§47. Основные параметры переменного тока
При подключении к источнику переменного тока с синусоидально изменяющейся э. д. с. электрических цепей с линейными сопротивлениями в них будут действовать синусоидально изменяющиеся напряжения и проходить синусоидально изменяющиеся токи. Переменные токи, э. д. с. и напряжения характеризуются четырьмя основными параметрами: периодом, частотой, амплитудой и действующим значением.
Период.
Промежуток времени Т, в течение которого э. д. с, напряжение и или ток i (рис. 169, а) совершают полный цикл изменений, называется периодом. Чем быстрее вращается виток или ротор генератора переменного тока, тем меньше период изменения э. д. с. или тока.
Частота.
Число полных периодов изменения э. д. с, напряжения или тока в 1 с называется частотой,
f = 1 / T
Она измеряется в герцах (Гц), т. е. числом периодов в секунду. Чем больше частота, тем меньше период изменения тока, напряжения или э.
Рис. 169. Кривые изменения синусоидального переменного тока при различной частоте
Из рис. 169,а следует, что в течение времени одного периода Т фаза ωt тока (э. д. с. или напряжения) изменяется на угол 360°, или 2π радиан. Поэтому
ω = 2π/T = 2πf
Эту величину называют угловой частотой переменного тока, она имеет размерность рад/с.
Амплитуда.
Наибольшее значение переменного тока (переменных э. д. с. и напряжения) называют амплитудным значением, или амплитудой. В рассмотренном нами простейшем генераторе переменного тока (см. рис. 168, а) э. д. с. е дважды достигает амплитудного значения: во время первого полуоборота +Ет (направлена от начала витка к его концу), а во время второго полуоборота — Ет (направлена от конца витка к его началу).
Действующее значение.
Ток, напряжение и э. д. с, действующие в электрической цепи в каждый отдельный момент времени, определяются так называемыми мгновенными значениями. Эти значения принято обозначать строчными буквами i, и, е. Однако судить о переменных э. д. с, токе или напряжении по их мгновенным значениям неудобно, так как эти значения непрерывно меняются.
Поэтому оценивать способность переменного тока совершать механическую работу или создавать тепло принято по действующему его значению. Под действующим значением переменного тока понимают силу такого постоянного тока (прямая 2 на рис. 169,а), который, проходя по проводнику в течение некоторого времени (например, в течение одного периода или 1 с), выделит в нем такое же количество тепла (произведет такую же механическую работу), как и данный переменный ток (кривая 1).
Действующие значения тока, напряжения и э. д. с. обозначают соответственно I, U, Е.
При синусоидальном переменном токе:
I = Iт / √2 = 0,707 Iт
Если известно действующее значение тока I, то его амплитудное значение:
Iт = √2 I = 1,41 I
Аналогично для синусоидальных напряжений и э. д. с.:
U / Uт = Е1 / Ет = 1 / √2 = 0,707
На практике для характеристики параметров переменного тока используют, главным образом, действующие значения тока, напряжения и э. д. с. Например, когда говорят, что напряжение в осветительной сети переменного тока составляет 220 В или что по цепи проходит ток 100 А, то это значит, что в данной сети действующее значение напряжения равно 220 В или что действующее значение тока, проходящего по данной цепи, равно 100 А.
Электрическая энергия и механическая работа, создаваемые переменным током в различных электрических устройствах, пропорциональны действующим значениям тока и напряжения. Большая часть существующих приборов для измерения переменного тока измеряет действующие значения тока, напряжения и э. д. с.
Урок 8. переменный электрический ток — Физика — 11 класс
Физика, 11 класс
Урок 8. Переменный электрический ток
Перечень вопросов, рассматриваемых на уроке:
1) Свойства переменного тока;
2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;
3) Особенности переменного электрического тока на участке цепи с резистором;
4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.
Глоссарий по теме
Переменный электрический ток — это ток, периодически изменяющийся со временем.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.
Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.
Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.
Величину Х
Основная и дополнительная литература по теме урока:
Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.
Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.
Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.
Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004
Основное содержание урока
Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.
Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.
В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита.
Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.
Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.
Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.
Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.
Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.
При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.
𝒾 — мгновенное значение силы тока;
ℐm— амплитудное значение силы тока.
– колебания напряжения на концах цепи.
Колебания ЭДС индукции определяются формулами:
При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.
Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.
Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.
Um — амплитудное значение напряжения.
Действующие значения силы тока и напряжения:
Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.
Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.
Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.
Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.
Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.
Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.
XL= ωL
Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.
При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.
Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно
Закон Ома для электрической цепи переменного тока записывается имеет вид:
Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.
В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.
Мощность цепи переменного тока
P=IU cosφ
Величина cosφ – называется коэффициентом мощности
Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.
Разбор типовых тренировочных заданий
1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.
Дано: e=80 sin 25πt.
Найти: T.
Решение:
Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону
Согласно данным нашей задачи:
Время одного оборота, т.е. период связан с циклической частотой формулой:
Подставляем числовые данные:
Ответ: T = 0,08 c.
2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?
Дано:
ν=50 Гц,
R=1 кОм=1000 Ом,
C=1 мкФ=10-6 Ф,
U=220 В.
Найти: Im
Решение:
Напишем закон Ома для переменного тока:
I=U/Z
Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?
Полное сопротивление цепи равно:
Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:
то после вычислений получаем Im ≈0,09 Ом.
Ответ: Im ≈0,09 Ом.
2. Установите соответствие между физической величиной и прибором для измерения.
Физические величины | Физические приборы |
Сила тока | Омметр |
Напряжение | Вольтметр |
Сопротивление | Амперметр |
Мощность | Ваттметр |
Правильный ответ:
Физические величины | Физические приборы |
Сила тока | Амперметр |
Напряжение | Вольтметр |
Сопротивление | Омметр |
Мощность | Ваттметр |
интенсивность колебания зарядов в электрической сети, способы измерения
Направленное движение заряжённых частиц под действием электрической движущей силы (ЭДС) называют электротоком, он бывает переменным и постоянным. В последнем случае перемещение нуклонов происходит во времени стабильно, а в первом — периодически обращает направление и величину. Один из основных параметров переменного тока — частота. Зависит характеристика от периодичности колебаний электронов, может измеряться несколькими способами и приборами.
Переменный электрический ток
В английском языке этому термину соответствует выражение alternating current — аббревиатура AC, в энерготехнике как буквенное обозначение используют знак тильда (~). Переменный ток изменяется в периоде по синусоиде. Источниками служат генераторы, вырабатывающие ЭДС посредством электромагнитной индукции. Характеризуется АС следующими параметрами:
- напряжение сети U в вольтах;
- сила тока I=Q/Δt, [A] — количество зарядов, прошедших через поперечник проводника в единицу времени;
- период Т — отрезок времени полного цикла изменений;
- частота f — количество колебаний в течение секунды: f =1/Т, [Гц] в отечественных сетях стандарт 50 герц;
- плотность тока j=I/S, [A/мм2] — векторная величина, где S площадь сечения проводника, направление j совпадает с курсом движения электронов;
- фаза — состояние АС, может быть одно- и многофазным;
- амплитуда I max — высота синусоиды, максимальная величина мгновенно достигаемого за период значения тока.
В энергетике преимущественно используются трёхфазные сети: 3 отдельных электроцепи с одинаковыми напряжением и частотой при сдвиге φ=120°. От стабильности колебательных движений нуклонов в системе зависит устойчивость и надёжность работы всей энергосети.
Период пульсаций и частота
Физическая сущность переменного тока заключается в перемещении электронов в проводнике сначала в одном направлении, затем в другую сторону. Полный цикл движений туда и обратно совершается за определённый период, определяемый по частоте колебаний: Т=1/ f.
Интенсивность циклов
Для условий электросетей России показатель f =50 Гц, а время одной пульсации составляет Т=1/50=0,02 секунды. Обратная связь двух параметров позволяет определить частоту ~ тока по длительности сигнала: f =1/0,02=50 Гц.
Один герц означает 1 колебание за секунду. Чем быстрее изменяется электродвижущая сила, тем скорее обращается радиус-вектор и сокращается период. Соответственно, при форсировании оборотов возрастает частота: величины Т и f обратно пропорциональны, чем больше одна, тем меньше вторая. Значения характеристики f изменяются в широких пределах, что предопределяет использование расширенной терминологии:
Количество нулей после единицы | Приставка к размерности герц |
3 (тысяча) | Кило (кГц) |
6 (миллион) | Мега (мГц) |
9 (миллиард) | Гига (ГГц) |
В зависимости от величины частота переменного тока подразделяется на следующие подгруппы:
- промышленные: 16―25 Гц на железнодорожных сетях некоторых стран, 25 и 75 Гц в схемах блокировки рельсовых цепей, в автономных системах авиационной и военной энергетики — 400 Гц, на некоторых производственных и сельскохозяйственных установках 200―400 Гц;
- звуковые находятся в интервале 20―20000 Гц (20 кГц), в передающих антеннах — до 1,5 ГГц;
- технические: автоматика — используется диапазон от 1 кГц до 1 ГГц, металлургия и машиностроение: плавка, сварка и термообработка металлов;
- радиолокационные станции спутниковой связи, спецсистемы ГЛОНАСС, GPS — до 40 ГГц и выше.
Токи высокой частоты (ТВЧ) начинаются с уровня десятков кГц, когда значимо проявляются излучения электромагнитных волн и скин-эффект: заряд, перемещающийся в проводнике, распределяется не по сечению, а в поверхностном слое.
Для выработки ТВЧ используют энергомашинные генераторы и колебательные контуры. В последнем случае устройство представляет собой цепь с включением в состав ёмкости и индуктивности.
Опасность разночастотных зарядов
Эквивалентные по воздействию на организм человека напряжения переменного и постоянного тока, равны соответственно 42 В и 120 В. Неравенство опасности исчезает при достижении ЭДС 500 В, а при больших значениях опаснее становится константный. Проявления неблагоприятного действия последнего — термическое и электролитическое, а переменного — преимущественно выражается в сокращении сосудов, мышц, голосовых связок. При этом определяющее значение на опасность оказывает частота тока:
- 40―60 Гц — наибольшая угроза поражения, возможность фибрилляции сердца; дальнейшее повышение интенсивности колебаний зарядов приводит к снижению риска, но вероятность гибельности сохраняется в пределах всего диапазона промышленных частот — до 500 Гц;
- свыше 10 кГц начинаются ТВЧ — они безопасны до уровня 1 мГц относительно внутренних поражений, что обусловлено скин-эффектом, но вызывают ожог и угроза от них не меньше, чем от постоянных или переменных предшествующей группы;
- токи высокой частоты сопровождаются электромагнитными излучениями — с этой стороны существует возможность негативного воздействия на живые организмы.
На относительной безопасности ТВЧ основано их применение в медицине для физиотерапевтических процедур. Тяжесть поражения электротоком зависит не только от физических параметров заряда, но и от состояния организма человека.
Измерительные приборы
Для определения интенсивности колебаний используют осциллограф, на котором можно увидеть частоту и форму сигнала. Существуют также специальные приборы — частотомеры. В них применяют следующие способы определения параметра:
- перезаряд конденсатора — среднее значение силы тока пропорционально соотносится с его интенсивностью и измеряется магнитоэлектрическим амперметром со шкалой в герцах;
- дискретный счёт — фиксирование импульсов нужной частоты за определённый период, получают данные достаточной точности: погрешность в пределах 2%, этого хороший показатель для бытового применения прибора;
- резонансный метод основан на одноимённом электрическом явлении, возникающем в цепи с настраиваемыми элементами; частота — больше 50 Гц, определяется по шкале регулировочного механизма.
Ещё один известный способ применяется в осциллографах, основан на смешивании и сравнении эталонного параметра с измеряемой частотой. Вследствие наложения возникают биения, а при выравнивании на экране устанавливается определённая фигура. Рассчитывают искомую характеристику по зафиксированному графику посредством математических формул.
Переменный ток и его основные параметры. Основные параметры переменного тока
Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.
Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению.
Такие источники называются генераторами переменного тока.
На рис. 1 показана схема устройства (модель) простейшего .
Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).
Рисунок 1. Схема простейшего генератора переменного тока
Убедимся в том, что такое устройство действительно является источником переменной ЭДС.
Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .
Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.
В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.
В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .
Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.
Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.
Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.
Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.
ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.
Графическое изображение постоянного и переменного токов
Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.
Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).
На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.
Рисунок 2. Графическое изображение постоянного и переменного тока
Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.
Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.
Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.
То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.
Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.
Перейдем теперь к изучению графика переменной ЭДС
. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.
Рисунок 3. Построение графика переменной ЭДС
Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.
В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t
= 0, изобразится точкой 1
.
При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).
По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.
Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).
При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.
График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.
Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)
На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.
Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.
Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.
Полученная нами волнообразная кривая называется синусоидой
, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными
.
Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.
Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.
Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .
Период, амплитуда и частота — параметры переменного тока
Переменный ток характеризуется двумя параметрами — периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.
Рисунок 4. Кривая синусоидального тока
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом.
Период обозначается буквой Т и измеряется в секундах.Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.
Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.
Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.
Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.
i , е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.
Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.
Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.
Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.
Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f .
Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T . Зная частоту переменного тока, можно определить период: T = 1/f
Измеряется единицей, называемой герцем.
Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.
Итак, мы определили параметры переменного тока — период, амплитуду и частоту , — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.
При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .
Круговая частота обозначается буквой ω и связана с частотой f соотношениемω = 2π f
Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается ра мка в 1 секунду, и выражает собой скор ость вращения рамки, которую принято называть угловой или круговой скоростью.
Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f.
Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π =3,14. Таким образом, окончательно получим ω = 2π f. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на постоянное число 6,28.
Переменный и его применение в медицине.
- Переменный ток, его виды и основные характеристики.
Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).
Примечание: не оговаривается форма кривой тока, периодичность, длительность его изменения.
На практике под переменным током чаще всего подразумевают периодический переменный ток.
Физическая сущность переменного тока сводиться к колебаниям электрических зарядов в среде (проводнике или диэлектрике).
Виды тока:
Ток проводимости.
Ток смещения.
Ток проводимости – это такой ток, который обусловлен колебаниями электронов и ионов в среде.
Ток смещения – это ток, который обусловлен смещением электрических зарядов на границе «проводник – диэлектрик» (например, ток через конденсатор).
Ток смещения связан с изменением во времени электрического поля на границе проводник – диэлектрик и имеет особенности:
Амплитуда тока смещения и его направления совпадают по фазе с таковыми тока проводимости.
По значению он всегда равен току проводимости.
Частным случаем тока смещения является ток поляризации. Ток поляризации – это ток смещению не в вакууме, а в материальной диэлектрической среде.
Сумма токов смещения и поляризации составляет полный ток смещения.
В медицинской практике применяются следующие виды токов по форме кривой тока:
Самым простым является периодический синусоидальный ток. Он легко описывается математически и графически, форма его не искажается в электрических цепях с R, C, L элементами.
Основные характеристики переменного тока.
Период – время одного цикла изменения тока по направлению и числовому значению (T, c).
Частота – это число циклов изменения тока в единицу времени.
=1/Т (величина обратная периоду с -1 , Гц)
Круговая частота ( , 2 /Т радиан/с)
Фаза ( ) – это величина, определяющая во времени взаимоотношение тока и напряжения в электрической цепи.
Мгновенное значение тока и напряжения — значение этих величин в данный момент времени (i, u).
Амплитудное значение тока и напряжения – это максимальное за полупериод значение этих величин (I m , U m).
Среднеквадратическое (действующее, эффективное) значение тока и напряжения — вычисляется как положительный квадратный корень из среднего значению квадрата напряжения или тока по формулам.
I = I 2 cp
U = U 2 cp
Среднее значение (U ср ) за период (постоянная составляющая) – это среднее арифметическое мгновенных значений ток или напряжения за период.
На практике среднеквадратическое значение определяется по эффективному (действующему) значению. (I cp , U cp), которое для синусоидального тока вычисляется по формулам:
I эф = I = 0,707 I m
U эф = U = 0,707 U m
В отдельных случаях медицинского применения электрического тока приходиться учитывать и другие характеристики (например, коэффициент амплитуды К а, и коэффициент формы К ф).
Для практики имеют значения следующие формулы связи характеристик:
i(u) ≤I m (U m)
I эф = I = I m / 2 =0,707 I m I m = 1,41 I эф
U эф = U= U m / 2 =0,707 U m U m = 1,41 U эф
2. Цепи переменного тока с активным сопротивлением, индуктивностью, емкостью и их особенности.
Электрическая цепь — это реальная или мыслимая совокупность физических элементов, передающих электрическую энергию от одной точки пространства к другой.
Физическими элементами электрических цепей являются проводники, резисторы, конденсаторы, катушки индуктивности. Элементы цепи являются и элементами её связи, и, кроме того, реализуют соответствующие свойства сопротивления, емкости и индуктивности.
Виды электрических цепей:
Простые цепи содержат только единичные R, C, L – элементы, а сложные имеют их в различных количествах и сочетаниях.
Общей особенностью элементов электрической цепи является то, что при прохождении переменного тока они оказывают сопротивление, которое называется активным (R), индуктивным (X l), емкостным (X c).
Особенности простых идеальных цепей.
Цепь, состоящая из генератора тока и идеального резистора, называется простой цепью с активным сопротивлением.
Условию идеальности цепи :
Активное сопротивление не равно нулю,
индуктивность и ёмкость его равны нулю.
R 0
C r = 0 ~ R
Особенности:
Нет сдвига фаз ( ) между током и напряжением.
Это значит, что ток и напряжение одновременно проходят свои максимальные (амплитудные) и нулевые значения.
На R – элементе происходят потери энергии в виде выделения тепла.
Цепь с индуктивностью – это электрическая цепь, состоящая из генератора переменного тока и идеального L – элемента- катушки индуктивности.
Условия идеальности цепи:
Индуктивность катушки не равна нулю
Её ёмкость и сопротивление равны нулю.
L 0
Особенности цепи:
X L = L = 2 L
В цепи есть сдвиг фаз между напряжением и током: V опережает I по фазе на угол /2
Индуктивное сопротивление не потребляет энергии, т. к. она запасается в магнитном поле катушки, а затем отдается в электрическую цепь. Поэтому индуктивное сопротивление называется кажущимся или мнимым.
Цепь с ёмкостью – это электрическая цепь, состоящая из генератора переменного тока и идеального C – элемента — конденсатора.
Условия идеальности цепи:
Ёмкость конденсатора не равна нулю, а его активное сопротивление и индуктивность равны нулю. С 0, R С = 0, L C = 0.
Особенности цепи с ёмкостью:
1. Соблюдается закон Ома.
2. Ёмкость оказывает переменному току сопротивление, которое называется ёмкостным. Оно обозначается X с и уменьшается с увеличением частоты не линейно.
В цепи есть сдвиг фаз между напряжением и током: V отстает от I по фазе на угол /2
Ёмкостное сопротивление не потребляет энергии, т.к. она запасается в электрическом поле конденсатора, а затем отдается в электрическую цепь. Поэтому ёмкостное сопротивление называется кажущимся или мнимым.
- Полная цепь переменного тока и её виды. Импеданс и его формула. Особенности импеданса живой ткани.
Полная цепь переменного тока — это цепь из генератора, а также R, C, и L элементов, взятых в разных сочетаниях и количествах.
Для разбора проходящих в электрических цепях процессов используют полные последовательные и параллельные цепи.
Последовательная цепь — это такая цепь, где все элементы могут быть соединены последовательно, один за другим.
В параллельной цепи R, C, L элементы соединены параллельно.
Особенности полной цепи:
Соблюдается закон Ома
Полная цепь оказывает переменному току сопротивление. Это сопротивление называется полным (мнимым, кажущимся) или импедансом.
Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и вычисляется не простым, а геометрическим (векторным) суммированием. Для последовательно соединенных элементов формула импеданса имеет следующее значение:
Z — импеданс последовательной цепи,
R — активное сопротивление,
X L – индуктивное и X C – ёмкостное сопротивление,
L — индуктивность катушки (генри),
C — ёмкость конденсатора (фарад).
Так как ёмкостное и индуктивное сопротивления дают для напряжения сдвиг фаз в противоположном направлении, возможен случай, когда X L = X C . При этом алгебраическая сумма модулей будет равна нулю, а импеданс – наименьшим.
Состояние, при котором в цепи переменного тока ёмкостное сопротивление равно индуктивному, называется резонансом напряжения. Частота, при которой X L = X C , называется резонансной частотой. Эту частоту p можно определить по формуле Томсона:
- Особенности импеданса живой ткани и её эквивалентная электрическая схема.
При пропускании тока через живую ткань, её можно рассматривать как электрическую цепь, состоящую из определенных элементов.
Экспериментально установлено, что это цепь обладает свойствами активного сопротивления и ёмкости. Это доказывается выделением тепла и уменьшением полного сопротивления ткани с возрастанием частоты. Свойств индуктивности у живой ткани практически не обнаруживается. Таким образом, живая ткань представляет собой сложную, но не полную электрическую цепь.
Импеданс живой ткани можно рассматривать как для последовательного, так и для параллельного соединения её элементов.
При последовательном соединении токи через элементы равны, общее приложенное напряжение будет векторной суммой напряжений на R и C элементах и формула импеданса последовательной цепи будет иметь вид:
Z_ — импеданс последовательной цепи,
R — её активное сопротивление,
X C — ёмкостное сопротивление.
При параллельном соединении напряжения на R и C элементах равны, общий ток будет векторной суммой токов каждого элемента, а фомула импеданса будет следующей:
Теоретические формулы импеданса живой ткани при параллельном и последовательном соединении её элементов от экспериментальных отличаются следующим:
При последовательной схеме соединения практические данные дают большие отклонения на низких частотах.
При параллельной схеме эти измерения показывают конечное значение Z, хотя теоретически оно должно стремиться к нулю.
Эквивалентная электрическая схема живой ткани – э то условная модель, приближенно характеризующаяживую ткань, как проводник переменного тока.
Схема позволяет судить:
Какими электрическими элементами обладает ткань
Как соединены эти элементы.
Как будут меняться свойства ткани при изменении частоты тока.
В основе схемы лежат три положения:
Внеклеточная среда и содержимое клетки есть ионные проводники с активным сопротивлением среды Rср и клетки Rк.
Клеточная мембрана есть диэлектрик, но не идеальный, а с небольшой ионной проводимостью, а, следовательно, и сопротивлением мембраны Rм.
Внеклеточная среда и содержимое клетки, разделённые мембраной, являются конденсаторами См определенной ёмкости (0,1 – 3,0 мкФ/см 2).
Если в качестве модели живой ткани взять жидкую тканевую среду – кровь, содержащую только эритроциты, то при составлении эквивалентной схемы нужно учитывать пути электрического тока.
В обход клетки, через внеклеточную среду.
Через клетку.
Путь в обход клетки представлен только сопротивлением средыRср.
Путь через клетку сопротивлением содержимого клетки Rк, а также сопротивлением и ёмкостью мембраны.Rм, См.
Если заменить электрические характеристики соответствующими обозначениями, то получим эквивалентные схемы разной степени точности:
Схема Фрике (ионная проводимость не
учитывается).
Схема Швана (ионная проводимость учитывается в виде сопротивления мембраны)
Обозначения на схеме:
Rcp — активное сопротивление клеточной среды
Rk — Сопротивление клеточного содержимого
Cm — ёмкость мембраны
Rm — сопротивление мембраны.
Анализ схемы показывает, что при увеличении частоты тока проводимость клеточных мембран увеличивается, а полное сопротивление тканевой среды уменьшается, что соответствует практически проведенным измерениям.
5. Живая ткань как проводник переменного электрического тока. Дисперсия электропроводности и её количественная оценка.
Экспериментально установлены следующие особенности живой ткани как проводника переменного ток:
1. Сопротивление живой ткани переменном току меньше, чем постоянному.
2. Электрические характеристики ткани зависят как от её вида, так и от частоты тока.
3. С увеличением частоты полное сопротивление живой ткани нелинейно уменьшается до определенного значения, а затем остаётся практически постоянным (в большинстве на частотах свыше 10 6 Гц)
4. На определенной частоте полное сопротивление зависит также от физиологического состояния (кровенаполнения), что используется на практике. Исследование периферического кровообращения на основе измерения электрического сопротивления называются реография (импедансплетизмография).
5. При умирании живой ткани её сопротивление уменьшается и от частоты не зависит.
6. При прохождении переменного тока через живые ткани наблюдается явление, которое называется дисперсией электропроводности.
Дисперсия электропроводности — это явление зависимости полного (удельного) сопротивления живой ткани от частоты переменного тока.
Графики такой зависимости называют дисперсионными кривыми. Дисперсионные кривые строят в прямоугольной системе координат, где по вертикали откладывают значения полного (Z) или удельного сопротивления, а по горизонтали — частоту в логарифмическом масштабе (Lg ).
Частотные зависимости по форме кривой для разных тканей сходный, но отличается значением сопротивления.
Имеется несколько диапазонов частот, на которых дисперсия особенно выражена. Один из них соответствует интервалу 10 2 -10 6 Гц
Особенности дисперсии:
1. Присуща только живым тканям.
2. Более выражена на частотах до 1 МГц.
3. На практике используется для оценки физиологического состояния и жизнеспособности тканей.
Количественно оценка дисперсии проводиться по коэффициенту дисперсии (К).
Коэффициент дисперсии это безразмерная величина, равная отношению низкочастотного (10 2) полного (или удельного) сопротивления к высокочастотному (10 6 Гц).
Z 1 – полное сопротивление на частоте 10 2 Гц
Z 2 – полное сопротивление на частоте 10 6 Гц
1 , 2 — удельное сопротивление на этих частотах
Значение коэффициента дисперсии зависит от вида ткани, её физиологического состояния, эволюционной стадии развития животного. Например, для печени животного К = 9 -10 единиц, а для печени лягушки 2 -3 единицы. При умирании ткани коэффициент дисперсии стремиться к единице.
Явление дисперсии связывают с наличием в живых тканях поляризации, которая с увеличением частоты меньше влияет на полное сопротивление. Поэтому коэффициент дисперсии часто называют коэффициентом поляризации.
Кроме частотных зависимостей в живых тканях отмечаются фазовые сдвиги между током и напряжением, которые тоже, но в меньшей степени, зависят от частоты.
Фазовые сдвиги тоже уменьшаются при умирании тканей и, в перспективе, могут быть использованы для практических целей.
Похожие рефераты:
Порядок определения степени проводимости электрической цепи по закону Кирхгофа. Комплекс действующего напряжения. Векторная диаграмма данной схемы. Активные, реактивные и полные проводимости цепи. Сущность законов Кирхгофа для цепей синусоидального тока.
Изучение процессов в электрической однофазной цепи с параллельным соединением приемников, содержащих индуктивные и емкостные элементы, при различном соотношении их параметров. Опытное определение условий достижения в данной цепи явления резонанса тока.
Расчет разветвленной цепи постоянного тока с одним или несколькими источниками энергии и разветвленной цепи синусоидального переменного тока. Построение векторной диаграммы по значениям токов и напряжений. Расчет трехфазной цепи переменного тока.
Вынужденными колебаниями называют такие колебания, которые вызываются действием на систему внешних сил, периодически изменяющихся с течением времени. В случае электромагнитных колебаний такой внешней силой является периодически изменяющаяся э.д.с. источника тока.
Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.
Обозначения, параметры. Мы знаем, что постоянный электрический ток, это ток не
меняющийся во времени как по величине, так и по направлению
движения электронов. Основное назначение постоянного тока,
это питание различной радио и электронной аппаратуры.
Источниками постоянного тока являются аккумуляторы,
солнечные фотоэлементы, батарейки и генераторы постоянного
тока.
В быту и промышленности используется переменный
синусоидальный ток. Это связано с тем, что современная
энергетика основана на передаче энергии на дальние расстояния
от гидро, тепловых и атомных электростанций к потребителю.
Для получения электрической энергии на электростанциях
используют генераторы переменного тока. Прередача переменного тока выгодна вследствие преимуществ
его преобразования и из за малых потерь в линиях электропередачи.
Переменный электрический ток легко преобразовать в
постоянный ток, а так же получить любые нужные напряжения
переменного тока. Например напряжение переменного тока
передаваемое по линиям электропередачи составляет несколько
тысяч вольт. В жилых кварталах линия электропередачи
подключается к трансформатору который преобразует высокое
напряжение в стандартное бытовое напряжение 220 вольт.
Именно это напряжение мы и имеем в розетках наших квартир.
В отличие от постоянного тока, переменный синусоидальный ток (а так же и переменное напряжение) изменяется со временем по амплитуде (величине) и направлению движения электронов. На графике переменный ток имеет вид синусоиды. | |
| Расстояние между двумя соседними вершинами на графике переменного синусоидального тока называется периодом и обозначается буквой Т. Период, это время одного колебания переменного тока. Измеряется период в секундах или в более малых единицах времени: миллисекундах; микросекундах; наносекундах и т.д. Величина: период Т=1 сек. в минус первой степени (Т -1) или 1/Т называется частотой в 1 Герц. Частота обозначается буквой f. В радио и электронных приборах, в зависимости от их назначения, частота может быть в единицах герц (Гц или Hz), тысячах герц (кГц или kHz) и так далее. |
В отличие от постоянного тока, переменный электрический ток
(или напряжение) изменяют свою величину, со временем, от
максимального до минимального значения. В связи с этим
значение переменного тока или напряжения будет несколько ниже
значения U или I.
Эти значения называются эффективными
(действующими) значениями тока или напряжения и обозначаются
соответственно Iэф и Uэф (смотрите рисунок). Именно такие
значения показывают измерительные приборы переменного тока.
    Для исследования параметров переменного тока наиболее
подходящим измерительным прибором является осциллограф.
На электронно лучевой трубке осциллографа — дисплее
(см. рисунок) можно наблюдать не только форму переменного
тока, но и провести количественный анализ исследуемого сигнала.
Ось Х на дисплее проградуирована в делениях времени, а ось Y
проградуирована в делениях амплитуды сигнала. На рисунке
переключатель «Время» установлен на время 0.01 микросекунда
на деление по оси Х.
На приведенном рисунке период сигнала равен 2 делениям,
следовательно: Т = 2 * 0.01 = 0.02 мкС, а частота сигнала
f = 1/T = 1/(0.02 -6) = 1/0.00000002 = 50000000 Гц = 50 МГц
(МГц — мегагерц).
Переключатель «Значение Y» установлен на амплитуду 10 Вольт
на деление по оси Y. Сигнал имеет амплитуду 6 делений,
следовательно напряжение сигнала равно 6 * 10 = 60 вольт.
В заключение этой темы хотелось бы сказать о том, что
переменный синусоидальный ток применяется не только для
питания бытовых и промышленных электрических приборов.
В радио и электронике широко используются, например,
высокочастотные генераторы переменного тока для радио-
передатчиков (как мощные для теле и радио студий, так и
маломощные для телефонов сотовой связи, пейджеров и т.д.).
В последующих наших темах мы будем часто сталкиваться с
переменным электрическим током и законами его усиления,
преобразования и так далее.
Лекция по теме: » Переменный ток»
Учебная дисциплина ОП.03 Электротехника и электроника
«ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА. НЕРАЗВЕТВЛЁННАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНО-ИНДУКТИВНЫМ, ЕМКОСТНЫМ СОПРОТИВЛЕНИЕМ. ВЕКТОРНЫЕ ДИАГРАММЫ. МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА. КОЭФФИЦИЕНТ МОЩНОСТИ».
План лекции:
1.Переменный ток и его значение.
2. Характеристики переменного тока.
3.Максимакльное (амплитудное) и действующее (мгновенное) значение напряжения и силы тока.
4. Преобразование переменного тока в постоянный.
5.Основные элементы цепи переменного тока.
6. Резистор в цепи переменного тока.
7.Конденсатор в цепи переменного тока.
8.Катушка индуктивности в цепи переменного тока.
9. Мощность переменного тока. Коэффициент мощности.
10. Полное сопротивление в цепи переменного тока, содержащей резистор, конденсатор и катушку.
Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.
Электрический ток, питающий розетки в наших домах, является переменным.
А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного?
В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.
Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.
Переменный ток— электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя свое направление в электрической цепи неизменным.
Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.
Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?
Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.
Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.
Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.
На рисунке обратное направление – это область графика ниже нуля.
Характеристики переменного тока:
Период — это время одного полного колебания.
Т – период, с
Амплитуда – это наибольшее положительное или отрицательное значение силы тока или напряжения.
Частота — это времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц).
В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. В США частота промышленного тока 60 Гц.
Эта величина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.
Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.
Амплитуда – характеризует состояние переменного тока с течением времени.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Еm, напряжения — Um, тока — Im.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.
Преобразование переменного тока в постоянный.
Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.
Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.
Колебания силы тока в цепи резистора совпадают по фазе с колебаниями напряжения.
Видео по теме:«Переменный электрический ток. Получение переменного тока» см. по ссылке:
Вопросы для самоконтроля:
1.Что такое переменный электрический ток?
2. Почему переменный ток получил такое широкое распространение?
3. Поясните, почему передача электроэнергии осуществляется с использованием переменного тока?
4. Что такое период, частота и фаза переменного тока?
5.Что называется действующим значением переменного тока? Какова связь действующих значений ЭДС, напряжения и тока с их амплитудными значениями?
6.По какой формуле определяется индуктивное сопротивление цепи переменному току?
7.По какой формуле определяется емкостное сопротивление цепи переменному току?
8.По какой формуле определяется сдвиг фаз между током и напряжением в цепях переменного тока?
9.По какой формуле вычисляется мощность переменного тока? Что называется коэффициентом мощности?
10.Как используется диод для выпрямления переменного тока?
Рассмотрим примеры решения задач:
Примеры решения расчетных задач
Задача 1. Определите сдвиг фаз колебаний напряжения и силы тока для электрической цепи, состоящей из последовательно включенных проводников с активным сопротивлением R = 1000 Ом, катушки индуктивностью L = 0,5 Гн и конденсатора емкостью С = 1 мкФ. Определите мощность, которая выделяется в цепи, если амплитуда напряжения U0 = 100 В, а частота = 50 Гц.
Решение:
Сдвиг фаз между током и напряжением в цепях переменного тока определяется соотношением
(1)
здесь = 2 — циклическая частота. Следовательно,
Мощность, которая выделяется в цепи, определится по формуле
Для цепи переменного тока справедливо соотношение
где Z — полное сопротивление (импеданс) цепи:
Следовательно, мощность, которая выделяется в цепи
(2)
Подставив численные значения в (1), получим (минус означает, что напряжение отстает по фазе). Тогда . Подставив численные значения в (2), получим P = 0,5 Вт.
Ответ:
Задача 2. Конденсатор неизвестной емкости, катушка с индуктивностью L и сопротивлением R подключены к источнику переменного напряжения (рис. 1). Сила тока в цепи равна . Определите амплитуду напряжения между обкладками конденсатора.
Решение:
Из условия задачи видно, что сила тока и напряжение в цепи меняются синфазно. Это означает, что совпадают индуктивное и емкостное сопротивления.
(3)
Напряжение на конденсаторе будет равно
(4)
Поскольку , то
(5)
Подставляя (5) в (4), получим:
(6)
С учетом (3) соотношение (6) примет вид:
Поэтому амплитудное значение напряжения между обкладками конденсатора будет равно
Ответ:
Задача 3. В электрической цепи из двух одинаковых конденсаторов емкости С и катушки с индуктивностью L, соединенных последовательно, в начальный момент времени один конденсатор имеет заряд q0, а второй не заряжен (рис. 2). Как будут изменяться со временем заряды конденсаторов и сила тока в контуре после замыкания ключа К?
Решение:
Цепь, приведенная на рис. 2, представляет собой колебательный контур. Сила тока в нем будет меняться по закону
(7)
Чтобы ответить на вопрос задачи, нужно найти максимальное значение силы тока I0 и частоту колебаний . Частоту колебаний можно определить по формуле
(8)
где Сэкв — емкость системы из двух последовательно соединенных конденсаторов емкостью С:
Подставляя значение Сэкв в (8), получим, что частота колебаний в контуре будет равна
(9)
Подставим значение частоты (9) в выражение для силы тока (7), тогда получим, что сила тока в цепи будет меняться по закону
(10)
Для определения I0 можно воспользоваться законом сохранения энергии. Пусть в некоторый момент времени заряд одного из конденсаторов равен q1 , тогда заряд второго конденсатора будет q2 = q0 — q1 . В начальный момент времени энергия контура сосредоточена в электрическом поле заряженного конденсатора, в произвольный момент времени она перераспределяется между энергией электрического поля двух заряженных конденсаторов и энергией магнитного поля, сосредоточенного в катушке индуктивности. Следовательно, согласно закону сохранения энергии,
Отсюда можно найти зависимость силы тока от заряда q1.
Чтобы найти максимальное значение силы тока, нужно взять производную от I по q1 и приравнять ее к нулю.
Из последнего выражения видно, что максимальное значение силы тока достигается при . Следовательно,
Подставляя полученное значение для максимального значения силы тока в (10), получим, что сила тока в цепи будет меняться по закону
Чтобы найти закон изменения зарядов на пластинах конденсатора, воспользуемся выражением . Преобразовав его, получим квадратное уравнение для q1:
Решая уравнение, получим:
Разные знаки означают, что в начальный момент времени любой конденсатор может либо иметь заряд q0, либо быть незаряженным. Пусть
Тогда
Ответ:
Задача 4. Имеются два колебательных контура с одинаковыми катушками и конденсаторами. В катушку одного из контуров вставили железный сердечник, увеличивший ее индуктивность в n = 4 раза. Найдите отношение резонансных частот контуров и их энергий, если максимальные заряды на конденсаторах одинаковы.
Решение:
Резонансные частоты контуров могут быть определены по формуле Томсона:
Отсюда
Ответ:
Задача 5. Два сопротивления R1 и R2 и два диода подключены к источнику переменного тока с напряжением U так, как показано на рис. 3. Найдите среднюю мощность, выделяющуюся в цепи.
Решение:
Ток половину периода идет через один диод (например, 1). За это время на сопротивлении R1 выделяется средняя мощность
В течение второго полупериода ток идет через диод 2, выделяя на нем среднюю мощность
Таким образом, за полный период выделяется средняя мощность
Ответ:
Задачи для самостоятельного решения:
№ 1. В ц.п.т. с напряжением 220 В включена активная нагрузка сопротивлением 40 Ом. Определите ток цепи.
№ 2. Определите сопротивление конденсатора емкостью 5 мкФ при частоте 50 Гц.
№3. Определите сопротивление катушки индуктивностью 0,01 Гн при частоте 50 Гц.
№ 4. Определите ток, проходящий через катушку, индуктивное сопротивление которой 5 Ом, а активное сопротивление 1 Ом, если напряжение сети переменного тока 12 В.
№ 5. В ц.п.т. с напряжением 220 В включена эл.лампа, по спирали которой течет ток 5 А. Вычислите активную мощность этой лампы.
№ 6. В электрическую цепь напряжением 220 В последовательно включены реостат сопротивлением 5 Ом, катушка с активным сопротивлением 6 Ом и индуктивным сопротивлением 4 Ом, конденсатор с емкостным сопротивлением 3 Ом. Определите ток в цепи. Постройте векторную диаграмму токов и напряжений.
№ 7. В ц.п.т. с напряжением 220 В включены конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите реактивную мощность цепи.
Постройте векторную диаграмму токов и напряжений.
№ 8. В ц.п.т. с напряжением 380 В включены активное сопротивление 50 Ом и конденсатор емкостью 1000 мкФ. Определите полную мощность цепи.
Постройте векторную диаграмму токов, напряжений и мощностей.
№ 9. В ц.п.т. напряжением 110 В последовательно включены активное сопротивление 30 Ом, емкостное – 45 Ом и индуктивное — 50 Ом. Определите полное сопротивление этой цепи.
№ 10. В ц.п.т. с напряжением 220 В включены активное сопротивление 20 Ом, конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите полную мощность цепи. Постройте векторную диаграмму токов, напряжений, мощностей.
Домашнее задание:
1.Выучить и законспектировать лекцию.
2. Разобрать и записать в тетрадь примеры решения задач, которые приведены в конце лекции.
3. Ответить на вопросы для самоконтроля.
4. Выполнить на оценку задания в тестовой форме:
Ответы (указав фамилию, имя, название теста и группу) прислать по следующему адресу в контакте: http://vk. com/id216653613
31. Однофазный переменный ток. Основные характеристики.
Переменным электрическим током называется ток, периодически меняющийся по величине и направлению.
Основное достоинство переменного тока заключается в возможности трансформировать напряжение. Кроме того, электрические машины переменного тока надежней в работе, проще по устройству и эксплуатации.
Говоря о переменном токе, обычно имеют в виду синусоидальный переменный ток, т. е. ток, изменяющийся по синусоидальному закону. При синусоидальном токе ЭДС электромагнитной индукции, самоиндукции и взаимоиндукции изменяются по синусоидальному закону. Синусоидальный переменный ток проходит в замкнутой линейной электрической цепи под действием синусоидальной ЭДС.
Амплитуда – это максимальное значение периодически изменяющейся величины.
Период – это время, в течение которого переменная величина делает полный цикл своих изменений, после чего изменения повторяются в то же последовательности.
Обозначается период буквой Ти измеряется в секундах
Частота – это число периодов за единицу времени.
Обозначается частота буквойf, f= 1/T, и измеряется в герцах.
Угловая скорость – характеризуется углом поворотом рамки в единицу времени.
Обозначается ω (омега), .
Мгновенное значение – значение в данный момент времени.
Действующее значение переменного тока – значение переменного тока эквивалентное постоянному току по тепловому действию.
Действующее значение переменного тока в раза меньше его амплитудного значения.
32. Электрические цепи синусоидального тока с активным сопротивлением.
В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.
При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.
Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).
Е сли к активному сопротивлению R приложено синусоидальное напряжение , то и ток в этой цепи изменяется по синусоидальному закону:
Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные их фазы равны.
33. Электрические цепи синусоидального тока с индуктивностью.
Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т. е. R = 0 и С=0.
Если в цепи идеальной катушки индуктивностью Lпроходит синусоидальный ток ,то этот ток создает в катушке синусоидальный магнитный поток , который индуктирует в катушке ЭДС самоиндукции.
Тогда
Т аким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол .
Следовательно
Для существования тока в цепи с идеальной индуктивностью необходимо приложить к цепи напряжение, которое в любой момент времени равно по величине, но находится в противофазе с ЭДС, вызванной этим током. I=U/ωL.
Закон Ома для этой цепи можно записать так:
Индуктивное сопротивление ХL– это противодействие, которое ЭДС самоиндукции еLоказывает изменению тока.
Переменный синусоидальный ток
Переменный ток — это ток, который периодически изменяется как по модулю, так и по направлению. Появляется переменный ток благодаря электромагнитной индукции. Электромагнитная индукция это явление возникновения тока в замкнутом контуре при изменении магнитного потока проходящего через него. Чтобы понять, как именно возникает ток, представим себе рамку (кусочек проволоки прямоугольной формы), которая находится под воздействием магнитного поля B.
Пока рамка находится в покое, тока в ней нет. Но как только мы начнём её поворачивать, электроны, которые находятся в рамке, начнут перемещаться вместе с ней, то есть двигаться в магнитном поле. Вследствие этого магнитное поле начинает действовать на электроны, заставляя их двигаться по рамке. Чем больше линий магнитного поля пронизывает рамку, тем сила действующая на электроны больше, следовательно, и электрический ток тоже. Получается, что ток достигает максимума в момент, когда рамка перпендикулярна магнитному полю (наибольшее количество линии пронизывает рамку) и равен нулю, когда параллельна (наименьшее количество линии пронизывает рамку). Соответственно и сила, которая действует на электроны, тоже изменяется. После прохождения момента, когда рамка параллельна вектору магнитной индукции B, ток в ней начинает течь в обратную сторону.
Ток, который получается при вращении рамки, изменяясь во времени, описывает синусоиду, то есть является синусоидальным. Переменный синусоидальный ток является частным случаем периодического переменного тока. Закон, описывающий изменение тока, имеет вид:
Амплитуда Im – это наибольшая абсолютная величина, которую принимает периодически изменяющийся ток.
Начальная фаза ψ — аргумент синусоидального тока (угол), отсчитываемый от точки перехода тока через нуль к положительному значению.
Время, за которое ток в проводнике дважды изменяет своё направление, называют периодом T. Период измеряется в секундах.
Циклической частотой f называется величина обратная периоду . Измеряется в Герцах, в домашней розетке циклическая частота тока равна 50 Гц, её также называют промышленной частотой. При такой частоте период тока равен , это значит, что за две сотых секунды ток в нашей розетке меняет свое направление два раза.
Угловая частота ω показывает с какой скоростью изменяется фаза тока и определяется как
Среднее значение Iср синусоидального тока за период Т определяют из геометрических представлений: площадь прямоугольника с основанием T/2 и высотой Iср приравнивают площади ограниченной кривой тока:
После упрощения получаем формулу:
Действующее значение синусоидального тока определяется из энергетических представлений: действующий ток равен по величине такому постоянному току I, который в активном сопротивлении R за период Т выделяет такое количество энергии, как и данный ток i. То есть действующее значение, это своеобразная аналогия между переменным и постоянным током.
Для синусоидального тока действующее значение определяется по формуле:
или
Это основное что нужно знать о переменном синусоидальном токе.
Читайте также — Мгновенная мощность
| Sciencing
Токи переменного и постоянного тока имеют общие характеристики. Оба они состоят из движущихся зарядов и жизненно важны для схем и электронных устройств. Однако они генерируются по-разному и ведут себя по-разному. Переменные токи синусоидальны и исходят от генераторов переменного тока. Постоянный ток постоянен во времени и исходит от таких источников, как батареи или генераторы постоянного тока. Эти различия между ними влияют на роли, которые они играют в схемах.
Токи постоянного тока
Постоянные токи протекают только в одном направлении и постоянны во времени. Они выглядят как прямые, которые не меняются. Они производятся из источников питания, таких как батареи, блоки питания и генераторы постоянного тока. Фотоэлектрические устройства, такие как солнечные элементы, также вырабатывают постоянный ток.
Переменные токи
Переменные токи меняют направление, протекая сначала в одну сторону, а затем в другую. Это синусоидальные волны, поэтому они меняются во времени. Они производятся из таких источников, как блоки питания и генераторы переменного тока. В Северной Америке переменный ток составляет 120 вольт и 60 герц или циклов в секунду.Это означает, что он меняет направление 60 раз в секунду. В Европе это обычно 50 герц при напряжении от 220 до 240 вольт.
Электрические генераторы
Генераторы переменного тока вырабатывают электричество путем преобразования механической энергии в электрическую. Механическая энергия пара используется для вращения петель в магнитном поле, а генерируемая ЭДС представляет собой синусоидальную волну, которая изменяется во времени. Генераторы постоянного тока очень похожи на свои аналоги переменного тока, но у них генерируется ЭДС постоянного тока.
Необычные источники электроэнергии
Сбор энергии, также известный как сбор энергии или сбор энергии, — это место, где накапливается и улавливается энергия окружающей среды. Источники энергии из окружающей среды являются естественными, неэлектрическими по своей природе и самовосстанавливающимися, например, ветер или солнце. Сбор энергии человеком использует человеческое тело для производства энергии. Походка человека благодаря своим колебательным движениям является естественным источником переменного тока. Для изучения этого явления были созданы наколенники и человеческие рюкзаки.
Органы электрических угрей состоят из элементов в форме диска, которые ведут себя как батареи и собраны рядами, поэтому по своей природе они являются постоянным током. Они могут выдавать от 100 до 650 вольт, в зависимости от их размера. Угри используют свое электричество, чтобы шокировать добычу, а также для самообороны.
Функции
Переменный ток используется для питания двигателей в холодильниках, поездах, компьютерах, жестких дисках, промышленном оборудовании, бытовой технике и многих других электронных устройствах. Они используются для питания зданий, как и электричество, которое поступает из розеток в домашних условиях.Постоянный ток, производимый батареями, используется в электроинструментах, портативных радиоприемниках и телевизорах, игрушках и многих других устройствах. Есть некоторые устройства, где можно использовать питание переменного или постоянного тока, например, в сотовых телефонах. В этом случае, если батарея не работает в устройстве, диод в качестве выпрямителя помещается внутрь, например, в блоке питания. Диод преобразует переменное напряжение в постоянное.
Характеристики и применение сигналов постоянного (постоянного тока)
В предыдущем видео мы объяснили значение слова «сигнал» в контексте электротехники и представили две широкие категории, а именно, переменный и постоянный ток, которые очень часто появляются в обсуждениях источников питания, компонентов и схем. Пришло время более пристально взглянуть на сигналы постоянного тока.
Как выглядят реальные сигналы постоянного тока?
Основной характеристикой сигнала постоянного тока является отсутствие изменения полярности. Если вы подключите сигнал постоянного напряжения к резистору, результирующий ток всегда будет течь в одном и том же направлении. Величина тока может сильно варьироваться, но направление не меняется.
Некоторые из наиболее распространенных напряжений постоянного тока — это напряжения питания, генерируемые схемами регулятора, и, следовательно, некоторые люди могут ассоциировать термин «постоянный ток» с напряжениями или токами, которые являются полностью стабильными и постоянными.Однако, это не так.
Прежде всего, напряжения никогда не бывают идеально постоянными, даже если мы хотим, чтобы они были постоянными, потому что все сигналы включают шум . Во-вторых, некоторые сигналы постоянного тока охватывают широкий (хотя и униполярный) диапазон амплитуд, поскольку на них влияют сильно изменяющиеся внешние условия. Давайте рассмотрим эти два аспекта сигналов постоянного тока более тщательно.
Электрический шум
Мы используем слово «шум» для обозначения нежелательных (и обычно небольших) колебаний напряжения и тока.Все сигналы постоянного (и переменного тока) содержат шум, потому что он генерируется неизбежными физическими процессами. Когда мы говорим, что сигнал постоянного тока имеет амплитуду 5 В, мы на самом деле имеем в виду, что средняя амплитуда или желаемая амплитуда равна 5 В. Если вы внимательно измеряете этот сигнал, вы увидите, что амплитуда постоянно движется выше и ниже 5 В.
На этом изображении показаны два измеренных сигнала с разными шумовыми характеристиками.Неудивительно, что инженеры предпочитают сигналы с меньшим уровнем шума.Однако важно понимать, что амплитуда шума сама по себе менее важна, чем амплитуда шума относительно до амплитуды сигнала. Вот почему мы часто выражаем качество сигнала с помощью отношения сигнал / шум , сокращенно SNR.
Инженеры-электрики должны всегда помнить о наличии и потенциальных эффектах шума, даже при напряжении питания и медленно меняющихся сигналах постоянного тока. Для получения более подробной информации по этой интересной теме, пожалуйста, обратитесь к статье AAC о природе и происхождении электрического шума.
Пульсация
Один очень распространенный тип шума, обнаруживаемый в напряжениях постоянного тока, — это пульсация , генерируемая импульсными регуляторами. Слово «пульсация» относится к небольшим периодическим изменениям, связанным с включением / выключением регулятора. На изображении ниже показан измеренный сигнал, который демонстрирует пульсации переключения, а также два других типа шума.
Сигналы датчика постоянного тока
Мы часто сталкиваемся с сигналами постоянного тока, когда работаем с датчиками . Эти компоненты генерируют сигналы напряжения или тока, которые позволяют нам отслеживать, анализировать и записывать физические условия и аспекты окружающей среды. Такие условия, как влажность, интенсивность света и абсолютная температура, очень изменчивы, но однополярны (например, сила света не может быть ниже нуля), и поэтому напряжение или ток, создаваемые датчиком, являются сигналом постоянного тока.
Приложения постоянного напряжения и тока
Мы уже видели, что напряжение постоянного тока используется для подачи электроэнергии на электронные схемы и для представления изменений физических переменных.Величины постоянного тока также появляются в следующих приложениях:
- Постоянный ток, ограниченный резистором, заставляет светодиоды (LED) излучать свет.
- Механические и электронные переключатели могут подавать большие количества постоянного тока управления на двигатели, соленоиды и резистивные нагреватели.
- Токи и напряжения постоянного тока определяют электрические условия, которые позволяют транзисторам усиливать сигналы переменного тока.
Заключение
Сигналы постоянного тока и напряжения источника питания являются важными аспектами бесчисленного множества электронных систем, но инженеры-электрики также должны быть хорошо знакомы с сигналами переменного тока и методами, которые используются для анализа и проектирования цепей переменного тока. Переменный ток мы изучим в следующем видео.
переменного и постоянного тока | Электричество переменного и постоянного тока
Переменный ток, переменный ток и постоянный ток, постоянный ток — это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки.Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.
Учебное пособие по электрическому току Включает:
Что такое электрический ток
Единица измерения тока — Ампер
ПЕРЕМЕННЫЙ ТОК
Одним из основных различий в типе протекания тока в цепи является то, является ли ток переменным током, переменным или постоянным, постоянным.
Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.
И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.
Что такое постоянный ток, DC
Поскольку название подразумевает постоянный ток, постоянный ток — это форма электричества, которое течет в одном направлении — оно прямое, что и дало ему название.
Постоянный ток в базовой цепиХарактеристика постоянного тока, DC может быть отображена на графике. Здесь видно, что ток может быть либо положительным, либо отрицательным.
График, показывающий атрибуты постоянного токаПрименения постоянного тока, постоянного тока
Постоянный ток, DC используется во многих областях:
- Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток. Аккумуляторные батареи также нуждаются в подзарядке постоянным током.
- Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны и фактически все электронное оборудование, использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, которые используют эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены, если будет установлена обратная полярность. Хотя многие из этих элементов питаются от сети переменного тока, в этом устройстве есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
- Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
- Солнечные панели: Солнечные панели, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных батарей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.
Что такое переменный ток, АС
Переменный ток, переменный ток отличается от постоянного тока.Как следует из названия, он течет сначала в одном направлении, а затем в другом.
График, поясняющий переменный токНа приведенном выше графике показана форма волны тока, изменяющаяся как синусоида, при этом ток сначала движется в одном направлении, а затем в другом.
Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.
Как для тока, так и для напряжения видно, что форма волны меняется, становясь в этом примере сначала положительной, а затем отрицательной.
Напряжение для синусоидального сигнала переменного токаСинусоидальный сигнал легко представить и понять, но большое количество других сигналов также может представлять собой переменный сигнал с переменным током.
Есть несколько важных моментов относительно чередующихся форм сигналов. Первый — это период времени для сигнала. Это время от точки в одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку — например, когда определенное напряжение достигается в заданном направлении — это может быть точка срабатывания напряжения и т. Д.Нулевые переходы — еще одна возможность, которую легко определить.
Еще одна особенность переменного сигнала — его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц — это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.
В качестве других примеров частота электросети составляет 50 Гц или 60 Гц в зависимости от страны. Европа и многие другие страны используют 50 Гц, тогда как Северная Америка, Карибский бассейн и некоторые страны Южной Америки используют 60 Гц.
Применения переменного тока
Переменный ток обычно используется для распределения энергии. Его преимущество заключается в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора — трансформаторы не работают с постоянным током.
Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания 250 В с током 4 А и сопротивлением провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.
При передаче электроэнергии высокого напряжения используется переменный токЕсли линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, т. Е. 250 кВ, и линия передает 4 А, тогда потери мощности остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт — это почти незначительные потери.
Именно по этой причине для передачи энергии используются высокие напряжения, которые затем снижаются до относительно безопасного уровня для использования в жилых и коммерческих помещениях.
Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других устройствах без необходимости его преобразования в постоянный ток.
переменного тока и постоянного тока
Во многих областях может быть принято решение о переменном или постоянном токе и о том, какая форма питания лучше всего подходит для данного приложения.
Переменный ток, переменный и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного использования или применения.Переменный ток, переменный ток, как правило, используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего, что необходимо, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.
Источники как переменного, так и постоянного тока широко используются в электротехнической и электронной промышленности, каждый в своей области.
И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.
Дополнительные основные понятия:
Напряжение
Текущий
Сопротивление
Емкость
Мощность
Трансформеры
RF шум
Децибел, дБ
Q, добротность
Вернуться в меню «Основные понятия». . .
15.2: Источники переменного тока — Physics LibreTexts
Цели обучения
К концу раздела вы сможете:
- Объясните разницу между постоянным током (dc) и переменным током (ac)
- Определите характерные особенности переменного тока и напряжения, такие как амплитуда или пик и частота
Большинство примеров, рассмотренных до сих пор в этой книге, особенно с использованием батарей, имеют источники постоянного напряжения.Таким образом, как только ток установлен, он становится постоянным. Постоянный ток (dc) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения.
Однако в большинстве известных приложений используется источник переменного напряжения. Переменный ток (ac) — это поток электрического заряда, который периодически меняет направление. Переменный ток создается переменной ЭДС, которая генерируется на электростанции, как описано в разделе «Индуцированные электрические поля».Если источник переменного тока периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности.
Напряжение и частота переменного тока, обычно используемые на предприятиях и дома, различаются по всему миру. В типичном доме разность потенциалов между двумя сторонами электрической розетки изменяется синусоидально с частотой 60 или 50 Гц и амплитудой 170 или 311 В, в зависимости от того, живете ли вы в США или Европе соответственно.Большинство людей знают, что разность потенциалов для электрических розеток составляет 120 В или 220 В в США или Европе, но, как объясняется далее в этой главе, эти напряжения не являются пиковыми значениями, приведенными здесь, а скорее связаны с обычными напряжениями, которые мы видим в наших электрические розетки. На рисунке \ (\ PageIndex {1} \) показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока в США.
Рисунок \ (\ PageIndex {1} \): (a) Напряжение и ток постоянного тока постоянны во времени, как только ток установлен.(б) Напряжение и ток в зависимости от времени сильно различаются для переменного тока. В этом примере, который показывает мощность переменного тока 60 Гц и время t в миллисекундах, напряжение и ток синусоидальны и находятся в фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.Предположим, мы подключаем резистор к источнику переменного напряжения и определяем, как напряжение и ток изменяются во времени на резисторе. На рисунке \ (\ PageIndex {2} \) показана схема простой схемы с источником переменного напряжения.Напряжение синусоидально колеблется со временем с фиксированной частотой, как показано, либо на клеммах батареи, либо на резисторе. Следовательно, переменное напряжение , или «напряжение на вилке», может быть выражено как
\ [v (t) = V_0 \, \ sin \, \ omega t, \]
где
- \ (v \) — напряжение в момент времени \ (t \),
- \ (V_0 \) — пиковое напряжение, а
- \ (\ omega \) — угловая частота в радианах в секунду.
Для типичного дома в США \ (V_0 = 156 \, V \) и \ (\ omega = 120 \ pi \, rad / s \), тогда как в Европе \ (V_0 = 311 \, V \) и \ (\ omega = 100 \ pi \, рад / с \).
Рисунок \ (\ PageIndex {2} \): Разность потенциалов В, между выводами источника переменного напряжения колеблется, поэтому источник и резистор имеют синусоидальные колебания переменного тока друг над другом. Математическое выражение для v дается как \ (v = V_0 \, sin \, \ omega t \).Для этой простой цепи сопротивления \ (I = V / R \), поэтому переменный ток , то есть ток, который синусоидально колеблется во времени с фиксированной частотой, равен
\ [i (t) = I_0 \, \ sin \, \ omega t, \]
где
- \ (i (t) \) — текущий момент времени \ (t \) и
- \ (I_0 \) — пиковый ток, равный \ (V_0 / R \).
В этом примере говорят, что напряжение и ток находятся в фазе, что означает, что их синусоидальные функциональные формы имеют пики, впадины и узлы в одном и том же месте. Они колеблются синхронно друг с другом, как показано на рисунке \ (\ PageIndex {1b} \). В этих уравнениях и на протяжении всей главы мы используем строчные буквы (такие как \ (i \)) для обозначения мгновенных значений и прописные буквы (такие как \ (I \)) для обозначения максимальных или пиковых значений.
Ток в резисторе меняется взад и вперед, как и напряжение возбуждения, поскольку \ (I = V / R \).Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и гаснет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помахаете рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект переменного тока.
Упражнение \ (\ PageIndex {1} \)
Если рассматривать европейский источник переменного напряжения, какова разница во времени между переходами через ноль на графике зависимости переменного напряжения от времени?
Решение
10 мс
Авторы и ссылки
Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).
% PDF-1.6 % 10 0 obj > endobj xref 10 89 0000000016 00000 н. 0000002410 00000 н. 0000002501 00000 п. 0000002542 00000 н. 0000002826 00000 н. 0000003366 00000 н. 0000003958 00000 н. 0000004556 00000 н. 0000004603 00000 п. 0000004652 00000 п. 0000004699 00000 н. 0000004748 00000 н. 0000004796 00000 н. 0000018621 00000 п. 0000031758 00000 п. 0000045496 00000 п. 0000046076 00000 п. 0000060213 00000 п. 0000060589 00000 п. 0000060728 00000 п. 0000073873 00000 п. 0000088038 00000 п. 0000088285 00000 п. 0000088337 00000 п. 0000104264 00000 н. 0000116864 00000 н. 0000118833 00000 н. 0000120802 00000 н. 0000121011 00000 н. 0000129165 00000 н. 0000134377 00000 н. 0000134444 00000 н. 0000134633 00000 н. 0000137770 00000 н. 0000138096 00000 н. 0000138740 00000 н. 0000138917 00000 н. 0000140889 00000 н. 0000140956 00000 п. 0000141145 00000 н. 0000144317 00000 н. 0000144625 00000 н. 0000145247 00000 н. 0000146020 00000 н. 0000146127 00000 н. 0000146740 00000 н. 0000146847 00000 н. 0000147624 00000 н. 0000147731 00000 н. 0000148275 00000 н. 0000148382 00000 н. 0000148919 00000 н. 0000149026 00000 н. 0000149316 00000 п. 0000149423 00000 н. 0000149800 00000 н. 0000149907 00000 н. 0000150208 00000 н. 0000150315 00000 н. 0000150607 00000 н. 0000150714 00000 н. 0000151513 00000 н. 0000151620 00000 н. 0000152014 00000 н. 0000152121 00000 н. 0000152465 00000 н. 0000152572 00000 н. 0000153150 00000 н. 0000158858 00000 н. 0000159120 00000 н. 0000162005 00000 н. 0000162362 00000 н. 0000162740 00000 н. 0000162951 00000 н. 0000165164 00000 н. 0000165485 00000 н. 0000165885 00000 н. 0000166078 00000 н. 0000169660 00000 н. 0000170064 00000 н. 0000170434 00000 н. 0000170679 00000 н. 0000171068 00000 н. 0000171299 00000 н. 0000172006 00000 н. 0000172109 00000 н. 0000172347 00000 н. 0000172539 00000 н. 0000002076 00000 н. трейлер ] >> startxref 0 %% EOF 98 0 объект > поток xb»c ‘(g»’11 쒆 $ | 590 $ 011 (0Ԗk \ cQ {џ ۘ 49 ow) p 1ftfch | t @) C, N , (98: (8281aQ ¢} # 5 [僨 VG KXU5 «c ~ h.o8 | + LLi fd`Z (At0, p
Основная теория цепей постоянного тока | Глава 1 — Напряжение, ток, энергия и мощность
Зависимость напряжения и тока
Земля — динамичное место. Объекты движутся, происходят химические реакции, температура повышается и понижается. Это изобилие вечной активности связано с концепцией energy . Различные формы энергии — термическая, механическая, химическая и т. Д. — являются проявлениями фундаментальной сущности, которая приводит к физическим изменениям при передаче от одного объекта к другому.
Электричество — это форма энергии, которая возникает в результате существования и движения заряженных частиц, называемых электронами. Когда накопление электронов создает разницу в электрической потенциальной энергии между двумя точками, мы имеем напряжение (в уравнениях напряжение обозначается как V). Если эти две точки соединены проводящим материалом, электроны естественным образом переходят от более низкого напряжения к более высокому; этот механизм называется , электрический ток , обозначается I.
Электричество — это особенно удобный и универсальный вид энергии, и это сделало его мощным инструментом в руках бесчисленных умных людей, которые проектировали все, от большого электрического оборудования до крошечных электронных устройств. Удивительно представить себе разнообразную и сложную функциональность, которая начинается с электрической энергии, которая может передаваться через два небольших медных провода.
Сравнение напряжения и тока
Текущий | Напряжение | |
Символ | я | В |
Отношения | Ток не может течь без напряжения | Напряжение может существовать без тока |
Измерено с | Амперметр | Вольтметр |
Установка | А или ампер или сила тока | В или вольт или напряжение |
Единица СИ | 1 ампер = 1 кулон в секунду | 1 вольт = 1 джоуль / кулон (В = W / C) |
Поле | Магнитный | электростатический |
Последовательное соединение | Ток одинаков для всех | Напряжение распределяется по компонентам |
Параллельное соединение | Ток распределяется по компонентам | Напряжения одинаковы для всех компонентов |
Мощность в электронике и ее расчет
В научном контексте мощность означает скорость передачи энергии. Таким образом, электрическая мощность — это скорость передачи электрической энергии. Единица измерения составляет Вт (Вт), где один ватт равен передаче одного джоуля (Дж) энергии за одну секунду (с).
`1 \ W = 1 \ \ frac {J} {s}`
Электрическая мощность в ваттах равна напряжению в вольтах, умноженному на ток в амперах.
`\ text {power} = \ text {напряжение} \ \ times \ text {current}`
Единица измерения вольт (В) определяется как джоуль на кулон, то есть передает энергию (в джоулях) на кулон заряда. ампер (А) — это кулоны в секунду, то есть сколько кулонов заряда проходит заданную точку за одну секунду. Мы можем использовать эту информацию, чтобы подтвердить, что единица измерения электроэнергии соответствует приведенной выше формуле:
`\ frac {\ text {джоули}} {\ text {second}} = \ frac {\ text {джоули}} {\ text {coulomb}} \ times \ frac {\ text {coulombs}} {\ text { второй}} `
В правой части уравнения два «кулоновских» члена сокращаются, и мы остаемся с джоулями в секунду.
Когда мы анализируем схемы, мы обычно обсуждаем мощность, используя термин «рассеиваемая» или «потребляемая» вместо «переданная».Это подчеркивает тот факт, что мощность уходит из электрической системы или используется электрическим компонентом. Мы не говорим «передано», потому что, как правило, конечное состояние или местоположение энергии не имеет значения.
Например, если напряжение на резисторе составляет 5 В, а ток через резистор составляет 0,5 А, резистор передает 2,5 Вт мощности (в виде тепла) в окружающую среду. Однако в большинстве случаев мы не собираемся передавать энергию. Мы просто хотим разработать функциональную схему и, следовательно, думаем о том, сколько мощности теряется (т.е., рассеивается) или используется (т. е. потребляется).
Два распространенных типа напряжения: постоянный и переменный ток
Существует два распространенных способа передачи электрической энергии: постоянный ток и переменный ток.
Постоянный ток (DC) может увеличиваться или уменьшаться всеми способами, но величина изменений обычно невелика по сравнению со средним значением. Однако наиболее фундаментальной характеристикой постоянного тока является следующее: он не меняет направление регулярно.В этом отличие от переменного тока (AC) , который регулярно меняет направление и используется во всем мире для распределения электроэнергии.
Термины «постоянный ток» и «переменный ток» стали прилагательными, которые часто используются для описания напряжения. Поначалу это может немного сбить с толку: что такое напряжение постоянного или переменного тока? Это не лучшая терминология, но вполне стандартная. Напряжение постоянного тока — это напряжение, которое производит или будет производить постоянный ток, а переменное напряжение создает или будет производить переменный ток, и это создает другую терминологическую проблему.«Постоянный ток» и «переменный ток» иногда присоединяются к слову «ток», хотя эти фразы означают «постоянный ток» и «переменный ток». Суть в том, что «постоянный ток» и «переменный ток» больше не являются точными эквивалентами «постоянного тока» и «переменного тока»; Постоянный ток в общем относится к величинам, которые не меняют полярность регулярно или имеют очень низкую частоту, а переменный ток в общем случае относится к величинам, которые регулярно меняют полярность на частоте, которая не является «очень низкой» в контексте данной системе.
На данный момент мы сосредоточимся на цепях постоянного тока. Цепи переменного тока немного сложнее и будут обсуждаться позже в этой главе.
Символы напряжения
Что такое напряжение постоянного тока?
Пожалуй, самый известный источник постоянного напряжения — это аккумулятор. Аккумулятор — это устройство, преобразующее химическую энергию в электрическую; он выдает напряжение, которое не меняется быстро или не меняет полярности, но оно постепенно уменьшается по мере разряда батареи.
Напряжение постоянного тока можно измерить с помощью вольтметра или (чаще) многофункционального устройства, известного как мультиметр (сокращенно DMM, где D означает «цифровой»). Мультиметры могут измерять, помимо прочего, напряжение, ток и сопротивление.
Рисунок 1. Измерение напряжения, отображаемое на цифровом дисплее мультиметра.Вольтметр обеспечивает самый простой способ определения точного значения постоянного напряжения, хотя в некоторых случаях он не может передать важную информацию, поскольку не может четко отображать быстрые изменения. В настоящее время это важное соображение, потому что многие напряжения постоянного тока генерируются импульсными регуляторами, что приводит к высокочастотным колебаниям, называемым пульсациями .
Что такое постоянный ток?
Когда между двумя клеммами присутствует постоянное напряжение и к клеммам подключен провод или резистивный элемент, протекает постоянный ток. Самый распространенный резистивный элемент — резистор; мы узнаем больше об этом компоненте на следующей странице. Лампа накаливания также является резистивным элементом.
Ток можно измерить с помощью устройства, называемого амперметром (или функции амперметра мультиметра), но измерение тока менее удобно, чем измерение напряжения. Щупы вольтметра просто помещаются в контакт с двумя проводящими поверхностями (т.е. без изменения схемы), тогда как щупы амперметра должны быть вставлены в путь тока:
Рис. 2. В этой схеме используется переключатель для установления пути тока во время нормальной работы и прерывания пути тока, когда необходимо вставить амперметр или цифровой мультиметр.Обычный расход тока по сравнению с Электронный поток
Очень важно понимать разницу между обычным потоком тока и потоком электронов . Электроны имеют отрицательный заряд, и, следовательно, они переходят от более низкого напряжения к более высокому. Однако на Рисунке 2 стрелка указывает, что ток течет от положительного полюса батареи к отрицательному полюсу батареи, другими словами, от более высокого напряжения к более низкому напряжению.
Обычный ток изначально был основан на предположении, что электричество связано с движением положительно заряженных частиц. Теперь мы знаем, что это неверно, но в контексте анализа цепей модель обычного тока не является неверной. Это совершенно верно, потому что при последовательном применении всегда дает точные результаты. Кроме того, он имеет преимущество создания интуитивно понятной ситуации, в которой ток течет от более высокого напряжения к более низкому напряжению, точно так же, как жидкость течет от более высокого давления к более низкому давлению, а вода падает с более высокой отметки на более низкую.
В мире электротехники схемы обсуждаются и анализируются с использованием обычного тока, а не электронного.
Как измерить постоянный ток
Рассмотрим простой случай, когда аккумулятор питает две лампочки разного сопротивления.
Рис. 3. Базовая схема, состоящая из батареи 3 В и двух резистивных элементов.Когда через лампочку течет ток, сопротивление нити вызывает потерю напряжения, которая пропорциональна сопротивлению и величине тока.Мы называем это напряжением на лампе или падением напряжения на лампе .
Рис. 4. Вольтметры используются для измерения напряжения на лампочках.Мы видим, что напряжение на лампочке A составляет 2 В, а напряжение на лампе B равно 1 В.
Затем мы измерим силу тока.
Рисунок 5.Амперметр вставляется таким образом, чтобы ток, протекающий через лампочки, проходил через один зонд, через схему измерения тока устройства и через другой зонд.Предположим, мы измеряем 1А. Теперь мы выполнили необходимые измерения для определения рассеиваемой мощности лампочек.
Расчет мощности постоянного тока
Для расчета мощности, рассеиваемой каждой лампочкой, мы подставляем измеренные значения в приведенную выше формулу.
Если мы хотим узнать мощность, рассеиваемую всей схемой, мы складываем мощность, рассеиваемую отдельными компонентами:
Или мы можем умножить ток, подаваемый от батареи, на напряжение батареи:
Следите за обновлениями, потому что на следующей странице мы познакомим вас с законом Ома, который выражает фундаментальную взаимосвязь между током, напряжением и сопротивлением.
AC, DC и электрические сигналы
AC, DC и электрические сигналы | Клуб электроникиAC | DC | Свойства сигнала | RMS
Следующая страница: Осциллографы (CRO)
См. Также: Диоды | Блоки питания
AC означает переменный ток, а DC означает постоянный ток. Переменный и постоянный ток также используются при обозначении напряжений и электрических сигналов. которые не токи! Например: источник питания 12 В переменного тока имеет переменное напряжение. (что сделает поток переменного тока).
Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.
Переменный ток (AC)
Переменный ток (AC) течет в одну сторону, затем в другую, постоянно меняя направление.
Напряжение переменного тока постоянно меняется с положительного (+) на отрицательное (-).
Скорость изменения направления называется частотой переменного тока и измеряется в герц (Гц) , количество циклов в прямом и обратном направлении циклов в секунду .
Электросеть в Великобритании имеет частоту 50 Гц.
Подробнее о свойствах сигнала см. Ниже.
Источник переменного тока подходит для питания некоторых устройств, таких как лампы и обогреватели, но почти все электронные схемы требуют постоянного источника постоянного тока (см. ниже).
Переменный ток от источника питания
Эта форма называется синусоидой .
Этот треугольный сигнал является переменным, потому что он меняет
между положительным (+) и отрицательным (-).
Постоянный ток (DC)
Постоянный ток (DC) всегда течет в одном направлении, но может увеличиваться и уменьшаться.
Напряжение постоянного тока всегда положительное (или всегда отрицательное), но оно может увеличиваться и уменьшаться.
Для электронных схем обычно требуется постоянный источник питания постоянного тока , который имеет одно значение. или источник питания smooth DC , который имеет лишь небольшую вариацию, называемую пульсации .
Элементы, батареи и регулируемые источники питания обеспечивают стабильный постоянный ток , который идеально подходит для электронных схем.
Блоки питания содержат трансформатор, преобразующий от сети переменного тока к безопасному низковольтному переменному току. Затем переменный ток преобразуется в постоянный ток мостовой выпрямитель, но выход изменяющийся DC , который не подходит для электронных схем.
Некоторые блоки питания включают конденсатор для обеспечения smooth DC , который подходит для менее чувствительных электронных схем, в том числе большинство проектов на этом сайте.
Лампы, обогреватели и двигатели будут работать от любого источника постоянного тока.
Дополнительную информацию см. На странице источников питания.
Источники питания также описаны на веб-сайте Electronics in Meccano.
Постоянный ток
от батареи или регулируемого источника питания,
идеально подходит для электронных схем.
Smooth DC
от сглаженного источника питания,
это подходит для некоторой электроники.
Изменение постоянного тока
от источника питания без сглаживания,
это не подходит для электроники.
Свойства электрических сигналов
Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.
График «напряжение-время» ниже показывает различные свойства электрического сигнала. Помимо свойств, отмеченных на графике, существует частота количество циклов в секунду.
На диаграмме показан синусоидальный сигнал , но свойства применимы к любому сигналу. с постоянно повторяющейся формой.
- Амплитуда — это максимальное напряжение, достигаемое сигналом. Измеряется в В , В .
- Пиковое напряжение — другое название амплитуды.
- Пиковое напряжение в два раза больше пикового напряжения (амплитуды). При считывании осциллограммы обычно измеряют пиковое напряжение.
- Период времени — это время, необходимое сигналу для завершения одного цикла.
Он измеряется в секундах (с) , но периоды времени обычно короткие, поэтому часто используются миллисекунды (мс) и микросекунды (мкс).
1 мс = 0,001 с и 1 мкс = 0,000001 с. - Частота — это количество циклов в секунду.Он измеряется в герцах (Гц) и , но частоты имеют тенденцию быть высокими, поэтому часто используются килогерцы (кГц) и мегагерцы (МГц).
1 кГц = 1000 Гц и 1 МГц = 1000000 Гц.
Частота и период времени
Частота и период времени противоположны друг другу:
частота = | 1 |
период времени |
и
период времени = | 1 |
частота |
Электросеть в Великобритании имеет частоту 50 Гц поэтому он имеет период времени 1 / 50 = 0. 02с = 20 мс .
Не хватает денег на проекты в области электроники? Продайте свой старый iPhone, iPad, MacBook или другое устройство Apple: macback.co.uk
Среднеквадратичное значение (RMS)
Значение переменного напряжения непрерывно изменяется от нуля до положительного пика через от нуля до отрицательного пика и снова обратно к нулю. Очевидно, что в большинстве случаев оно меньше пикового напряжения, так что это не лучшая мера его реального эффекта.
Вместо этого мы используем среднеквадратичное напряжение (В RMS ) что равно 0.7 пикового напряжения (В пика ):
и
Эти уравнения также применимы к current .
Важно отметить, что эти уравнения верны только для синусоидальных волн (наиболее распространенного типа переменного тока), потому что Коэффициенты 0,7 и 1,4 — это разные значения для других форм.
Действующее значение — это действующее значение переменного напряжения или текущий. Это эквивалентное постоянное значение постоянного тока, которое дает такой же эффект.
Например, лампа, подключенная к источнику питания 6V RMS AC , будет гореть с той же яркостью. при подключении к источнику постоянного тока 6 В постоянного тока . Тем не менее, лампа будет тусклее, если она подключена к сети с пиковым напряжением 6 В переменного тока . питание, потому что его среднеквадратичное значение составляет всего 4,2 В (это эквивалентно постоянному 4,2 В постоянного тока).
Возможно, вам будет полезно думать о среднеквадратичном значении как о среднем значении, но, пожалуйста, помните что это не совсем средний показатель! Фактически, среднее напряжение (или ток) типичного сигнала переменного тока равен нулю, потому что положительная и отрицательная части полностью компенсируются.
Что показывают измерители переменного тока, это среднеквадратичное или пиковое напряжение?
Вольтметры и амперметры переменного тока показывают значение RMS напряжения или тока.
Что на самом деле означает «6 В переменного тока», это среднеквадратичное или пиковое напряжение?
Если имеется в виду пиковое значение, оно должно быть четко указано, иначе предположим, что это значение RMS . В повседневном использовании напряжение переменного тока (и токи) всегда задается как среднеквадратичных значений , потому что это позволяет провести разумное сравнение с постоянными напряжениями (и токами) постоянного тока, например, от батареи.
Например, «питание 6 В переменного тока» означает 6 В RMS, пиковое напряжение составляет 8,4 В. Электроснабжение Великобритании 230 В переменного тока, это означает 230 В RMS, поэтому пиковое напряжение сети составляет около 320 В.
Так что же на самом деле означает среднеквадратичное значение (RMS)?
Сначала возведите все значения в квадрат, затем найдите среднее (среднее) этих квадратичных значений по полный цикл и найдите квадратный корень из этого среднего. Это значение RMS. Смущенный? Не обращайте внимания на математику (она выглядит сложнее, чем есть на самом деле), просто примите что среднеквадратичные значения напряжения и тока являются гораздо более полезной величиной, чем пиковые значения.
Следующая страница: Осциллографы (CRO) | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.