 кВА, имеющим Zsc = 6%, т.е. эти трансформаторы будут автоматически нагружаться пропорционально их мощностям. Для трансформаторов, у которых отношение номинальных мощностей превышает 2, параллельная работа не рекомендуется. В таблице, приведенной на рис. h56, указаны максимальные токи короткого замыкания, которым подвергаются автоматические выключатели вводных и отходящих линий (соответственно CBM и CBP на рис. h55), для самой распространенной схемы параллельной работы (2 или 3 трансформа­тора одинаковой мощности). Приведенные данные базируются на следующих допущениях:
трехфазная мощность короткого замыкания на стороне высокого напряжения трансформатора составляет 500 МВА
трансформаторы являются стандартными распределительными трансформаторами напряжением 20/0,4 кВ, характеристики которых приведены в таблице
кабели от каждого трансформатора к его низковольтному автоматическому выключателю состоят из одножильных проводников длиной 5 метров
между каждым автоматическим выключателем вводной цепи (CBM) и каждым автоматическим выключателем отходящей цепи (CBP) имеется шина питания длиной 1 м.
распределительное устройство расположено в напольном закрытом распределительном щите, температура окружающего воздуха — 30°С).
Кроме того, в этой таблице указаны модели автоматических выключателей серии производства Merlin Gerin, рекомендуемые для применения в каждом случае в качестве автоматических выключателей вводных и отходящих линий.
Пример (рис. h57 на следующей странице)
выбор автоматического выключателя вводной линии (CBM):
Для трансформатора мощностью 800 кВА In= 1126 А, Icu (минимальный ток)= 38 кА (из рис. h56). При таких характеристиках таблица рекомендует использовать модель Compact NS1250N (Icu = 50 кА)
выбор автоматического выключателя отходящей линии (CBP):
Из рис. h56 требуемая отключающая способность (Icu) для таких автоматических выключателей составляет 56 кА

Рис. h54. Пример установки автоматического выключателя на выходе трансформатора, расположенного на потребительской подстанции

Рис. h55. Параллельное включение трансформаторов
Для трех отходящих линий 1, 2 и 3 рекомендуется использовать токоограничивающие автоматические выключатели типа NS400 L, NS250 L и NS 100 L. В каждом случае номинальная отключающая способность Icu=150 кА.

Количество и мощности (кВА) трансформаторов 20/0,4 кВ

Мин. отключающая способность автомат. выкл. вводных линий (Icu), кА

Автомат. выкл. вводных линий (CBM), Мин. отключ. способность полностью согласованные с автомат. автомат. выкл. отходящих выкл. отходящих цепей (CBP) линий (Icu), кА

Ном. ток In автомат. выкл. отходящих линий (CPB) 250A

2 x 400

 

14

NW08N1/NS800N

27

NS250H

3 x 400

28

NW08N1/NS800N

42

NS250H

2 x 630

22

NW10N1/NS1000N

42

NS250H

3 x 630

 

44

NW10N1/NS1000N

67

NS250H

2 x 800

19

NW12N1/NS1250N

38

NS250H

3 x 800

38

NW12N1/NS1250N

56

NS250H

2 x 1,000

23

NW16N1/NS1600N

47

NS250H

3 x 1,000

47

NW16N1/NS1600N

70

NS250H

2 x 1,250

29

NW20N1/NS2000N

59

NS250H

3 x 1,250

59

NW20N1/NS2000N

88

NS250L

2 x 1,600

38

NW25N1/NS2500N

75

NS250L

3 x 1,600

75

NW25N1/NS2500N

113

NS250L

2 x 2,000

47

NW32N1/NS3200N

94

NS250L

3 x 2,000

94

NW32N1/NS3200N

141

NS250L

Рис. h56. Максимальные токи короткого замыкания, которые должны отключаться автоматическими выключателями вводных и отходящих линий (соответственно CBM и CBP) при параллельной работе нескольких трансформаторов

Уровни токов короткого замыкания в любом месте электроустановки можно определить с помощью таблиц.
Эти автоматические выключатели обеспечивают преимущества:
полного согласования с характеристиками вышерасположенных автоматических выключателей (CBM), т.е. селективность срабатывания защит
использования метода «каскадирования» с соответствующей экономией затрат в отношении всех элементов, расположенных ниже по цепи.
Выбор автоматических выключателей отходящих и оконечных линий Использование таблицы G40
С помощью этой таблицы можно быстро определить величину трехфазного тока короткого замыкания в любом месте электроустановки, зная:
величину тока короткого замыкания в точке, расположенной выше места, предназначенного для установки соответствующего автоматического выключателя
длину, сечение и материал проводников между этими двумя точками.
После этого можно выбрать автоматический выключатель, у которого отключающая способность превышает полученное табличное значение.
Детальный расчет тока короткого замыкания
Для того чтобы более точно рассчитать величину тока короткого замыкания, особенно в случае, когда отключающая способность автоматического выключателя чуть меньше величины, полученной из таблицы, необходимо использовать метод, описанный в пункте 4 главы G.
Двухполюсные автоматические выключатели (для фазы и нейтрали) с одним защищенным полюсом
Такие автоматические выключатели обычно имеют устройство максимальной защиты только на полюсе фазы и могут применяться в системах TT, TN-S и IT. В системе IT должны выполняться следующие условия:
условие (B) из таблицы G67 для максимальной защиты нулевого проводника в случае двойного короткого замыкания
отключающая способность при КЗ: двухполюсный автоматический выключатель (фаза- нейтраль) должен быть способен отключать на одном полюсе (при линейном напряжении) ток двойного короткого замыкания, равный 15% трехфазного тока короткого замыкания в месте его установки, если этот ток не превышает 10 кА; или 25% трехфазного тока короткого замыкания, если он превышает 10 кА.
защита от косвенного прикосновения: такая защита обеспечивается в соответствии с правилами, предусмотренными для систем заземления IT.
Недостаточная отключающая способность при КЗ
В низковольтных распределительных системах, особенно сетях, эксплуатируемых в тяжелых условиях, иногда случается, что рассчитанный ток Isc превышает отключающую способность Icu автоматических выключателей, имеющихся в наличии для установки, или же изменения, произошедшие в системе выше, привели к превышению отключающих способностей автоматических выключателей.
Решение 1: Убедитесь в том, что соответствующие автоматические выключатели, расположенные выше тех, которых это коснулось,являются тогоограничивающими, поскольку в таком случае можно использовать принцип каскадного включения (см. подпункт 4.5).
Решение 2: Установите несколько автоматических выключателей с более высокой отключающей способностью. Такое решение представляется экономически целесообразно в том случае, если затронуты один или два автоматических выключателя.
Решение 3: Установите последовательно с затронутыми автоматическими выключателями и выше по цепи токоограничивающие плавкие предохранители (типа gG или aM). При этом такая схема должна отвечать следующим условиям:
предохранитель должен иметь соответствующий номинал.

Рис. h57. Параллельная работа трансформаторов
предохранитель не должен устанавливаться в цепи нулевого проводника за исключением определенных электроустановок системы IT, в которых при двойном коротком замыкании в нулевом проводнике возникает ток, превышающий отключающую способность автоматического выключателя. В этом случае расплавление предохранителя в нулевом проводнике приведет к тому, что этот автоматический выключатель отключит все фазы.

Метод «каскадирования» основан на использовании токоограничивающих автоматических выключателей и позволяет устанавливать ниже их по цепи коммутационные аппараты, кабели и другие элементы цепи со значительно сниженными номинальными характеристиками по сравнению с теми, которые бы иначе потребовались. Благодаря этому упрощается и удешевляется электроустановка.

Номиналы автоматических выключателей по току

Номинальный ток автомата

Пришло время разобраться с тем, что на деле означает номинальный ток автомата и какой при этом будет ток срабатывания защиты. Для тех, кто понимает разницу между действующим и мгновенным значениями, уточняю, что все параметры автоматов, связанные с током или напряжением — это действующие значения, если это особо не оговорено. Согласно ГОСТ Р 50345-2010 (п.3.5.1), Номинальный ток автоматического выключателя есть значение тока, определяющее рабочие условия, для которых он спроектирован и построен. Кратко и точно.

Распространенная ошибка — часто люди считают, что номинальный ток и есть ток срабатывания. На самом деле, исправный автоматический выключатель никогда при номинальном токе не сработает. Более того, он не сработает даже при 10% перегрузке. При большей перегрузке автомат отключится, но это не значит, что он отключится быстро. Обычный модульный автомат имеет 2 расцепителя: медленный тепловой и быстро реагирующий электромагнитный.

Тепловой расцепитель в своей основе содержит биметаллическую пластину, которая нагревается от проходящего через нее тока. От нагрева пластина изгибается, и при определенном положении воздействует на защелку, и выключатель отключается. Электромагнитный расцепитель представляет собой катушку со втягивающимся сердечником, который при большом токе также воздействует на защелку, отключающую автомат. Если назначение теплового расцепителя — отключать автомат при перегрузках, то задача электромагнитного — быстрое отключение при коротких замыканиях, когда значение тока в разы превышает номинальное.

Ряд значений номинальных токов

Мне приходилось устанавливать автоматические выключатели номиналом от 0.2А. Вообще, мне встречались модульные автоматы следующих номиналов: 0.2, 0.3, 0.5, 0.8, 1, 1.6, 2, 2.5, 3, 3.15, 4, 5, 6, 6.3, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 Ампер. Максимальный номинал автомата, предназначенного для работы в сетях 0.4 кВ, который я видел — 6300А. Это соответствует трансформатору мощностью 4МВА, ну а более мощных трансформаторов под это напряжение у нас не делают, это предел. Cказать, что номиналы строго соответствуют какому-то единому стандартному ряду, как например Е6, Е12 у радиоэлементов, я не могу. Создается впечатление, что лепят кто во что горазд. С автоматами выше 100А ситуация примерно такая же. Тем не менее, существует и действует поныне стандарт ГОСТ 8032-84 «Предпочтительные числа и ряды предпочтительных чисел». Согласно этому стандарту, номиналы должны соответствовать определенным рядам значений. Основной ряд R5, который определяет следующую шкалу номинальных значений: 1, 1.6, 2.5, 4, 6.3, 10, 16, 25, 40, 63, 100, 160 и т.д.
Как видим, ряд состоит из пяти повторяющихся значений, просто после каждого цикла сдвигается десятичная точка. Если есть спрос на более точный подбор, ГОСТом предусмотрены ряды R10 (1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8) иR20 (1, 1.12, 1.25, 1.4, 1.6, 1.8, 2, 2.24, 2.5, 2.8, 3.15, 3.55, 4, 4.5, 5, 5.6, 6.3, 6.3, 7.1, 8, 9).
При этом, в обоснованных случаях, допускается некоторое округление (например 3.2 вместо 3.15 или 6 вместо 6.3). Думаю, нет нужды расписывать стандарт более подробно, каждый желающий может его найти и почитать.

Но и это еще не все. В том же ГОСТ Р 50345-2010 есть глава 5.3 под названием «Стандартные и предпочтительные значения». Согласно ей, предпочтительными значениями номинального тока модульных автоматов являются: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.

Разновидности защитных устройств

Существует несколько видов АВ, которые подключаются в сеть с целью контроля состояния проводки и, в случае необходимости, прекращения подачи тока. Они могут быть следующими:

  • Мини-модели (маленьких габаритов).
  • Воздушные (открытого типа).
  • Устройства защитного отключения (сокращенное наименование — УЗО).
  • Закрытые (элементы устройств размещены в литом корпусе).
  • Дифференциальные (автоматические выключатели, совмещенные с УЗО).

Мини-модели

Эти аппараты предназначены для работы в цепях, нагрузка в которых невысока. Функцией дополнительной регулировки они обычно не обладают. В этом ряду представлены устройства, которые могут выдерживать ток осечки величиной 4,5 – 15А. Для заводскихх мощностей они не подходят, поскольку сила тока на предприятиях значительно выше их номинала. Поэтому подключают их, как правило, в бытовую проводку.

Большой популярностью пользуются автоматы, входящие в производственную линейку французской фирмы Schneider Electric. Номиналы АВ, выпускаемых этой компанией, могут составлять 2 – 125А, поэтому можно выбрать пакетник для домашних линий различной мощности.

Воздушные (открытые) устройства

Если суммарная мощность приборов, подключенных в сеть, велика, и номиналы автоматов, о которых говорилось выше, недостаточны, следует выбирать воздушные защитные устройства. Номинальный ток отсечки пакетников открытого типа на порядок превышает аналогичный показатель мини-моделей. Чаще всего они бывают трехполюсными, но в последнее время многие компании наладили производство четырехполюсных автоматов.

Защитные устройства открытого типа следует устанавливать в распределительных шкафах, оснащенных изнутри специальными DIN-рейками.

Если класс защиты шкафа – от IP55, то его можно размещать вне здания. Корпус этого оборудования сделан из тугоплавкого металла и надежно защищен от проникновения влаги, что позволяет обеспечить высокий уровень безопасности автоматов, расположенных внутри него.

Воздушные АВ имеют большое преимущество перед миниатюрными. Оно заключается в возможности настройки их номинальных характеристик с помощью специальных вставок, которые ставятся на активный контакт.

Закрытые автоматические выключатели

Корпус этих устройств отливается из тугоплавкого металла, что обеспечивает их идеальную герметичность и делает пригодными для эксплуатации в тяжелых условиях. Максимальный показатель напряжения, который могут выдерживать такие автоматы, составляет 750В, а тока – 200А. Закрытые АВ классифицируются по типу действия на следующие группы:

  • Регулируемые.
  • Тепловые.
  • Электромагнитные.

Выбирать оптимальный тип следует, исходя из решаемых задач.

Наиболее высокой точностью обладают электромагнитные закрытые автоматы, определяющие с минимальной погрешностью среднеквадратичный показатель активного электротока и моментально обесточивающие сеть в случае КЗ, не допуская серьезных последствий.

Электромагнитные автоматы успешно используются для контроля функционирования моторов заводских станков, а также другого мощного оборудования, поскольку они могут выдерживать силу тока величиной до 70 кА. Цифра, обозначающая номинал автомата по току, нанесена на его корпус.

Все типы закрытых выключателей могут иметь от двух до четырех полюсов. Благодаря этому они могут быть использованы для защиты электросетей любых зданий и сооружений жилого и нежилого типа.

Устройства защитного отключения

В качестве самостоятельных защитных аппаратов использовать устройства защитного отключения не следует, поскольку их основной задачей является защита человека от внезапного поражения электричеством. Поэтому устанавливать их рекомендуется вместе с АВ, или приобретать дифференциальный автомат, в составе которого УЗО уже имеется. В первом случае нужно учесть, что в первую очередь должно устанавливаться устройство защитного отключения, а после него автоматы.

Если изменить порядок монтажа, то короткое замыкание приведет к выходу УЗО из строя в результате слишком высокой нагрузки.

ТОП-5 моделей автомата на рынке в текущем году

Подбирая АВ, необходимо учитывать рейтинг производителей подобных устройств.

Самые лучшие автоматы (точнее, их производители) на сегодняшний день:

  • Schneider Electric. Французская фирма. Автоматы ее производства давно испытаны в российских условиях, служат долго и отличаются надежностью.
  • General Electric. Недостаток – высокая цена, зато надежность и качество исполнения также на высоте. Американский производитель выпускает отличные АВ для трехфазных сетей.
  • Siemens. Низкая цена, но качество хуже, чем у двух лидеров, представленных выше. Тяжело найти приборы в продаже. Изначально бренд был немецким, затем его приобрели американцы. Надежность АВ и средняя стоимость делают компанию такой популярной.
  • Контактор. Лучший бренд из российских, однако цены кусаются. Лучше приобрести автоматы европейского производства, хотя Контактор – хорошее решение для слабонагруженных сетей.

Коротко принцип работы и предназначение защитных автоматов

Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.

Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.

Внешний вид трех полюсного автоматического выключателя

Провода должны соответствовать нагрузке

Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.

Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток .

Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.

Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.

кабель силовой NYM

Защитить самое слабое звено электропроводки

Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.

Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.

При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.

Расплавленная изоляция проводов

Расчет номинала автомата

Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:

где Р – суммарная мощность электроприборов.

Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.

Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.

Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.

Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:

Таблица выбора автомата по току

Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про расчет и выбор сечения провода

Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип время токовой характеристики автоматического выключателя подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.

Таблица подбор сечения провода по мощности

Какое сечение провода нужно для 3 квт

Формула как найти мощность тока

Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором

Новогодние поздравления с юмором

Что такое номинальный ток автомата

Номинальный ток – это максимально допустимое значение электрического тока, который пропускает автоматический выключатель без отключения сети.

Чтобы понять и сделать выбор автомата по току, нужно исходить из двух факторов:

  1. 1. Сечение электрического кабеля – площадь поперечного сечения кабеля электропроводки, который способен без нагрева выдерживать определенную мощность нагрузки.
  2. 2. Максимальной нагрузке – мощности всех электроприборов, подключённых к данной линии на максимальном режиме работы.

При выборе автоматического выключателя нельзя ставить защитное устройство номиналом по току выше, чем может выдержать смонтированный силовой кабель. Такой автомат не защитит электропроводку и сработает уже поле перегрева линии.

В любом случае сечение электрического кабеля, номинал автомата и мощность нагрузки между собой очень сильно связаны. Силовой кабель может пропускать ограниченную его сечением величину тока.

Поэтому идеальным вариантом для устройства электрической сети будет такая последовательность: расчет мощности всех потребителей на силовой линии, расчет площади поперечного сечения, монтируемого кабеля по максимальной мощности всех устройств, расчет автоматического выключателя исходя из выбранного кабеля.

Номиналы автоматических выключателей по току

Предельное значение номинала определяют по формуле Iном ≤ Iпр/1,45, где Iпр – допустимый в длительном режиме ток для определенной проводки. Если планируется монтаж сети, действуют следующим образом:

  • уточняют схему подключения потребителей;
  • собирают паспортные данные техники, измеряют напряжение;
  • по представленной схеме рассчитывают отдельно, суммируют токи в отдельных цепях;
  • для каждой группы надо подобрать автомат, который будет выдерживать соответствующую нагрузку;
  • определяют кабельную продукцию с подходящим сечением проводника.

Правила выбора номинала

Пример выбора номинала автомата для каждой линии

Для корректных выводов надо учитывать особенности подключаемого оборудования. Если по расчету суммарный ток составляет 19 ампер, пользователи предпочитают покупать аппарат на 25А. Это решение предполагает возможность применения дополнительных нагрузок без существенных ограничений.

Однако в некоторых ситуациях лучше выбрать автоматический выключатель на 20А. Этим обеспечивают относительно меньшее время на отключения питания при росте тока (повышении температуры) биметаллическим разъединителем

Такая предосторожность поможет сохранить в целостности обмотки электродвигателя при блокировке вращения ротора заклинившим приводом

Разное время срабатывания пригодится для обеспечения селективной работы средств защиты. На линиях устанавливают устройства с меньшей задержкой. При аварийной ситуации отсоединяется от электричества только поврежденная часть. Вводной автомат не успеет отключиться. Питание по другим цепям пригодится для поддержания в работоспособном состоянии освещения, сигнализации, других инженерных систем.

Как работает автоматический выключатель

Главная задача автоматического выключателя (автомата) — это улавливание чрезмерных токов в электросети, и мгновенное её обесточивание

Неважно, к какой категории относится автоматический выключатель, он должен уметь быстро обесточить электросеть и предотвратить тем самым повреждение кабелей

Поэтому главной функцией автоматического выключателя, является:

  • Срабатывание в случае перегрузки электросети. Здесь все достаточно просто, и если в сети возникнет чрезмерно большая нагрузка, например, из-за большого количества подключённых электроприборов в доме, автоматический выключатель должен сработать и обесточить домашнюю электросеть. Если этого не произойдёт, и автомат не справится со своей задачей, то может загореться электропроводка в доме;
  • Среагировать на сверхток, вызванный коротким замыканием электропроводки. Здесь все, также понятно. В случае замыкания, электропроводка подвергается сильному нагреву, а там где тонко, как известно, там и рвётся, поэтому, если автомат не сработает, возможно, повреждение и возгорание электропроводки.

Следует знать, что каждый автоматический выключатель рассчитан на разную силу тока. Время срабатывания автомата, зависит от величины перегрузки электросети. Если это короткое замыкание, то автоматический выключатель сработает мгновенно, буквально за считанные секунды. Если величина перегрузки не слишком большая, то автомат и электропроводка могут греться часами.

Что касается конструкции автоматического выключателя и его принципа работы, то в основе лежит биметаллическая пластина, через которую проходит электрический ток. Если он слишком большой величины, на которую автомат не рассчитан, то пластина начинает греться, что в итоге и приводит к срабатыванию автоматического выключателя.

Автоматы «В» и «С» — в чем разница, категории автоматических выключателей

Тех людей, которые занимаются модернизацией домашней электросети, часто интересует вопрос о том, чем именно отличаются автоматические выключатели категории «В» и «С», ведь именно они, чаще всего, устанавливаются в бытовых сетях. Главное отличие автоматов «В» и «С» в чувствительности электромагнитного расцепителя.

Буквы А, В, С, D и K, Z — как раз и указывают на характеристики расцепителя установленного в автоматическом выключателе:

А — автоматические выключатели данной категории имеют самую высокую чувствительность. Если номинальный ток на линии где будет установлен автомат категории «А» превысит 30%, то автоматический выключатель отключится.

В — автоматы этой категории срабатывают при превышении нагрузки по номинальному току в 3-5 раз. Автоматические выключатели категории «В» предназначены для установки в электросетях с отсутствием или с минимальным пусковым током (электродвигатели и т. д.). Простыми словами говоря, автоматы категории «В», более чувствительны к проходящему току, и при запуске мощных электродвигателей могут сработать.

С — автоматические выключатели стандартного типа с ещё большей перегрузочной способностью, чем у автоматов «В» класса. Их выключение происходит в том случае, если номинальный ток, проходящий через автомат, станет в 5-10 раз выше. Время срабатывания автомата категории «С», порядка 1,5 секунды. Такие автоматы предназначены для обеспечения защиты электросетей общего назначения.

Автоматы категории D, редко используются в быту. Чаще всего эти автоматические выключатели применяются в электросетях с большими пусковыми нагрузками. Ну и последние категории автоматов, это «K» и «Z», они используются в специальных целях, например, для защиты линий к которым подключены электронные устройства.

Мощность рассеивания автоматических выключателей

Рассеивание — это потери электроэнергии, которые в виде тепла уходят в окружающую среду. Для примера приведу паспортные значения рассеиваемой мощности для автоматов ВА 47-63 (для новых автоматов при значениях тока, равных номинальному):

Номинальный ток In, A Мощность рассеивания, Вт
1-полюсные 2-полюсные 3-полюсные 4-полюсные
1 1,2 2,4 3,6 4,8
2 1,3 2,6 3,9 5,2
3 1,3 2,6 3,9 5,2
4 1,4 2,8 4,2 5,6
5 1,6 3,2 4,8 6,4
6 1,8 3,6 5,5 7,2
8 1,8 3,6 5,5 7,33
10 1,9 3,9 5,9 7,9
13 2,5 5,3 7,8 10,3
16 2,7 5,6 8,1 11,4
20 3,0 6,4 9,4 13,6
25 3,2 6,6 9,8 13,4
32 3,4 7,5 11,2 13,8
35 3,8 7,6 11,4 15,3
40 3,7 8,1 12,1 15,5
50 4,5 9,9 14,9 20,5
63 5,2 11,5 17,2 21,4

Как видим, автоматический выключатель тоже хочет есть. Поэтому не стоит увлекаться и втыкать автоматы везде, где это возможно. Где же происходят потери? Основная часть приходится на тепловой расцепитель. Но не надо излишне драматизировать ситуацию. Эти потери пропорциональны протекающему току. Поэтому, если например нагрузка в 2 раза меньше номинальной, то и потери будут соответственно в 4 раза меньше, а при отсутствии нагрузки не будет и потерь. Если их представить в процентном виде, то будут величины порядка 0,05-0.5%, причем наименьший процент у самых мощных автоматов. В самих контактах, пока автомат новый, потери незначительны. Но в процессе эксплуатации контакты будут подгорать, переходное сопротивление будет расти, а с ним будут расти и потери. Поэтому у старого автомата потери могут быть заметно больше. Как измерить потери —

Класс токоограничения

Движемся дальше. Электромагнитный расцепитель, хоть и называется мгновенным, но тоже имеет определенное время срабатывания, которое отражает такой параметр, как класс ограничения. Он обозначается одной цифрой и у многих моделей эту цифру можно найти на корпусе аппарата. В основном сейчас выпускаются автоматы с классом токоограничения 3 — это значит, что со времени достижения током значения срабатывания до полного разрыва цепи пройдет время не более чем 1/3 полупериода. При стандартной у нас частоте 50 Герц это получается около 3,3 миллисекунд. Класс 2 соответствует значению 1/2 (порядка 5 мс). По некоторым источникам, отсутствие маркировки этого параметра равносильно классу 1. Самый высокий класс, который мне попадался — это 4-й у автоматов OptiDin производства КЭАЗ.

Недопустимые ошибки при покупке

Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т.д.

Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку

Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.

Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!

Рекомендуем прочитать:

{SOURCE}

Виды автоматов

Классификация автоматических выключателей происходит по следующим параметрам:

  • количество полюсов;
  • номинальный и предельный токи;
  • применяемый тип электромагнитного расцепителя;
  • максимальная мощность отключаемой способности.

Рассмотрим по порядку.

Количество полюсов

Количество полюсов — такое количество фаз, которое способен защищать автомат. По количеству полюсов автоматы могут быть:

  1. Однополюсные.
    Обеспечивается защита одного выходящего провода, одной фазы.
  2. Двухполюсные.
    Как правило, это два совмещенных однополюсных автомата с одной общей ручкой управления. В ситуации, когда ток одного из автоматов превышает разрешенную нагрузку происходит отключение обоих устройств. Используются двухполюсные автоматы для полного отключения нагрузки (одна фаза), отключая рабочую фазу и рабочий нуль.
  3. Трехполюсные.
    Используются с трехфазными цепями, при превышении нагрузки происходит отключение трех фаз одновременно. Такие автоматы так же имеют один общий размыкатель цепи.
  4. Четырехполюсные.
    Аналогичны двухполюсным, но предназначены для работы с трехфазными цепями. При превышении нагрузки происходит размыкание трех фаз и рабочего нуля одновременно.

Номинальный и предельный токи

Тут все просто — такая сила тока, при которой автомат будет размыкать цепь. При номинальном токе и даже немного больше заявленного будет осуществляться работа, однако только при превышении предельного тока на 10–15% произойдет отключение. Обусловлено это тем, что достаточно часто стартовые токи превышают предельно возможные токи на небольшой промежуток времени, поэтому в автомате есть определенный запас времени, по истечению которого произойдет размыкание цепи.

Тип электромагнитного расцепителя

Эта деталь автомата, которая позволяет размыкать цепь при коротком замыкании, а так же в случае повышения тока (перегрузки) на определенное количество раз. Расцепители разделяются на несколько категорий, рассмотрим самые популярные:

  • B — размыкание при превышении номинального тока в 3–5 раз;
  • C — при превышении в 5–10 раз;
  • D — при превышении в 10–20 раз.

Максимальная мощность отключаемой способности. Такое значение тока короткого замыкания (определяется в тысячах ампер), при котором автомат останется рабочим после размыкания цепи из-за короткого замыкания.

Подбор оптимального сечения кабеля

Каждый кабель, как и автомат, имеет определенный разрешенный ток нагрузки. В зависимости от сечения и материала кабеля варьируется и ток нагрузки. Для выбора автомата по сечению кабеля следует использовать таблицу.

Необходимо заметить, что допускается выбирать кабель с небольшим запасом, но никак не пакетный выключатель! Автомат должен соответствовать планируемой нагрузке! В соответствии с правилами устройств электроустановок 3.1.4 — токи уставок автоматов следует выбирать такие, которые будут меньше расчетных токов выбираемых зон.

Рассмотрим на примере, на определенном участке электропроводка проложена кабелем сечением 2.5 мм квадратных, а нагрузка составляет 12 кВт, в данном случае при монтаже автомата (по минимальному току) на 50 А произойдет возгорание проводки, так как провод с данным сечением рассчитан на разрешенный ток в 27 А, а через него проходит значительно больше. В данном случае разрыва цепи не происходит, так как автомат адаптирован под данные токи, а провод — нет, автоматика отключит автомат только в случае короткого замыкания.

Пренебрежение данным правилом грозит серьезными последствиями!

Именно благодаря такому принципу проводка никогда не перегреется и, следовательно, не произойдет возгорания.

Какой выбрать автомат для асинхронного двигателя — Расчёты — Справочник

    Расчет и выбор автоматического выключателя.
 

 

 Автоматический выключатель (АВ) выбирают по номинальному току Iн.вык выключателя и номинальному току Iн.расц расцепителя.
Iрасц=Iдлт, где
Iдл=Iн.дв – длительный ток в линии,
Iн.дв – номинальный ток двигателя,
Кт – тепловой коэффициент, учитывающий условия установки АВ.
Кт=1  — для установки в открытом исполнении;
Кт=0,85 – для установки в закрытых шкафах.

                             Iдл=Iн= Рн/(Uн·√3·ηн·cosφ),                                                                               (1)

гдеРн — мощность двигателя, кВт;
Uн – номинальное напряжение электродвигателя, кВ;
ηн – КПД двигателя (без процентов),
cosφ – коэффициент мощности двигателя.
Номинальный ток асинхронного двигателя с к. з. ротором будет примерно равен его удвоенной мощности, взятой в киловаттах:
Iн≈ 2Рн(кВт)
Выбираем АВ:
Тип –
Iн.вык
Iрасц

 

Проверка правильности выбора АВ по току мгновенного срабатывания.

 

 

Необходимо, чтобы выполнялось условие:
Iмгн.ср  ≥ KIкр, где
Iмгн.ср  — ток мгновенного срабатывания,
Iкр – максимальный  кратковременный ток,
К – коэффициент, учитывающий неточность определения Iкр в линии.
К = 1,25 – для АВ с Iн > 100А;
К = 1,4 – для АВ с Iн ≤ 100А.
Iкр = Iпуск = Кi Iн, где
Кi – кратность пускового момента Кi = Iпуск/Iн.
Значения Кi берутся из таблиц.
Если условие выполняется, значит АВ выбран верно, если не выполняется, то выбирается АВ с большим значением тока расцепителя.

 

 

Приведем пример .

Дано:

Тип двигателя:

4А112М4У3

Условие установки АВ:

В шкафу.

Найти:

Тип АВ;

Iмгн.ср;

Iрасц.

Решение.

По типу двигателя выписываем из таблицы его номинальные данные:

Рн = 5,5 кВт; η = 85,5%=0,855; cosφ = 0,85; Iп/Iн = Кi = 7.

 

Iдл = Iнн/√3Uнηcosφ  = 5,5/√3∙0,38∙0,855∙0,85  = 11,5 A

 

Так как автомат устанавливается в шкафу, то Кт = 0,85, поэтому:

Iрасц = Iнт = 11,5/0,85 = 13,5 А.

По току расцепителя выбираем автомат: ВА 51-25; Iн =25 А  Iрасц = 16 А;

Проверка

Iмгн.ср≥ КIкр

Iмгн.ср = 10∙Iрасц = 10∙16 = 160 А

 

Iкр = Iпуск = КiIн = 7∙11,5 = 80,5 А

К = 1,4

160 ≥ 1,4∙80,5 = 112,7 А

Неравенство выполняется, значит автомат выбран верно.

 

Подбор автоматического выключателя по мощности

 

Действие коротких замыканий пагубно влияет на электрическую проводку, приводит к ее разрушениям и служит частой причиной возгораний. С целью предупреждения подобных ситуаций устанавливаются различные средства защиты. В настоящее время широко используются автоматические выключатели, заменившие фарфоровые пробки с плавкими вставками. Эти приборы являются более надежными и совершенными. В связи с этим нередко возникает вопрос, как правильно выбрать автомат по мощности и нагрузки.

Блок: 1/4 | Кол-во символов: 493
Источник: https://electric-220.ru/news/vybor_avtomata_po_moshhnosti_i_nagruzki/2016-08-02-1032

Разделы статьи

Принцип работы защитного автомата

Основной функцией автоматических выключателей является защита изоляции проводов и силовых кабелей от разрушений под действием токов коротких замыканий. Эти приборы не способны защитить людей от поражения электротоком, они оберегают только сеть и оборудование. Действие автоматических выключателей обеспечивает нормальный режим функционирования проводки, полностью устраняя угрозу возгорания.

При выборе автомата нужно обязательно учитывать, что завышенные характеристики прибора будут способствовать пропуску токов, критических для проводки. В этом случае не произойдет отключения защищаемого участка, что приведет к оплавлению или возгоранию изоляции. В случае заниженных характеристик автомата линия будет постоянно разрываться при запуске мощной техники. Автоматы очень быстро выходят из строя вследствие залипания контактов под воздействием слишком высоких токов.

Основными рабочими элементами автоматов являются расцепители, непосредственно разрывающие цепь в критических ситуациях. Они разделяются на следующие виды:

  • Электромагнитные расцепители. Они практически мгновенно реагируют на токи короткого замыкания и отсекают нужный участок в течение 0,01 или 001 секунды. Конструкция включает в себя катушку с пружиной и сердечник, втягивающийся под воздействием высоких токов. Во время втягивания сердечник приводит в действие пружину, связанную с расцепляющим устройством.
  • Тепловые биметаллические расцепители. Обеспечивают защиту сетей от перегрузок. Они обеспечивают разрыв цепи при прохождении тока, не соответствующего предельным рабочим параметрам кабеля. Под действием высокого тока биметаллическая пластина изгибается и вызывает срабатывание расцепителя.

В большинстве автоматов, используемых в быту, используется электромагнитный и тепловой расцепитель. Слаженная комбинация этих двух элементов обеспечивает надежную работу защитной аппаратуры.

Блок: 2/4 | Кол-во символов: 1905
Источник: https://electric-220.ru/news/vybor_avtomata_po_moshhnosti_i_nagruzki/2016-08-02-1032

Для чего нужен автомат

Автоматические выключатели для квартиры, таунхауса, небольшого промышленного объекта обладают общим принципом работы.

Они оснащены двухступенчатой системой защиты:

  1. Тепловая. Тепловой расцепитель выполнен из биметаллической пластины. При длительном действии со стороны тока высокой мощности повышается гибкость пластины, из-за чего она задевает выключатель.
  2. Электромагнитная. Роль электромагнитного расцепителя играет соленоид. При регистрации повышенной мощности тока, на которую не рассчитан автомат и кабель, также срабатывает выключатель. Это уже защита от короткого замыкания.

АВ (общепринятое сокращение) защищает электросеть от нагревания изоляции и пожара. Именно по причине такой схемы работы важно знать, на сколько ампер ставить автомат в квартиру: если неправильно подобрать устройство, оно не сможет блокировать несоответствующий по мощности ток, и произойдет возгорание. Выбранный по всем рекомендациям АВ будет защищать от пожаров, ударов током, нагревания и сгорания микросхем домашних приборов.

Блок: 2/11 | Кол-во символов: 1033
Источник: https://pauk.top/vybor-avtomata-po-moschnosti-nagruzki.html

Выбор защитного устройства

Конечно, любой автомат превосходно справится с возложенными на него задачами — это не вызывает сомнения, если он исправен. Но дело в том, что подбирать АВ необходимо с учётом нескольких параметров.

Если выбранный автомат слишком «слабый», то будут происходить постоянные ложные срабатывания. И наоборот, слишком «сильная» модель, будет иметь довольно сомнительную полезность.

Мощность нагрузки

Одной из возможностей подобрать защитное устройство является выбор автомата по мощности нагрузки. Для этого необходимо узнать значение тока нагрузки. И уже из этих данных выбирать соответствующий номинал. Проще всего (да и точнее) это сделать с помощью закона Ома по формуле:

I=P/U,

где P — мощность потребителя (холодильник, микроволновая печь, стиральная машина и т. п. ), а U — напряжение сети.

Для примера потребитель будет взят 1,5 кВт, а напряжение сети обычное 220 В. Имея эти данные, подставив их в формулу, получится:

I = 1500/220 = 6,8 А.

В случае с трёхфазной сетью 380 вольт, напряжение будет 380 В.

Опираясь на закон Ома, можно без труда посчитать мощность нагрузки, из которой подбирать требуемый номинал автомата. Однако не стоит забывать, что, выбирая таким образом АВ, необходимо сложить нагрузку всех потребителей.

Существует и ещё одна формула для выбора автоматического выключателя по току, но она немного сложнее, но и конечный результат будет куда более точен. На практике это не принципиально, но в ознакомительных целях всё же стоит её привести:

I=P/U*cos φ.

Значения I, P, U будут теми же, что и в законе Ома, а вот cos φ — это коэффициент мощности, который учитывает в нагрузке реактивную составляющую. Это значение помогает определить таблица 6.12 нормативного документа СП 31−110−2003 «Проектирование и монтаж электроустановок жилых и общественных зданий».

Для примера данные будут использованы те же, т. е. потребитель 1,5 кВт, а напряжение всё те же 220 В. Согласно таблице, cos φ будет равен 0,65, как для вычислительных машин. Следовательно:

I = 1500 Вт/220 В * 0,65 = 4,43 А.

Сечение кабеля

Выбирать автомат лишь по мощности нагрузки будет непростительной ошибкой, которая может дорого стоить. Ведь если не учесть при этом сечение кабеля, то теряется всякий смысл в подборе автомата. Однако полученные значения нагрузки и номинал АВ смогут помочь в подборе необходимого кабеля.

Для этого не понадобится делать никаких расчётов, так как достаточно воспользоваться таблицей № 1.3.6 и 1.3.7 ПУЭ, где понятие длительно допустимый ток означает проходящее длительное время по проводнику напряжение, не вызывающее чрезмерного его нагрева. Проще говоря, за это значение можно принять рассчитанную мощность нагрузки. И получить требуемое сечение медного или алюминиевого провода.

По току короткого замыкания

Чтобы выбрать автоматический выключатель по мощности хотя и понадобились некоторые расчёты, но они были крайне просты. Этого совсем нельзя сказать о расчётах при выборе автомата по токам короткого замыкания.

Но при подборе номинала АВ для дома, коттеджа, квартиры или офиса, подобные расчёты будут излишни, так как основной показатель, особенно влияющий на данные, это длинна проводника. Но в подобных ситуациях она крайне мала, чтобы существенно повлиять на результат. Поэтому такие расчёты проводят лишь при проектировании подстанций и других подобных сооружений, где длина кабелей значительная.

Поэтому при выборе автоматического выключателя обычно приобретают модели с обозначением «С», где учитываются значения пусковых токов.

Блок: 3/4 | Кол-во символов: 3527
Источник: https://220v.guru/elementy-elektriki/avtomaty/raschet-avtomata-po-moschnosti-i-drugim-parametram.html

Выбор автомата по сечению кабеля

Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.

Расчет сечения жил кабеля и провода

Напряжение 220В.

– однофазная сеть используется в основном для розеток и освещения.
380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.

Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).

Автоматический выключатель «автомат»

это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.

Короткое замыкание (КЗ)

э- лектрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

Ток перегрузки

– превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.

Длительно допустимый ток кабеля или провода

– величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева.

Кабели ВВГнг с медными жилами

Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.

Сечение
токо-
проводящей
жилы, мм
Длительно допустимый
ток, А, для проводов
и кабелей с медными жилами.
Длительно допустимый
ток, А, для проводов
и кабелей с алюминиевыми жилами.
1,5 19
2,5 25 19
4 35 27
6 42 32
10 55 42
16 75 60
25 95 75
35 120 90
50 145 110

Блок: 3/9 | Кол-во символов: 2527
Источник: https://VolgaProekt.ru/stati/vybor-avtomata-po-moshchnosti-nagruzki.html

Номиналы автоматов по току таблица

Необходимость выбора автоматических выключателей возникает во время проектирования электрических сетей в новых домах, а также при подключении приборов и оборудования с более высокой мощностью. Таким образом, в процессе дальнейшей эксплуатации обеспечивается надежная электрическая безопасность объектов.

Халатное отношение к выбору устройства с необходимыми параметрами приводит к серьезным негативным последствиям. Поэтому перед выбором автоматического защитного устройства нужно обязательно убедиться, что установленная проводка выдержит запланированную нагрузку. В соответствии с ПУЭ автоматический выключатель должен обеспечивать защиту от перегрузки наиболее слабого участка цепи. Его номинальный ток должен соответствовать току подключаемого устройства. Соответственно и проводники выбираются с требуемым сечением.

Чтобы рассчитать мощность автомата по току, необходимо воспользоваться формулой: I=P/U, где Р является суммарной мощностью всех электрических приборов, имеющихся в квартире. Вычислив необходимый ток, можно выбрать наиболее подходящий автомат. Существенно упрощает проведение расчетов таблица, с помощью которой можно выбрать автоматический выключатель в зависимости от конкретных условий эксплуатации. Расчет автомата по мощности тока осуществляется в основном для электроустановок – электродвигателей, трансформаторов и других устройств, имеющих реактивную нагрузку.

Блок: 3/4 | Кол-во символов: 1433
Источник: https://electric-220.ru/news/vybor_avtomata_po_moshhnosti_i_nagruzki/2016-08-02-1032

Нюансы

В основном, вопросов с подбором пакетника по сечению кабеля у читателей не должно возникнуть, но есть некоторые тонкости, которые мы не упомянули выше.

  1. Автомат с каким типом электромагнитного расцепителя выбрать
    В быту чаще всего используются автоматы категории «В» и «С».
    Обусловлено это максимально быстрым срабатыванием пакетных выключателей при превышении номинального тока. Это крайне актуально при использовании таких приборов как электрочайники, тостеры и утюги. В зависимости от типа используемой техники следует выбирать определенную категорию, желательно отдать предпочтение выключателям категории «В».
  2. Автомат с какой максимальной мощностью отключаемой способности выбрать
    Зависит от места расположения ввода электричества с подстанции в квартиру, если в непосредственной близости, то стоит выбирать с отключаемой способностью в 10000 ампер, в остальном же для городских квартир хватает устройств на 5000–6000 ампер. Можно перестраховаться и выбрать вариант в 10000 ампер, в конечном счете данный показатель влияет лишь на то, будет ли работоспособен автомат после короткого замыкания.
  3. Какой тип провода выбрать: алюминий или медь
    Настоятельно не рекомендуем приобретать алюминиевые проводники. Медная проводка более надежная и способна выдерживать более высокие токи.

Блок: 4/5 | Кол-во символов: 1295
Источник: https://ProFazu.ru/elektrooborudovanie/zaschita/vybor-avtomata-po-secheniyu-kabelya-tablitsa.html

Таблица зависимости мощности автомата от сечения провода

В каждой электрической проводке происходит разделение на определенные группы. Соответственно каждая группа использует электрический провод или кабель с определенным сечением, а защита обеспечивается автоматом с наиболее подходящим номиналом.

Таблица поможет выбрать автоматический выключатель и сечение кабеля в зависимости от предполагаемой нагрузки электрической сети, рассчитанной заранее. Таблица помогает сделать правильный выбор автомата по мощности нагрузки. При расчете токовых нагрузок следует помнить, что расчеты нагрузки одного потребителя и группы бытовых приборов различаются между собой. При расчетах необходимо учитывать и разницу между однофазным и трехфазным питанием.

Блок: 4/4 | Кол-во символов: 750
Источник: https://electric-220.ru/news/vybor_avtomata_po_moshhnosti_i_nagruzki/2016-08-02-1032

Как рассчитать номинал автоматического выключателя?

Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.

Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.

Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.

Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.

Наглядно про подбор автоматических выключателей на видео:

Блок: 5/6 | Кол-во символов: 1526
Источник: https://YaElectrik.ru/jelektroshhitok/podbor-avtomata-po-moshhnosti

Выбираем автомат по току короткого замыкания (КЗ)

Вычислять оптимальный тип автомата КЗ довольно сложно. Нужно учитывать показатели электростанции, длину проводки и ее сечение. Однако прибегать к сложным вычислениям и помощи калькулятора не нужно. Для удобства пользователей автоматы разделены на три группы по время-токовым характеристикам (времени, за которое происходит отключение при угрозе кз, и показателе, в случае регистрации которого срабатывает отключение).

Какие бывают автоматы:

  1. B. Срабатывает за 5–20 секунд. Выключается, если произошло превышение в 5 раз. Подходят только для домов, где не задействована современная электротехника, а используются только осветительные приборы.
  2. C. Токовая нагрузка может превышать номинальную в 10 раз, время срабатывания – 1–10 секунд. Нужны при монтаже электропроводки в жилом доме только АВ типа C.
  3. D. Ток срабатывания может быть больше номинального в 14 раз, отключение происходит не более чем за 10 с. Такие АВ предназначены для промышленного использования.

Блок: 5/11 | Кол-во символов: 1010
Источник: https://pauk.top/vybor-avtomata-po-moschnosti-nagruzki.html

Итоги

При выборе автомата необходимо учитывать не только мощность нагрузки, но и сечение и материал проводника.

Для сетей с небольшими защищаемыми участками от токов КЗ, можно применять автоматические выключатели с характеристикой «С»

Номинал автомата должен быть меньше или равен длительно допустимому току проводника.

Блок: 9/9 | Кол-во символов: 316
Источник: https://VolgaProekt.ru/stati/vybor-avtomata-po-moshchnosti-nagruzki.html

ТОП-5 моделей автомата на рынке в текущем году

Подбирая АВ, необходимо учитывать рейтинг производителей подобных устройств.

Самые лучшие автоматы (точнее, их производители) на сегодняшний день:

  • Schneider Electric. Французская фирма. Автоматы ее производства давно испытаны в российских условиях, служат долго и отличаются надежностью.
  • General Electric. Недостаток – высокая цена, зато надежность и качество исполнения также на высоте. Американский производитель выпускает отличные АВ для трехфазных сетей.
  • Siemens. Низкая цена, но качество хуже, чем у двух лидеров, представленных выше. Тяжело найти приборы в продаже. Изначально бренд был немецким, затем его приобрели американцы. Надежность АВ и средняя стоимость делают компанию такой популярной.
  • Контактор. Лучший бренд из российских, однако цены кусаются. Лучше приобрести автоматы европейского производства, хотя Контактор – хорошее решение для слабонагруженных сетей.

Лучший автомат – не только тот, который получил положительные отзывы, но и обязательно способный выдержать мощность электроприборов.

Блок: 10/11 | Кол-во символов: 1059
Источник: https://pauk.top/vybor-avtomata-po-moschnosti-nagruzki.html

Как обезопасить электросеть от пожара

Чтобы избежать возгораний и выхода из строя электротехнике, лучше доверять проект подключения электросетей профессионалам. Они учтут такие важные аспекты, как номинальный ток, максимальная мощность одновременно включенных приборов, сечение кабеля, схема подключения в щитке и т.д. Рекомендуется заказывать такой проект не только при строительстве частного дома, но и при ремонте квартир советской постройки.

Блок: 11/11 | Кол-во символов: 447
Источник: https://pauk.top/vybor-avtomata-po-moschnosti-nagruzki.html

Кол-во блоков: 20 | Общее кол-во символов: 19616
Количество использованных доноров: 6
Информация по каждому донору:

  1. https://220v.guru/elementy-elektriki/avtomaty/raschet-avtomata-po-moschnosti-i-drugim-parametram.html: использовано 1 блоков из 4, кол-во символов 3527 (18%)
  2. https://VolgaProekt.ru/stati/vybor-avtomata-po-moshchnosti-nagruzki.html: использовано 2 блоков из 9, кол-во символов 2843 (14%)
  3. https://pauk.top/vybor-avtomata-po-moschnosti-nagruzki.html: использовано 4 блоков из 11, кол-во символов 3549 (18%)
  4. https://ProFazu.ru/elektrooborudovanie/zaschita/vybor-avtomata-po-secheniyu-kabelya-tablitsa.html: использовано 2 блоков из 5, кол-во символов 1350 (7%)
  5. https://electric-220.ru/news/vybor_avtomata_po_moshhnosti_i_nagruzki/2016-08-02-1032: использовано 4 блоков из 4, кол-во символов 4581 (23%)
  6. https://YaElectrik.ru/jelektroshhitok/podbor-avtomata-po-moshhnosti: использовано 3 блоков из 6, кол-во символов 3766 (19%)

Как подобрать автоматический выключатель

Автоматический выключатель — устройство, обеспечивающее защиту Вашего дома, электроники и Ваших близких от поражения электрическим током. В нормальных условиях, когда работа всех приборов и проводки проходит в обычном режиме, выключатель проводит через себя электрический ток. Но в случае когда по тем или иным причинам сила тока превысила номинальные значения (подключена нагрузка больше рассчитанной, вследствие неисправности электроприборов или электроцепей возникло короткое замыкание), срабатывают расцепители автоматического выключателя и размыкают цепь.

В модульных автоматических выключателях обычно стоят два типа расцепителей:

  • Тепловой расцепитель — срабатывающий при токах перегрузки. Конструктивно представляет из себя биметаллическую пластину, которая при нагревании благодаря свойствам материала распрямляется. В зависимости от величины номинального тока регулируется нагреваемая часть пластины. Соответственно скорость срабатывания автомата прямо пропорциональна силе тока, проходящей через пластину.
  • Электромагнитный расцепитель устройство срабатывающее при токах короткого замыкания, которые кратно превышают номинальный ток автоматического выключателя.

Для выбора модульного автоматического выключателя

необходимо определиться со следующими параметрами:

Количество полюсов автомата

  • Однополюсные автоматические выключатели устанавливаются в однофазной цепи. При этом однополюсные автоматы устанавливаются непосредственно на фазу, и защищают отходящие линии, обычно розеточные или осветительные линии.  
  • Трёхполюсные выключатели устанавливаются в трехфазной сети обычно в качестве вводных автоматов или для защиты трехфазных потребителей.

Ток перегрузки автоматического выключателя

Обычно вводной автомат ставят на ток, согласно выделенной мощности на квартиру или до.

При однофазной сети 

I=P/U например, на квартиру выделено 10кВт, значит вводной автомат ставим 10000Вт/220В =45,5 округляем до ближайшего меньшего =берем автомат на 40А.

При трехфазной сети

I=P/U*1.7  где 1,7 корень из 3. Допустим на квартиру выделено 30кВт -30000Вт/380В*1,7= 45,5 округляем, и выбираем трехполюсный автомат на 40А)

 

Для подбора автоматов на отходящих линиях необходимо выбирать в зависимости от сечения провода, который установлен на защищаемой линии. (В случае если у Вас на данной линии находится несколько потребителей). 

В случае, если на защищаемой линии один потребитель (например водонагреватель) устанавливают автомат, исходя из мощности устройства.

Сечение токопроводящей жилы, мм

Ток *, А, для проводов и кабелей

 

одножильных

двухжильных

трехжильных

1,5

23

19

19

2,5

30

27

25

4

41

38

35

6

50

50

42

10

80

70

55

 

Тип характеристики срабатывания при КЗ

  • В 3-5 предназначены для защиты активных нагрузок и протяженных линий освещения с системами заземления TN и IT (розетки, освещение).
  • С 5-10 предназначены для защиты цепей с активной и индуктивной нагрузкой с низким импульсным током (для офисных и жилых помещений)
  • D 10-20 используется при нагрузках с высокими импульсными (пусковыми) токами и повышенном токе включения (низковольтные трансформаторы, ламы-разрядники, подъемные механизмы, насосы)
  • K 8-15 активно-индуктивная нагрузка, эл.двигатели, трансформаторы
  • Z 2-3 электроника

Обычно в квартиру ставят автоматические выключатели с характеристикой С.

Наибольшая отключающая способность (ПКС) автоматов

— максимальный электрический ток, который автоматический выключатель может расцепить. Здесь принцип следующий: ПКС рассчитывается из максимального тока, который может возникнуть при коротком замыкании отходящих проводов.  Вводной автомат в квартиру должен быть по Госту минимум на 6 кА, автоматические выключатели на розеточную группу и освещение могут быть на 4,5 кА. В Европе автоматические выключатели на 4,5 кА запрещены.

Количество автоматов.

Обычно в распределительном щите устанавливают вводный автомат, автомат на розеточные линии на 2-3 комнаты, автомат на осветительные линии (наверно лучше по одному автомату на комнату), отдельно по автомату на мощных потребителей электроэнергии, калорифер, стиральную машину и т.д.

При комплектации наших клиентов, мы обычно рекомендуем модульные автоматы производства ABB серии S200 (ПКС 6кА) или Sh300 (ПКС 4,5кА) или Acti9 Schneider Electric. Строители при возведении новых домов устанавливают обычно автоматы производства ИЭК. Поэтому если в Вашей новой квартире установлены автоматы фирмы ИЭК, то Вы можете предположить какая у Вас установлена проводка внутри стен, марку и качество бетона и т.д.

Как выбрать автоматические выключатели для дома правильно? По току и мощности

Автоматические выключатели (автоматы), имеют массу преимуществ перед автоматическими пробками и пробками с плавкими вставками.

Современные защитно-предохранительные приборы и арматура имеют различное исполнение, но в быту, наибольшее распространение получили клавишные выключатели, имеющие клавишу включения-выключения и два контакта для соединения с наружной электромагистралью и домашней сетью.

Основной задачей любого автоматического выключателя является защита внутренней электропроводки от токовой перегрузки и как следствие этого – предотвращение ее разрушения или перегрева, которое может привести к пожару.

При превышении тока в сети порогового значения, автомат срабатывает, обесточивая помещения до момента, когда перегрузка не будет устранена. Большинство автоматов приводятся в рабочее состояние (включаются) вручную, что позволяет устранить повторные отключения при колебаниях нагрузки.

Большинство автоматических выключателей, устанавливаемых в бытовых электросетях, можно разделить на три категории:

  1. Центральный автоматический выключатель, роль которого раньше выполнял рубильник, устанавливается в распределительном щитке. Его назначение – полностью обесточить жилище (квартиру или индивидуальный дом) при проведении ремонтных-электротехнических работ, при стационарном подключении новых бытовых потребителей энергии, а также при использовании как аварийного устройства, срабатывающего, когда другая предохранительная аппаратура по той или иной причине не сработала. Обычно, центральный автомат отключает все питающие цепи – фазу и ноль при однофазной проводке и все три фазы и ноль при трехфазном электроснабжении.
  2. Автоматы, обеспечивающие аварийное отключение какой-либо одной квартирной электромагистрали, от которой питаются несколько потребителей энергии. Обычно, в городских квартирах, через отдельный автомат запитывается каждое жилое и бытовое помещение – кухня, гостиная, детская, рабочий кабинет. Кроме того, в частных жилых домах, многие владельцы стараются дифференцировать разводку по типам помещений – жилые, бытовые, с повышенной влажностью и тому подобное, используя для электроснабжения каждого отдельную линию. Существует и другой принцип установки этой категории автоматических выключателей – один отвечает за розетки, а второй за освещение.
  3. Индивидуальные автоматические выключатели, через которые запитаны мощные потребители электроэнергии – электроплиты, стиральные машины, варочные панели, электроводонагреватели. Обычно, они устанавливаются для повышения безопасности эксплуатации бытовых приборов, мощность которых превышает 1,5-2,0 киловатта.

Виды и критерии выбора

Однополюсный выключатель

Различных типов автоматических выключателей используется не особенно много, и их классификация производится по трем признакам:

  1. Максимальному напряжению, на которое рассчитан прибор конкретной марки.
  2. Количеству полюсов, которые замыкает отдельное устройство.
  3. Максимальной токовой нагрузке, при превышении которой срабатывает автомат.

Все бытовые защитные устройства могут быть однополюсными и многополюсными. Однополюсный выключатель встраивается в отдельную фазу (реже в нулевую линию). Многополюсные (трехполюсные) предназначены для установки в трехфазные сети, а двухполюсные для подключения к ним фазы и нуля в однофазных электросетях.

Напряжение в сети может быть равным 220,0 или 380,0 вольт. Реже можно встретить электропитание временных бытовок или помещений индивидуальных бань в 12 или 24 вольта. Выбор марки автомата по этому параметру достаточно прост – зная значение сетевого напряжения, выбирают электроприбор, соответствующий его величине.

Максимальная токовая нагрузка, по которой выбирается прибор, показывает какое значение тока в электросети приведет к срабатыванию автоматического выключателя.

Для выбора прибора по этому параметру, необходимо знать число потребителей электроэнергии, подключенных к отдельной линии, запитанной через автомат и их суммарную мощность. Сегодня, выпускаются модельные линии этих приборов, каждый типоразмер которого рассчитан на срабатывание при конкретном значении протекающего через него тока.

Обычно, токовые значения автомата выбираются из ряда 2,5; 4,0; 6,0; 10,0 …160,0 ампер.

Зная суммарную потребляемую мощность (Р) и величину сетевого напряжения (U), нетрудно определить максимальный ток (Imax), при превышении которого должно происходить срабатывание защитного устройства.

Для этого, достаточно воспользоваться формулой:

Конечно, для реальных условий эксплуатации, фактически протекающий в электросети (отдельной линии), ток может быть несколько выше расчетной величины. Этот запас необходим для предотвращения случайного срабатывания автомата при случайных скачках напряжения.

Кроме того, пусковой ток компрессора холодильника или стиральной машины в режиме отжима, в несколько раз превышает токовую нагрузку при номинальной мощности. Поэтому, все автоматические выключатели имеют некоторую инерционность и запас мощности, которые показывают, во сколько раз ток срабатывания превышает номинальное значение.,

В принципе, для выбора конкретного типоразмера электрического защитного прибора, знания вышеприведённых параметров достаточно. Однако, часто, особенно при модернизации квартирного электробеспечения, когда замена электропроводки не производится, выбор автомата можно осуществить по диаметру жилы отдельного провода.

При прокладке электропроводки, величина диаметра провода выбирается также по максимальной токовой нагрузке.

Зная диаметр отдельной жилы (провода) (d) можно определить его сечение (S), для чего используется следующее выражение:

,     

Выбор конкретной модели производится по выбранному табличному значению тока. При этом,срабатывание автоматического выключателя предотвратит выгорание электропроводки при подключении слишком мощных потребителей электроэнергии.

Таблица:

Выбор конкретной модели

Сегодня электротехническую арматуру выпускает достаточно много производителей. Причем многие из них используют собственную систему маркировки, а электрические характеристики конкретного типоразмера или модели можно определить только по каталожному номеру.

Разобраться в путанице этих обозначений неспециалисту довольно затруднительно, поэтому большинство самодеятельных электриков предпочитают устанавливать проверенные в эксплуатации устройства, нарекания на которые минимальны.

К таким автоматам можно отнести:

«АВВ»

Шведско-швейцарские автоматы, имеющие модульную конструкцию, из которых можно собрать любую линейку защитных устройств, выпускаемых на все расчетные токи и используемые напряжения.

«Дженерал электрик», («JE») и «Легранд»

Выключатель Legrand

Модульные автоматические выключатели.

«АЕ»

Российская защитная арматура. Несмотря на брендовые названия первых трех типов автоматов, многие из них производятся по лицензии на российских или китайских заводах, выпускающих электротехническую продукцию.

Особенности установки и эксплуатация

Сегодня, в городской квартире и индивидуальном жилом доме, может быть установлено несколько автоматических выключателей.

Существует определенный регламент, устанавливающий правила монтажа и размещения защитной арматуры различного назначения:

  1. Центральный (вводный) автомат. Устанавливается при вводе электрической линии в квартиру или жилой дом, до электрического счетчика. Через него будет проходить суммарная токовая нагрузка от энергопотребителей, размещенных во всех жилых и бытовых помещениях. Обычно, в однофазной сети в качестве этого прибора используется мощное двухполюсное защитное устройство, рассчитанное на ток 32,0…40,0 ампер. Для трёхфазного электроснабжения устанавливается 3-4-х полюсное устройство. При его срабатывании, жилище полностью обесточивается.
  2. Питание мощных периферийных устройств. Обычно применяют однополюсные автоматические выключатели, которые размещают на отдельном щитке в непосредственной близости от бытового прибора (электропечи, водонагревателя, стиральной машины).
  3. Запитывание отдельных электрических линий. К которым подключается несколько потребителей, также используется однополюсная защитно-предохранительная арматура, устанавливаемая непосредственно после счетчика электрической энергии. При этом, часто, отдельные приборы применяют для подачи электроэнергии в помещения с повышенной влажностью – застекленная лоджия, ванная комната, домашняя сауна или бассейн.

Статья была полезна?

0,00 (оценок: 0)

Пошаговое руководство по выбору автоматического выключателя

При выборе автоматического выключателя следует учитывать несколько различных критериев, включая напряжение, частоту, отключающую способность, номинальный постоянный ток, необычные условия эксплуатации и тестирование продукта. В этой статье будет дан пошаговый обзор выбора подходящего автоматического выключателя для вашего конкретного применения.

Номинальное напряжение

Общее номинальное напряжение рассчитывается на основе максимального напряжения, которое может быть приложено ко всем оконечным портам, типа распределения и того, как автоматический выключатель напрямую интегрирован в систему.Важно выбрать автоматический выключатель с достаточной допустимой нагрузкой для конечного применения.

Частота

Автоматические выключатели до 600 ампер могут применяться на частотах 50-120 Гц. Частоты выше 120 Гц приведут к снижению номинальных характеристик выключателя. Во время высокочастотных проектов вихревые токи и потери в стали вызывают больший нагрев компонентов теплового расцепителя, что требует снижения номинальных параметров или специальной калибровки выключателя.Общая величина снижения мощности зависит от номинального тока, размера корпуса, а также от частоты тока. Общее практическое правило заключается в том, что чем выше номинальный ток в корпусе определенного размера, тем больше требуется снижение номинальных характеристик.

Все выключатели с более высоким номиналом более 600 ампер содержат биметаллические элементы с трансформаторным нагревом и подходят для работы в сети переменного тока с частотой не более 60 Гц. Для приложений с минимальной частотой переменного тока 50 Гц обычно доступна специальная калибровка. Полупроводниковые выключатели предварительно откалиброваны для приложений с частотой 50 или 60 Гц.При реализации проекта дизельного генератора частота будет 50 Гц или 60 Гц. Лучше всего заранее проконсультироваться с подрядчиком по электрике, чтобы убедиться, что меры по калибровке приняты, прежде чем переходить к проекту 50 Гц.

Максимальная отключающая способность

Рейтинг отключения обычно принимается как наибольшая величина тока короткого замыкания, которую выключатель может отключить, не вызывая сбоя системы.Определение максимального значения тока повреждения, подаваемого системой, можно рассчитать в любой момент времени. Одно безошибочное правило, которое необходимо соблюдать при установке правильного автоматического выключателя, заключается в том, что отключающая способность выключателя должна быть равной или большей, чем величина тока короткого замыкания, которая может быть доставлена ​​в той точке системы, где применяется выключатель. Несоблюдение правильного значения отключающей способности приведет к повреждению выключателя.

Постоянный ток

Что касается номинального постоянного тока, автоматические выключатели в литом корпусе имеют номинал в амперах при определенной температуре окружающей среды.Этот номинальный ток — это постоянный ток, который прерыватель будет проводить при температуре окружающей среды, при которой он был откалиброван. Общее практическое правило для производителей автоматических выключателей — калибровать свои стандартные выключатели на 104 ° F.

Номинальный ток для любого стандартного применения зависит исключительно от типа нагрузки и рабочего цикла. Номинальный ток регулируется Национальным электротехническим кодексом (NEC) и является основным источником информации о циклах нагрузки в подрядной электротехнической отрасли. Например, для осветительных и фидерных цепей обычно требуется автоматический выключатель, номинал которого соответствует допустимой нагрузке на проводник.Чтобы найти различные стандартные номинальные токи выключателя для проводов разного диаметра и допустимые нагрузки, обратитесь к таблице 210.24 NEC.

Нетипичные условия эксплуатации

При выборе автоматического выключателя очень важно учитывать местоположение конечного пользователя. Каждый выключатель индивидуален, и некоторые из них лучше подходят для более жестких условий эксплуатации. Ниже приведены несколько сценариев, которые следует учитывать при выборе автоматического выключателя:

Высокая температура окружающей среды: Если стандартные термомагнитные выключатели применяются при температурах, превышающих 104 ° F, параметры выключателя должны быть снижены или откалиброваны в соответствии с окружающей средой.В течение многих лет все выключатели были откалиброваны на 77 ° F, что означало, что все выключатели с температурой выше этой должны были быть снижены. Реально, большинство вольеров было около 104 ° F; Для таких ситуаций использовался обычный специальный выключатель. В середине 1960-х годов отраслевые стандарты были изменены, чтобы все стандартные выключатели были откалиброваны с учетом температуры 104 ° F.

Коррозия и влага: В средах с постоянной влажностью для гидромолотов рекомендуется специальная обработка влаги.Эта обработка помогает противостоять плесени и / или грибку, которые могут вызвать коррозию устройства. В условиях повышенной влажности лучшим решением будет использование обогревателей в корпусе. Если возможно, выключатели следует удалять из агрессивных зон. Если это нецелесообразно, доступны специальные выключатели, устойчивые к коррозии.

Высокая вероятность удара: Если автоматический выключатель будет установлен в зоне с высокой вероятностью механического удара, необходимо установить специальное противоударное устройство.Противоударные устройства состоят из инерционного противовеса над центральной стойкой, который удерживает переключающую штангу в защелкивании в нормальных условиях удара. Этот груз должен быть установлен таким образом, чтобы он не препятствовал работе тепловых или магнитных расцепителей при сценариях перегрузки или короткого замыкания. ВМС США — крупнейший конечный пользователь ударопрочных молотов, которые требуются на всех боевых кораблях.

Высота: В районах, где высота превышает 6000 футов, автоматические выключатели должны быть снижены с учетом пропускной способности по току, напряжения и отключающей способности.На высоте более разреженный воздух не отводит тепло от токопроводящих компонентов, а также более плотный воздух, находящийся на более низких высотах. Помимо перегрева, более тонкий воздух также предотвращает накопление диэлектрического заряда, достаточно быстрого, чтобы выдерживать те же уровни напряжения, которые возникают при нормальном атмосферном давлении. Проблемы с высотой также могут снизить номинальные характеристики большинства используемых генераторов и другого оборудования для выработки электроэнергии. Перед покупкой лучше всего поговорить со специалистом в области энергетики.

Положение покоя: По большей части выключатели могут быть установлены в любом положении, горизонтально или вертикально, без влияния на механизмы отключения или отключающую способность.В районах с сильным ветром обязательно иметь выключатель в кожухе (большинство агрегатов поставляется в закрытом корпусе) на поверхности, которая немного колеблется от ветра. Когда автоматический выключатель прикреплен к негибкой поверхности, существует вероятность разрыва цепи при воздействии сильного ветра.

Техническое обслуживание и тестирование

При выборе автоматического выключателя пользователь должен решить, покупать ли устройство, прошедшее испытания UL (Underwriters Laboratories), или нет.Для обеспечения общего качества рекомендуется приобретать автоматические выключатели, прошедшие испытания UL. Имейте в виду, что изделия, не прошедшие испытания UL, не гарантируют правильную калибровку выключателя. Все низковольтные автоматические выключатели в литом корпусе, внесенные в список UL, проходят испытания в соответствии со стандартом UL 489, который разделен на две категории: заводские испытания и полевые испытания.

Заводские испытания UL: Все стандартные автоматические выключатели в литом корпусе UL проходят обширные производственные и калибровочные испытания в соответствии со стандартом UL 489.Выключатели, сертифицированные UL, содержат откалиброванные системы с заводскими пломбами. Неповрежденная пломба гарантирует, что выключатель правильно откалиброван и не подвергался вмешательству, модификации и что продукт будет работать в соответствии со спецификациями UL. Если печать нарушена, гарантия UL аннулируется, как и любые другие гарантии.

Полевые испытания: Это нормально, что данные, полученные в полевых условиях, отличаются от опубликованной. Многие пользователи не понимают, являются ли полевые данные некорректными или опубликованная информация не синхронизирована с их конкретной моделью.Разница в данных заключается в том, что условия испытаний на заводе значительно различаются по сравнению с полевыми. Заводские испытания предназначены для получения стабильных результатов. Температура, высота, климат-контроль и использование испытательного оборудования, разработанного специально для тестируемого продукта, влияют на результат. Публикация NEMA AB4-1996 — выдающееся руководство по полевым испытаниям. Руководство дает пользователю лучший вариант того, какие результаты являются нормальными для полевых испытаний. Некоторые выключатели поставляются со своими собственными инструкциями по тестированию.Если инструкции отсутствуют, обратитесь в надежную компанию по обслуживанию автоматических выключателей.

Техническое обслуживание: По большей части выключатели в литом корпусе имеют исключительную надежность, в основном благодаря тому, что блоки закрыты. Кожух сводит к минимуму воздействие грязи, влаги, плесени, пыли, других сред и несанкционированного доступа. Частью надлежащего технического обслуживания является обеспечение того, чтобы все клеммные соединения и расцепители были затянуты с надлежащим крутящим моментом, установленным производителем.Со временем эти соединения ослабнут, и их потребуется подтянуть. Автоматические выключатели также необходимо регулярно чистить. Неправильно очищенные проводники, неправильные проводники, используемые для клемм, и незакрепленные выводы — все это условия, которые могут вызвать чрезмерный нагрев и ослабление выключателя. Для выключателей с ручным управлением требуется только, чтобы их контакты были чистыми и чтобы рычаги работали свободно. Для автоматических выключателей, которые не используются на регулярной основе, требуется прерывистый запуск выключателя для обновления систем.

Как всегда, лучше всего проконсультироваться с сертифицированным электриком, чтобы точно определить, какой тип автоматического выключателя подходит для вашего генератора. Факторы, влияющие на безопасную и правильную работу электрогенератора и автоматического выключателя, варьируются от объекта к объекту, и только лицензированный профессионал может подобрать правильное оборудование.

Ссылка: Matulic, Darko. «Автоматические выключатели» стр. 171-173 Производство электроэнергии на месте, 4-е издание .Бока-Ратон, Флорида: Ассоциация электрических генерирующих систем, 2006.

Выбор автоматического выключателя — Руководство по электрическому монтажу

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор выключателя производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или нижним устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения.

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при заданной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Рабочие характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют уровень тока отключения, который зависит от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные параметры будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно отметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их уменьшения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в пределах указанного диапазона независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для распределительных систем низкого напряжения, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным органом снабжения. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оборудуются компенсированными отключающими устройствами для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / повышенные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в меняющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор порога срабатывания мгновенного или кратковременного срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей в сочетании с контакторами и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать той, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Согласование между автоматическими выключателями»).

Автоматические выключатели для систем IT

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. , рисунок h52).

В этом случае автоматический выключатель должен устранить замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно некоторым национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающего устройства от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны быть способны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель самого маленького трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель самого большого трансформатора пройдет наименьший уровень короткого замыкания. — ток цепи

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. Фазовый сдвиг напряжений, первичный и вторичный, должен быть одинаковым во всех параллельных устройствах.

2. Соотношение напряжения холостого хода первичной и вторичной обмоток должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов, имеющих коэффициент мощности более 2, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP, соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному автоматическому выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рисунке , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 были бы токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного автоматического выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в ИТ-схеме необходимо соблюдать следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается в соответствии с правилами для схем IT.

Выбор автоматического выключателя — Руководство по электрическому монтажу

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор выключателя производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или нижним устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения.

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при заданной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Рабочие характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют уровень тока отключения, который зависит от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные параметры будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно отметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их уменьшения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в пределах указанного диапазона независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для распределительных систем низкого напряжения, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным органом снабжения. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оборудуются компенсированными отключающими устройствами для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / повышенные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в меняющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор порога срабатывания мгновенного или кратковременного срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей в сочетании с контакторами и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать той, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Согласование между автоматическими выключателями»).

Автоматические выключатели для систем IT

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. , рисунок h52).

В этом случае автоматический выключатель должен устранить замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно некоторым национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающего устройства от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны быть способны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель самого маленького трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель самого большого трансформатора пройдет наименьший уровень короткого замыкания. — ток цепи

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. Фазовый сдвиг напряжений, первичный и вторичный, должен быть одинаковым во всех параллельных устройствах.

2. Соотношение напряжения холостого хода первичной и вторичной обмоток должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов, имеющих коэффициент мощности более 2, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP, соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному автоматическому выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рисунке , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 были бы токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного автоматического выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в ИТ-схеме необходимо соблюдать следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается в соответствии с правилами для схем IT.

Выбор автоматического выключателя — Руководство по электрическому монтажу

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор выключателя производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или нижним устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения.

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при заданной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Рабочие характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют уровень тока отключения, который зависит от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные параметры будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно отметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их уменьшения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в пределах указанного диапазона независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для распределительных систем низкого напряжения, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным органом снабжения. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оборудуются компенсированными отключающими устройствами для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / повышенные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в меняющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор порога срабатывания мгновенного или кратковременного срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей в сочетании с контакторами и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать той, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Согласование между автоматическими выключателями»).

Автоматические выключатели для систем IT

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. , рисунок h52).

В этом случае автоматический выключатель должен устранить замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно некоторым национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающего устройства от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны быть способны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель самого маленького трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель самого большого трансформатора пройдет наименьший уровень короткого замыкания. — ток цепи

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. Фазовый сдвиг напряжений, первичный и вторичный, должен быть одинаковым во всех параллельных устройствах.

2. Соотношение напряжения холостого хода первичной и вторичной обмоток должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов, имеющих коэффициент мощности более 2, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP, соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному автоматическому выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рисунке , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 были бы токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного автоматического выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в ИТ-схеме необходимо соблюдать следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается в соответствии с правилами для схем IT.

Подбор автоматического выключателя | EC&M

Благодарим вас за посещение одной из наших самых популярных классических статей.Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей «
Размер устройства защиты от перегрузки по току ».

Один из наиболее часто задаваемых вопросов: «Как выбрать автоматический выключатель?» Часто неправильно понимаемый факт об автоматических выключателях (CB) связан с процентом нагрузки, разрешенной NEC и конструкцией выключателя, и почему они могут отличаться. Давайте исследуем оба аспекта.

CB Дизайн

Автоматический выключатель рассчитан на то, чтобы выдерживать 100% своего номинального тока в течение неопределенного периода времени в стандартных условиях испытаний.Эти условия в соответствии со стандартом UL 489 по безопасности для автоматических выключателей в литом корпусе и кожухов автоматических выключателей UL 489 включают установку выключателя на открытом воздухе (т. Е. Без кожуха), где температура окружающей среды поддерживается на уровне 40 [градусов] C ( приблизительно 104 [градусов] F). В этих условиях выключатели в литом корпусе не должны срабатывать при номинальном токе.

Однако выключатель чаще всего применяется в оборудовании на 80% его номинального тока в соответствии с NEC Sec. 384-16 (с). Если вы понимаете, почему существует это требование, вы сможете правильно применять CB.

Характеристики отключения CB

Кривые срабатывания выключателя

показывают, сколько времени требуется для срабатывания определенных выключателей в зависимости от уровня тока. На рис. 1 представлена ​​типичная кривая для термомагнитного выключателя. Изогнутая часть вверху показывает время, необходимое выключателю для отключения при перегрузке. Состояние перегрузки вызовет накопление тепла вокруг пути тока, внутри выключателя, а также вдоль силовых проводов. Это тепло, которое генерируется током, на самом деле является причиной отключения выключателя в этой области, а не просто величиной тока.Считается, что этот участок кривой имеет обратнозависимую временную характеристику, что означает, что выключатель сработает за меньшее время при более высоких уровнях протекания тока.

Поскольку путь прохождения тока (включая как выключатель, так и проводник) реагирует на тепло, общая рабочая температура оборудования становится фактором при выборе выключателя в кожухе.

Другие факторы, которые могут повлиять на рабочую температуру оборудования, включают:

  • Размер и расположение корпуса;
  • В одном корпусе размещено более одного токонесущего устройства;
  • Уровень тока, который несет каждое устройство; и
  • Условия окружающей среды в зоне установки оборудования.

Следовательно, простая разработка автоматического выключателя на 100% номинального тока решает лишь часть проблемы. Оборудование должно быть в состоянии безопасно выдерживать тепло, выделяемое всеми источниками, без превышения температурных пределов, установленных в стандарте испытаний продукции. Оба эти фактора учитываются правилами калибровки, установленными NEC.

1996 NEC

NEC 1996 года признает, что на устройства защиты от сверхтоков будет влиять тепло в системе.Таким образом, он определяет концепцию непрерывных нагрузок и правило 80%, чтобы попытаться компенсировать влияние тепла в системе при определении размеров выключателя.

Непрерывные нагрузки. Чтобы лучше понять размерные аспекты CB, вы должны сначала четко понять концепцию непрерывных нагрузок. В ст. 100, NEC определяет непрерывную нагрузку как «нагрузку, при которой ожидается, что максимальный ток будет продолжаться в течение трех часов или более». Вам очень важно понимать, что это нагрузка при максимальном токе, работающая непрерывно в течение как минимум трех часов.Офисное освещение обычно соответствует этому критерию.

Правила определения размеров NEC. Сек. 210-22 (c), 220-3 (a), 220-10 (b) и 384-16 (c) все относятся к правилам определения размеров для устройств защиты от перегрузки по току (OCPD). Первые три указывают одно и то же требование:

Размер OCPD = 100% прерывистой нагрузки + 125% продолжительной нагрузки.

сек. 384-16 (c) имеет то же требование, за исключением того, что оно указано в терминах загрузки OCPD. Это правило гласит, что OCPD может быть загружен только до 80% от своего номинала для непрерывных нагрузок.Помните, что 80% — это величина, обратная 125% (0,80 = 1 [деленное на] 1,25), и поэтому правила действительно идентичны по конечным требованиям.

Внимательно прочтите правило; 125% -ный размер OCPD (или 80% -ная нагрузка) применим только при наличии непрерывных нагрузок. CB и другие OCPD могут быть рассчитаны на 100% от их номинала для приложений с непостоянной нагрузкой.

устройства со 100% -ным рейтингом. NEC действительно распознает полные сборки (включая OCPD), которые указаны для работы на 100% от их номинальных значений для продолжительных нагрузок.Это означает, что оборудование прошло дополнительные испытания, чтобы убедиться, что оно может выдерживать дополнительный нагрев, связанный с этим уровнем эксплуатации.

Автоматический выключатель со 100% номинальными характеристиками и оборудование конечного использования были протестированы для подтверждения того, что дополнительное тепло, генерируемое в условиях 100% непрерывной нагрузки, безопасно рассеивается. Другие технические характеристики оборудования также обусловлены необходимостью рассеивания тепла, связанного с уровнем нагрева, достигнутым во время 100% номинальных испытаний. В случаях, когда температура на клеммах проводки выключателя превышает 50 [градусов] C во время 100% номинального испытания, UL 489 требует использования изолированного провода 90 [градусов] C (рассчитанного на допустимую нагрузку 75 [градусов] C) с этими выключателями, и CB должен быть отмечен производителем как таковой.UL 489 также определяет минимальный размер корпуса и требования к вентиляции, если это необходимо для отвода тепла. CB, успешно прошедший эти дополнительные испытания, все еще не включен в список для применения со 100% номиналом для непрерывной нагрузки, если он не отмечен как таковой производителем.

Таким образом, ЦБ имеет либо стандартный рейтинг (80%), либо 100% рейтинг. Стандартный рейтинг зависит от только что обсужденных правил NEC. Автоматические выключатели со 100% -ным номиналом могут постоянно нагружаться с полным номиналом до тех пор, пока сборка указана в списке и проводники правильно подключены.

CB Примеры размеров

Ниже приведены примеры правил определения размеров.

Пример 1: 50 А непрерывная нагрузка и 125 А прерывистая нагрузка.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 125 A) + (1,25 x 50 A) = 187,5 A

Следовательно, требуется OCPD на 200 А. Если выбран автоматический выключатель со 100% -ным номиналом, допустимым является рейтинг 175А (125А + 50А).

Пример 2: Непрерывная нагрузка 300 А.

Допускается устройство на 300 А; устройство со 100% номиналом не требуется, поскольку нагрузка непостоянна.

Пример 3: 200A непрерывная нагрузка.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 0A) + (1,25 x 200A) = 250A

Следовательно, нужен прибор на 250А. Если выбран автоматический выключатель со 100% -ным номиналом, допускается номинальный ток 200 А.

Пример 4: 16 А непрерывный и 30 А прерывистый.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 30A) + (1,25 x 16A) = 50A

Следовательно, можно выбрать устройство на 50 А.Хотя устройства со 100% номиналом обычно недоступны для таких малых размеров, допустимый номинал все равно будет 50 А (16 А + 30 А = 46 А; округлено до 50 А).

Джим Поли — менеджер по отраслевым стандартам, а Сэнди Янг — специалист по продукции для автоматических выключателей в Square D Co., Лексингтон, штат Кентукки, и в Сидар-Рапидс, штат Айова, соответственно.

Как правильно выбрать автоматический выключатель

Автоматические выключатели — очень важная часть электробезопасности.Они контролируют количество электричества, которое проходит через систему электропроводки здания. Если в вашем доме произошла перегрузка или короткое замыкание, исправный автоматический выключатель обнаружит проблему и отключит подачу электроэнергии. Это защитит вашу проводку и приборы, пока вы не решите проблему и не включите электричество. Однако для того, чтобы автоматический выключатель выполнял свою работу должным образом, вы должны подобрать правильный автоматический выключатель, точно соответствующий вашим потребностям. Прочтите следующие простые объяснения, и вы будете готовы выбрать подходящий автоматический выключатель для своего дома.

3 мощности автоматических выключателей

Автоматические выключатели доступны с 3 различными значениями напряжения. Каждая из них рассчитана на определенное количество электроэнергии.

  1. Низковольтные термомагнитные выключатели лучше всего подходят для большинства частных домов. Они учитывают электрические токи величиной до 1000 ампер.
  2. Автоматические выключатели среднего напряжения используются в больших зданиях, таких как жилые комплексы и предприятия, которые постоянно используют до 72000 вольт.
  3. Высоковольтные выключатели используются рядом с линиями электропередач и в других местах, где регулярно используется напряжение более 72 000 вольт.

Как работает автоматический выключатель?

В низковольтных автоматических выключателях есть 2 защитных механизма, которые предохраняют ваши приборы от перегрева из-за электрических перегрузок:

  • Первый — это электромагнит, который немедленно отключает электрический ток при обнаружении большого скачка напряжения.
  • Второй предохранительный механизм приводится в действие термической металлической полосой, которая изгибается и переводит переключатель в положение «Выкл.», Когда слишком много тепла воздействует на продолжительный электрический импульс.

Типы автоматических выключателей

В категории низковольтных автоматических выключателей для домашнего использования вы также найдете 3 различных типа.

  1. Стандартные автоматические выключатели — самый распространенный тип, используемый для большинства электрических розеток в доме, особенно для тех, которые обслуживают крупную бытовую технику. Они могут быть одно- или двухполюсными.
  2. Автоматические выключатели GFCI отключают питание схемы не только в случае перегрузки или короткого замыкания, но и при обнаружении замыкания на землю.Они необходимы в тех частях дома, где электрические розетки расположены рядом с источниками воды, например на улице, на кухне и в ванной комнате.
  3. Автоматические выключатели AFCI прерывают подачу питания, когда обнаруживают скачок напряжения или ненормальный путь, который может вызвать электрический пожар. Они требуются по нормам во всех новых домах, заменяя стандартные автоматические выключатели.

Определите размер автоматического выключателя, который вам нужен

Чтобы выбрать автоматический выключатель наилучшего размера для ваших конкретных домашних нужд, проверьте размер провода, указанный на кабеле, который должен быть подключен к автоматическому выключателю.Вы увидите 2 перечисленных измерения: первое покажет вам калибр провода, за ним следует тире и второе число, которое указывает, сколько проводов находится внутри кабеля. После того, как вы установили калибр проводов, используйте следующую таблицу, чтобы выбрать правильный автоматический выключатель:

  • Провод 8 калибра = автоматический выключатель на 40 А
  • Провод 10 калибра = автоматический выключатель на 30 А.
  • Провод 12 калибра = Автоматический выключатель на 20 ампер
  • провод калибра 14 = автоматический выключатель на 15 ампер

Электротехнические работы всегда должны выполняться с соблюдением техники безопасности.Если у вас есть какие-либо вопросы или затруднения по поводу выбора правильного автоматического выключателя для вашего проекта, поговорите со специалистом в местном хозяйственном магазине или позвоните опытному электрику, чтобы получить полезный совет. Удачи!

Эта статья была обновлена ​​12 ноября 2017 г.

Выбор автоматического выключателя | Симметричный ток

Выбор автоматического выключателя:

Существует два типа выбора номиналов автоматического выключателя, для которых требуется вычисление тока SC: (i) номинальный мгновенный ток и (ii) номинальный симметричный ток отключения .

Симметричный ток SC получается за счет использования субпереходных реактивных сопротивлений для синхронных машин. Затем рассчитывается мгновенный ток (среднеквадратичное значение) путем умножения симметричного мгновенного тока на коэффициент 1,6, чтобы учесть наличие постоянного тока смещения.

Симметричный прерываемый ток вычисляется с использованием субпереходных реактивных сопротивлений для синхронных генераторов, а переходные реактивные сопротивления для синхронных двигателей не учитываются. Значение смещения постоянного тока, добавляемое для получения прерываемого тока, учитывается путем умножения симметричного тока SC на коэффициент, указанный в таблице ниже:

Если SC MVA (поясняется ниже) больше 500, указанные выше множители увеличиваются на 0.По 1 штуке. Коэффициент умножения для воздушных выключателей на 600 В или ниже составляет 1,25.

Ток, который может прервать автоматический выключатель, обратно пропорционален рабочему напряжению в определенном диапазоне, т.е.

Амперы при рабочем напряжении = Амперы при номинальном напряжении x номинальное напряжение / рабочее напряжение

Конечно, рабочее напряжение не может превышать максимальное расчетное значение. Кроме того, независимо от того, насколько низкое напряжение, номинальный ток отключения не может превышать номинальный максимальный ток отключения .В этом диапазоне напряжений произведение рабочего напряжения и тока отключения является постоянным. Поэтому логично и удобно выразить выбор номинала автоматического выключателя в терминах SC MVA, которые могут быть прерваны, определяемых как

.

Номинальная отключающая способность МВА (трехфазная)

где V (линия) в кВ, а I (линия) в кА.

Таким образом, вместо вычисления тока SC, который должен быть прерван, мы вычисляем трехфазный SC MVA, который должен быть прерван, где

Если напряжение и ток указаны на единицу измерения для трехфазной сети

Очевидно, что номинальная отключающая способность автоматического выключателя должна быть больше (или равна) отключаемой способности SC MVA.

Для выбора автоматического выключателя для конкретного местоположения мы должны найти максимально возможное значение SC MVA для прерывания с учетом типа и местоположения неисправности и генерирующей мощности (также нагрузки синхронного двигателя), подключенной к системе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *