Элемент Пельтье как генератор электроэнергии
Для понимания законов электродинамики, электрики и физики, нужно знать, что такое элемент, модуль Пельтье как генератор электрической энергии. О понятии, технических характеристиках, принципе работы и правильном применении модуля для генератора рассказано далее.
Что такое элемент и термогенератор Пельтье
Элементом Пельтье называется термоэлектрический тип преобразователя, который базируется на температурной разности при протекании электричества. Суть открытого в 1834 г. эффекта в том, что тепло выделяется или поглощается в участке контактирования разнородных проводников, подключенных к электричеству.
Что собой представляет элемент ПельтьеК сведению! По этой теории электрический ток осуществляет перенос электронов между металлами. Если увеличить кинетическую энергию, то она превратится в тепловую.
Устройство, преобразующее кинетическую энергию в тепловуюЭлемент Пельтье в качестве генератора энергии
Термоэлектрический модуль Pelty может выступать как электрогенератор Пельтье при принудительном нагревании одной из его частей.
Предельный температурный показатель ограничен, но может быть выше, чем точка припойного плавления, используемая в конструкции модуля. Несоблюдение данного требования приводит к тому, что элемент Пельтье ломается.
Для термогенераторного производства применяют специальный тип модулей, где есть тугоплавкий припой. Их можно подогревать до температурного показателя 300 °С. По сравнению с обычным генератором эта температура в два раза больше. Потому коэффициент полезного действия в подобных устройствах невысок, их используют лишь тогда, когда невозможно применить результативный электроисточник.
Обратите внимание! Генераторы с мощностью 10 В популярны у туристов, путешествующих на дальние расстояния. Крупные, мощные постоянные устройства, которые работают от высокого температурного топлива, применяют, чтобы питать газораспределительные узлы, метеорологическую аппаратуру.
Технические характеристики элемента Пельтье
Термические электрические модули обладают следующими характеристиками:
- производительность холода;
- максимальный температурный перепад;
- допустимая сила тока, которая нужна, чтобы обеспечить максимальный температурный перепад;
- предельное напряжение в киловаттах, которое необходимо току для достижения пиковой разницы;
- внутренний показатель сопротивления модуля resestance, указываемый в Омах;
- коэффициент эффективности или КПД устройства, которое показывает отношения охлаждения к мощности.
Обратите внимание! Подобные характеристики распространяются и на миниатюрные установки, малые электрогенераторы, холодильные системы охлаждения персональных компьютеров, охлаждающие/нагревающие водные кулеры и осушители воздуха.
Принцип работы элемента Пельтье
Любой термоэлектрический модуль работает на разности электронной энергии, то есть один проводник — область, где есть высокая проводимость, а второй — место, где низкая проводимость. Если соединить такие источники вместе и пропустить через них заряд, то электрону для прохождения низкоэнергетической области в высокую, нужно подкопить электроэнергии. Та область, где осуществляется энергопоглощение электроном, охлаждается.
Принцип работыВажно!
Как правильно применять модуль Пельтье для генератора
Применять модуль Пельтье можно, как термоэлектрогенератор Teksan Colorful, для охлаждения процессора, комнаты, воды. Используется он нередко как кислородный осушитель. Подключить модуль несложно. На провода нужно осуществить подачу постоянного напряжения, значение которого есть на элементе. Красный проводник следует подключить к полюсу, а черный — к нулевому проводнику. Таким образом прибор начнет работу на охлаждение. Если поменять полярность оборудования, то поменяется местами охлаждаемая и нагреваемая поверхности.
Обратите внимание! Проверить, функционирует элемент или нет, несложно. До него нужно прикоснуться к нему с разных сторон. Работающий аппарат будет иметь одну горячую, а вторую — холодную область.
Таким образом, элементом Пельтье называется термоэлектрический преобразователь, который работает на температурной разности при протекании электрической энергии. Термогенератор, построенный на технических характеристиках и принципе его функционирования, имеет широкое применение на производстве и в жизни. Использовать его можно по приведенной выше инструкции.
Элемент Пельтье(генератор Зеебека) принцип действия, обознач…
Привет, Вы узнаете про элемент пельтье, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое элемент пельтье,генератор зеебека , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база
элемент пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).
Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.
Конструкция
Структурный пример элемента Пельтье. Металлические электроды и полупроводники p-типа и n-типа попеременно соединены в π-форме между верхней и нижней пластинами теплового излучения.
Схематический рисунок элемента Пельтье
Принцип действия
Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.
Вид сбоку на элемент Пельтье. Электрический ток протекает через полупроводники в форме куба между верхней и нижней частью.
Вскрытый элемент
В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.
При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности.
Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твердого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей пленкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу — противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создает разность температур.
Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится еще ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.
Достоинства и недостатки
Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это дает возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.
Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведет к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.
Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.
В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы . Об этом говорит сайт https://intellect.icu . При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.
Эксплуатационные требования к элементам Пельтье.
Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.
- Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор. Иначе:
- Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
- Допустимый нагрев горячей стороны как правило + 80 °C ( в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
- При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
- Важен надежный тепловой контакт модуля с радиатором охлаждения.
- Источник питания для модуля должен обеспечивать ток с пульсациями не более 5%. При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
- Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
- К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
- Недопустимо, для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию.
- Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность, т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
- Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В, или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
- Модули имеют герметичное исполнение, их можно использовать даже в воде.
- Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.
Многокаскадные термоэлектрические модули
Многокаскадные модули применяются в системах глубокого охлаждения, холодильниках с большим перепадом температур, системах охлаждения научных, исследовательских и специальных приборов. Также используются для охлаждения ИК фотоприемников, детекторов рентгеновского излучения и других датчиков.
Основные области применения:
- охлаждение ПЗС матриц и ИК фотоприемников
- камеры холода и замораживатели
- термостаты
- научные лабораторные приборы
- термокалибраторы
- ступенчатые охладители
- охладители и термостабилизаторы датчиков различного назначения
- приборы ночного видения
Технологические особенности
Для верхних каскадов многокаскадных модулей мы используем оптимизированный термоэлектрический материал, который позволяет получать большую величину ?Т при меньшем количестве каскадов. Это позволяет производить многокаскадные модули с оптимальными весо-габаритными характеристиками и низким энергопотреблением.
Мы также предлагаем нашим заказчикам термоэлектрические модули установленные или непосредственно интегрированные в стандартные — ТО (ТО3, ТО8 и др.), HHL, DIL, butterfly или специальные корпуса.
Таблица используемых сокращений
ТЭМ | термоэлектрический модуль |
ТГМ | термоэлектрический генераторный модуль |
DTmax | максимально достижимая разница температур между сторонами термоэлектрического модуля |
Imax | максимальный электрический ток через термоэлектрический модуль, соответствующий режиму максимальной разницы температур |
Umax | максимальное электрическое напряжение на контактах термоэлектрического модуля, соответствующее режиму максимальной разницы температур |
Qmax | максимальная холодопроизводительность (холодильная мощность) термоэлектрического модуля. Определяется при максимальном токе через термоэлектрический модуль и нулевой разности температур между его сторонами |
Rac | электрическое сопротивление термоэлектрического модуля, измеренное на переменном токе с частотой 1 кГц |
Примеры схем с элементами Пельтье и обозначение
Рис.1. Схемы подключения нагревательных элементов к микроконтроллеру:
а) охлаждение объектов модулем Пельтье EK1 фирмы «Криотерм» (размеры 40x40x3.4 мм). Светодиод HL1 индицирует состояние «Заморозить/Разморозить». Транзистор K77 подключается к MK напрямую, без резисторов, поскольку элемент EK1 весьма инерционный и помехи , которые теоретически могут открыть транзистор VT1 при рестарте MK, на него мало влияют;
б) подключение к MK низковольтного элемента Пельтье фирмы Melcor. Параметры EK1: мощность 5.3 Вт, рабочий ток 2.5 А при напряжении 3.75 В, максимальная разность температур между «холодной» и «горячей» поверхностями 67°С, габаритные размеры 15x15x4 мм.
Применение
Элементы Пельтье можно использовать везде, где требуется охлаждение с небольшой разницей температур или без экономических требований. Термоэлектрические элементы используются, например, в холодных ящиках , в которых использование холодильной машины запрещены по соображениям пространства или не было бы выгодно , так как требуемая мощность охлаждения невелика. Разница температур внутри и снаружи просто возникает неконтролируемым образом. КПД низкий. Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, малогабаритных автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессорной холодильной установки в этом случае невозможно или нецелесообразно из-за габаритных ограничений, и, кроме того, требуемая мощность охлаждения невелика.
Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счет этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приемников излучения в инфракрасных сенсорах.
Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.
В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийных холодильников и до −120 °C для двухстадийных).
Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота. До азотного охлаждения использовали именно такой способ.
«Электрогенератор Пельтье» (более корректно было бы « генератор зеебека », но неточное название устоялось) — модуль для генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:
- непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
- источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)
Элементы Пельтье используются для охлаждения особо длинноволновых или чувствительных ПЗС-датчиков . Это значительно снижает шум изображения при длительной выдержке (например, в астрофотографии ) . Многоступенчатые элементы Пельтье используются для охлаждения приемников излучения в инфракрасных датчиках.
Элементы Пельтье также все чаще используются в лабораторных измерительных приборах, для которых температура является важным параметром, таких как устройства измерения плотности , вискозиметры , реометры или рефрактометры .
В гигрометрах с охлаждаемыми зеркалами один или несколько элементов Пельтье, соединенных последовательно, обычно охлаждают зеркало до -100 ° C. Здесь используется то обстоятельство, что охлаждающая способность элементов Пельтье может быстро регулироваться электрически.
Диодные лазеры часто охлаждаются и термостатируются с помощью элементов Пельтье , чтобы сохранить постоянную длину волны излучения и / или эффективность. Последующие оптические элементы диодных и других лазеров часто термостатируются элементами Пельтье.
Элементы Пельтье можно использовать как для охлаждения, так и — при изменении направления тока — для нагрева.
Элементы Пельтье иногда используются в составе кулеров ЦП . Элемент Пельтье позволяет процессору остыть до температур ниже температуры внутри корпуса, что либо позволяет разгонять процессор без ущерба для стабильности, либо увеличивает срок службы процессора. Элемент устанавливается на дне радиатора с вентилятором и питается от блока питания необходимой мощностью. Однако до настоящего времени такие решения не принесли успеха из-за их дополнительного потребления энергии, используемая электрическая энергия выделяется внутрь корпуса в виде отработанного тепла.
Фотодиоды , например B. для считывающих сцинтилляторов , из-за их небольшой площади могут охлаждаться элементами Пельтье и, таким образом, уменьшать шум и темновой ток.
Элементы Пельтье используются в камерах диффузионного тумана для поддержания разницы температур между дном и крышкой.
В термоциклерах , которые сегодня являются частью основного оборудования в молекулярной биологии , используются элементы Пельтье для быстрого нагрева и охлаждения образцов, что необходимо, например, в полимеразной цепной реакции .
Элементы Пельтье иногда используются в небольших осушителях воздуха . Здесь влажный воздух проходит через охлаждающий элемент, а содержащаяся в нем вода конденсируется по мере охлаждения и затем собирается в сборный контейнер.
На этом все! Теперь вы знаете все про элемент пельтье, Помните, что это теперь будет проще использовать на практике. Надеюсь, что теперь ты понял что такое элемент пельтье,генератор зеебека и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятелно рекомендую изучить комплексно всю информацию в категории Электроника, Микроэлектроника , Элементная база
Alex_EXE » Элемент пельтье, режим электрогенератора
В прошлых статьях было рассказано об элементах пельтье и как они себя ведут в режиме теплового насоса. В этой, заключительной статье, расскажу вам о том, что эти модули не только способны прилично кушая электричество обеспечивать разность температур на своих сторонах, но и сами способны вырабатывать электроэнергию, если одну сторону элемента принудительно охлаждать, а вторую нагревать.
Без нагрузки, перепад температур ~100°С
В этих испытаниях добровольцем выступил небольшой модуль TB109-0. 6-0.8, с площадью поверхности всего 3,12кв.см., напомню вам его ро.., вид и характеристики:
TB109-0.6-0.8 Imax = 2,1А |
Для испытаний пельтье в режиме электрогенератора был собран небольшой стенд, который содержит следующие приборы: нагреватель, вольтметр, амперметр и нагрузку, так же понадобился радиатор и кусочек льда в водонепропускаемом пакете, ну и конечно сам подопытный TB109-0.6-0.8. В качестве нагревателя выступил 20Вт резистор на 5,6Ом, который был разогрет примерно до 80-90 градусов. Для улучшения теплового контакта элемента пельтье с нагревателем была применена намакондовская термопроводящая прокладка, вытащенная из какого то отмучавшегося компьютерного блока питания.
Собранный испытательный стенд
Приступим к тестам.
Первый тест был проведён с 1Омной нагрузкой, подключенной к выводам пельтье, в качестве охладителя был использован радиатор комнатной температуры.
Нагрузка 1Ом, перепад температур ~60°С
С модуля удалось получить 0,117В при токе 119,5мА или 14мВт, при разности температур примерно в 60 градусов.
Дальше было решено охлаждать подопытного более кардинальными мерами, для этого в дело пошли кусочки льда из морозильника.
Нагрузка 1Ом, перепад температур ~100°С
При разности температур в 100 градусов модуль выдал результаты получше, а именно: 0,21В 0,22А или 46мВт.
Следующий тест был проведен с нагрузкой в 20Ом.
Нагрузка 20Ом, перепад температур ~100°С
Модуль выдал 1,31В при токе 66мА или 86мВт.
На холостом ходу, первое фото, модуль выдал 2,19В.
Вывод – модули пельтье можно с успехом использовать для генерации электричества. Если модуль в 109 термопар, площадью 3,12кв.см. при разности температур в 100 градусов смог выдать 86мВт при полутора вольтах и более 2-х В на холостом ходу, то модуль с гораздо большей площадью и разностью температур хватит на питания небольшого светодиодного осветителя или радиоприёмника, или же для зарядки аккумуляторов. Но, к сожалению, такое их применение сильно ограничивается их ценой.
Примеры применения: различные ТЭГи, от портативных туристических, которые можно прикрепить к котелку у костра и слушать радио, до РИТЭГов, которые применяются для питания удалённых труднодоступных автономных объектов (например – маяки) или на космических спутниках.
Благодарность за предоставленные модули фирме – Радиоэлектроника.
1 шт. 40*40 мм термоэлектрический генератор, высокотемпературный генератор, элемент Пельтье, модуль тег, высокая температура 150 градусов|Детали инструментов|
информация о продукте
Характеристики товара
- Тип: Другие
- Номер модели: Y678
- Model: TEC1-12706
- Size: 40mm x 40mm x 4mm 2V DC and 0~6A»> Operates from: 0~15.2V DC and 0~6A
- Max power consumption: 60 Watts
- Package Content: 1 x Thermoelectric Cooler
отзывах покупателей ()
5 Звезды
${DATA. fiveStarNum}
4 Звезды
${DATA.fourStarNum}
3 Звезды
${DATA.threeStarNum}
2 Звезды
${DATA.twoStarNum}
1 Звезды
${DATA.oneStarNum}
${DATA.avgStarLevel}
/
5.0
Нет обратной связи
Элемент пельтье (Peltier) | Сила Тока . NET
Сегодняшняя статья пойдёт об элементе Пельтье — сердце ПЦР-амплификатора (автомобильного холодильника) от 12 V. Странная особенность этих холодильников в том, что они не придерживаются выставленной температуры, а уменьшают температуру внутри на определённое количество градусов, относительно температуры окружающей среды. А все потому, что автохолодильники вместо использования фреона и традиционной циркуляции его по трубкам работает на основе элемента «Пельтье». В основном, эта разница температур в пределах от 15 до 25 градусов цельсия. Поэтому при уличной температуре в 30 °С, в автохолодильнике максимальный минимум можно выжать в 5 — 10 °С выше нуля.
Элемент Пельтье. Что это такое.
Элемент Пельтье или модуль Пельтье это термоэлектрический преобразователь, который при пропускании через него тока, создает разность температур на стенках.
Своими словами: Это, пластина с двумя выводами, толщиной около 4 мм. Если подать ток на выводы (контакты) элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуры, на стенках, так же поменяются на противоположные.
Как это работает
Из описания элемента (термоэлектрический преобразователь) понятно, что элементы Пельтье преобразовывают электричество в изменение температуры и наоборот, воздействие на стенки элемента разности температур преобразовывают в электричество, поэтому его ещё называют «термоэлектрический генератор». В основном, каждый из элементов состоит из 127ми полупроводников, соединённых последовательно. Из-за этого стоит помнить, что при выходе из строя одного из них, весь элемент придет в негодность.
При прохождении тока через «внутренности» элемента Пельтье, одна его стенка нагревается а обратная — охлаждается. Такой же принцип работает и в обратном порядке: если принудительно одну стенку элемента нагревать, и вторую охлаждать, то на контактах образуется постоянный ток. Полярность у которого будет зависеть от того, какую именно сторону будут нагревать.
Важно помнить о граничной температуре. Полупроводники, внутри элемента крепятся на припое с температурой плавления, около 140 °C. Это значит, что если температура нагрева приблизится к этому значению, вероятно весь элемент выйдет из строя (расплавится и развалится).
В работе, при охлаждении чего либо с помощью элементов Пельтье, не стоит забывать отводить высокую температуру с обратной стороны элемента. Так как это может привести к разрушению элемента. В автомобильный холодильниках, упоминавшихся ранее, стоит воздухоотвод, который выводит наружу горячий воздух.
Разновидности элементов
На сегодняшний день, проворливые китайцы изготавливают огромное количество вариаций и размеров элементов «Пельтье», что позволяет приобрести их по вполне доступной цене, около $2-3 за штуку.
- Основные встречающиеся размеры это 25х25 мм., 30х30 мм., 40х40 мм., 50х50 мм. и 62х62 мм.
- По напряжению питания различают элементы на 5,9 в., 12 в., 15 вольт.
- Так же существуют и различные мощности элементов. Обычно это от 3,2 до 15 Ампер.
- Ещё один из основных показателей элементов — разность минимальной и максимальной температур(ΔT max) У «китайских» экземпляров это, в основном, : 67°C — 68°C.
Где применяются элементы Пельтье
Элементы Пельтье уже перестали быть экзотическим продуктом из мира фантастики, и стали доступны по цене для всякого рода экспериментаторов, поэтому количество новинок, на его основе заметно возросло.
Из основных применений стоит выделить, все те же:
- портативные холодильники от 12 вольт,
- настольные охладители для пива от usb,
- кулеры для воды,
- а так же охлаждение для процессора компьютера.
Но в случае с последним, зачастую элемент не справляется при сильной загрузке компьютера, даже при использовании температурного аккумулятора.
Используя принцип Пельтье в обратном порядке — добывают электричество. Но об этом в следующей статье.
Сколько вольт выдает элемент пельтье. Модуль пельтье как генератор электрической энергии. Отечественные модули Пельтье
Многих электриков новичков интересует один очень популярный вопрос – как сделать электричество бесплатным и в то же время автономным. Очень часто, к примеру, при выезде на природу, катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примером!
Кратко о принципе действия
Чтобы в дальнейшем Вы понимали, для чего нужны те или иные запчасти при сборке самодельного термоэлектрического генератора, сначала поговорим об устройстве элемента Пельтье и о том, как он работает. Данный модуль состоит из последовательно соединенных термопар, находящихся между керамических пластин, как показано на картинке ниже.
Когда через такую цепь проходит электрический ток, происходит так называемый эффект Пельтье — одна сторона модуля нагревается, а вторая – охлаждается. Для чего это нам нужно? Все очень просто, если действовать в обратном порядке: одну сторону пластины нагреть, а второю охладить, соответственно можно сгенерировать электроэнергию небольшого напряжения и силы тока. Надеемся, что на данном этапе все понятно, поэтому переходим к мастер-классам, которые наглядно покажут из чего и как сделать термоэлектрический генератор своими руками.
Мастер-класс по сборке
Итак, мы нашли в интернете очень подробную и в то же время простую инструкцию по сборке самодельного генератора электроэнергии на базе печи и элемента Пельтье. Для начала Вам необходимо подготовить следующие материалы:
- Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
- Старый блок питания от компьютера (с него нужен только корпус).
- Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит процесс подзарядки современного телефона либо планшета.
- Радиатор. Можно взять от процессора сразу с куллером, как показано на фото.
- Термопаста.
Подготовив все материалы можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:
Работает термоэлектрический генератор следующим образом: внутри печи засыпаете дрова, поджигаете их и ждете несколько минут, пока одна из сторон пластины не нагреется. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100 о С. Если охлаждающая часть (радиатор) будет нагреваться, его нужно остужать всеми возможными методами – аккуратно поливать водой, поставить на него кружку со льдом и т.д.
А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:
Генерация электричества из огня
Также можно установить на холодную сторону вентилятор от компьютера, как показывается на втором варианте самодельного термоэлектрического генератора с элементом Пельтье:
В этом случае куллер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для светодиодов, что не менее полезный вариант применения генератора. Кстати, второй вариант самодельного термоэлектрического генератора с виду и по конструкции немного похож. Единственная модернизация, помимо системы охлаждения, это способность регулировать высоту так называемой горелки. Для этого автор элемента использует «тело» CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).
Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому чтобы заряжать телефон, не забудьте подключить преобразователь, который на выходе оставит только 5 В.
Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент – два алюминиевых «кирпичика», медная труба (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий сделать бесплатное электричество в домашних условиях!
Чуть чуть теории.
Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.
Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах — от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности — от десятых долей до сотен ватт.
При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.
Практика.
Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа.
50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:
Подключаем воду к охладителю к одной стороне элемента Пельтье , а другую ставим на конфорку. К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат — наш генератор работает!
Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.
Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.
Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…
При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.
Использование термоэлектрического модуля.
Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.
Да, как говорится — если бы нашим ученым платили деньги, то они бы iphone ещё в `85 изобрели бы! 🙂
Термоэлектрический холодильник
Термоэлектрический холодильник (вариант 2)
Термоэлектрический холодильник (вариант 3)
Автомобильный охладитель для баночных напитков
Кулер для питьевой воды
Термоэлектрический кондиционер для кабины КАМАЗа
В такой «ковшик» наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там «зарыт» Пельтье
Давайте поподробней об этой конструкции.
В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии — радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, «бросового» тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности — от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.
Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.
Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В — 6 В — 9В -12В и переходники для зарядных устройств.
БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8
Техническая спецификация
Масса без жидкости, кг, не более0,55
Габаритные размеры, мм
без ручки250х130х110 ? 123, h=100
Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, — появлению разности температур, когда протекает электрический ток.
Как работает элемент Пельтье?
Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.
В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.
Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.
Если электроны движутся от полупроводника «p» к «n», на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника «p» в медный проводник сопровождается «вытягиванием» электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.
При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.
Факторы, влияющие на эффективность ТЭМ
- Сила тока.
- Количество термопар (до нескольких сотен).
- Типы полупроводников.
- Скорость охлаждения.
Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.
Достоинства и недостатки модулей
Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:
- компактность;
- отсутствие подвижных соединений;
- модуль Пельтье принцип работы имеет обратимый при смене полярности;
- простота каскадных соединений для повышения мощности.
Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.
Применение ТЭМ
Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:
- микросхемы;
- инфракрасные детекторы;
- элементы лазеров;
- кварцевые генераторы.
Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.
Охлаждение процессора
Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.
Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.
С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.
С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.
Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.
Активизация охлаждения процессоров создает также некоторые проблемы.
- Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
- Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.
Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.
Автохолодильник своими руками
В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.
Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является «сэндвич», который делается следующим образом.
- На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
- Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
- Все устройство плотно сжимается и просушивается в течение 4-5 часов.
- На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний — выравнивать температуру в камере холодильника.
Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.
Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается «плюс», к черному — «минус».
Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.
Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.
Модуль Пельтье: генератор электрической энергии
ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.
Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:
- 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
- преобразователь ЕК-1674;
- алюминиевые пластины толщиной 3 мм;
- кастрюля для воды;
- термостойкий клей.
Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.
Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.
Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.
В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.
Отечественные модули Пельтье
ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.
Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.
Характеристики модулей ведущих фирм
Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.
При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.
Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток — до 8 А. Кроме внушительных размеров — 60х60х52,5 мм (вместе с вентилятором) — устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.
Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.
Модули для изготовления генераторов, такие как отличаются большей мощностью — 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.
Модуль Пельтье купить можно недорого — порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.
Заключение
Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.
В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.
В этой, заключительной статье, расскажу вам о том, что эти модули не только способны прилично кушая электричество обеспечивать разность температур на своих сторонах, но и сами способны вырабатывать электроэнергию, если одну сторону элемента принудительно охлаждать, а вторую нагревать.
Без нагрузки, перепад температур ~100°С
В этих испытаниях добровольцем выступил небольшой модуль TB109-0.6-0.8, с площадью поверхности всего 3,12кв.см., напомню вам его ро.., вид и характеристики:
Для испытаний пельтье в режиме электрогенератора был собран небольшой стенд, который содержит следующие приборы: нагреватель, вольтметр, амперметр и нагрузку, так же понадобился радиатор и кусочек льда в водонепропускаемом пакете, ну и конечно сам подопытный TB109-0.6-0.8. В качестве нагревателя выступил 20Вт резистор на 5,6Ом, который был разогрет примерно до 80-90 градусов. Для улучшения теплового контакта элемента пельтье с нагревателем была применена намакондовская термопроводящая прокладка, вытащенная из какого то отмучавшегося компьютерного блока питания.
Приступим к тестам.
Первый тест был проведён с 1Омной нагрузкой, подключенной к выводам пельтье, в качестве охладителя был использован радиатор комнатной температуры.
С модуля удалось получить 0,117В при токе 119,5мА или 14мВт, при разности температур примерно в 60 градусов.
Нагрузка 1Ом, перепад температур ~100°С
При разности температур в 100 градусов модуль выдал результаты получше, а именно: 0,21В 0,22А или 46мВт.
Следующий тест был проведен с нагрузкой в 20Ом.
Нагрузка 20Ом, перепад температур ~100°С
Модуль выдал 1,31В при токе 66мА или 86мВт.
На холостом ходу, первое фото, модуль выдал 2,19В.
Вывод – модули пельтье можно с успехом использовать для генерации электричества. Если модуль в 109 термопар, площадью 3,12кв. см. при разности температур в 100 градусов смог выдать 86мВт при полутора вольтах и более 2-х В на холостом ходу, то модуль с гораздо большей площадью и разностью температур хватит на питания небольшого светодиодного осветителя или радиоприёмника, или же для зарядки аккумуляторов. Но, к сожалению, такое их применение сильно ограничивается их ценой.
Примеры применения: различные ТЭГи, от портативных туристических, которые можно прикрепить к котелку у костра и слушать радио, до РИТЭГов, которые применяются для питания удалённых труднодоступных автономных объектов (например – маяки) или на космических спутниках.
Благодарность за предоставленные модули фирме – Радиоэлектроника .
Ну чтож, все графики начерчены, все таблицы заполнены, теперь можно и помечтать. В целом если прикидывать энергопотребление в походе по максимуму, то получается следующее:
GPS-навигатор — 0,3 Вт х 10 ч = 3 Вт*ч в день;
фотоаппарат (зеркалка Canon) — аккумулятор 8 Вт*ч на 4 дня = 2 Вт*ч в день;
видеокамера (видеорегистратор для запечатления интересных моментов поездки, около 1 часа видео в день) — 1,6 Вт*ч в день;
сотовый телефон — около 0,2 Вт*ч в день;
светодиодный фонарик для подсвечивания стоянки вечером — 2 Вт*ч в день.
Итого получаем: 3 + 2 + 1,6 + 0,2 + 2 = 8,8 Вт*ч в сутки. С учётом потерь при зарядке аккумуляторов этих устройств и непредвиденные траты можно с лёгкостью округлить эту цифру до 10 Вт*ч в сутки, что приблизительно равно трём NiMH аккумуляторам формфактора АА (по 3,2 Вт*ч). Будем считать, что именно это количество электроэнергии позволяет комфортно путешествовать по ранее запланированному маршруту не ограничивая свои творческие позывы. Этот расчёт более-менее верен для одиночной вылазки или группы из двух человек. Если народу больше, то тут на каждого добавляется дополнительный потребитель, будь то сотовый или ещё один фотоаппарат. Я думаю что на каждого «лишнего» участника можно смело прибавлять по 1 Вт*ч, то есть для группы из 6-ти человек комфортный уровень энергопотребления составит 14 Вт*ч или около 4,5 аккумулятора АА. Предположим что поход длиться 10 дней, то для группы из 2-х человек понадобится 100 Вт*ч энергии, это 31 NiMH аккумулятор общей массой 31 х 31,5 = 976,5 г. То есть почти 1 кг аккумуляторов. Если брать щелочные батарейки, то самые лучшие отдают 2,2 Вт*ч и их потребуется 45 штук. Массу их не знаю, но даже если они по 25 г, то в сумме уже больше килограмма набирается. Для группы из 6-ти человек общее количество электроэнергии составляет 140 Вт*ч, это почти 44 аккумулятора массой 1386 г или 64 батарейки ещё большей массой. Если брать с собой LiPo аккумуляторы, какие используют моделисты, то для двух человек это будет аккумулятор массой 100 Вт*ч ÷ 160 Вт*ч/кг = 0,625 кг или 625 г. Для группы из 6-ти человек масса LiPo аккумулятора составит 875 г.
Теперь прикинем как обстоят дела с термогенератором. Допустим у нас модуль (или модули) ТЕС1-12709, греем его не выше 150 °С, охлаждаем в ручье с температурой 15 °С, то есть на холодной стороне будет 20 °С, перепад температур 150 — 20 = 130 °С. Для такого значения разности температур у меня нет показателя эффективности, придётся считать. Берём два максимальных значения на графике зависимости эффективности от тока для ТЕС1-12709, например 13,6 мВт/°С для усреднённой разности температур 71 °С и 15,7 мВт/°С для 87 °С и рассчитываем на какую величину увеличилась эффективность при повышении разности температур на 87 — 71 = 16 °С. Получается на 2,1 мВт/°С. А дальше по пропорции: если увеличение разности в 16 °С привело к увеличению эффективности на 2,1 мВт/°С, то увеличение разности на 130 — 87 = 43 °С приведёт к увеличению эффективности на (43 х 2,1) ÷ 16 = 5,6 мВт/°С. Значит эффективность при разности температур в 130 °С будет равна 15,7 + 5,6 = 21,3 мВт/°С. В итоге получаем 21,3 х 130 = 2769 мВт или 2,8 Вт. Это довольно близкое к реальности значение если судить по тому, что в некоторых видеоэкспериментах два модуля выдавали 4…6 Вт. Чтобы с помощью одного модуля получить 10 Вт*ч энергии, надо чтобы генератор работал 10 ÷ 2,8 = 3,57 ч, а для 14 Вт*ч — 5 часов. То есть если использовать термогенератор состоящий из 2-х элементов Пельтье, то выработка электроэнергии даже для большой группы не занимает очень много времени.
Единственная серьёзная проблема, возникающая при производстве электричества в походе этим методом — это рассеяние тепла на холодной стороне. Самый лучший и оптимальный — водяное охлаждение, так как вода имеет большую теплоёмкость. В этом плане водным туристам повезло больше, чем велосипедистам: у них способ передвижения связан именно с водой и если продумать конструкцию генератора (очень странно, почему она до сих пор не продумана и не реализована в промышленных объёмах), то выработка электроэнергии у них может происходить во время движения. Генератор частично погружён в воду, частично плавает на поверхности. В печь по мере расходования подгружается топливо, снаружи это всё охлаждается водой. Топливо собирается и готовиться на привале.
Если заморачиваться с собиранием дров и сосновых шишек не
хочется, то можно подумать над конструкцией газовой печи. Тут стоит немного посчитать. Итак, имеем:
баллон сжиженного газа для газовых горелок с топливом массой 450 г.;
состав: изобутан — 72%, пропан — 22%, бутан — 6%, в пересчёте на массу это 324 г, 99 г и 27 г соответственно;
теплоты сгорания для этих газов равны соответственно 49,22 МДж/кг, 48,34 Мдж/кг и 49,34 МДж/кг.
После умножения и сложения имеем 22,07 МДж в одном баллоне сжиженного газа. Принимаем КПД нашего генератора равное 1%, следовательно получаем в качестве электроэнергии 220 кДж, что составляет 61,3 Вт*ч. С чем можно сравнить? Ну например с 19-тью NiMH аккумуляторами АА. Не густо и довольно накладно, газ не дешёв.
Раз использовать газ дорого, то можно придумать что-то с использованием жидкого топлива, например бензина. Я немного порылся в интернете на предмет дешёвого катализатора для каталитических горелок, но кроме оксида хрома (VI), полученного из бихромата аммония ничего не нашёл. Да и с ним не всё так гладко, но при желании, путём некоторого количества экспериментов можно и тут добиться стабильных положительных результатов. В каталитических грелках китайского производства скорее всего используются элементы платиновой группы в микроколичествах. Вот бы катализатор как в этой грелке, но большего размера для элементов Пельтье. Получился бы компактный и лёгкий генератор. Теплота сгорания бензина 44,5 МДж/кг, плотность 0,74 кг/л, с одного литра бензина имеем 33 МДж энергии, при 1%-ном КПД это 330 кДж или 91,6 Вт*ч электроэнергии (28 аккумуляторов АА). Более бюджетный вариант, но всё таки собирать и заготавливать имеющееся в природе бесплатное топливо естественно выгоднее, и у него нет одной очень неприятной особенности, присущей тем запасам, которые покупаются в магазине — оно не заканчивается в самый неподходящий момент.
Современный камин XXI века с камерой Жильяра и генератором на элементах Пельтье
Вы можете ознакомиться с изобретениями Николая Егина
Данный сайт остается как память об изобретателе
Важная информация об авторских свидетельствах
Современный камин XXI века с камерой Жильяра и генератором на элементах Пельтье
Камин – это просто очаг (по латыни caminus). Камин одно из самых древних изобретений человечества. За столетия внешний вид и конструкция камина существенно изменилась. Его переместили к стене, а дымоходы убрали в стену. Созданы подлинные художественные шедевры оформления камина. Мода на камины сейчас вернулась. Но КПД у камина ниже, чем у закрытой печи. Первыми, как повысить теплоотдачу камина, задумались французы и в 1861 году парижский инженер Жильяр, развивая плодотворную идею англичанина Доусона, предложил конструкцию камина с камерами для сухой перегонки тощего каменного угля. Затем камеры, названные его именем, Жильяр усовершенствовал и стал пропускать водяной пар через раскаленный уголь, получая «водяной» или по современной терминологии – синтез-газ. Выработанный таким образом синтез-газ можно было сжигать в топке камина или в топках других комнат, обогревая их.
Николай Егин многие годы работал с синтез–газом. В его творческой лаборатории созданы новые технологии и накоплен опыт получения ценного горючего газа из любых органических отходов сельского хозяйства, а также отходов промышленных, нефтяных и угледобывающих предприятий, твердых бытовых отходов…
Современная камера Жильяра в камене Егина отличается более доведенной конструкцией, где происходит уже не только пиролиз, но ещё и рекуперация и рециркуляция тепла отходящих газов, и каталитическое восстановление выбросов углекислого газа в горючий оксид углерода. Это и другие усовершенствования и изобретения Егина позволяют повысить КПД топочной системы до 90%. Расход топлива снижается в 3-7 раз. Такой камин становиться не только роскошным украшением, но и мощным конкурентом отопительным системам.
Другие изобретения и усовершенствования камина Егиным:
- Подогрев остывшей каминной кладки с помощью углеродных лент. Такую тепловую накачку особенно выгодно проводить в ночное время, когда киловатт/час электроэнергии стоит вчетверо дешевле пикового. Углеродные ленты в отличии от ТЭНов служат до 30 лет.
- Раздвижные экраны из альфолевой ленты. Позволяют управлять величиной и направлениями теплового излучения камина. Это поможет создать комфортные зоны и экономит энергию.
- Дополнит камин собственный источник энергии – термохимический генератор типа ГТГ-150, применяемый в газовой и нефтяной промышленности для радиорелейной связи и катодной защиты трубопроводов. Он устанавливается на трубе камина и дает ток за счет эффекта Пельтье.
- Синтез-газ из каминной камеры Жильяра можно вывести в ДВС генератора электроэнергии мощностью до 5-ти КВт. Этой мощности хватит для всех нужд современного коттеджа.
- Использование массивной каминной кладки для накопления холода. Холод вырабатывают элементы Пельтье. Их КПД приближается к 99,5%, намного обгоняя современные кондиционеры и холодильники. Выработанный по ночным тарифам на электроэнергию холод накапливается кладкой, а управлять его распределением можно с помощью все тех же альфолиевых экранов и воздушных каналов отопления.
Камин XXI века может стать достойным приемником своего предка не только в красоте, но и в функциональности!
Все представленные на сайте изобретения имеют авторские свидетельства на изобретение, чертежи и конструкторскую документацию. Автор – Николай Егин.
Важная информация об авторских свидетельствах
Элемент Пельтье (генератор Зеебека) принципа действия, обозначения . ..
Привет, Вы узнаете про элемент пельтье, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать такое элемент пельтье, генератор зеебека, настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника, Элементная база
элемент пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.В русскоязычной литературе элементы Пельтье обозначаются TEC (от англ. T hermo e lectric C ooler — термоэлектрический охладитель).
Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.
Конструкция
Структурный пример элемента Пельтье. Металлические электроды и полупроводники p-типа и n-типа попеременно соединены в π-форме между верхней и нижней пластинами теплового излучения.
Схематический рисунок элемента Пельтье
Принцип действия
Внешний вид элемента Пельтье.При пропускании тока тепло переносится с одной стороны на другую.
Вид сбоку на элемент Пельтье. Электрический ток протекает через полупроводники в форме куба между верхней и нижней частью.
Вскрытый элемент
В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника.При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении нагревание места контакта полупроводников, также к обычному тепловому эффекту.
При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического сообщения и явлений теплопроводности. Поэтому при практическом применении используется контакт полупроводников.
Элемент Пельтье состоит из одного или более пар небольших полупроводников одного параллелепипеда — n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твердого раствора SiGe), которые попарно соединены при помощи металлических перемычек.Металлические перемычки одновременно терминальными контактами и изолированы непроводящей пленкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образует последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни соединения (n-> p), а снизу — противоположные (p-> n). Электрический ток протекает через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот.Таким образом электрический ток переносит тепло с одного элемента Пельть на противоположную сторону и разность температур.
Если охлаждать систему координат стороны элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится еще ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температуры может достигать приблизительно 70 ° C.
Достоинства и недостатки
Достоинством элемента Пельтье небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей.При обращении направления тока возможно как охлаждение, так и нагревание — это дает возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.
Недостатком элемента Пельтье является более низким коэффициентом полезного действия, чем у компрессорных холодильных установок на фреоне, что ведет к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки дополнительных теплового КПД, а элементы Пельтье широкое применение в технике, так как без каких-либо устройств можно реализовать температуру ниже 0 ° C.
Основной проблемой в построении элементов является то, что свободные электроны в веществе являются одновременно переносчиками и электрическим током, и теплом. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.
В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы.Об этом говорит сайт https://intellect.icu. При этом желательно сглаживать пульсацию тока — это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.
Эксплуатационные требования к элементам Пельтье.
Модули Пельтье — капризные устройства. Их применение сопряжено с рядом требований, не выполняет которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.
- Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
- Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
- Допустим нагрев горячей стороны как правило + 80 ° C (в высокотемпературных до 150 ° C). Т.е. модуль может просто выйти из строя.
- При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
- Важен надежный тепловой контакт модуля с радиатором охлаждения.
- Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
- Не допустимо, для управления Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение — выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуля Пельтье за 1-2 месяца.
- К тому же элемент Пельтье той высокой теплопроводностью между поверхностями.При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
- Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
- Чем надо питать элемент Пельтье тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно.И вдок, характеристика меняется при изменении температуры модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
- Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax.При таком напряжении обеспечивается оптимальная эффективность модулей.
- Модули имеют герметичное исполнение, их можно использовать даже в воде.
- Полярность модуля отмечена цветами проводов — черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.
Многокаскадные термоэлектрические модули
Многокаскадные модули применяются в системах глубокого охлаждения, холодильниках с большим перепадом температуры, приборов охлаждения, научных, исследовательских и специальных. Также используются для охлаждения ИК фотоприемников, детекторов рентгеновского излучения и других датчиков.
Основные области применения:
- охлаждение ПЗС матриц и ИК фотоприемников
- камеры холода и замораживатели
- термостаты
- научные лабораторные приборы
- термокалибраторы
- ступенчатые охладители
- охладители и термостабилизаторы датчиков различного назначения
- приборы ночного видения
Технологические особенности
Для верхних каскадов многокаскадных модулей мы используем оптимизированный термоэлектрический материал, который позволяет получать большее количество? Т при меньшем количестве каскадов.Это позволяет выполнять многокаскадные модули с оптимальными весо-габаритными характеристиками и низким энергопотреблением.
Мы также предлагаем нашим заказчикам термоэлектрические модули или встроенные в стандартные — ТО (ТО3, ТО8 и др.), HHL, DIL, butterfly или специальные корпуса.
Таблица используется сокращений
ТЭМ | термоэлектрический модуль |
ТГМ | термоэлектрический генераторный модуль |
DTmax | максимально достижимая разница температур между сторонами термоэлектрического модуля |
Imax | максимальный электрический ток через термоэлектрический модуль, соответствующий режим максимальной разницы температуры |
Uмакс | максимальное электрическое напряжение на контактах термоэлектрического модуля, соответствующий режим максимальной разницы температур |
Qmax | максимальная холодопроизводительность (холодильная мощность) термоэлектрического модуля.Определение при максимальном токе через термоэлектрический модуль и нулевой разности температур между его |
RAC | электрическое сопротивление термоэлектрического модуля, измеренное на переменном токе с частотой 1 кГц |
Примеры схем с элементами обозначения
Рис. 1. Схемы подключения нагревательных элементов к микроконтроллеру:
а) охлаждение объекта модулем Пельтье EK1 фирмы «Криотерм» (размеры 40x40x3.4 мм). Светодиод HL1 индицирует состояние «Заморозить / Разморозить». Транзистор K77 подключается к MK напрямую, без резисторов, поскольку элемент EK1 весьма инерционный и помехи, которые теоретически могут открыть транзистор VT1 при рестарте MK, на него мало влияет;
б) подключение к МК низковольтного элемента Пельтье фирмы Melcor. Параметры EK1: мощность 5,3 Вт, рабочий ток 2,5 А при напряжении 3,75 В, максимальная разность температуры между «холодной» и «горячей» поверхностями 67 ° С, габаритные размеры 15x15x4 мм.
Применение
Элементы Пельтье можно использовать везде, где требуется охлаждение с небольшой разницей температурной или без экономических требований. Термоэлектрические элементы используются, например, в холодных ящиках, используемых в холодильной машине. Разница температур внутри и снаружи просто неконтролируемым образом. КПД низкий.Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температурной или энергетической эффективности охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, малогабаритных автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессорной холодильной установки в этом случае невозможно или нецелно из-за габаритных ограничений, и, кроме необходимой мощности охлаждения, невелика .
Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счет этого достигается уменьшение теплового шума при длительных экспозициях (например, в астрофотографии). Многоступенчатые элементы Пельтье для охлаждения приемников излучения в инфракрасных сенсорах.
Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.
В приборах при низкой мощности охлаждения, элементы Пельть часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температуры на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 ° C для одностадийных холодильников и до −120 ° C для двухстадийных).
Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота. До азотного охлаждения использовали именно такой способ.
«Электрогенератор Пельтье» (более корректно было бы « генератор зеебека », но неточное название устоялось) — модуль генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:
- непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
- источник тепловой энергии для преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т.д.)
Элементы Пельтье используются для охлаждения особо длинноволновых или чувствительных ПЗС-датчиков. Это снижает шум изображения при длительной выдержке (например, в астрофотографии). Многоступенчатые элементы используются для охлаждения приемников излучения инфракрасных датчиков.
Элементы Пельтье также все чаще используются в лабораторных измерительных приборах, которые являются важными параметрами таких устройств измерения плотности, как вискозиметры, реометры или рефрактометры.
В гигрометрах с охлаждающими зеркалами один или несколько элементов Пельтье, соединенных последовательно, обычно охлаждают зеркало до -100 ° C. Здесь используется то обстоятельство, что охлаждающая способность элементов Пельтье может быстро регулироваться электрически.
Диодные лазеры часто охлаждаются и термостатируются с помощью элементов Пельтье, чтобы сохранить постоянную длину волны излучения и / или эффективность. Последующие оптические элементы диодных и других лазеров часто термостатируются элементами Пельтье.
Элементы Пельтье можно использовать как для охлаждения, так и — при изменении направления тока — для системы.
Элементы Пельтье иногда используются в составе кулеров ЦП. Элемент Пельтье позволяет процессору остыть до температуры ниже температуры внутри корпуса, что либо позволяет разгонять процессор без ущерба для стабильности, либо увеличивает срок службы процессора. Элемент устанавливается на дне радиатора с вентилятором мощностью.Используемая электрическая энергия выделяется внутрь корпуса в виде отработанного тепла, однако такие решения не принесли успеха из-за их дополнительного потребления энергии.
Фотодиоды, например B. для считывающих сцинтилляторов, из-за их небольшой площади могут охлаждаться элементы Пельтье и, таким образом, уменьшать шум и темновой ток.
Элементы Пельтье используются в камерех диффузионного тумана для поддержания разницы температур между дном и крышкой.
В термоциклерах, которые сегодня являются частями основного оборудования в молекулярной биологии, используются элементы быстрого механизма и охлаждения, которые необходимы, например, в полимеразной цепной реакции.
Элементы Пельтье иногда используются в небольших осушителях воздуха. Здесь влажный воздух проходит через охлаждающий элемент, а содержащаяся в нем вода конденсируется по мере охлаждения.
На этом все! Теперь вы знаете все про элемент пельтье, Помните, что это теперь будет проще использовать на практике.Надеюсь, что теперь ты понял что такое элемент пельтье, генератор зеебека и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того, чтобы глубже понять настоятелно рекомендую изучить комплексно информацию в категории Электроника, Микроэлектроника, Элементная база
3 шт. 40×40 мм термоэлектрический генератор энергии модуль пельтье тег высокая температура 150 градусов распродажа
совместимость
Чтобы обеспечить, что эта часть подходит для вашего автомобиля, введите детали вашего автомобиля ниже.Эта часть лога с 0 транспортное средство (ы). Покажите все совместимые автомобили
Эта часть сочета с 1 транспортное средство (ы) совпадающий
Эта часть не соответствуета с
- Год
- произносить
- модель
- субмодель
- отделка
- Двигатель
Столбить боковые посты со словами
Сторона башня пуста
Красный провод к положительному, черный провод к отрицательному, он генерирует электричество при разнице температуры
Технические характеристики:
Модель: SP1848-27145
Цвет белый
Длина свинца: около 30 см
Размер: 40 мм х 40 мм х 3,4 мм
Разница температур 20 градусов: напряжение холостого хода 0,97 В, генерируемый ток: 225 мА
Разница температур 40 градусов: напряжение холостого хода 1,8 В, генерируемый ток: 368 мА
Разница температур 60 градусов: напряжение холостого хода 2,4 В, генерируемый ток: 469 мА
Перепад температуры 80 градусов: напряжение разомкнутой цепи 3,6 В, генерируемый ток: 558 мА
Разность температур 100 градусов: напряжение разомкнутой цепи 4,8 В, генерируемый ток: 669MA
Вышеуказанные значения только для справки, проводка в фактическом использовании, и на плате повышения, там будет потеря тока
В комплект поставки входят:
Модуль Пельтье термоэлектрического генератора 3 x 40×40 мм
Alex_EXE »Элемент пельтье, режим электрогенератора
В прошлых статьях было рассказано об элементах пельтье и как они ведут себя в режиме теплового насоса. В этой, заключительной статье, эти модули не способны производить разность температур на своих сторонах, но сами могут вырабатывать электроэнергию, если одну сторону элемента принудительно охлаждать, вторую нагревать.
Без нагрузки, перепад температур ~ 100 ° С
В этих испытаниях добровольцем выступил небольшой модуль TB109-0.6-0.8, с площадью поверхности всего 3,12кв.см., Напомню вам его ро.., вид и характеристики:
TB109-0,6-0,8 Imax = 2,1А |
Для испытаний пельтье в режиме электрогенератора был собран небольшой стенд, который содержит следующие приборы: нагреватель, вольтметр, амперметр и нагрузку, так же понадобился радиатор и кусочки льда в водонепропускаемом пакете, ну и конечно сам подопытный TB109-0. 6-0,8. В качестве нагревателя выступил 20Вт резистор на 5,6Ом, который был разогрет примерно до 80-90 градусов. Для улучшения теплового контакта элемента пельтье нагревателем была применена намакондовская термопроводящая прокладка, вытащенная из какого то отмучавшегося компьютерного блока питания.
Собранный испытательный стенд
Приступим к тестам.
Первый тест был проведён с 1Омной нагрузкой, подключенной к выводам пельтье, в качестве охладителя был использован радиатор комнатной температуры.
Нагрузка 1Ом, перепад температур ~ 60 ° С
С модуля удалось получить 0,117В при токе 119,5мА или 14мВт, при разности температур примерно в 60 градусов.
Дальше было решено охлаждать подопытного более кардинальными мерами, для этого в дело пошли кусочки льда из морозильника.
Нагрузка 1Ом, перепад температур ~ 100 ° С
При разности температуры в модуле 100 градусов выдал результаты получше, а именно: 0,21В 0,22А или 46мВт.
Следующий тест был проведен с нагрузкой в 20Ом.
Нагрузка 20Ом, перепад температур ~ 100 ° С
Модуль выдал 1,31В при токе 66мА или 86мВт.
На холостом ходу, первое фото, модуль выдал 2,19В.
Вывод — модули пельтье можно с успехом использовать для генерации электричества. Если модуль в 109 термопар, площадью 3,12кв.см. при разности температуры в 100 градусов смог выдать 86мВт при полутора вольтах и более 2-х В на холостом ходу, то модуль с большей площадью и разностью температурного хватит на питание небольшого светодиодного осветителя или радиоприёмника, или же для зарядки аккумуляторов.Но, к сожалению, такое их применение сильно ограничивается их ценой.
Примеры применения: различные ТЭГи, портативные туристические, которые можно прикрепить к котелку на костра и слушать радио, до РИТЭГов, которые применяются для питания удаленных труднодоступных автономных объектов (например — маяки) или на космических спутниках.
Благодарность за предоставленные модули фирме — Радиоэлектроника.
1 шт. 40 * 40 мм термоэлектрический генератор, высокотемпературный генератор, элемент Пельтье, модуль тег высокая температура 150 градусов | Детали инструментов |
информация о продукте
Характеристики товара
- Тип: Другие
- Номер модели: Y678
- Модель: TEC1-12706
- Размер: 40 мм x 40 мм x 4 мм 2V DC and 0~6A»> Работает с: 0 ~ 15.2 В постоянного тока и 0 ~ 6 А
- Максимальная потребляемая мощность: 60 Вт
- Содержимое пакета: 1 х термоэлектрический охладитель
отзывы покупателей ()
5 Звезды
$ {DATA. fiveStarNum}
4 Звезды
$ {DATA.fourStarNum}
3 Звезды
$ {DATA.threeStarNum}
2 Звезды
$ {DATA.twoStarNum}
1 Звезды
$ {DATA.oneStarNum}
$ {DATA.avgStarLevel}
/
5.0
Нет обратной связи
Элемент пельтье (Пельтье) | Сила Тока. NET
Сегодняшняя статья пойдёт об элементе Пельтье — сердце ПЦР-амплификатора (автомобильного холодильника) от 12 V. Странная особенность этого холодильника, что они не придерживаются выставленной температуры, а уменьшают температуру внутри определенного количества градусов, относительно температуры окружающей среды. А все потому, что автохолодильники вместо использования фреона и традиционной циркуляции его по трубкам работает на основе элемента «Пельтье». В основном эта разница температур в пределах от 15 до 25 градусов цельсия.Поэтому при уличной температуре в 30 ° С, в автохолодильнике максимальный минимум можно выжать в 5 — 10 ° С выше нуля.
Элемент Пельтье. Что это такое.
Элемент Пельтье или модуль Пельтье это термоэлектрический преобразователь, который при пропускании через него создает разность температур на стенках.
Своими словами: Это пластина с двумя выводами толщиной около 4 мм. Если подать ток на выводы (контакты) элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуру, на стенках, так же поменяются на противоположные.
Как это работает
Из описания элемента (термоэлектрический преобразователь) понятно, что элементы Пельтье преобразовывают электричество в изменение температуры и наоборот, воздействие на стенку элемента разности температурного преобразователя в электричество, поэтому его ещё называют «термоэлектрический генератор». В основном, каждый из элементов состоит из 127ми полупроводников, соединенных последовательно.Из-за этого стоит помнить, что при выходе из строя одного из них, весь элемент придет в негодность.
При прохождении тока через «внутренности» элемента Пельтье, одна его стенка нагревается а обратная — охлаждается. Такой же принцип работает и в обратном порядке. Полярность которого будет зависеть от того, какую именно сторону будут нагревать.
Важно помнить о граничной температуре.Полупроводники, внутри элемента крепятся на припое с температурой плавления, около 140 ° C. Это значит, что если система приблизится к этому значению, вероятно весь элемент выйдет из строя (расплавится и развалится).
В работе, при охлаждении чего либо с помощью элементов Пельтье, не стоит забывать отводить температуру с обратной стороны элемента. Так как это может привести к разрушению элемента. В автомобильный холодильниках, упоминавшихся ранее, стоит воздухоотвод, который выводит наружу горячий воздух.
Разновидности элементов
На сегодняшний день проворливые китайцы изготавливают огромное количество вариаций и размеров элементов «Пельтье», что позволяет приобрести их по вполне доступной цене, около 2-3 долларов за штуку.
- Основные встречающиеся размеры это 25х25 мм., 30х30 мм., 40х40 мм., 50х50 мм. и 62х62 мм.
- По напряжению питания различают элементы на 5,9 в., 12 в., 15 вольт.
- Так же существуют и различные элементы.Обычно это от 3,2 до 15 Ампер.
- Ещё один из основных показателей элементов — разность минимальной и максимальной температур (ΔT max) У «китайских» экземпляров это, в основном,: 67 ° C — 68 ° C.
Где применяются элементы Пельтье
Элементы Пельтье уже перестали быть экзотическим продуктом из мира фантастики, и стали доступны по цене для всякого рода экспериментаторов, поэтому количество новинок, на его основе стало возникло усиление.
Из основных применений стоит, все те же:
- Портативные холодильники от 12 вольт,
- настольные охладители для пива от usb,
- кулеры для воды,
- а так же охлаждение для процессора компьютера.
. Но в случае с последним, часто элемент не справляется при сильной загрузке компьютера, даже при использовании температурного аккумулятора.
Используя принцип Пельтье в обратном порядке — добывают электричество. Но об этой в следующей статье.
Зарядка аккумуляторной батареи от элементов Пельтье
Выходное напряжение термоэлектрического генератора на элементах Пельтье зависит от температурных условий и нагрузки. В предлагаемой конструкции режим работы преобразователя этого напряжения в требуемой для зарядки свинцово-кислотной аккумуляторной батареи автоматически такой, что генератор всегда отдаёт максимально возможную мощность. Это позволяет получить от генератора и запасти в батарее возможное возможное количество энергии.
Известно, что для получения максимального количества энергии во внешней цепи необходимо, чтобы сопротивление нагрузки генератора равнялось его внутреннему сопротивлению, а последнее у элемента Пельтье зависит от условий работы. Разные условия распределения элементов и отвода от них тепла проблематично, выход включает в себя отдельные условия разбиения всего их числа на группы с одинаковыми условиями и тепловыми условиями.Оптимальная нагрузка при этом обеспечивается раздельно для каждой группы. По этому принципу и построено рассматриваемое устройство, состоящее из двух идентичных каналов, работающих на общую нагрузку — заряжаемую аккумуляторную батарею.
Основные технические параметры
Число каналов преобразования ………………………. 2
Минимальное напряжение на входе канала, В .. ………… 3
Максимальное напряжение на входе канала, В …. ……… 12
Максимальный ток генератора, А…………………….. 5
Максимальное выходное напряжение, В …………….. 14
Частота преобразования, кГц …… 80
КПД (при входном напряжении 9 В, токе 1 А),%, не менее …………….. ……. 80
Ток потребления от батареи в спящем режиме, мА ………. 0,4
Схема устройства на рис. 1. Термоэлектрические генераторы G1 и G2 подключены к входам двух идентичных каналов преобразования. Каждый канал представляет собой повышающий импульсный преобразователь напряжения на накопительном дросселе L1 (L2) и мощном полевом транзисторе VT3 (VT4), управляемый путём широтно-импульсной модуляции.Контролирует работу преобразователей микропроцессора DD1 (ATmega88-20AU). Коды из приложенного к статье файла TERMPR.hex необходимо загрузить в его FLASH-память. Конфигурацию микроконтроллера программируют в соответствии с таблицами, где выделены цветом значения разрядов, отличающиеся от изготовителя микросхемы.
Рис. 1.
Разряд | Сост. | Разряд | Сост. | |||
RSTDISBL | 1 | CKDIV8 | 1 | |||
DWEN 3 | 0 | SUT1 | 1 | |||
WDTON | 0 | CKSEL3 | 0 | |||
BODLEVEL2 | 0 | CKSEL2 | 0 | |||
BODLEVEL1 | 1 | CKSEL1 | 1 | |||
BODLEVEL0 | 0 | CKSEL0 | 0 |
На рис. 2 приведена диаграмма напряжения на выходе термоэлектрического генератора одного канала в течение рабочего цикла устройства. Масштаб по оси времени не соблюдён. Цикл начинается с приостановки работы преобразователя в момент t 0 , после чего напряжение генератора нарастает до напряжения холостого хода U xx , которое по окончании переходного процесса микроконтроллер измеряет за время t изм . В момент времени t 1 микроконтроллер включает преобразователь и в несколько приёмов изменяет длительность управляющих импульсов, каждый раз измеряя напряжение генератора.После очередного изменения длительности импульсов напряжение генератора попадает в зону вблизи вблизи U = 0,5U xx (в данном случае это момент t 4 ). Это соответствует нагрузке на генератор, поэтому преобразователь продолжает работать при установленной длительности импульсов, пока усилитель напряжения генератора не выйдет за пределы зоны ΔU. Затем процесс повторяется.
Рис. 2.
Так происходит зарядка аккумуляторной батареи GB1.По достижении напряжения батареи батареи 14 В зарядный ток уменьшается, чтобы не допустить ее перезарядки. Устройство переходит в режим стабилизации напряжения.
Питание микроконтроллера DD1 может происходить как от батареи GB1 через интегральный стабилизатор DA1, так и от термогенераторов G1 и G2 через стабилизаторы тока на транзисторах VT5 и VT6. Благодаря такой организации питания напряжение на зажимах для подключения аккумуляторной батареи имеется даже в ее отсутствие.Достаточно, чтобы работал хотя бы один термогенератор.
Если напряжение обоих термогенераторов опустилось ниже минимального значения, микроконтроллер DD1 в «спящий» режим, начинается переходит транзисторы VT7 и VT8 и отключив этим стабилизатор DA1. При этом ток потребления от аккумуляторной батареи (если она подключена) уменьшается до 0,4 мА.
Как только напряжение хотя бы одного генератора становится выше минимального (примерно 3 В), микроконтроллер «пробуждается», включает стабилизатор DA1 и управляет преобразователями, как описано выше. Если напряжение холостого хода генератора превышает напряжение аккумуляторной батареи, то происходит непосредственная зарядка через диод VD7 или VD8 и установить режим нагрузки становится невозможно. Отсюда ограничение на максимальное напряжение термогенератора.
Светодиоды HL1-HL3 используются для сигнализации о включении устройства и работе преобразователей напряжения генераторов G1 и G2. Предусмотрена сигнализация о перегреве термогенераторов — звуковой сигнал подаёт излучатель звука HA1 и мигает светодиод.
Температура каждого из генераторов контролируется с помощью термовыключателей SK1 и SK2 с температурным срабатыванием +120 о С. Наиболее распространенные и дешёвые элементы Пельтье могут эксплуатироваться при температуре до +138 о С. Если применить высокотемпературные элементы, то нужно использовать и другие термовыключатели или отказаться от них совсем.
Чертёж печатной платы устройства показано на рис. 3, размещение элементов на ней — на рис. 4.Многие из необходимых для изготовления деталей можно найти на ненужной материнской плате от компьютера. Например, полевые транзисторы ARM2014N используются в преобразователях напряжения для питания и памяти на платах фирмы ASUS. Хорошо подходят также полевые транзисторы STB70NF3LL. Главное требование, предъявляемое к этимисторам, — пороговое напряжение не выше 1,5 В (лучше 1 В). Использование приборов с более высоким пороговым напряжением приводит либо к их чрезмерному напряжению, либо преобразователь не работает, так как транзисторы не открываются имеющимся напряжением.
Рис. 3.
Рис. 4.
Дроссели L1 и L2 также изготовлены из найденных на материнской плате. Использованы их магнитопроводы — ферритовые кольца размерами 15x8x6 мм. На них намотаны по 15 витков провода диаметром 1 мм.
Вместо диодов VS80SQ040 и BAS86 могут быть применены другие диоды Шотки соответственно на 40 В, 10 А и 40 В, 0,1 А.
Программа микроконтроллера имеется здесь
Авторы: С.Ткачук, г. Боярка, Украина
Элемент Пельтье своими руками — видео урок как сделать термоэлектрический генератор, что такое эффект Пельтье, как выбрать, фото
Автор Алуариус На чтение 6 мин. Просмотров 416 Опубликовано
То, что все электронные устройства в процессе работы нагреваются, не секрет. И этот самый нагревно негативно влияет на качество работы, поэтому для охлаждения приборов в их конструкцию устанавливаются элементы, которые носят имя французского изобретателя Жан-Шарля Пельтье.Устройство это миниатюрное, но именно оно отвечает за охлаждение конденсаторов. Установить элемент Пельтье своими руками не проблема, с этим справится даже новичок, главное — знать, в каком месте его схемы припаять.
Элемент ПельтьеНемного истории
Жан-Шарль Пельтье был часовщиком. Жил он в девятнадцатом веке, когда электротехника и физика были на подъеме. Все, кто бы хотя бы немного понимал, как работают физические законы, старались в домашних условиях делать опыты. Пельтье не стал исключением.В 1834 году он решил провести один опыт, поместив каплю воды между двумя электродами: один был изготовлен из сурьмы, второй из висмута. После чего через электроды пропустил электрический ток.
Каково его было изумления, когда вода превратилась в лед. Ведь то, что под действием электрического тока любые материалы сообщениялись, было известно. Но чтобы произошел обратный эффект, это была новость. Французский часовщик так и не понял, что изобрел что-то новое, которое оказалось на границе двух областей науки — электричества и термодинамики.В то время для него произошло просто волшебство.
Правда, проблемы охлаждения в те времена мало кого интересовали, поэтому эффект Пельтье так и остался невостребованным. И только через два века, когда в промышленности и быту стали использовать электронные устройства, для которых требовались миниатюрные приборы охлаждения, о Пельтье и его эффекте вспомнили.
Достоинства и недостатки
Что же получилось, в конце концов? А получился тот самый элемент Пельтье, который обладал большими достоинствами:
- Компактность устройства, которое давало возможность установить его на электронное плато.
- Полное отсутствие движущихся деталей, что увеличило его срок эксплуатации.
- Возможность соединять несколько элементов в каскадной схеме, которая позволяет снизить достаточно большие температуры.
Внимание! Если поменять полярность подключения, то эффект Пельтье будет совершенно противоположного действия. То есть, устройство будет не охлаждать, а нагревать.
Есть у этого элемента и свои недостатки.
- Небольшой коэффициент полезного действия.Это влияет на то, что приведет к подводить большой ток, чтобы получить заметный перепад температуры.
- Сложность отвода тепловой энергии от охлаждаемой плоскости.
Физические процессы в элементе Пельтье
, чтобы разобраться в этом устройстве, необходимо погрузиться в сложную конструкцию физических и математических выкладок. Простому обывателю в этом разобраться будет сложно, поэтому объясним все по-простому.
Все действие происходит на уровне атомной решетки материала. Поэтому для удобства объяснения заменим его любым газом, который состоит из фононов (это его частицы). Итак, температура газа зависит от нескольких показателей:
- температуры окружающей среды;
- от металла, а точнее, от его свойств.
Поэтому получаем в предположении, что металл представляет собой смесь фононного и электронного газа. Оба газа находятся в термодинамическом равновесии.При соприкосновении двух металлов с разной температурой происходит перемещение холодного электронного газа в теплый металл. Что и образует разность потенциалов.
Термоэлектрический эффект ПельтьеНа границе контактов двух металлов, есть на переходе, электроны забирают энергию у фононов и передают ее фононам другого металла. Если поменять полярность подключения, то процесс пойдет в обратную сторону. Перепад температур будет увеличиваться до тех пор, пока в металле есть свободные электроны с высоким потенциалом.Когда они закончатся, настанет своеобразное равновесие температуры в обоих закончатся. Вот так можно описать по-простому картине эффекта Пельтье.
Итак, из всех процессов, протекающих в элементе Пельтье эффективность, можно сделать вывод, что его работа зависит от точного подбора двух металлов со своими свойствами, от силы тока, который будет протекать через прибор, и от того, как быстро будет отводиться тепло из теплой зоны.
Практическое применение
Что касается практического применения, то здесь пришлось ученым провести ряд опытов, которые показали, что достигнуть увеличения теплоотвода можно одним способом — увеличить количество соединений двух разных материалов.При этом спаи материалов можно увеличивать до бесконечности. Конечно, это утрированное высказывание, но на количество пар, чем больше, тем лучше. Но все же назначение этого охлаждающего устройства — снижение в микросхемах и небольших приборов.
Итак, где сейчас применяется термоэлектрический модуль Пельтье?
- В приборах ночного видения, точнее, в матрицах, которые принимают инфракрасное излучение.
- В цифровых фотоаппаратах, а точнее, в приборах зарядной связи (ПЗС), а ещенее, в их микросхемах.Все дело в том, что эти микросхемы требуют глубокого охлаждения, чтобы увеличить эффективность регистрации картинки.
- В телескопах, где устройства Пельтье охлаждают детекторы.
- В системе точного времени для снижения температуры кварцевых электрогенераторов.
И это только малый список, который недавно использовался для счетных устройств, компьютерной техники и автомобилей (кондиционеры, охладители воды и прочее).Хотелось бы отметить высокопроизводительные микропроцессоры, в которых для снижения температуры установлены высокопроизводительные элементы Пельтье. И если раньше для охлаждения использовались только вентиляторы, дополнительная установка модуля решила проблему эффективности и снижения шума.
По этому поводу еще один немаловажный вопрос, будет ли проведена замена систем охлаждения в бытовых холодильниках модулями Пельтье? Сегодня это невозможно за счет низкого КПД устройства.Да и себестоимость мощных модулей пока очень высока. Но кто знает, что ждет нас в будущем. Может быть, через лет 5-10 эффект Пельтье будет использован и в бытовых холодильниках. Тем более исследования проводят сегодня опыты с кластратами — это так называемые твердотельные растворы, сильно похожие по строению и свойствам на гидраты. Именно с их помощью можно будет снизить цену охладительному модулю.
Удивительный факт
Термоэлектрическая технология данного типа обладает одной очень интересной особенностью.Эта особенность состоит в том, что можно получать тепло или холод из электрического тока, но и наоборот, из тепла или холода получать электричество. То есть, в обратном случае получаем элемент Пельтье как генератор электроэнергии.
Конечно, электрогенераторы пока в стадии теории, но ведь и француз в свое время не знал, как использовать свое открытие. Так что будем надеяться, что это в скором будущем пригодится.
Заключение по теме
Итак, как видите, эффект Пельтье сегодня применено в электронике повсеместно.Границы использования будут в скором времени расширены, это подтверждают опыты и доклады ученых. Поэтому стоит ожидать в будущем совершенно новые возможности не только в электронной техники, но и бытовой. К примеру, бесшумно работающие холодильники и компьютеры. Сегодня же радиолюбители устанавливают модули Пельтье своими руками в разные схемы, тем самым решая задачи охлаждения плат.
.