Первичная и вторичная обмотка: Что такое первичная и вторичная обмотка трансформатора

Содержание

Что такое первичная и вторичная обмотка трансформатора

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

24.05.2013

Трансформатор — статический (без подвижных частей) электромагнитный аппарат, предназначенный для повышения или понижения напряжения переменного тока.

Принципиальная схема трансформатора приведена на рис. 1.

Основные части трансформатора: замкнутый стальной сердечник 1 и размещенные на этом сердечнике обмотки 2 и 3. Обмотки изолированы от стального сердечника и друг от друга, т. е. обмотки электрически не связаны между собой.

Сердечники трансформаторов набирают из листов специальной так называемой трансформаторной стали толщиной 0,35 или 0,5 мм.

Листы стали изолируют друг от друга специальной бумагой или лаковой изоляцией.

Трансформаторная сталь имеет повышенное по сравнению с обычной сталью электрическое сопротивление, способствующее, так же как и наличие прокладок и лака, уменьшению вихревых токов, индуктируемых в сердечнике, и связанных с ними потерь.

В трансформаторной стали потери, связанные с гистерезисом (перемагничиванием), меньше, чем в других сортах стали.

Обмотка трансформатора, к которой подводится электрическая энергия, называется первичной обмоткой, другая, к которой присоединяются приемники энергии, — вторичной обмоткой.

Соответственно все электрические величины (мощность, напряжение, ток, сопротивление и т. д.), относящиеся к электрической цепи первичной обмотки, называются первичными, а относящиеся ко вторичной обмотке, — вторичными.

Обмотка с более высоким напряжением называется обмоткой высшего напряжения (в. н.), обмотка, присоединенная к сети с меньшим напряжением, называется обмоткой низшего напряжения (н.н.).

Если вторичное напряжение меньше первичного, то трансформатор называется понижающим, а если больше — повышающим.

Режим работы трансформатора, при котором вторичная обмотка разомкнута, а к зажимам первичной подведено напряжение, называется холостым ходом.

Если к зажимам первичной обмотки подвести напряжение переменного тока U1, то в первичной обмотке потечет ток, который создаст переменный магнитный поток.

Преобладающая часть магнитных линий потока замкнется по стальному сердечнику, пронизывая все нитки первичной и вторичной обмоток. Эта часть магнитного потока называется основным, или рабочим, магнитным потоком Ф

т.

Другая часть потока, обычно гораздо меньшая, замыкается через воздух, пронизывая только витки первичной обмотки, и называется потоком рассеяния первичной обмотки Фs1. При разомкнутой вторичной цепи (цепи, питаемой от вторичной обмотки) ток в ней отсутствует и с ней не связано никакое магнитное поле.

При замыкании вторичной цепи в ней появляется ток; связанное с ним магнитное поле образует два потока: один в сердечнике, другой, замыкающийся через воздух, Фs2; таким образом, около вторичной обмотки также создается поток рассеяния.

Потоки рассеяния аналогичны магнитному потоку самоиндукции, который создает ток в любой катушке индуктивности и любом проводе. Эти потоки являются вредными.

Согласно закону электромагнитной индукции при изменении основного магнитного потока индуктируется э. д. с. в первичной обмотке Е1 и во вторичной Е2.

Так как первичная обмотка с числом витков w1 и вторичная обмотка с числом витков w2 пронизываются одним и тем же основным потоком, то очевидно, что в каждом витке обеих обмоток индуктируется одинаковая по величине э. д. с. е. Следовательно, Es1 = ew1 и Е2 = ew2, откуда

где К — коэффициент трансформации трансформатора.

Поток рассеяния в свою очередь индуктирует э. д. с. рассеяния в первичной обмотке E

s1.

Следовательно, напряжение, приложенное к первичной обмотке трансформатора, U1 должно быть уравновешено падением напряжения в активном сопротивлении I1r1 первичной обмотки, э. д. с. Esl рассеяния и э. д. с. E1 основного потока.

При холостом ходе, т. е. при разомкнутой вторичной цепи, Es1 и I1r1 очень малы и можно считать, что э. д. с. Е1, индуктируемая в первичной обмотке, полностью уравновешивает подведенное напряжение U1.

При разомкнутой вторичной цепи э. д. с. Е2 электрического тока не вызывает, но если мы замкнем вторичную обмотку, т. е. присоединим к ней приемники электроэнергии, то под действием вторичной э. д. с. по вторичной цепи потечет ток, подводимая к трансформатору первичная мощность преобразовывается во вторичную, где используется для приемников электроэнергии (электродвигателей, электрических ламп и т. д.).

Если не учитывать потерь, можно считать, что подводимая мощность E1I1 приблизительно равна вторичной мощности Е2I2 (I1 и I2 — первичный и вторичный токи трансформатора), т. е.

т. е. при трансформации первичный и вторичный токи приблизительно обратно пропорциональны числам витков соответствующих обмоток; э. д. с. первичной и вторичной обмоток прямо пропорциональны числам витков соответствующих обмоток.

Вторичный ток I2, проходя в обмотке, создает ампер-витки I2w2, действующие в той же магнитной цепи трансформатора (сердечнике), что и ампер-витки первичной обмотки. Следовательно, при нагрузке основной магнитный поток (сцепленный с первичной и вторичной обмотками) будет определяться совместным действием ампер-витков l1w1 первичной и ампер-витков I2w2 вторичной обмоток.

Согласно закону Ленца индуктированный во вторичной обмотке ток направлен таким образом, что препятствует изменению сцепленного с ним магнитного потока. Изменение магнитного потока вызывается первичными ампер-витками l

1w1. Следовательно, вторичный ток должен быть такого направления, чтобы создаваемые ими ампер-витки действовали против ампер-витков первичной обмотки.

Уменьшение основного магнитного потока из-за размагничивающего действия вторичных ампер-витков вызовет уменьшение индуктированной им э. д. с. Е1 в первичной обмотке. Так как напряжение, приложенное к зажимам первичной обмотки U1, остается постоянным, то при уменьшении Е1 оно не уравновешивает напряжения U1, поэтому ток увеличивается до величины, при которой восстанавливается равенство напряжения U1 и э. д. с. Е1. При этом основной магнитный поток должен практически сохранять величину, равную величине основного потока при холостом ходе.

Действительно, при всех нагрузках трансформатора напряжение сети U1 должно уравновешиваться э. д. с. Е1 (падением напряжения в первичной обмотке пренебрегаем). Для этого необходимо, чтобы основной магнитный поток Фт оставался неизменным, т. е. постоянным при любой нагрузке трансформатора. Ток I1 в первичной обмотке должен быть таким, чтобы компенсировать влияние ампер-витков, создаваемых током I2 во вторичной обмотке. Напряжения на зажимах вторичной обмотки всегда меньше э. д. с. Е2 вследствие падения напряжения в активном и реактивном сопротивлениях вторичной обмотки.

Для трансформации трехфазного тока применяют трехфазные трансформаторы (трехстержневые), или групповые, которые составляются из трех однофазных.

Создателем первой конструкции трехфазного трансформатора является М. О. Доливо-Добровольский. Ученый применил его при сооружении в 1891 г. первой линии электропередачи трехфазного тока, по тому времени самой большой в мире по мощности и протяженности, осуществленной на расстоянии 178 км при напряжении до 30 000 в.

Трехстержневые трехфазные трансформаторы имеют общую магнитную цепь для всех трех фаз, состоящую из трех вертикальных стержней и двух горизонтальных, связывающих вертикальные стержни (рис. 2). Каждый вертикальный стержень 1, 2 и 3 с двумя обмотками I и II представляет собой однофазный трансформатор. Одна из обмоток является первичной,а другая — вторичной. Процессы, происходящие в каждой фазе трехфазного трансформатора, не отличаются от процессов в однофазном трансформаторе.

При этом в любой момент времени основной магнитный поток каждой фазы равен алгебраической сумме магнитных потоков двух других фаз.

Первичные, а также вторичные обмотки могут соединяться между собой звездой:

При передаче энергии из первичной обмотки трансформатора во вторичную часть мощности расходуется: на нагревание стального сердечника (гистерезис и вихревые токи), на нагревание первичной и вторичной обмоток (тепло Ленца).

Мощность, расходуемая на нагревание стального сердечника, называется потерями в стали и обозначается Рст.

Мощность, расходуемая на нагревание обмоток, называется потерями в меди и обозначается Рм.

Отношение мощности Р2, отдаваемой вторичной обмоткой потребителям тока (вторичная мощность), к мощности Р1 подводимой к первичной обмотке (первичная мощность), называется коэффициентом полезного действия(к. п. д.) трансформатора:

— мощность, отдаваемая трансформатором.

Коэффициенты полезного действия трансформаторов достигают весьма высоких значений. К. п. д. некоторых мощных трансформаторов составляет 98—99%.

Трансформаторы, обычно применяемые в береговых установках, погружают в бак со специальным трансформаторным маслом. Масло имеет большую теплоемкость, чем воздух, лучше отводит теплоту и является хорошим изоляционным материалом. Масло повышает электрическую прочность изоляции обмоток трансформатора. Поэтому масляные трансформаторы имеют меньшие габариты, чем воздушные той же мощности и с таким же напряжением. Стенки бака для лучшей теплоотдачи изготовляются из волнистого железа; иногда к баку пристраивается специальный радиатор.

Трансформатор, имеющий только одну обмотку, часть которой является общей для первичной и вторичной цепи, называется автотрансформатором (рис. 3, б).

Первичная обмотка (рис. 3, а) — витки w1 (участок обмотки 1—3), а вторичная — витки w2 (участок обмотки 1′ — 2′).

В общей части обмотки 1—2 ток равен разности I2 — I1, так как в автотрансформаторе вторичная обмотка совмещена с первичной.

называется коэффициентом трансформации автотрансформатора.

Преимуществами автотрансформатора (по сравнению с трансформатором) являются уменьшение сечения общей части обмотки, больший к. п. д. и меньший вес.

Наряду с указанными достоинствами автотрансформатор имеет существенный недостаток, а именно: возможность проникновения высокого напряжения в сеть низкого напряжения, так как первичные обмотки имеют электрическое соединение; поэтому автотрансформаторы применяются главным образом в установках низкого напряжения.

Трансформаторы, предназначенные для береговых и общепромышленных установок, отличаются от судовых. Обычно трансформаторы мощностью свыше 10 кВА, применяемые в береговых установках, погружают в бак, наполненный специальным трансформаторным маслом.

Для установки на судах отечественная промышленность выпускает специальные типы судовых трансформаторов — однофазные и трехфазные. Все судовые трансформаторы имеют естественное воздушное охлаждение. Масляные трансформаторы, несмотря на их преимущества, на судах не применяют, так как масло обладает горючестью и может выплескиваться при качке.

Однофазные судовые трансформаторы выпускаются мощностью до 10,5 кВА, а трехфазные — до 50 ква.

Первичное напряжение их равно 400, 230 и 133 в (последнее только для однофазных трансформаторов), а вторичное — 230, 133, 115 и 25 в.

Для возможности регулирования вторичного напряжения первичная обмотка трансформатора имеет несколько выводов. У трансформаторов для номинального первичного напряжения 380 в эти выводы соответствуют напряжению сети 400, 390, 380 и 370 в, а у трансформатора на 220 в — 230, 225, 220 и 215 в.

Если при номинальном напряжении первичной сети к ней будет подключена более высокая ступень напряжения первичной обмотки (например 400 или 390 в при номинале 380 в), то на вторичной стороне трансформатора напряжение будет ниже номинального. При подключении на первичной стороне более низкой ступени, чем номинальное напряжение, на вторичной стороне получим напряжение выше номинального.

Судовые трансформаторы выпускаются для установки на открытых палубах и для установки в закрытых помещениях.

Изоляция их рассчитана на длительное пребывание в условиях большой влажности окружающей среды.

Все судовые трансформаторы выпускаются в гладких, закрытых металлических кожухах, снабженных лапами с отверстиями для крепления трансформаторов болтами к палубе или переборкам.

Тема: как сделать, намотать, перемотать вторичную, выходную обмотку трансформатора под нужный ток и напряжение, её простой расчёт.

Напомню, что трансформатор – это электротехническое устройство, способное преобразовывать электрическую энергию через промежуточную среду в виде электромагнитного поля. Устройство трансформатора достаточно простое. Он состоит из магнитного сердечника (может иметь различные формы) на который наматываются витки изолированного провода. Классический вариант трансформатора содержит две обмотки: первичная (она же входная) и вторичная (она же выходная). В зависимости от материала магнитного сердечника, общей мощности трансформатора, нужных параметров (входное и выходное напряжение и сила тока) данное устройство содержит определённое количество витков и сечение обмоточного провода.

Первичные обмотки трансформаторов в большинстве своем рассчитаны на стандартное сетевое напряжение величиной 220 вольт (реже на 380 вольт, это трансформаторы используют в промышленной сфере). Одной из главных характеристик трансформатора является его мощность. Зная мощность данного устройства и имея первичную обмотку, рассчитанную на 220 вольт можно легко переделать любой трансформатор под свои нужды (если этой мощности вам будет хватать) намотав вторичную обмотку под нужное выходное напряжение и силу тока.

А как можно определить эту самую мощность трансформатора? По его сердечнику! Электрическая мощность трансформатора (в ваттах) равна квадрату площади (в сантиметрах) поперечного сечения той части магнитопровода, на которую наматывается провод.

Напомню, что электрическая мощность равна произведению напряжения на силу тока. То есть, если мы узнали мощность трансформатора, с которой он может работать мы можем вычислить номинальную силу тока, что может выдавать вторичная обмотка (зная величину напряжения).

К примеру, вы решили сделать себе блок питания относительно небольшой мощности. Берём от старой, ненужной электротехники (если таковая у вас имеется в доме, гараже) понижающий силовой трансформатор (с железным магнитопроводом) или его покупаем. Допустим, по сердечнику вы определили, что трансформатор имеет мощность около 120 ватт. Это значит, что при напряжении в 12 вольт (на вторичной обмотке) он может обеспечивать силу тока величиной до 10 ампер (мощность разделили на напряжение и получили силу тока). В действительности же нужно учитывать, что у малогабаритных трансформаторов КПД равен около 80%, значит и максимальный выходной ток будет чуть меньше, чем 10 ампер (исходя из данного примера).

Трансформатор, который вы нашли, приобрели, оказался рассчитанный (его вторичная, выходная обмотка) на другое напряжение, не то, которое нужно именно вам. Не беда! Мы его аккуратно разбираем, разматываем старую вторичную обмотку и наматываем новую. Если диаметр провода может обеспечить вам нужный ток, то просто перематываем старую вторичную обмотку под нужное напряжение. От количества витков зависит напряжение (чем больше витков, тем выше напряжение на выходе). От сечения провода обмотки зависит сила тока (чем больше сечение, тем больший ток провод может пропустить через себя, не перегреваясь).

У различной мощности трансформаторов количество витков на 1 вольт будет также различное. Чем больше мощность, тем меньше нужно наматывать провода для получения 1 вольта (а в целом нужной величины напряжения). Сечение провода в значительной степени зависит от той плотности тока, которую вы можете допустить. Если площадь намотки велика, то и охлаждаться она будет лучше, следовательно, и плотность тока можно выбрать больше. Когда же обмотка намотана кучно, то лучше плотность тока брать меньше. В среднем плотность тока равна 2 А/мм2. При этой плотности диаметр провода (без учета изоляции) можно рассчитать по формуле:

Количество витков вторичной обмотки проще будет определить практическим путём. Для этого, на скорую руку, на трансформатор мотаем, допустим, 20 витков. Подаем на первичную обмотку питание. Далее измеряем напряжение на вторичной обмотке (этих самых 20 витках), после чего эти 20 витков делим на измеренное напряжение, и получаем количество витков, которые будут выдавать нам 1 вольт. Ну, а потом, чтобы узнать общее количество витков вторичной обмотки, мы напряжение вторичной обмотки умножаем на количество витков на один вольт. К примеру, 1 вольт мы получим при намотке 10 витков, следовательно, мы 10 умножаем на 12 вольт (которые мы хотим получить на выходе трансформатора). В итоге наша вторичная обмотка должна содержать 120 витков.

Прежде чем подключать трансформатор к сети,нужно определить первичную обмотку трансформатора, прозвонить его первичные и вторичные обмотки омметром.

У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

В двух каркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном определение первичного напряжения трансформатора, предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Видео: Простой способ диагностики силового трансформатор

Когда неизвестен тип силового трансформатора, тем более мы не знаем его паспортных данных, на помощь приходит обыкновенный стрелочный тестер и не хитрое приспособление в лице лампы накаливания.

Как подобрать предохранитель для трансформатора

Рассчитываем ток предохранителя обычным способом:

I – ток, на который рассчитан предохранитель (Ампер),
P – габаритная мощность трансформатора (Ватт),
U – напряжение сети (

Ближайшее значение – 0,25 Ампер.

определение первичного напряжения трансформатора

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 — 10 10 — 200
10 -50 20 — 100
50 — 150 50 — 300
150 — 300 100 — 500
300 — 1000 200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.
Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Можно подобрать готовый трансформатор из числа унифицированных типа ТН,
ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать
трансформатор под нужное напряжение, что тогда делать?

Тогда необходимо подобрать подходящий по мощности силовой трансформатор
от старого телевизора, к примеру, трансформатор ТС-200 и ему подобные.

Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.

Что делаем далее, если неизвестно количество витков на вольт?

Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток —
амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся,
диаметр провода любой, для удобства можем намотать и просто монтажным
проводом в изоляции.

Формула для расчета витков трансформатора

P=U2*I2 (мощность трансформатора)

Sсерд(см2)= √ P(ва) N=50/S

I1(a)=P/220 (ток первичной обмотки)

W1=220*N (количество витков первичной обмотки)

W2=U*N (количество витков вторичной обмотки)

D1=0,02*√i1(ma) D2=0,02*√i2(ma)
K=Sокна/(W1*s1+W2*s2)

50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо
витков намотать на 10 вольт, если это не очень трудно, не разбирая
трансформатора наматываем контрольную обмотку через свободное
пространство (щель).

Подключаем лабораторный автотрансформатор к
первичной обмотке и подаёте на неё напряжение, последовательно включаем
контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала
появления тока холостого хода.

Если вы планируете намотать трансформатор с достаточно
«жёсткой» характеристикой, к примеру, это может быть усилитель мощности
передатчика в режиме SSB, телеграфном, где происходят довольно резкие
броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например,
тогда ток холостого хода трансформатора устанавливаем порядка 10% от
максимального тока, при максимальной нагрузке трансформатора. Замерив
полученное напряжение, намотанной вторичной контрольной обмотки, делаем
расчет количества витков на вольт.

Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать
вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв
подачи напряжения к первичной обмотке, потом рассчитать ток из
полученных измерений.

Первичная и вторичная обмотка трансформатора

Первичная обмотка трансформатора – это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.

На самодельных трансформаторах нет обозначений первичной обмотки.

Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.

Типы трансформаторных обмоток

В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:

  1. Однослойная или двухслойная цилиндрическая обмотка из прямоугольного провода. Технология ее изготовления очень проста, благодаря чему такие катушки получили широкое распространение. Обмотка имеет небольшую толщину, что уменьшает нагрев устройства. Из недостатков следует выделить небольшую прочность конструкции.
  2. Многослойная цилиндрическая обмотка является аналогом предыдущего типа, но провод расположен в несколько слоев. Окна магнитной системы при этом заполняются лучше, но появляется проблема перегрева.
  3. Цилиндрическая многослойная обмотка из провода круглого сечения обладает свойствами, близкими к предыдущим разновидностям обмоток, но к недостаткам добавляется утрата прочности по мере роста мощности.
  4. Винтовая обмотка с одним, двумя и больше ходами имеет высокую прочность, отличную изоляцию и охлаждение. По сравнению с цилиндрическими обмотками, винтовая обходится дороже в производстве.
  5. Непрерывная обмотка из провода прямоугольного сечения не перегревается, она обладает значительным запасом прочности.
  6. Многослойная обмотка из фольги устойчива к повреждениям, хорошо заполняет окно магнитной системы, но технология производства таких катушек сложная и дорогостоящая.

У трансформаторов есть шесть основных типов обмотки.

На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения – строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита – X, Y, Z для входящего напряжения и x, y, z для выходящего.

Различают обмотки и по назначению:

  • основные – к ним относятся первичная и вторичная обмотки, по которым ток подается из сети и поступает к месту потребления;
  • регулирующие – являют собой отводы, главная функция которых – изменение коэффициента трансформации напряжения;
  • вспомогательные – используются для обеспечения нужд самого трансформатора.

Автоматизированный расчет намотки трансформатора

Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.

Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.

Специальные программы облегчат расчет траснформатора.

Проще всего рассчитать параметры маломощного однофазного трансформатора. Для этого в специальной программе указываются следующие параметры:

  • напряжение, подающееся на первичную обмотку катушки , в большинстве случаев это для домашних нужд
  • напряжение составляет 220 вольт;
  • напряжение на вторичной обмотке;
  • сила тока вторичной обмотки.

Далее следует указать тип трансформатора (броневой или стержневой), вторичную мощность, значение магнитной индуктивности сердечника и плотности тока в обмотке.

Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.

Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.

Отличия первичной обмотки от вторичной

Определить тип обмотки можно по ее сопротивлению.

Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.

Главный визуальный критерий, при помощи которого можно определить тип обмотки, – толщина провода, припаянного к его выводам. Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.

Еще один верный признак, позволяющий узнать тип обмотки, – измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.

Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение – II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.

Какие функции выполняет трансформатор?

Трансформаторы широко используются в зарядных устройствах.

Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.

В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.

Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.

В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.

Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.

Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.

Заключение по теме

Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.

Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.

Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.

Первичная и вторичная цепи силового трансформатора

Работа трансформатора основана на явлении взаимоиндукции. Электродвижущая сила взаимоиндукции возникает в одной из двух катушек (рисунок 1), например в катушке 2, когда в другой 1 протекает ток, создающий переменный магнитный поток Ф0. При изменении магнитного потока силовые линии магнитного поля, возникающие вокруг катушки 1, проникают в другую катушку и пересекают ее витки. В результате этого в катушке 2 создается электродвижущая сила (эдс), которая и является электродвижущей силой взаимоиндукции.

1 — катушка (обмотка) первичной цепи; 2 — катушка вторичной цепи; 3 — реостат для изменения тока в первичной цепи
Рисунок 1 — Магнитная связь двух катушек, обтекаемых переменным током

Если концы катушки 2 соединяют с каким-нибудь приемником электрической энергии, то эдс взаимоиндукции создает в нем ток, т. е. передает ему некоторую энергию. Эту энергию катушка 2 получает с помощью магнитного поля, созданного током первой катушки, причем источник тока тотчас же пополняет эту энергию. Так, на основе электромагнитной связи происходит переход энергии источника из одной катушки в другую.

Ток, протекающий в первой катушке и создающий вокруг нее магнитное поле, называют возбуждающим или первичным и обозначают I1. Электрическую цепь, составленную из источника тока, соединительных проводов и катушки 1, называют первичной. Переменное магнитное поле пересекает не только витки ω2 катушки 2, но и витки ω1 катушки 1. Поэтому и в первичной катушке возникает эдс самоиндукции E1.

Электродвижущую силу взаимоиндукции, возникающую в катушке 2, называют вторичной и обозначают Е2; электрическую цепь, соединенную с этой катушкой, также называют вторичной. Ток, протекающий во вторичной цепи, называется вторичным и обозначается I2 (рисунок 2, а, б).


а — режим холостого хода; б — режим нагрузки; 1 — первичная обмотка; 2 — вторичная обмотка, 3 — рубильник; 4 — магнитопровод
Рисунок 2 — Первичная и вторичная обмотки на магнитопроводе

Магнитный поток, пересекая любой замкнутый контур (например, виток обмотки), создает в нем эдс и ток. По правилу Ленца этот ток (например, вторичный ток I2) направлен так, что своим магнитным действием препятствует причине, его вызвавшей.

Интенсивность магнитного поля, т. е. магнитная индукция, пропорциональна току, зависит от числа витков первичной обмотки и свойств среды (от магнитной проницаемости), в которой расположены витки. Для ферромагнитных веществ, например для стали, магнитная проницаемость во много раз больше магнитной проницаемости воздуха. Поэтому для усиления магнитного поля, созданного первичным током, группы последовательно соединенных витков, т. е. катушки обмотки, помещают на магнитопровод, изготовленный из пластин специальной электротехнической стали. Комплект пластин из электротехнической стали, собранный в такой геометрической форме, которая позволяет локализовать в ней основную часть магнитного поля, составляет магнитную систему, или магнитопровод трансформатора. Стержнем называют ту часть магнитопровода, на которой или вокруг которой располагаются катушки обмотки.

Благодаря высокой магнитной проницаемости стали магнитопровод усиливает магнитное поле тока, увеличивает магнитный поток Ф0 и эдс Е2 (рисунок 2, а). При холостом ходе, когда ток протекает по обмотке, присоединенной к источнику питания, а в другой обмотке тока нет (нагрузка не включена), мощность, потребляемая от сети, расходуется только на создание потока Ф0, т. е. на намагничивание магнитопровода и индуктирование напряжения на разомкнутых зажимах обмотки 2. Поток Ф0, который полностью сцеплен со всеми витками обмоток 1 и 2, называют главным или основным, а первичный ток I1 при холостом ходе — током холостого хода трансформатора. Ток холостого хода обозначают обычно I0.

Как известно, магнитный поток индуктирует эдс, создающую ток не только в обмотке, но и в стали магнитопровода. Ток, создаваемый эдс, протекает по замкнутому контуру (вихревое движение) в сердечнике в направлении, перпендикулярном магнитному потоку (рисунок 3, а).

а — сплошном; б — шихтованном; 1 — магнитопровод; 2 — вихревые токи; 3 — слои (пластины) магнитопровода
Рисунок 3 — Вихревые токи в магнитопроводе

Магнитопровод всегда можно представить себе состоящим из большого числа цилиндрических слоев, образующих в сечении подобные замкнутые контуры. Совокупность токов, протекающих по всем этим контурам, образует вихревые токи магнитопровода; вследствие электрического сопротивления стали они вызывают в ней нагрев и потери мощности, поступающей от источника.

Если магнитопровод выполнить из сплошной стали, то сопротивление его будет невелико и вихревые токи могут достигнуть больших значений. Для уменьшения величины вихревых токов (полностью устранить их не удается) магнитопровод собирают из отдельных изолированных листов стали.

Действительно, для уменьшения вихревых токов следует уменьшить возникающую в магнитопроводе эдс и увеличить сопротивление. При этом, чем тоньше лист, тем меньше элементарная эдс, создающая ток, меньше сечение, т. е. больше сопротивление, меньше величина тока (рисунок 3, б). Как видно из рисунка, возникающие в контурах вихревые токи 2 замыкаются только в каждой отдельной пластине, а не по всему магнитопроводу.

Вследствие небольшой величины эдс, а также увеличения сопротивления контура, сечение которого стало значительно меньше, чем у сплошного магнитопровода, вихревые токи оказываются небольшими. Чтобы сделать их еще меньше, в сталь, применяемую для изготовления магнитопровода, добавляют кремний, который существенно повышает удельное сопротивление, не ухудшая в то же время ее магнитных свойств. Свойства стали зависят, кроме того, от способа ее изготовления. В частности, большую роль играет способ прокатки стали. Горячекатаная сталь имеет значительно большие удельные потери, чем холоднокатаная. Учитывая, что удельные потери от вихревых токов пропорциональны квадрату толщины листа стали, сейчас вместо толщины 0,5 мм все шире используют сталь толщиной 0,33—0,35 мм и даже 0,28 мм.

Однако вихревые токи — не единственная причина потерь в магнитопроводе. Другой причиной является перемагничинание стали вследствие непрерывного изменения величины и направления переменного тока. А так как изменение магнитного поля непосредственно связано с изменением направления и величины тока, то сталь магнитопровода непрерывно намагничивается и размагничивается.

Известно, что кривая намагничивания, т. е. зависимость магнитной индукции от величины и направления тока, образует так называемую петлю гистерезиса (рисунок 4). Непрерывное перемагничивание сопровождается нагреванием стали, т. е. потерями энергии. Площадь, охватываемая петлей гистерезиса, пропорциональна удельным потерям мощности, затрачиваемой на намагничивание. Эти потери называют потерями от гистерезиса или потерями на перемагничивание. Для их уменьшения применяют сталь с малым содержанием углерода и другими присадками, улучшающими ее свойства.

Рисунок 4 — Петля гистерезиса — зависимость индукции В от изменения тока намагничивания I

Рассмотренные нами потери, возникающие в магнитной системе трансформатора при номинальном напряжении на первичной обмотке и номинальной частоте, называют магнитными потерями.

Как определить первичную и вторичную обмотку

При самодеятельном конструировании нередко используются трансформаторы с неизвестными параметрами. В этом случае возникает необходимость определить обмотки трансформатора и их характеристики, в частности, число витков.

В практике самодеятельного конструирования обычно приходится иметь дело с повышающими и понижающими трансформаторами. На сердечнике таких трансформаторов, изготавливаемом из электротехнической стали, наматывается необходимое число обмоток. Количество обмоток и число витков в них подбираются так, чтобы получить на выходе нужные напряжения.

Независимо от типа трансформатора, первичной считается обмотка, на которую подается напряжение. Вторичной – та, к которой подключается нагрузка. Первичная обмотка наматывается первой, затем изолируются. Поверх нее наматывается вторичная обмотка.

На многих трансформаторах выводы обозначены надписями, что облегчает определение обмоток. Если надписей нет, мультиметром (тестером) найдите парные концы обмоток и запишите их сопротивление. Обратите внимание на вывод, находящийся сверху – он почти наверняка будет принадлежать вторичной обмотке. Если трансформатор понижающий, то сопротивление вторичной обмотки всегда меньше, чем у первичной. Сравните сопротивления найденных обмоток – если у внешней сопротивление меньше, чем у внутренней, то это понижающий трансформатор и вы успешно определили обмотки.

Если у трансформатора не четыре, а больше выводов и при проверке тестером вы находите 3-4 и больше связанных между собой выводов, то вы имеете дело именно со вторичной обмоткой, имеющей промежуточные выводы для получения различных напряжений. Сетевой (первичной) в этом случае будет обмотка с двумя выводами и самым большим сопротивлением.

Помочь определить обмотки может диаметр используемого провода – у вторичной он толще, чем у первичной. Это связано с тем, что при трансформации понижение напряжения сопровождается увеличением силы тока.

Если необходимо узнать число витков в обмотках, намотайте поверх последней обмотки еще одну из 30-50 витков. После этого подайте на первичную обмотку небольшое напряжение – например, 12 В. Измерьте напряжение во вторичной и дополнительной обмотках. Для расчета числа витков используйте формулу: n = Un × Wдоб / Uдоб, где n – число витков обмотки трансформатора, Un – действующее на этой обмотке напряжение, Wдоб – число витков в добавочной обмотке, Uдоб – напряжение на ней.

Как прозвонить трансформатор или как определить обмотки трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки. А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром.

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению.

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5. Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е. пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Трансформатор | Устройство, виды, принцип работы

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения


Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

 

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток


Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток


При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

Таким же образом проверяем и вторичную обмотку.

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Лабораторный автотрансформатор (ЛАТР)

Программа для расчета трансформатора

Как получить постоянное напряжение из переменного

Первичная обмотка — трансформатор — напряжение

Первичная обмотка — трансформатор — напряжение

Cтраница 1

Первичная обмотка трансформатора напряжения соединяется с проводами первичной цепи; к зажимам вторичной обмотки трансформатора присоединяются вольтметр и цепь напряжения ваттметра. Один зажим каждой из вторичных обмоток измерительных трансформаторов и кожухи их заземляются.  [1]

Первичная обмотка трансформатора напряжения подключается к сети с измеряемым напряжением; зажимы вторичной обмотки соединяются с вольтметром и цепями напряжения измерительных приборов, последние соединяются между собой параллельно.  [3]

Первичная обмотка трансформатора напряжения обычно состоит из большого числа витков сравнительно тонкой проволоки. Вторичная обмотка имеет меньшее число витков из более толстой проволоки.  [4]

Первичная обмотка трансформатора напряжения включается непосредственно на напряжения сети. К зажимам вторичной обмотки приключаются вольтметры, параллельные обмотки ваттметров и счетчиков. Напряжением вторичной обмотки пользуются также для питания цепей сигнализации и автоматики.  [6]

Первичная обмотка трансформатора напряжения подключена к выводам генератора. Нейтраль сети высшего напряжения изолирована от земли, а нейтраль генератора заземлена через дугогасящую катушку.  [7]

Первичная обмотка трансформатора напряжения обычно состоит из большого числа витков. Сечение провода выбирается таким, чтобы плотность тока не превышала 0 3 а / мм. Такая малая плотность тока берется с целью уменьшения погрешностей, так как они зависят и от сопротивления 7 ] и особенно его активной составляющей. Вторичная обмотка имеет меньшее число витков из провода большого сечения.  [8]

Первичную обмотку трансформатора напряжения включают параллельно в сеть.  [9]

Первичную обмотку трансформатора напряжения подключают параллельно к сети, а к вторичной обмотке присоединяют параллельные катушки приборов и реле.  [11]

Первичную обмотку трансформатора напряжения ( рис. 91) подключают непосредственно к высокому напряжению, а к вторичной обмотке подключаются реле и приборы.  [13]

К первичным обмоткам трансформатора напряжения подведены соответственно междуфазные напряжения ОАВ, Овс, ОСА.  [14]

К первичной обмотке трансформатора напряжения с двумя вторичными обмотками, включенной на напряжение фаза-земля в нормальном режиме, приложено фазное напряжение. Поэтому трансформаторы напряжения с двумя вторичными обмотками, предназначенные для использования в сети с изолированной нейтралью и имеющие номинальное напряжение, равное фазному напряжению сети, рассчитываются на длительную работу под линейным напряжением.  [15]

Страницы:      1    2    3    4    5

Основы работы с трансформаторами и принципы работы с трансформаторами

Одна из основных причин, по которой мы используем переменные напряжения и токи переменного тока в наших домах и на рабочих местах, заключается в том, что источники переменного тока можно легко генерировать при подходящем напряжении, преобразовывать (отсюда и название трансформатор) в гораздо более высокие напряжения, а затем распространять по стране с использованием национальная сетка пилонов и кабелей на очень большие расстояния.

Причина преобразования напряжения на гораздо более высокий уровень заключается в том, что более высокие напряжения распределения подразумевают более низкие токи при той же мощности и, следовательно, более низкие потери I 2 * R в сетевой кабельной сети.Эти более высокие напряжения и токи передачи переменного тока затем могут быть снижены до гораздо более низкого, безопасного и пригодного для использования уровня напряжения, где его можно использовать для питания электрического оборудования в наших домах и на рабочих местах, и все это возможно благодаря базовому трансформатору напряжения .

Типовой трансформатор напряжения

Трансформатор напряжения можно рассматривать как электрический компонент, а не как электронный компонент. Трансформатор в основном представляет собой очень простое статическое (или стационарное) электромагнитное пассивное электрическое устройство, которое работает по принципу закона индукции Фарадея, преобразуя электрическую энергию из одного значения в другое.

Трансформатор делает это путем соединения двух или более электрических цепей с помощью общей колеблющейся магнитной цепи, которая создается самим трансформатором. Трансформатор работает на принципах «электромагнитной индукции» в форме взаимной индукции.

Взаимная индукция — это процесс, при котором катушка с проволокой индуцирует напряжение в другой катушке, расположенной в непосредственной близости от нее. Тогда мы можем сказать, что трансформаторы работают в «магнитной области», а трансформаторы получили свое название от того факта, что они «преобразуют» один уровень напряжения или тока в другой.

Трансформаторы

способны увеличивать или уменьшать уровни напряжения и тока источника питания без изменения его частоты или количества электроэнергии, передаваемой от одной обмотки к другой через магнитную цепь.

Однофазный трансформатор напряжения в основном состоит из двух электрических катушек с проволокой, одна из которых называется «Первичная обмотка», а другая — «Вторичная обмотка». В этом руководстве мы определим «первичную» сторону трансформатора как сторону, которая обычно принимает питание, а «вторичную» как сторону, которая обычно подает питание.В однофазном трансформаторе напряжения первичной обмоткой обычно является сторона с более высоким напряжением.

Эти две катушки не находятся в электрическом контакте друг с другом, а вместо этого намотаны вместе вокруг общей замкнутой магнитной железной цепи, называемой «сердечником». Этот сердечник из мягкого железа не является твердым, а состоит из отдельных пластин, соединенных вместе, чтобы помочь снизить потери сердечника.

Две обмотки катушки электрически изолированы друг от друга, но магнитно связаны через общий сердечник, что позволяет передавать электрическую мощность от одной катушки к другой.Когда электрический ток проходит через первичную обмотку, создается магнитное поле, которое индуцирует напряжение во вторичной обмотке, как показано.

Однофазный трансформатор напряжения

Другими словами, для трансформатора нет прямого электрического соединения между двумя обмотками катушки, что дало ему название также изолирующий трансформатор . Обычно первичная обмотка трансформатора подключается к источнику входного напряжения и преобразует или преобразует электрическую энергию в магнитное поле.В то время как работа вторичной обмотки заключается в преобразовании этого переменного магнитного поля в электрическую энергию, производящую требуемое выходное напряжение, как показано.

Конструкция трансформатора (однофазный)

  • Где:
  • V P — первичное напряжение
  • V S — вторичное напряжение
  • N P — количество первичных обмоток
  • N S — количество вторичных обмоток
  • Φ (phi) — это потокосцепление

Обратите внимание, что две обмотки катушки не связаны электрически, а связаны только магнитно.Однофазный трансформатор может увеличивать или уменьшать напряжение, подаваемое на первичную обмотку. Когда трансформатор используется для «увеличения» напряжения на его вторичной обмотке относительно первичной, он называется повышающим трансформатором . Когда он используется для «уменьшения» напряжения на вторичной обмотке относительно первичной, он называется понижающим трансформатором .

Однако существует третье условие, при котором трансформатор создает на своей вторичной обмотке такое же напряжение, какое прикладывается к его первичной обмотке.Другими словами, его выход идентичен по передаваемому напряжению, току и мощности. Этот тип трансформатора называется «трансформатором импеданса» и в основном используется для согласования импеданса или изоляции прилегающих электрических цепей.

Разница в напряжении между первичной и вторичной обмотками достигается за счет изменения количества витков катушки в первичной обмотке (N P ) по сравнению с количеством витков катушки на вторичной обмотке (N S ).

Поскольку трансформатор в основном является линейным устройством, теперь существует соотношение между количеством витков первичной катушки, деленным на количество витков вторичной катушки. Этот коэффициент, называемый коэффициентом трансформации, более известен как «коэффициент трансформации» трансформаторов (TR). Это значение коэффициента трансформации определяет работу трансформатора и соответствующее напряжение на вторичной обмотке.

Необходимо знать соотношение количества витков провода на первичной обмотке по сравнению с вторичной обмоткой.Передаточное число витков, которое не имеет единиц измерения, сравнивает две обмотки по порядку и записывается с двоеточием, например 3: 1 (3-к-1). В этом примере это означает, что если на первичной обмотке 3 вольта, то на вторичной обмотке будет 1 вольт, а на 1 вольт — 3 вольта. Тогда мы можем видеть, что если соотношение между количеством витков изменяется, результирующие напряжения также должны изменяться в том же соотношении, и это правда.

Трансформаторы — все о «соотношениях». Соотношение первичной и вторичной обмоток, отношение входа к выходу и коэффициент трансформации любого данного трансформатора будет таким же, как и его коэффициент напряжения.Другими словами, для трансформатора: «коэффициент трансформации = коэффициент напряжения». Фактическое количество витков провода на любой обмотке, как правило, не имеет значения, просто соотношение витков, и это соотношение дается как:

A Трансформатор, коэффициент трансформации

Предполагая идеальный трансформатор и фазовые углы: Φ P ≡ Φ S

Обратите внимание, что порядок чисел при выражении трансформатора коэффициент передачи очень важен, так как коэффициент передачи 3: 1 выражает совершенно другое соотношение трансформатора и выходное напряжение, чем тот, в котором коэффициент передачи задан как 1: 3 .

Основы трансформатора, пример №1

Трансформатор напряжения имеет 1500 витков провода на первичной обмотке и 500 витков провода на вторичной обмотке. Каким будет коэффициент трансформации (TR) трансформатора.

Это соотношение 3: 1 (3 к 1) просто означает, что на каждую вторичную обмотку приходится три первичные обмотки. По мере того, как соотношение перемещается от большего числа слева к меньшему числу справа, значение первичного напряжения, следовательно, понижается, как показано.

Основы трансформатора, пример №2

Если к первичной обмотке того же трансформатора, указанного выше, приложено 240 В (среднеквадратичное значение), каким будет результирующее вторичное напряжение холостого хода.

Еще раз подтверждая, что трансформатор является «понижающим» трансформатором, поскольку первичное напряжение составляет 240 вольт, а соответствующее вторичное напряжение ниже 80 вольт.

Тогда основная цель трансформатора — преобразовывать напряжения с заданными соотношениями, и мы видим, что первичная обмотка имеет установленное количество или количество обмоток (витков провода) на ней, чтобы соответствовать входному напряжению.Если вторичное выходное напряжение должно быть таким же, как входное напряжение на первичной обмотке, то на вторичный сердечник должно быть намотано такое же количество витков катушки, как и на первичном сердечнике, что дает равное соотношение витков 1: 1. (1 к 1). Другими словами, одна катушка включает вторичную обмотку, а другая — первичную.

Если выходное вторичное напряжение должно быть больше или выше, чем входное напряжение (повышающий трансформатор), то на вторичной обмотке должно быть больше витков, обеспечивающих соотношение витков 1: N (1-к-N), где N представляет собой число передаточного числа витков.Аналогичным образом, если требуется, чтобы вторичное напряжение было ниже или ниже первичного (понижающий трансформатор), то количество вторичных обмоток должно быть меньше, обеспечивая соотношение витков N: 1 (N-к-1). .

Действие трансформера

Мы видели, что количество витков на вторичной обмотке по сравнению с первичной обмоткой, соотношение витков, влияет на величину напряжения, доступного от вторичной обмотки. Но если две обмотки электрически изолированы друг от друга, как создается это вторичное напряжение?

Ранее мы говорили, что трансформатор в основном состоит из двух катушек, намотанных на общий сердечник из мягкого железа.Когда переменное напряжение (V P ) прикладывается к первичной катушке, ток течет через катушку, которая, в свою очередь, создает вокруг себя магнитное поле, называемое взаимной индуктивностью , посредством этого потока тока в соответствии с законом Фарадея из электромагнитная индукция. Сила магнитного поля нарастает по мере увеличения тока от нуля до максимального значения, которое задается как dΦ / dt.

По мере того, как магнитные силовые линии, устанавливаемые этим электромагнитом, расширяются наружу от катушки, сердечник из мягкого железа формирует путь и концентрирует магнитный поток.Этот магнитный поток связывает витки обеих обмоток, когда он увеличивается и уменьшается в противоположных направлениях под влиянием источника переменного тока.

Однако сила магнитного поля, индуцированного в сердечнике из мягкого железа, зависит от силы тока и количества витков в обмотке. Когда ток уменьшается, напряженность магнитного поля уменьшается.

Когда магнитные линии потока проходят вокруг сердечника, они проходят через витки вторичной обмотки, вызывая наведение напряжения во вторичной катушке.Величина индуцированного напряжения будет определяться следующим образом: N * dΦ / dt (закон Фарадея), где N — количество витков катушки. Также это индуцированное напряжение имеет ту же частоту, что и напряжение первичной обмотки.

Тогда мы можем видеть, что одинаковое напряжение индуцируется в каждом витке катушки обеих обмоток, потому что один и тот же магнитный поток связывает витки обеих обмоток вместе. В результате общее индуцированное напряжение в каждой обмотке прямо пропорционально количеству витков в этой обмотке. Однако пиковая амплитуда выходного напряжения, доступного на вторичной обмотке, будет уменьшена, если магнитные потери сердечника высоки.

Если мы хотим, чтобы первичная катушка создавала более сильное магнитное поле, чтобы преодолеть магнитные потери сердечника, мы можем либо послать через катушку больший ток, либо сохранить тот же ток, и вместо этого увеличить количество витков катушки (N P ) обмотки. Произведение ампер на витки называется «ампер-витки», которое определяет силу намагничивания катушки.

Предположим, у нас есть трансформатор с одним витком в первичной обмотке и только с одним витком во вторичной.Если один вольт приложен к одному витку первичной катушки, при условии отсутствия потерь, должно протекать достаточно тока и генерироваться достаточный магнитный поток, чтобы индуцировать один вольт в одном витке вторичной обмотки. То есть каждая обмотка поддерживает одинаковое количество вольт на виток.

Поскольку магнитный поток изменяется синусоидально, Φ = Φ max sinωt, то основное соотношение между наведенной ЭДС, (E) в обмотке катушки из N витков определяется выражением:

ЭДС = количество оборотов x скорость изменения

  • Где:
  • ƒ — частота потока в Герцах, = ω / 2π
  • Ν — количество витков катушки.
  • Φ — количество флюса в полотнах

Это известно как уравнение ЭДС трансформатора . Для ЭДС первичной обмотки N будет числом витков первичной обмотки (N P ), а для ЭДС вторичной обмотки N будет числом витков вторичной обмотки (N S ).

Также обратите внимание, что, поскольку трансформаторы требуют переменного магнитного потока для правильной работы, трансформаторы, следовательно, не могут использоваться для преобразования или подачи постоянного напряжения или тока, поскольку магнитное поле должно изменяться, чтобы индуцировать напряжение во вторичной обмотке.Другими словами, трансформаторы НЕ работают с установившимся постоянным напряжением , а только с переменным или пульсирующим напряжением.

Если первичная обмотка трансформатора была подключена к источнику постоянного тока, индуктивное реактивное сопротивление обмотки было бы равно нулю, поскольку постоянный ток не имеет частоты, поэтому эффективное сопротивление обмотки будет очень низким и равным только сопротивлению используемой меди. . Таким образом, обмотка будет потреблять очень большой ток от источника постоянного тока, что приведет к ее перегреву и, в конечном итоге, сгоранию, потому что, как мы знаем, I = V / R.

Основы трансформатора, пример №3

Однофазный трансформатор имеет 480 витков на первичной обмотке и 90 витков на вторичной обмотке. Максимальное значение плотности магнитного потока составляет 1,1 Тл, когда на первичную обмотку трансформатора подается напряжение 2200 В, 50 Гц. Вычислить:

а). Максимальный поток в сердечнике.

б). Площадь поперечного сечения сердечника.

в). Вторичная наведенная ЭДС.

Так как номинальное вторичное напряжение равно вторичной наведенной ЭДС, другой более простой способ рассчитать вторичное напряжение из отношения витков дается как:

Электрическая мощность в трансформаторе

Еще одним из основных параметров трансформатора является его номинальная мощность. Номинальная мощность трансформатора получается простым умножением тока на напряжение, чтобы получить номинальную мощность в вольт-амперах , (ВА). Небольшие однофазные трансформаторы могут быть рассчитаны только на вольт-амперы, но более мощные силовые трансформаторы рассчитаны на единицы киловольт-ампер , (кВА), где 1 киловольт-ампер равен 1000 вольт-амперам, а единицы Мега-вольт-ампер , (МВА), где 1 мегавольт-ампер равен 1 миллиону вольт-ампер.

В идеальном трансформаторе (без учета потерь) мощность, доступная во вторичной обмотке, будет такой же, как и мощность в первичной обмотке, они являются устройствами постоянной мощности и не изменяют мощность, только соотношение напряжения и тока. Таким образом, в идеальном трансформаторе коэффициент мощности равен единице, поскольку напряжение V, умноженное на ток, I останется постоянным.

То есть электрическая мощность на одном уровне напряжения / тока на первичной стороне «преобразуется» в электрическую энергию на той же частоте с тем же уровнем напряжения / тока на вторичной стороне.Хотя трансформатор может повышать (или понижать) напряжение, он не может повышать мощность. Таким образом, когда трансформатор увеличивает напряжение, он снижает ток и наоборот, так что выходная мощность всегда равна входной мощности. Тогда мы можем сказать, что первичная мощность равна вторичной мощности (P P = P S ).

Мощность в трансформаторе

Где: Φ P — это первичный фазовый угол, а Φ S — вторичный фазовый угол.

Обратите внимание, поскольку потеря мощности пропорциональна квадрату передаваемого тока, то есть: I 2 R, увеличение напряжения, скажем, удвоение (× 2) напряжения уменьшит ток на ту же величину, (÷ 2) при подаче того же количества мощности на нагрузку и, следовательно, снижении потерь в 4 раза. Если бы напряжение было увеличено в 10 раз, ток уменьшился бы в том же разы, уменьшив общие потери в 100 раз.

Основы трансформатора

— КПД

Трансформатору не требуются движущиеся части для передачи энергии.Это означает, что отсутствуют потери на трение или ветер, связанные с другими электрическими машинами. Однако трансформаторы действительно страдают от других типов потерь, называемых «потерями в меди» и «потерями в стали», но, как правило, они довольно малы.

Потери в меди, также известные как I 2 R потери — это электрическая мощность, которая теряется в тепле в результате циркуляции токов вокруг медных обмоток трансформатора, отсюда и название. Потери в меди представляют собой самые большие потери в работе трансформатора.Фактические потери мощности в ваттах можно определить (в каждой обмотке) возведением в квадрат ампер и умножением на сопротивление обмотки в омах (I 2 R).

Потери в железе, также известные как гистерезис, представляют собой запаздывание магнитных молекул внутри сердечника в ответ на переменный магнитный поток. Это запаздывающее (или не совпадающее по фазе) состояние связано с тем, что для переворота магнитных молекул требуется мощность; они не меняют направление, пока поток не достигнет достаточной силы, чтобы повернуть их вспять.

Их перестановка приводит к трению, а трение вызывает тепло в сердечнике, что является формой потери мощности. Гистерезис внутри трансформатора можно уменьшить, сделав сердечник из специальных стальных сплавов.

Интенсивность потерь мощности в трансформаторе определяет его КПД. Эффективность трансформатора отражается в потерях мощности (мощности) между первичной (входной) и вторичной (выходной) обмотками. Тогда результирующий КПД трансформатора равен отношению выходной мощности вторичной обмотки P S к потребляемой мощности первичной обмотки P P и, следовательно, является высоким.

Идеальный трансформатор имел бы 100% КПД, передавая всю электрическую энергию, которую он получает с первичной стороны, на вторичную. Но настоящие трансформаторы, с другой стороны, не эффективны на 100%. При работе с полной нагрузкой их максимальный КПД составляет от 94% до 96%, что все еще неплохо для электрического устройства. Для трансформатора, работающего при постоянном напряжении и частоте переменного тока, его КПД может достигать 98%. КПД трансформатора η определяется как:

КПД трансформатора

Где: вход, выход и потери выражены в единицах мощности.

Обычно при работе с трансформаторами первичные ватты называются «вольт-ампер», ВА, , чтобы отличить их от вторичных ватт. Тогда приведенное выше уравнение эффективности можно изменить на:

Иногда легче вспомнить взаимосвязь между входом, выходом и эффективностью трансформатора с помощью изображений. Здесь три величины VA, W и η наложены в треугольник, дающий мощность в ваттах вверху, вольт-амперах и КПД внизу.Это расположение представляет собой фактическое положение каждой величины в формулах эффективности.

Треугольник КПД трансформатора

и транспонирование вышеуказанных величин треугольника дает нам следующие комбинации одного и того же уравнения:

Затем, чтобы найти Вт (выход) = VA x эфф., Или найти VA (вход) = W / eff., Или найти КПД, эфф. = Вт / ВА и т. Д.

Основные сведения о трансформаторе

Затем подведем итоги этого учебника по основам работы с трансформатором.Трансформатор изменяет уровень напряжения (или уровень тока) на своей входной обмотке на другое значение на выходной обмотке с помощью магнитного поля. Трансформатор состоит из двух электрически изолированных катушек и работает по принципу Фарадея «взаимной индукции», в котором ЭДС индуцируется во вторичной катушке трансформатора магнитным потоком, создаваемым напряжениями и токами, протекающими в обмотке первичной катушки.

Как первичная, так и вторичная обмотки катушки намотаны вокруг общего сердечника из мягкого железа, сделанного из отдельных пластин для уменьшения вихревых токов и потерь мощности.Первичная обмотка трансформатора подключена к источнику переменного тока, который должен быть синусоидальным по своей природе, а вторичная обмотка подает электроэнергию на нагрузку. При этом трансформатор можно использовать в обратном направлении с источником питания, подключенным к вторичной обмотке, при условии соблюдения номинальных значений напряжения и тока.

Мы можем представить трансформатор в виде блок-схемы следующим образом:

Базовое представление трансформатора

Соотношение первичной и вторичной обмоток трансформаторов относительно друг друга дает либо повышающий трансформатор напряжения, либо понижающий трансформатор напряжения с отношением числа витков первичной обмотки к числу витков вторичной обмотки, называемым «витками». коэффициент »или« коэффициент трансформации ».

Если это отношение меньше единицы, n <1, тогда N S больше, чем N P , и трансформатор классифицируется как повышающий трансформатор. Если это отношение больше единицы, n> 1, то есть N P больше, чем N S , трансформатор классифицируется как понижающий трансформатор. Обратите внимание, что однофазный понижающий трансформатор также можно использовать в качестве повышающего трансформатора, просто поменяв местами соединения и сделав обмотку низкого напряжения первичной, и наоборот, пока трансформатор работает в пределах своей первоначальной проектной мощности в ВА.

Если соотношение витков равно единице, то есть n = 1, то и первичная, и вторичная обмотки имеют одинаковое количество витков катушки, поэтому напряжения и токи будут одинаковыми для первичной и вторичной обмоток.

Этот тип трансформатора 1: 1 классифицируется как изолирующий трансформатор, поскольку первичная и вторичная обмотки трансформатора имеют одинаковое количество вольт на виток. Эффективность трансформатора — это отношение мощности, которую он передает нагрузке, к мощности, которую он потребляет от источника питания.В идеальном трансформаторе нет потерь, поэтому нет потери мощности, тогда P IN = P OUT .

В следующем руководстве, посвященном Transformer Basics , мы рассмотрим физическую конструкцию трансформатора и рассмотрим различные типы магнитных сердечников и пластин, используемых для поддержки первичной и вторичной обмоток.

Вторичная обмотка — обзор

1.=
амплитуда магнитной индукции (T = Вт / м 2 ) n = эмпирическая константа для магнитного материала (1 < n <3).

Поскольку магнитная цепь трансформатора состоит из металлических пластин, возникают гистерезисные потери. Чтобы ограничить эти потери, желательно, чтобы постоянная материала была как можно меньше.

В этом случае возможен сплав железа с использованием кремния (например,2 Вт / кг

Здесь:

k w = константа материала относительно потерь на вихревые токи

δ = толщина листа в мм.

При добавлении кремния увеличивается электрическое сопротивление, в результате чего снижаются потери на вихревые токи. Согласно последней формуле, предпочтительно, чтобы пластины были как можно более тонкими. Типичная толщина пластины составляет от 0,3 до 1 мм для работы при 50 Гц. Тарелок может быть 0.2

1,11 = коэффициент формы синусоидального напряжения

a = коэффициент формы фактического напряжения.

Гистерезис и потери на вихревые токи формируют потери в стали. Иногда их называют постоянными потерями трансформатора, поскольку они зависят не от нагрузки, а только от магнитной индукции. Магнитная индукция зависит только от приложенного напряжения. Следующая таблица дает представление о потерях в стали с пластинами толщиной от 0,2 до 0,5 мм и частотой 50 Гц с индукцией 1 Тесла.

Материал Потери в Вт / кг
товарный чугун 5… 10
Si-Fe, теплопрокат 1… 3 90 Fe348
прокатанный и ориентированный на кристаллы 0,3… 0,6
50% Ni-Fe 0,2
примерно 65% Ni-Fe 0,06

На рис. 50 Гц для тороидальных ленточных сердечников 0.3 мм (данные для холоднокатаных сердечников из 3% Si-Fe). На рис. 16-12 мы видим влияние частоты на общие потери в железе для того же материала. Такие сердечники используются для силовых трансформаторов, импульсных трансформаторов, сварочных трансформаторов, линейных трансформаторов и т. Д.

Рис. 16-11. Потери в стали как функция индукции

Рис. 16-12. Потери в стали с частотой как параметром

Для ограничения потерь на вихревые токи на более высоких частотах используются ферромагнитные сердечники. Эти ферриты состоят из сплава оксида железа с современными материалами, такими как марганец, никель,… Оксиды обладают низкой электропроводностью.Ферриты могут изготавливаться без потерь в МГц-диапазоне. Максимальная самоиндукция ферритов (от 0,3 до 0,5 Тл) меньше, чем у пластин из кремнистой стали (от 1 до 1,5 Тл), поскольку большая часть объема состоит из атомов кислорода, которые явно немагнитны. На рис. 16-13 показаны потери в сердечнике для феррита (Сименс) в зависимости от индуктивности, а на рис. 16-14 показаны потери как функция частоты для одного и того же материала.

Рис. 16-13. Потери в сердечнике N27 (для кольцевых сердечников R16)

Рис.16-14. Потери N27 (для кольцевых сердечников R16)

Почему поток в первичной и вторичной обмотках всегда равен?

Почему поток в первичной и вторичной обмотках трансформатора одинаковый?

Один из наших последователей спросил: «Какой из трансформаторов больше? первичный поток или вторичный поток? в обоих случаях повышающий и понижающий трансформаторы.

Поток в первичной и вторичной обмотках всегда равен.

В идеальном случае поток, создаваемый в первичной обмотке, будет проходить через вторичную обмотку, поэтому создаваемый поток в первичной обмотке будет таким же, как и во вторичной обмотке.

Полезно знать:

  • Трансформатор не меняет значения мощности, частоты и магнитного потока.
  • Трансформатор только повышает или понижает значение переменного напряжения и тока. то есть трансформатор не будет работать от постоянного тока.
  • Поток прямо пропорционален ампер-виткам (At) , т.е. Φ ∝ At , не пропорционален коэффициенту витков (N) .

Чтобы не увидеть, как это возможно с решенным примером.

Номинал трансформатора и параметры

Однофазный трансформатор 50 Гц имеет 525 витков первичной обмотки и 70 витков вторичной обмотки.Если первичная обмотка подключена к источнику 3300 вольт, найдите вторичное напряжение. Если пренебречь потерями, каков первичный ток, когда вторичный ток составляет 250 ампер? Также докажите, что потоки в первичной и вторичной обмотках одинаковы.

Решение:

Заданные данные;

  • Первичное число витков = N 1 = 524
  • Вторичное число витков = N 2 = 70
  • Первичное входное напряжение = В 1 = 3300 В.
  • Вторичный ток = I 2 = 250 А.
  • Частота = f = 50 Гц

Найти / вычислить?

  1. Вторичное напряжение = В 2 =?
  2. Первичный ток I 1 =?
  3. Φ м 1 = Φ м 2

1. Чтобы найти вторичное напряжение:

Мы знаем, что,

N 2 / N 1 = V 2 / V 1 ====> V 2 = (N 2 x V 1 ) / N 1

Ввод значений

V 2 = (70 x 3300 В) / 525

В 2 = 440 В

2.Чтобы найти первичный ток:

Теперь, если не учитывать потери,

В 1 I 1 = V 2 I 2 ====> I 1 / I 2 = V 2 / V 1

Или

I 1 = (V 2 x I 2 ) / V 1

Ввод значений,

I 1 = 440 V x 250 / 3300 В

I 1 = 33,3 А

3. Докажите, что первичный поток равен вторичному потоку i.е. Φ м 1 = Φ м 2

Давайте обратимся к уравнению ЭДС трансформатора.

E 1 = 4,44 f N 1 Φ m1

Φ m1 = E 1 / 4,44 f N 1

Установка значений

Φ m 1 = 3300 В / (4,44 x 50 x 525)

Φ м 1 = 0,0283 Weber

Φ м 1 = 28,3 м Weber’s = поток в первичных обмотках

То же самое с другой стороны,

Е 2 = 4.44 f N2 Φ м 2

Φ м 2 = E 2 / 4,44 f N 2

Вставка значений,

Φ м 2 = 440 / (4,44 x 50 x 70)

Φ м 2 = 0,0283 Weber

Φ м 2 = 28,3 м Weber’s = Поток во вторичных обмотках

т.е.

Φ м 1 = Φ м 2

Таким образом, доказано, что поток, создаваемый как в первичной, так и во вторичной обмотке трансформатора, одинаков и равен.

Похожие сообщения:

Основы электрических трансформаторов

Что такое электрические трансформаторы?

Электрические трансформаторы — это машины, передающие электричество из одной цепи в другую с изменением уровня напряжения, но без изменения частоты. Сегодня они предназначены для питания переменного тока, а это означает, что колебания напряжения питания зависят от колебаний тока. Таким образом, увеличение тока приведет к увеличению напряжения и наоборот.

Трансформаторы

помогают повысить безопасность и эффективность энергосистем, повышая и понижая уровни напряжения по мере необходимости. Они используются в широком спектре жилых и промышленных применений, в первую очередь и, возможно, наиболее важно для распределения и регулирования мощности на большие расстояния.

Строительство электрического трансформатора

Три важных компонента электрического трансформатора — это магнитный сердечник, первичная обмотка и вторичная обмотка.Первичная обмотка — это часть, которая подключена к источнику электричества, откуда первоначально создается магнитный поток. Эти катушки изолированы друг от друга, и основной поток индуцируется в первичной обмотке, откуда он передается на магнитный сердечник и соединяется со вторичной обмоткой трансформатора через путь с низким сопротивлением.

Сердечник передает поток на вторичную обмотку, чтобы создать магнитную цепь, которая замыкает поток, а внутри сердечника размещается путь с низким сопротивлением, чтобы максимизировать потокосцепление.Вторичная обмотка помогает завершить движение потока, который начинается на первичной стороне, а с помощью сердечника достигает вторичной обмотки. Вторичная обмотка способна набирать импульс, потому что обе обмотки намотаны на один и тот же сердечник, и, следовательно, их магнитные поля помогают создавать движение. Во всех типах трансформаторов магнитный сердечник собирается из многослойных стальных листов, оставляя минимально необходимый воздушный зазор между ними для обеспечения непрерывности магнитного пути.

Как работают трансформаторы?

В электрическом трансформаторе для работы используется закон электромагнитной индукции Фарадея: «Скорость изменения магнитной индукции во времени прямо пропорциональна наведенной ЭДС в проводнике или катушке».

Физическая основа трансформатора заключается во взаимной индукции между двумя цепями, которые связаны общим магнитным потоком. Обычно он имеет 2 обмотки: первичную и вторичную. Эти обмотки имеют общий магнитный сердечник, который является ламинированным, и взаимная индукция, возникающая между этими цепями, помогает передавать электричество из одной точки в другую.

В зависимости от величины магнитного потока между первичной и вторичной обмотками будут разные скорости изменения магнитного потока.Чтобы обеспечить максимальную потокосцепление, то есть максимальный поток, проходящий через вторичную обмотку и связанный с ней от первичной обмотки, для обеих обмоток размещен путь с низким сопротивлением. Это приводит к повышению эффективности работы и образует сердечник трансформатора.

Приложение переменного напряжения к обмоткам в первичной обмотке создает переменный поток в сердечнике. Это связывает обе обмотки, чтобы навести ЭДС как на первичной, так и на вторичной стороне. ЭДС во вторичной обмотке вызывает ток, известный как ток нагрузки, если к вторичной части подключена нагрузка.

Таким образом электрические трансформаторы передают мощность переменного тока из одной цепи (первичной) в другую (вторичную) посредством преобразования электрической энергии из одного значения в другое, изменяя уровень напряжения, но не частоту.

Видео предоставлено: Инженерное мышление

Как работает трансформатор — Принцип работы электротехники

Электрический трансформатор — КПД и потери

В электрическом трансформаторе не используются движущиеся части для передачи энергии, что означает отсутствие трения и, следовательно, потерь на ветер.Однако электрические трансформаторы страдают от незначительных потерь в меди и железе. Потери меди возникают из-за потерь тепла при циркуляции токов по медным обмоткам, что приводит к потере электроэнергии. Это самые большие потери в работе электрического трансформатора. Потери в железе вызваны запаздыванием магнитных молекул, находящихся внутри сердечника. Это отставание происходит в ответ на изменение магнитного потока, которое приводит к трению, и это трение производит тепло, которое приводит к потере мощности в сердечнике.Эти потери можно значительно уменьшить, если сердечник изготовлен из специальных стальных сплавов.

Интенсивность потерь мощности определяет КПД электрического трансформатора и выражается в потерях мощности между первичной и вторичной обмотками. Результирующий КПД затем рассчитывается как отношение выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой. В идеале КПД электрического трансформатора составляет от 94% до 96%

Типы трансформаторов

Электрические трансформаторы можно разделить на различные категории в зависимости от их конечного использования, конструкции, поставки и назначения.

На основе проектирования
  • Трансформатор с сердечником Этот трансформатор имеет две горизонтальные секции с двумя вертикальными ветвями и прямоугольный сердечник с магнитной цепью. Цилиндрические катушки (ВН и НН) размещены на центральном плече трансформатора сердечника.
  • Корпус типа Трансформатор Трансформатор кожухового типа имеет двойную магнитную цепь и центральную ветвь с двумя внешними ветвями.

На базе поставки
  • Однофазный Трансформатор Однофазный трансформатор имеет только один набор обмоток.Отдельные однофазные блоки могут дать те же результаты, что и трехфазные переключатели, когда они соединены внешне.
  • Трехфазный Трансформатор Трехфазный (или трехфазный) трансформатор имеет три набора первичных и вторичных обмоток, образующих группу из трех однофазных трансформаторов. Трехфазный трансформатор в основном используется для производства, передачи и распределения электроэнергии в промышленности.

По целевому назначению
  • Повышающий трансформатор
    Этот тип определяется количеством витков провода.Таким образом, если вторичный набор имеет большее количество витков, чем первичный, это означает, что напряжение будет соответствовать тому, которое образует базу повышающего трансформатора.
  • Понижающий трансформатор
    Этот тип обычно используется для понижения уровня напряжения в сети передачи и распределения электроэнергии, поэтому его механизм полностью противоположен повышающему трансформатору.

На праве пользования
  • Силовой трансформатор
    Обычно используется для передачи электроэнергии и имеет высокий рейтинг.
  • Распределение трансформатор Этот электрический трансформатор имеет сравнительно более низкие характеристики и используется для распределения электроэнергии.
  • Instrument трансформатор Этот электрический трансформатор подразделяется на трансформаторы тока и напряжения.
    • Трансформатор тока
    • Трансформатор потенциала

Эти трансформаторы используются для одновременного реле и защиты приборов.

По принципу охлаждения
  • Самоохлаждающиеся масляные трансформаторы Этот тип обычно используется в небольших трансформаторах мощностью до 3 МВА и предназначен для самоохлаждения за счет окружающего воздушного потока.
  • Масляные трансформаторы с водяным охлаждением В этом типе электрических трансформаторов используется теплообменник для облегчения передачи тепла от масла к охлаждающей воде.
  • С воздушным охлаждением (воздушное охлаждение) Трансформаторы В трансформаторах этого типа выделяемое тепло охлаждается с помощью воздуходувок и вентиляторов, которые обеспечивают циркуляцию воздуха по обмоткам и сердечнику.

Основные характеристики трансформатора

Все трансформаторы имеют общие черты, независимо от их типа:

  • Частота входной и выходной мощности одинаковая
  • Все трансформаторы используют законы электромагнитной индукции
  • Первичная и вторичная катушки не имеют электрического соединения (за исключением автотрансформаторов). Передача энергии осуществляется посредством магнитного потока.
  • Для передачи энергии не требуются движущиеся части, поэтому отсутствуют потери на трение или ветер, как в других электрических устройствах.
  • Потери, которые происходят в трансформаторах, меньше, чем в других электрических устройствах, и включают:
    • Потери в меди (потеря электроэнергии из-за тепла, создаваемого циркуляцией токов вокруг медных обмоток, считается самой большой потерей в трансформаторах)
    • Потери в сердечнике (потери на вихревые токи и гистерезис, вызванные запаздыванием магнитных молекул в ответ на переменный магнитный поток внутри сердечника)

Большинство трансформаторов очень эффективны, вырабатывая от 94% до 96% энергии при полной нагрузке.Трансформаторы очень большой мощности могут выдавать до 98%, особенно если они работают с постоянным напряжением и частотой.

Применение электрического трансформатора

Основные области применения электрического трансформатора:

  • Повышение или понижение уровня напряжения в цепи переменного тока.
  • Увеличение или уменьшение значения индуктивности или конденсатора в цепи переменного тока.
  • Предотвращение прохождения постоянного тока из одной цепи в другую.
  • Изоляция двух электрических цепей.
  • Повышение уровня напряжения на объекте выработки электроэнергии перед передачей и распределением электроэнергии.

Общие применения электрического трансформатора включают насосные станции, железные дороги, промышленность, коммерческие предприятия, ветряные мельницы и энергоблоки.

Советы по поиску и устранению неисправностей электрического трансформатора

Использование мультиметра — лучший способ проверить и устранить неисправности в электрической цепи.

  1. Начните с проверки напряжения цепи, которую необходимо проверить.Этот шаг поможет вам определить тип лампочки, необходимой для сборки тестера цепей.
  2. Вырежьте 2 полосы из провода AWG 16 калибра , убедившись, что каждая из них имеет длину не менее 12 дюймов.
  3. Используйте инструмент для зачистки, чтобы удалить четверть внешнего пластика с обоих концов проводов и 1 дюйм внешнего пластика с двух других концов. Как только это будет сделано, скрутите оголенную проволоку, чтобы пряди соединялись.
  4. Присоедините два конца, с которых вы сняли 1/4 дюйма пластика, к клеммам патрона лампы.
  5. Вставьте лампочку в патрон и прикрепите два оставшихся конца провода к клеммам, которые вы хотите проверить.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводных кабелей, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Установите пользовательское содержимое вкладки HTML для автора на странице профиля

Основные операции Transformer

  • Изучив этот раздел, вы сможете описать:
  • • Принцип работы трансформатора.
  • • Передаточное число.
  • • Коэффициент мощности.
  • • Коэффициент трансформации.
  • • Потери в трансформаторе: медь, гистерезис и вихревые токи.
  • • КПД трансформатора и ток холостого хода.

Трансформаторы.

Трансформатор использует принципы электромагнетизма для переключения одного уровня переменного напряжения на другой. Работа Фарадея в 19 веке показала, что изменяющийся ток в проводнике (например,г. первичная обмотка трансформатора) создает изменяющееся магнитное поле вокруг проводника. Если другой проводник (вторичная обмотка) поместить в это изменяющееся магнитное поле, в этой обмотке будет индуцироваться напряжение.

Передаточное число.

Фарадей также рассчитал, что напряжение, индуцированное во вторичной обмотке, будет иметь величину, которая зависит от ОТНОШЕНИЯ ОБОРОТОВ трансформатора. т.е. если вторичная обмотка имеет половину числа витков первичной обмотки, то вторичное напряжение будет вдвое меньше напряжения на первичной обмотке.Аналогично, если вторичная обмотка имеет вдвое больше витков первичной обмотки, вторичное напряжение будет вдвое больше первичного напряжения.

Коэффициент мощности.

Поскольку трансформатор является пассивным компонентом (у него нет внешнего источника питания), он не может выдавать больше мощности из вторичной обмотки, чем подается на первичную обмотку. Следовательно, если вторичное напряжение больше первичного напряжения на определенную величину, вторичный ток будет меньше первичного тока на аналогичную величину, т.е.е. Если напряжение увеличится вдвое, ток уменьшится вдвое.

Рис. 11.1.1 Основные операции трансформатора.

Коэффициент трансформации.

Функционирование базового трансформатора

можно описать двумя формулами, связывающими коэффициент трансформации с числом витков обмоток трансформатора.

  • В P = первичное напряжение.
  • I P = первичный ток.
  • В S = вторичное напряжение.
  • I S = вторичный ток.
  • N P = количество витков первичной обмотки.
  • N S = количество витков вторичной обмотки.

Потери трансформатора.

Формулы на рис. 11.1.1 относятся к идеальному трансформатору, то есть трансформатору без потерь мощности, в котором первичный вольт-ампер = вторичный вольт-ампер.

Хотя практические трансформаторы могут быть чрезвычайно эффективными, некоторые потери будут происходить, потому что не весь магнитный поток, создаваемый первичной обмоткой, будет связываться со вторичной обмоткой.Потери мощности, возникающие в трансформаторе, бывают трех типов;

1. Потери меди.

Эти потери также можно назвать потерями в обмотке или потерями I2R, поскольку они могут возникать в обмотках, сделанных не из меди, а из других металлов. Потери проявляются в виде тепла, выделяемого в обмотках (медных) проводов, поскольку они рассеивают мощность из-за сопротивления провода.

Потери мощности в обмотке трансформатора можно рассчитать, используя ток в обмотке и ее сопротивление в формуле для мощности P = I 2 R.Эта формула является причиной того, что потери в меди иногда называют потерями I 2 R. Чтобы свести к минимуму потери, сопротивление обмотки должно быть низким с использованием провода подходящей площади сечения и низкого удельного сопротивления.

2. Гистерезисные потери.

Каждый раз, когда переменный ток меняет направление на противоположное (один раз в каждом цикле), крошечные «магнитные домены» в материале сердечника меняются местами. Это физические изменения в основном материале, отнимающие некоторую энергию. Количество используемой энергии зависит от «сопротивления» материала сердечника; в больших сердечниках силовых трансформаторов, где потери на гистерезис могут быть проблемой, они в значительной степени решаются за счет использования специальной стали с низким сопротивлением «ориентированной зернистостью» в качестве материала сердечника.

3. Вихретоковые потери.

Поскольку железный или стальной сердечник является электрическим проводником, а также магнитной цепью, изменяющийся ток в первичной обмотке будет иметь тенденцию создавать ЭДС внутри сердечника, а также во вторичной обмотке. Токи, индуцируемые в сердечнике, будут противодействовать изменениям магнитного поля, происходящим в сердечнике. По этой причине эти вихревые токи должны быть как можно меньше. Это достигается разделением металлического сердечника на тонкие листы или «пластинки», каждый из которых изолирован друг от друга изолирующим слоем лака или оксида.Ламинированные сердечники значительно уменьшают образование вихревых токов, не влияя на магнитные свойства сердечника.

Ферритовые сердечники.

В высокочастотных трансформаторах потери на вихревые токи уменьшаются за счет использования сердечника из керамического материала, содержащего большую часть мельчайших металлических частиц, железной пыли или марганцево-цинка. Керамика изолирует металлические частицы друг от друга, давая аналогичный эффект ламинатам и лучше работая на высоких частотах.

Благодаря способам уменьшения потерь, описанным выше, практические трансформаторы по своим характеристикам почти полностью приближаются к идеальным.В мощных силовых трансформаторах может быть достигнут КПД около 98%. Поэтому для большинства практических расчетов можно предположить, что трансформатор «идеален», если не указаны его потери. Фактические вторичные напряжения в практическом трансформаторе будут лишь немного меньше, чем рассчитанные с использованием теоретического коэффициента трансформации.

Ток выключения.

Поскольку трансформатор работает почти идеально, мощность как в первичной, так и во вторичной обмотках одинакова, поэтому, когда на вторичную обмотку не подается нагрузка, вторичный ток не течет, а мощность во вторичной обмотке равна нулю (V x I = 0).Следовательно, несмотря на то, что к первичной обмотке приложено напряжение, ток не будет течь, поскольку мощность в первичной обмотке также должна быть равна нулю. В практических трансформаторах «ток холостого хода» в первичной обмотке на самом деле очень низкий.

Вольт на оборот.

Трансформатор с первичной обмоткой на 1000 витков и вторичной обмоткой на 100 витков имеет соотношение витков 1000: 100 или 10: 1. Следовательно, 100 вольт, приложенное к первичной обмотке, создаст вторичное напряжение 10 вольт.

Другой способ измерения напряжения трансформатора — вольт / виток; если 100 вольт, приложенное к 1000 витков первичной обмотки, дает 100/1000 = 0.1 вольт на виток, тогда каждый отдельный виток 100-витковой вторичной обмотки будет производить 0,1 В, поэтому общее вторичное напряжение будет 100 × 0,1 В = 10 В.

Тот же метод можно использовать для определения значений напряжения, возникающего на отдельных ответвлениях автотрансформатора, если известно количество витков на ответвление.

Просто разделите общее напряжение всей обмотки на общее количество витков и умножьте этот результат на количество витков в конкретном ответвлении.

Как рассчитать обмотку трансформатора

Обновлено 28 декабря 2020 г.

Автор С. Хуссейн Атер

Если вы когда-нибудь задумывались, как дома и здания используют электроэнергию от электростанций, вы должны узнать о трансформаторах в силовых установках. распределительные сети, которые преобразуют токи высокого напряжения в те, которые вы используете в бытовых приборах. Эти трансформаторы имеют простую конструкцию для большинства типов трансформаторов, но могут сильно различаться по степени изменения входного напряжения в зависимости от конструкции.

Формула обмотки трансформатора

Трансформаторы, которые используются в системах распределения электроэнергии, имеют простую конструкцию, в которой в различных областях используются катушки, намотанные на магнитный сердечник.

Эти катушки с проводом принимают входящий ток и изменяют напряжение в соответствии с коэффициентом витков трансформатора , который равен

\ frac {N_P} {N_S} = \ frac {V_P} {V_S}

для числа обмотки первичной обмотки и вторичной обмотки N p и N s соответственно, а напряжение первичной обмотки и вторичной обмотки V p , и V s соответственно.

Эта формула обмотки трансформатора сообщает вам, на какую долю трансформатор изменяет входящее напряжение, и что напряжение обмоток катушки прямо пропорционально количеству обмоток самих катушек.

Имейте в виду, что, хотя эта формула называется «соотношением», на самом деле это дробь, а не соотношение. Например, если у вас есть одна обмотка первичной обмотки и четыре обмотки вторичной обмотки трансформатора, это будет соответствовать доле 1/4, что означает, что трансформатор снижает напряжение на величину 1/4.Но соотношение 1: 4 означает, что для одного из чего-то есть четыре из чего-то другого, что не всегда означает то же самое, что и дробь.

Трансформаторы могут увеличивать или уменьшать напряжение и известны как повышающие или понижающие трансформаторы , в зависимости от того, какое действие они выполняют. Это означает, что коэффициент трансформации трансформатора всегда будет положительным, но может быть больше единицы для повышающих трансформаторов или меньше единицы для понижающих трансформаторов.

Формула обмотки трансформатора верна только тогда, когда углы первичной и вторичной обмоток совпадают по фазе друг с другом. Это означает, что для данного источника питания переменного тока (AC), который переключается вперед и назад между прямым и обратным током, ток как в первичной, так и во вторичной обмотках синхронизируется друг с другом во время этого динамического процесса.

Могут быть трансформаторы с коэффициентом трансформации 1, которые не изменяют напряжение, а вместо этого используются для разделения различных цепей друг от друга или для небольшого изменения сопротивления цепи.

Калькулятор конструкции трансформатора

Вы можете понять свойства трансформаторов, чтобы определить, что калькулятор конструкции трансформатора будет учитывать в качестве метода определения того, как сконструировать трансформаторы.

Хотя первичная и вторичная обмотки трансформатора отделены друг от друга, первичная обмотка индуцирует ток во вторичных обмотках с помощью метода индуктивности. Когда источник питания переменного тока подается через первичные обмотки, ток течет по виткам и создает магнитное поле с помощью метода, называемого взаимной индуктивностью.

Формула обмотки трансформатора и магнетизм

Магнитное поле описывает, в каком направлении и насколько сильный магнетизм будет действовать на движущуюся заряженную частицу. Максимальное значение этого поля составляет dΦ / dt , скорость изменения магнитного потока Φ за небольшой промежуток времени.

Поток — это измерение того, сколько магнитного поля проходит через определенную площадь поверхности, например прямоугольную. В трансформаторе силовые линии магнитного поля направляются наружу от магнитной катушки, вокруг которой намотаны провода.

Магнитный поток связывает обе обмотки вместе, а сила магнитного поля зависит от величины тока и количества обмоток. Это может дать нам калькулятор расчета трансформатора , который учитывает эти свойства.

Закон индуктивности Фарадея, который описывает, как магнитные поля индуцируются в материалах, диктует, что напряжение любой из обмоток индуцирует

либо для первичной обмотки, либо для вторичной обмотки. Обычно это называется наведенной электродвижущей силой (ЭДС , ЭДС ).

Если бы вы измерили изменение магнитного потока за небольшой период времени, вы могли бы получить значение dΦ / dt и использовать его для расчета ЭДС . Общая формула для магнитного потока:

\ Phi = BA | cos {\ theta}

для магнитного поля B , площадь поверхности плоскости в поле A и угол между магнитным полем линии и направление, перпендикулярное площади θ .

Вы можете учесть геометрию обмоток вокруг магнитопровода трансформатора, чтобы измерить поток. Askat

для источника переменного тока, где ω — угловая частота ( 2πf для частоты f ) и Φ max — это максимальный поток.В этом случае частота f относится к количеству волн, которые проходят через заданное место каждую секунду. Инженеры также называют произведение силы тока на количество витков обмоток как « ампер на витков», что является мерой силы намагничивания катушки.

Примеры калькулятора обмоток трансформатора

Если вы хотите сравнить экспериментальные результаты того, как обмотки трансформаторов влияют на их использование, вы можете сравнить наблюдаемые экспериментальные свойства с характеристиками калькулятора обмоток трансформатора.

Компания-разработчик программного обеспечения Micro Digital предлагает онлайн-калькулятор обмотки трансформатора для расчета стандартного калибра проводов (SWG) или американского калибра проводов (AWG). Это позволяет инженерам изготавливать провода соответствующей толщины, чтобы они могли нести заряды, необходимые для их целей. Калькулятор оборотов трансформатора подскажет вам индивидуальное напряжение на каждом витке обмотки.

Другие калькуляторы, такие как калькулятор от компании-производителя Flex-Core, позволяют рассчитать размер провода для различных практических применений, если вы вводите номинальную нагрузку, номинальный вторичный ток, длину провода между трансформатором тока и измерителем и входную нагрузку. метра.

Трансформатор тока создает напряжение переменного тока во вторичной обмотке, пропорциональное току в первичной обмотке. Эти трансформаторы снижают токи высокого напряжения до более низких значений, используя простой метод контроля фактического электрического тока. Нагрузка — это сопротивление самого измерительного прибора пропускаемому через него току.

Hyperphysics предлагает онлайн-интерфейс расчета мощности трансформатора, который позволяет использовать его в качестве калькулятора конструкции трансформатора или в качестве калькулятора сопротивления трансформатора.Чтобы использовать его, вам необходимо ввести частоту напряжения питания, индуктивность первичной обмотки, индуктивность вторичной обмотки, количество катушек первичной обмотки, количество катушек вторичной обмотки, вторичное напряжение, сопротивление первичной обмотки, сопротивление вторичной обмотки, сопротивление нагрузки вторичной обмотки и взаимная индуктивность.

Взаимная индуктивность M учитывает влияние изменения нагрузки на вторичную обмотку на ток через первичную обмотку с ЭДС:

ЭДС = -M \ frac {\ Delta I_1} {\ Delta t }

для изменения тока через первичную обмотку ΔI 1 и изменения во времени Δt .

Любой онлайн-калькулятор обмотки трансформатора делает предположения о самом трансформаторе. Убедитесь, что вы знаете, как каждый веб-сайт рассчитывает заявленные ценности, чтобы вы могли понять теорию и принципы, лежащие в основе трансформаторов в целом. Насколько они близки к формуле обмотки трансформатора, вытекающей из физики трансформатора, зависит от этих свойств.

Влияние нагрузки

ВЛИЯНИЕ НАГРУЗКИ

Когда нагрузочное устройство подключено ко вторичной обмотке трансформатора, ток протекает через вторичную обмотку и нагрузку.Магнитное поле, создаваемое током в вторичная обмотка взаимодействует с магнитным полем, создаваемым током первичной обмотки. Это взаимодействие возникает из-за взаимной индуктивности между первичной и вторичной обмотками. обмотки.

ВЗАИМНЫЙ ПОТОК

Общий магнитный поток в сердечнике трансформатора является общим как для первичной обмотки, так и для первичной обмотки. вторичные обмотки. Это также средство передачи энергии от первичного обмотка на вторичную обмотку.Поскольку этот поток связывает обе обмотки, он называется ВЗАИМНЫМ. ПОТОК. Индуктивность, создающая этот поток, также является общей для обеих обмоток и составляет называется взаимной индуктивностью.

На рисунке 5-11 показан поток, создаваемый токами в первичной и вторичной обмотках. обмотки трансформатора при протекании тока источника в первичной обмотке.

Рисунок 5-11. — Простой трансформатор, показывающий поток первичной и вторичной обмоток отношение.

Когда сопротивление нагрузки подключено ко вторичной обмотке, напряжение, индуцируемое в вторичная обмотка заставляет ток течь во вторичной обмотке. Этот текущий создает магнитное поле вокруг вторичной обмотки (показано пунктирными линиями), которая находится в оппозиции полю потока около первичной обмотки (закон Ленца). Таким образом, поток о вторичном устраняет часть потока вокруг первичной обмотки. С меньшим потоком, окружающим первичную обмотку, Снижается противоэдс, и от источника берется больше тока.Дополнительный ток в первичной генерирует больше линий потока, почти восстанавливая исходное количество линии полного потока.

ОБОРОТЫ И ТЕКУЩИЕ СООТНОШЕНИЯ

Число силовых линий, образующихся в сердечнике, пропорционально силе намагничивания. (В ампер-оборотах) первичной и вторичной обмоток.

Ампер-виток (I X N) — мера магнитодвижущей силы; это определяется как магнитодвижущая сила, создаваемая током в один ампер, протекающим в катушке с одним витком.В поток, который существует в сердечнике трансформатора, окружает как первичную, так и вторичную обмотку. обмотки. Поскольку поток одинаков для обеих обмоток, ампер-витки в обеих обмотках первичная и вторичная обмотки должны быть одинаковыми.

Следовательно:

Разделив обе части уравнения на I p N s , вы получите:

Обратите внимание, что уравнения показывают коэффициент тока, обратный коэффициенту оборотов, и коэффициент напряжения.Это означает, что трансформатор имеет меньше витков во вторичной обмотке, чем в первичный будет понижать напряжение, но увеличивать ток. Пример: A трансформатор имеет соотношение напряжений 6: 1.

Найдите ток во вторичной обмотке, если ток в первичной обмотке составляет 200 миллиампер.

В приведенном выше примере показано, что, хотя напряжение на вторичной обмотке 1/6 напряжения на первичной обмотке, ток вторичной обмотки в шесть раз больше ток в первичной обмотке.

На приведенные выше уравнения можно взглянуть с другой точки зрения.

Выражение

называется ОТНОШЕНИЕМ ОБОРОТОВ трансформатора и может быть выражено как единственный коэффициент. Помните, что коэффициент трансформации указывает на величину, на которую трансформатор увеличивается или уменьшает напряжение, приложенное к первичной обмотке. Например, если вторичный трансформатор имеет в два раза больше витков, чем первичный , напряжение, индуцированное в напряжение на вторичной обмотке будет на два раза больше , чем на первичной обмотке .Если у вторичной обмотки в два раза меньше витков, чем у первичной, напряжение на вторичной будет наполовину ниже напряжения на первичной обмотке. Однако коэффициент поворотов и ток Передаточные числа трансформатора имеют обратную зависимость. Таким образом, повышающий трансформатор 1: 2 будет иметь половину тока во вторичной обмотке, как в первичной. Понижающий трансформатор 2: 1 будет иметь в два раза больший ток во вторичной обмотке, чем в первичной.

Пример: трансформатор с соотношением витков 1:12 имеет ток 3 ампера в вторичный.Какое значение тока в первичной обмотке?

Q.20 Какое отношение токов имеет трансформатор с коэффициентом трансформации 1: 3?
Q.21 Трансформатор имеет коэффициент трансформации 5: 1 и ток 5 ампер, протекающий в вторичный. Какой ток течет в первичной обмотке? (Допустим без потерь)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *