Обозначение номиналов резисторов: обозначения, таблицы, возможности расшифровки резисторов

Содержание

обозначения, таблицы, возможности расшифровки резисторов

В начале XX века все сопротивления имели очень широкие производственные допуски, что было крайне неудобно и вызывало множество негативных последствий. В связи с этим необходимо было искать пути решения проблемы, так как электротехника развивалась семимильными шагами. Но лишь в 1952 году были приняты номиналы сопротивлений. И это позволило по-новому взглянуть на мир электроники, что дало новый толчок в её развитии.

Общее понятие

Резисторы выступают в роли пассивного элемента электроцепи, но используются практически в каждой из них. Обладая постоянным или переменным сопротивлением, они преобразовывают напряжение в силу тока или наоборот, поскольку, согласно закону Ома, эти величины напрямую связаны с сопротивлением.

Таким образом, основным параметром резисторов будет выступать электрическое сопротивление, которое принято измерять в Омах.

Обозначение на схемах

На схемах эти элементы могут обозначаться по-разному, в зависимости от страны и номинальной мощности рассеивания. Но в основу заложены простейшие формы, представленные на рисунке.

И если со странами всё понятно, то мощность рассеивания может вызвать вопросы. А это, не что иное, как мощность, которую сможет рассеять сопротивление без вреда для себя. Ведь во время протекания электричества через резистор образуется мощность, которая его нагревает. Если она выше допустимой величины, то последует его перегрев, что приведёт к выходу детали из строя.

Помимо стандартного обозначения, возможны некоторые вариации для более точного отображения номинала. Так, в прямоугольнике, схематически обозначающем сопротивление, могут находиться римские цифры или полоски:

  • Три наклонные обозначают, что резистор 0,05 Вт;
  • Две наклонные – 0,125 Вт;
  • Одна наклонная полоса – 0,25 Вт;
  • Одна горизонтальная полоска – 0,5 Вт;
  • Римская 1 – 1 Вт;
  • Римская цифра 2 – 2 Вт;
  • Римская 5 – 5 Вт.

Номинальный ряд

Ненормированные допуски в широком поле обуславливали проблемы с подбором сопротивлений и последующей их заменой. И все эти неудобства вынудили прибегнуть к образованию номинального ряда, в результате чего были установлены общие для производства резисторов номинальные допуски.

Чтобы понять ценность образования такого ряда, можно в качестве примера взять сопротивление на 100 Ом, которое имеет номинальное отклонение в 10%. Например, в конкретном случае необходим резистор на 105 Ом. Но, учитывая десятипроцентное отклонение от ста Ом в обе стороны, несложно понять, что это же сопротивление подойдёт и для требуемых 105 Ом, а это исключает необходимость делать деталь для этого значения.

Однако рациональнее будет сделать резистор на 120 Ом, так как при номинальном отклонении в 10% он будет покрывать значения от 108 до 132 Ом.

И это куда более удобно, ведь те же 100 и 105 Ом будут входить в этот интервал. А помимо них, сюда смогут войти и множество других.

Таблица номиналов

Если следовать такой логике, то при номинальном отклонении сопротивления в 10% с диапазоном от 100 до 1000 Ом смогут покрыть множество значений: 100, 120, 150 и так далее, со стандартным округлением. Причём все они относятся к маркировочному обзначению Е12.

Отношение к номинальному ряду EIA здесь показывает буква «Е». А цифра, следующая за ней, указывает, сколько логарифмических шагов будет содержать диапазон от 100 до 1000.

Приведённая таблица номиналов резисторов отображает значения сопротивлений 100-1000. Когда необходимо узнать другие диапазоны, то высчитать их несложно действиями деления или умножения.

Между сериями могут быть определённые отличия:

  • Е6 – подразумевает допуск в 20%;
  • Е12 – 10%;
  • Е24 – 5 и 2%;
  • Е48 – 2%;
  • Е96 – имеет допуск в 1%;
  • Е192 – указывает на значения 0,5%, 0,25%, 0,1% и выше.

Цветовая маркировка и кодовые значения

Большинство современных резисторов из-за слишком миниатюрных габаритов часто маркируют цветовыми полосками. Их может быть 4, 5 и реже 6. Цвета на них наносятся далеко не для красоты, и каждый из них имеет своё индивидуально значение, благодаря которому можно легко узнать все данные по сопротивлению:

  • Первые две полоски указывают на номинальное сопротивление.
  • Если полоски три или четыре, то третья указывает множитель.
  • Четвёртая говорит о точности сопротивления.

Максимально точно узнать какой резистор имеется в наличии, можно с помощью онлайн-калькуляторов или благодаря таблице цветов резисторов.

Если обозначение пятиполосное, то:

  • Первые три полосы – значение сопротивления.
  • Четвёртая – данные по множителю.
  • Пятая – указание точности.

Новичков часто интересует, с какой стороны считать полоски. За первую принято принимать ту, которая ближе находится к краю. Не бывают первыми полоски золотистого цвета. Это даёт дополнительную возможность определить начало отсчёта с некоторыми резисторами.

Для обозначения номинала резисторов могут использоваться буквенно-цифровые кодировки. Четыре-пять символов способны передать всю необходимую для пользователя информацию. Номинал резистора здесь укажут первые знаки. Это может быть несколько цифр и одна буква. Буква указывает на положение запятой в десятичном исчислении, а также множитель. Символ, стоящий на конце, указывает на отклонение.

SMD резисторы

Резисторы SMD ввиду своих незначительных размеров имеют индивидуальную маркировку. Это могут быть как цифры, так и цифры с буквами. Обозначения встречаются в трёх вариациях:

  1. Три цифры – два первых знака покажут значение сопротивления, а последний — множитель.
  2. Четыре цифры – три начальные из них указывают сопротивление резистора, а четвёртая расскажет о множителе.
  3. Две цифры и символ – в первых двух цифрах скрывается показатель сопротивления, но для их расшифровки потребуется воспользоваться таблицей. Символ же обозначит множитель.

Учитывать необходимо и букву, которая указывает множитель: S=10¯²; R=10¯¹; B=10; C=10²; D=10³; E=10⁴.

Определить номинал резистора совсем несложно, если знать, как это сделать. Опытные электронщики многую информацию держат в голове ввиду большого опыта и регулярного контакта с электродеталями.

Что же касается любителей и новичков, то для них значительно проще определить номинал деталей с помощью таблиц, которые можно распечатать и всегда держать под рукой, или онлайн-калькуляторов, помогающих точно определить параметры детали.

Постоянный резистор. Номиналы и цветовая маркировка резисторов.

Продолжаем изучать основы электроники! И сегодня наш разговор будем посвящен одному компоненту, без которого невозможно представить ни одну электрическую цепь, а именно резистору 🙂

Резистор.

Итак, начнем с основного определения резистора. Резистор — это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжение и наоборот. Ведь как мы помним из закона Ома, напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

I = \frac{U}{R}

Резисторы являются одними из самых широко используемых компонентов. Редко можно встретить схему, в которой бы не было ни одного резистора 😉 Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Обозначение резисторов на схеме.

Давайте рассмотрим

обозначение резисторов на схемах. Существуют два возможных варианта:

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания. Тут возникает вполне закономерный вопрос — а что это за параметр такой — номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться мощность, что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность — это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке! Итак, вернемся к обозначению резисторов:

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности. Тут даже особо нечего дополнительно комментировать 🙂

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды — сопротивление резистора равно 68 Ом. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение «1.5 К»:

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим!

Цветовая маркировка резисторов.

Большинство резисторов имеют цветовую маркировку, такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если всего полосок 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос. Когда на резисторе 4 полосы, то четвертая будет указывать на точность резистора. А в случае, когда полос всего пять, то ситуация несколько меняется — первые три полосы означают три цифры сопротивления резистора, четвертая — множитель, пятая — точность. Соответствие цифр цветам приведено в таблице:

Тут есть еще один немаловажный момент — а какую именно полосу считать первой? Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:

Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса — множитель — в данном случае он равен 103. И, наконец, пятая полоса — погрешность — 10%. В итоге мы получаем резистор 510 КОм, 10%.

В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.

Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу…

Кодовая маркировка резисторов.

Помимо цветовой маркировки используется так называемая кодовая. Для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Для букв, обозначающих множитель возможны такие варианты:

Давайте для наглядности рассмотрим несколько примеров:

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

Маркировка SMD резисторов.

Для SMD резисторов также существуют разные варианты обозначения номиналов. Итак, давайте разбираться:

  • Маркировка тремя цифрами. В данном случае первые две цифры — это величина сопротивления в Омах, а третья цифра — множитель. То есть величину в Омах нужно умножить на десять в соответствующей множителю степени.
  • Маркировка четырьмя цифрами. Тут все похоже на предыдущий вариант, вот только для обозначения номинала сопротивления в Омах используются первые три цифры, а не две. Четвертая цифра — множитель.
  • Маркировка резисторов двумя цифрами и символом. В данном случае две цифры определяют сопротивление резистора, но не напрямую, а через специальный код. Ниже я приведу таблицу всех возможных кодов. Если на резисторе указан код «02», то из таблицы мы получаем значение 102 Ома. Но и это не является финальным значением сопротивления 🙂 Нужно еще учесть третий символ, который является множителем. Для этого символа возможны такие варианты: S=10-2; R=10-1; B=10; C=102; D=103; E=104;

Таблица соответствия кодов величине сопротивления:

Клик левой кнопкой мыши — для увеличения.

В первых двух вариантах маркировки возможно также использование латинской буквы «R» — она ставится для обозначения положения десятичной запятой.

По традиции рассмотрим пару примеров:

Номиналы резисторов.

Сопротивления резисторов не являются произвольными числами. Существуют специальные ряды номиналов, которые представляют из себя значения от 0 до 10. Так вот номиналы резисторов (значения сопротивления) могут иметь величины, которые определяются как значение из соответствующего ряда, умноженное на 10 в целой степени. Рассмотрим основные ряды — E3, E6, E12 и E24:

Цифра в названии ряда означает количество чисел ряда номиналов в диапазоне от 0 до 10. В ряде E3 — три числа — 1.0, 2.2, 4.7, аналогично, и в других рядах. Таким образом, если резистор из ряда E3, то его номинал (сопротивление) может быть равен 1 Ом, 2.2 Ом, 4.7 Ом, 10 Ом, 22 Ом, 47 Ом … 1 КОм … 22 КОм и т. д. Также существуют номинальные ряды Е48, Е96, Е192 — их отличие от рассмотренного нами ряда состоит лишь в том, что допустимых значений еще больше 🙂

На этом заканчиваем нашу статью! Мы рассмотрели основные моменты, которые будут важны при работе с резисторами, а в одной из следующих статей мы продолжим эту тему, и на очереди будут переменные резисторы. Следите за обновлениями и заходите на наш сайт!

Маркировка сопротивлений по мощности. Основные параметры резисторов

Постоянные резисторы — это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления. С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.

Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема — мощность.

Маркировка резисторов

Буквенно-цифровая маркировка резисторов

Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).

Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.

Основная единица измерения сопротивления — Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 — 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 — это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 — это 100 Ом.

Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.

Цветовая маркировка резисторов

Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.

Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно . Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.

Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:



Универсальный способ определения номинала

И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).

Мощность резистора

Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме. Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.

Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой .

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
  2. Буква K – означает, что номинал резистора будет измеряться в к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.



Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .

Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.

Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.

Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.

В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).

Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.

Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.

Так, лучше выбрать резистор необходимого номинала, допустим на те же 100 Ом, но с запасом по максимальной рассеиваемой мощности, скажем, на 10 ватт, который в условиях нормального охлаждения не разогреется выше 100°C — это будет менее опасно для электронного устройства.

SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.

Проволочные и непроволочные резисторы, точность резисторов

Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.

Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.

Изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).

Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.

Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.

Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.

Номиналы резисторов и их маркировка

Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.

Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.

Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.

SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.


Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.

На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.

Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.

Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор? или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.

Новая деталь — резистор.

Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода. Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«. Все прекрасно знают, что в 1-м километре — 1000 метров, а в 1-м грамме — 1000 миллиграмм, а в одном гигабайте — где-то 1000 000 000 байт. И можно, в принципе, говорить не «3 километра» а «3 тысячи метров», не «40 милиграмм» а «0,04 грамма». Однако — это долго и неудобно. Для того, собственно, и служат эти приставки — чтоб облегчить нам с вами жизнь. Они образуют из некоторой базовой виличины (метр, грамм, байт и т.д.) новую величину, которая больше или меньше базовой во сколько-то раз.-12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!

Маркировка резисторов

Маркировка — это условные обозначения, наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм

Способ 2-й, буржуазный

152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!

Способ 3-й, цветовой

Не подходит для дальтоников и ленивых.
Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами. О них мы еще поговорим.


ID: 641

Как вам эта статья?

Заработало ли это устройство у вас?

Обозначение резисторов обозначение резисторов на схеме

Резистор представляет собой пассивный элемент, без которого практически неработоспособна любая электрическая схема. Основная задача данной детали – это осуществление линейных преобразований параметров электрического тока. Достаточно наглядно это можно уяснить из формулы закона Ома, которая для участка цепи имеет следующий вид — I=U/R. Изменяя значение R (характеризующее величину сопротивления) можно регулировать другие параметры электрического тока. Также литера «R» используется для обозначения резисторов на схеме.

Необходимо отметить, что схематическое изображение сопротивления (резистора) в разных странах имеют разный вид. Так для зарубежной документации нередко используется фигура, изображенная на рис.1. Для отечественных электриков привычным является условное обозначение резисторов пример, которого приведен на рис.2. 

Рассмотрим более подробно варианты и особенности обозначения резисторов (сопротивлений), а также отображение их характеристик, свойственных для электрических схем, которые используются в отечественной электротехнике.

Графические обозначения резисторов имеют строго определенный вид, который определен ГОСТом 2.728-74. Рассмотрим основные варианты изображений сопротивлений в зависимости от их типа. Итак, резисторы бывают:

— постоянными, т.е. их сопротивление в Омах не меняется. На схемах они соответствуют примеру, изображенному на рис.2. В случае если требуется указать величину номинального рассеяния мощности, то в УГО (условное графическое изображение) вносятся некоторые изменения (рис.3).

Рис.3

— переменные резисторы. Эти элементы имеют плавную или ступенчатую регулировку величины сопротивления. Обозначение на схемах соответствуют рис.4.

Также в данном ГОСТе оговорены варианты обозначений для резисторов:

  • с симметричными и несимметричными отводами;
  • с нелинейным регулированием;
  • связанных и несвязанных механически;
  • с замыкающим контактом и т.д.

Обозначение на схемах характеристик сопротивления резисторов

Основной характеристикой резистора является величина его сопротивления. На схемах этот параметр, как правило, располагается с буквенным обозначение «R» в виде цифр. Есть небольшая особенность – если после числового номинала следует буквенная маркировка «К» или «М», то сопротивление данного резистора соответствует произведению данного числа на тысячу или миллион. Аналогично обозначается сопротивление и на корпусе самой детали, если площадь это позволяет. Иногда можно встретить маркировку другого вида, например, 2К4. Здесь все просто. Сопротивление данного резистора будет равно 2400 Ом. Более полную информацию по буквенно-цифровой маркировке можно посмотреть в табл.2 ГОСТа 28883-90 (МЭК 62-74).

Сложнее обстоит дело, когда деталь имеет настолько маленькие размеры, что нанести на корпус резистора его параметры технически невозможно. Это также относиться к обозначению SMD резисторов, которые получили в последнее время широкое распространение благодаря миниатюрным размерам. Используются они для поверхностной пайки в электронных платах различных изделий.

Обозначение номиналов SMD резисторов

Данные типы резисторов отличаются по внешнему виду от привычных изделий и как говорилось выше имеют минимальные размеры. Обозначение номинала сопротивления SMD резисторов может осуществляться их буквенно-цифровой маркировкой в следующих вариантах:

  • трехзначное число. Первые две сообщают о величине сопротивления в Омах, а последняя является множителем. Проще говоря первые два числа умножаются на 10 в степени соответствующей последней цифре;
  • четырехзначное число. Первые три цифры являются номиналом, а последняя множителем, как и в предыдущем случае;
  • двухзначное число, дополненное буквенным индексом. Это наиболее непростой вариант и для выяснения номинала сопротивления такого SMD резистора необходимо воспользоваться специальной таблицей.

Цветовое обозначение характеристик резисторов

Идея маркировки резисторов цветами, появилась вследствие минимизации их размеров и невозможности нанесения на корпус деталей буквенно-цифрового кода. Данное обозначение наносится в виде полос или колец, таким образом, чтобы характеристики детали можно было определить вне зависимости от ее положения на плате или в электрической цепи устройства.

Требования к цветовому обозначение характеристик проволочных резисторов изложены в ГОСТ 28883-90 (МЭК 62-74), а сами значения приведены в таблице 1 данного документа.

Таблица 1 ГОСТ 28883-90

Количество цветных колец может колебаться от трех до шести. Считывание необходимо начинать с той полосы которая расположена наиболее близко к одному из контактов. В отдельных случаях, когда нет возможности нанести маркировку с однозначной интерпретацией какой цвет является начальным, первый цвет наносят в виде утолщённой в 2 раза полосы или кольца.

В заключение можно отметить, чтобы однозначно и правильно идентифицировать маркировку и обозначения характеристик резисторов необходимо обратиться к вышеуказанным нормативным документам. Также желательно отслеживать появление новых изменений в данную литературу, что является особенно актуальным в современных условиях развития электротехники и выпуску новых видов деталей, применяемых в электрических схемах приборов и устройств.

виды кодирования параметров, стандартное обозначение на схеме

Автор Aluarius На чтение 10 мин. Просмотров 1.1k. Опубликовано

Что такое номинал резистора

Номинальная мощность резистора – это спецификация, которая служит для определения максимальной мощности, которую может выдержать резистор. Таким образом, если резистор имеет номинальную мощность 1/4 Вт, 1/4 Вт – это максимальная мощность, которая должна подаваться на резистор.

Когда ток проходит через электрические компоненты, он обычно генерирует тепло. Если ток достаточно мал и подходит для цепи, это тепло обычно незначительно и незаметно в цепи. Но если ток достаточно велик, он может создать значительное количество тепла в цепи. Ток может расплавить компоненты и, возможно, создать замыкания в цепи.

Вот почему резисторы имеют номинальную мощность – для указания максимально допустимого количества энергии, которое может проходить через него. Если эта мощность будет превышена, резистор может не выдержать питания и может расплавиться и создать короткое замыкание в цепи, что может привести к еще большей опасности для цепи.

Как образуется ряд, какие бывают, принципы построения

Давайте теперь определим силу так, чтобы мы точно знали, что имеется в виду, когда речь идет о власти. Мощность определяется как электрическая энергия, которую может обеспечить цепь. Уравнение, которое показывает мощность цепи, равно P = VI, где P – мощность, V – напряжение, а I – ток. В качестве альтернативы, поскольку закон Ома может быть подставлен в это уравнение, мощность также выражается как

и . Мы можем использовать эти формулы, чтобы определить, на какой мощности будет работать схема, и, таким образом, мы можем знать, какая номинальная мощность нам нужна для резистора.

Давайте сейчас рассмотрим несколько примеров резисторов и номиналов мощности, которые нам понадобятся для того, чтобы вы получили практическую идею:
– Допустим, у нас есть резистор 800 Ом с напряжением 12 вольт, питающий цепь для зажигания светодиода. Пренебрегая сопротивлением провода и светодиода, которые пренебрежимо малы, мощность, которую будет обеспечивать схема, будет:

Здесь достаточно 1/4 Вт резистора, который подходит для схемы.
– Допустим, теперь у нас есть резистор 150 Ом с напряжением 15 В, питающий цепь для управления двигателем. Мощность, которую схема будет подавать на двигатель, – это:


2-ваттный резистор подходит для схемы. Резистор с более низкой номинальной мощностью, такой как резистор 0,25 Вт, 0,5 Вт или 1 Вт, скорее всего, вызовет дым в цепи, поскольку резистор будет получать больше энергии, чем он мог бы выдержать.

Обычно в электронных цепях номинальная мощность не учитывается, поскольку обычно подходит стандартный резистор 0,25 Вт, поскольку электронные схемы в подавляющем большинстве работают с низким напряжением и низким током; и, таким образом, низкая мощность. По таким характеристикам можно легко узнать Е24 резисторы.

Но в случае цепей с высоким напряжением и низким сопротивлением (высокая мощность) следует тщательно выбирать номиналы мощности резисторов, поскольку в цепи подается больше энергии. Всегда выбирайте резистор с более высокой номинальной мощностью, чем мощность, используемая в цепи, чтобы резистор не разрушался из-за перегрева; это только послужит причиной других опасностей или неисправностей в цепи.

Стандартные номинальные значения мощности резисторов: 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт и 25 Вт. Таким образом, разработчик схемы должен выбрать соответственно для схемы.

Номиналы у резисторов постоянного и переменного сопротивления

Когда электрический ток проходит через резистор из-за наличия на нем напряжения, электрическая энергия теряется резистором в виде тепла, и чем больше этот ток протекает, тем горячее резистор. Это известно как номинальная мощность резистора .

Резисторы оцениваются по значению их сопротивления и электрической мощности, выраженной в ваттах ( Вт ), которые они могут безопасно рассеивать, основываясь в основном на их размере. Каждый резистор имеет максимальную номинальную мощность, которая определяется его физическим размером, поскольку, как правило, чем больше площадь его поверхности, тем большую мощность он может безопасно рассеивать в окружающем воздухе или в радиаторе.

Резистор может использоваться при любой комбинации напряжения (в пределах разумного) и тока, если его «Номинальная мощность рассеивания» не превышена, а номиналы резисторов указывают, сколько мощности резистор может преобразовывать в тепло или поглощать без какого-либо ущерба для себя.

Резистор. Номинальная мощность

Иногда называют Резисторы Ваттность Оценка и определяется как количество тепла , что резистивный элемент может рассеивать в течение неопределенного периода времени без ухудшения его производительности. Рассмотрим далее как обозначается резистор.

Номинальная мощность резистора, пример №1

Какова максимальная номинальная мощность в ваттах фиксированного резистора, который имеет напряжение 12 вольт на своих клеммах и ток 50 миллиампер, протекающий через него.

Учитывая то , что мы знаем значения напряжения и тока выше, мы можем подставить эти значения в следующее уравнение: P = V * I .

Номинальная мощность резистора, пример №2

Рассчитайте максимальный безопасный ток, который может пройти через резистор 1,8 кОм, рассчитанный на 0,5 Вт.

Опять же , как мы знаем , рейтинг резисторов питания и его сопротивление, теперь мы можем подставить эти значения в стандартное уравнение мощности: P = I 2 R .

Все резисторы имеют максимальную мощность рассеиваемой мощности , которая представляет собой максимальное количество энергии, которое оно может безопасно рассеивать без ущерба для себя. Резисторы, которые превышают максимальную номинальную мощность, как правило, поднимаются в дыму, обычно довольно быстро, и повреждают цепь, к которой они подключены. Если резистор должен использоваться вблизи его максимальной номинальной мощности, тогда требуется некоторая форма радиатора или охлаждения.

Номинальная мощность резистора является важным параметром, который следует учитывать при выборе резистора для конкретного применения. Его работа заключается в сопротивлении току, протекающему через цепь, и это происходит за счет рассеивания нежелательной энергии в виде тепла. Выбор резистора с малым значением мощности, когда ожидается высокое рассеивание мощности, приведет к перегреву резистора, разрушая как резистор, так и цепь.

До сих пор мы рассматривали резисторы, подключенные к постоянному источнику постоянного тока, но в следующем уроке о резисторах мы рассмотрим их поведение, подключенных к синусоидальному источнику переменного тока, и покажем, что напряжение, ток и, следовательно, потребляемая мощность резистором, используемым в цепи переменного тока, все в фазе друг с другом.

Виды кодирования параметров с использованием цветных колец

Номинальная мощность резисторов может варьироваться от менее одной десятой ватта до многих сотен ватт в зависимости от его размера, конструкции и рабочей температуры окружающей среды. Максимальная резистивная мощность большинства резисторов дана для температуры окружающей среды +70 o C или ниже.

Электрическая мощность – это скорость, с которой энергия используется или потребляется (преобразуется в тепло). Стандартной единицей электрической мощности является ватт , символ W, а номинальная мощность резисторов также указывается в ваттах. Как и в случае других электрических величин, к слову «Ватт» добавляются префиксы при выражении очень больших или очень малых величин мощности резистора. Некоторые из наиболее распространенных из них:

Единицы электропитания

Единица измерения Символ Ценность Сокращение
милливатт мВт 1/1000 Вт 10 -3 Вт
киловатт кВт 1000 Вт 10 3 Вт
мегаватт МВт 1 000 000 Вт 10 6 Вт

Мощность резистора (P)

Из закона Ома мы знаем, что когда ток протекает через сопротивление, на него падает напряжение, создавая продукт, связанный с мощностью. Обычно за стандарт для сравнения берут Е24 резисторы, резистор R1 используется куда реже.

Другими словами, если сопротивление подвергается воздействию напряжения или оно проводит ток, то оно всегда будет потреблять электроэнергию, и мы можем наложить эти три величины мощности, напряжения и тока в треугольник, называемый силовым треугольником, с мощностью , который будет рассеиваться в виде тепла в резисторе сверху, с потребляемым током и напряжением на нем внизу, как показано. Ряд сопротивлений резисторов рассмотрим ниже.

Стандартная цветовая маркировка резисторов

Стандартное обозначение резисторов. Маркировка резисторов по мощности.

Нестандартная цветная маркировка импортных резисторов

Ряд резисторов Е24 маркируется так:

Маркировка советских резисторов

 

Цифро-буквенная маркировка

Стандартная таблица маркировки:

Маркировка помогает использовать треугольник мощности, который отлично подходит для расчета мощности, рассеиваемой в резисторе, если мы знаем значения напряжения на нем и тока, протекающего через него. Но мы также можем рассчитать мощность, рассеиваемую сопротивлением, используя закон Ома. Ряды резисторов невозможно было бы установить без таких рассчетов.

 

Закон Ома позволяет нам рассчитать рассеиваемую мощность с учетом значения сопротивления резистора. Используя закон Ома, можно получить два альтернативных варианта приведенного выше выражения для мощности резистора, если нам известны значения только двух, напряжения, тока или сопротивления, следующим образом:

[P = V x I] Мощность = Вольт х Ампер

[P = I 2 x R] Мощность = ток 2 x Ом

[P = V 2 ÷ R] Мощность = Вольт 2 ÷ Ом

Рассеивание электрической мощности любого резистора в цепи постоянного тока может быть рассчитано с использованием одной из следующих трех стандартных формул:

где:

  • V – напряжение на резисторе в вольтах
  • Я в ток, протекающий через резистор в амперах
  • R – сопротивление резистора в омах (Ом)

Поскольку номинальная мощность рассеиваемого резистора связана с его физическим размером, резистор 1/4 (0,250) Вт физически меньше, чем резистор 1 Вт, и резисторы с одинаковым омическим значением также доступны в различных номиналах мощности. Углеродные резисторы, например, обычно изготавливаются с номинальной мощностью 1/8 (0,125) Вт, 1/4 (0,250) Вт, 1/2 (0,5) Вт, 1 Вт и 2 Вт.

Вообще говоря, чем больше их физический размер, тем выше его номинальная мощность. Однако всегда лучше выбрать резистор определенного размера, который способен рассеивать в два или более раз больше расчетной мощности. Когда требуются резисторы с более высокой номинальной мощностью, резисторы с проволочной обмоткой обычно используются для отвода избыточного тепла.

Номиналы резисторов. Таблица:

Тип Оценка мощности Стабильность
Металлическая пленка Очень низкий, менее 3 Вт Высокий 1%
углерод Низкая, менее 5 Вт Низкий 20%
Проволочный Высокая до 500 Вт Высокий 1%

Маркировка SMD резисторов

Силовые резисторы с проволочной обмоткой бывают самых разных конструкций и типов: от стандартного меньшего алюминиевого корпуса с 25-ваттным радиатором, установленного на радиаторе, как мы видели ранее, до больших трубчатых керамических или фарфоровых силовых резисторов мощностью 1000 Вт, используемых для нагревательных элементов.

Значение сопротивления проволочных резисторов очень низкое (низкие омические значения) по сравнению с углеродной или металлической пленкой. Диапазон сопротивления силового резистора колеблется от менее 1 Ом (R005) до всего 100 кОм, поскольку для больших значений сопротивления потребуется провод с тонкой калибровкой, который может легко выйти из строя.

Резисторы с низким омическим сопротивлением и низким значением мощности, как правило, используются для датчиков тока, по закону Ома ток, протекающий через сопротивление, вызывает падение напряжения на нем.

Это напряжение может быть измерено, чтобы определить значение тока, протекающего в цепи. Этот тип резистора используется в испытательном измерительном оборудовании и контролируемых источниках питания.

Силовые резисторы большего размера с проволочной обмоткой изготовлены из коррозионностойкой проволоки, намотанной на формирователь из фарфора или керамического сердечника, и обычно используются для рассеивания высоких пусковых токов, например, возникающих в цепях управления электродвигателем, электромагнитом или элеватором / краном и тормозных цепях двигателя.

Обычно эти типы резисторов имеют стандартную номинальную мощность до 500 Вт и, как правило, соединяются вместе, образуя так называемые «банки сопротивления».

Еще одна полезная особенность силовых резисторов с проволочной обмоткой заключается в использовании нагревательных элементов, таких как те, которые используются для электрического огня, тостера, утюгов и т. Д. В этом типе применения значение мощности сопротивления используется для производства тепла, а тип проволоки из сплава сопротивления используется, как правило, из никель-хрома (нихрома), допускающего температуру до 1200 o C.

Все резисторы, будь то углерод, металлическая пленка или проволока, подчиняются закону Ома при расчете значения их максимальной мощности (мощности). Стоит также отметить, что, когда два резистора соединены параллельно, их общая мощность увеличивается. Если оба резистора имеют одинаковое значение и одинаковую номинальную мощность, общая номинальная мощность удваивается.

Стандартное обозначение резисторов на схеме

Как обозначается резистор на схеме:

Обозначение резисторов на схеме может отличаться от международного стандарта.

Определение, типы резисторов и их номинал. Маркировка резисторов млт расшифровка

Постоянные резисторы — это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления . С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.

Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема — мощность.

Маркировка резисторов

Буквенно-цифровая маркировка резисторов

Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).

Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.

Основная единица измерения сопротивления — Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 — 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 — это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 — это 100 Ом.

Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.

Цветовая маркировка резисторов

Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.

Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно. Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.

Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:


Универсальный способ определения номинала

И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).

Мощность резистора

Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме. Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.

Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току . Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке , можем узнать из этой.

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
  2. Буква K к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.



Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .

Новая деталь — резистор.

Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода . Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«.-12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!

Маркировка резисторов

Маркировка — это условные обозначения , наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм

Способ 2-й, буржуазный

152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!

Способ 3-й, цветовой

Не подходит для дальтоников и ленивых.
Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами . О них мы еще поговорим.


ID: 641

Как вам эта статья?


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр.И 01.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на постоянные проволочные, непроволочные и фольговые резисторы, изготовляемые для народного хозяйства и экспорта.

Виды климатических исполнений — УХЛ и В по ГОСТ 15150 — -69.

Климатическое исполнение и категорию размещения резистора конкретного типа указывают в стандартах или технических условиях на резисторы конкретных типов.

Резисторы, изготовляемые для экспорта, должны соответствовать требованиям ГОСТ 23135-78 и требованиям, изложенным в соответствующих разделах настоящего стандарта.

Стандарт полностью соответствует Публикации МЭК 115-1.

1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. Основные параметры резисторов должны соответствовать нормам, установленным в стандартах или технических условиях (ТУ) на резисторы конкретных типов по ГОСТ 24013-80 .

1.2. Условное обозначение резисторов при заказе и в конструкторской документации должно соответствовать указанному в стандартах или ТУ на резисторы конкретных типов.

Перепечатка воспрещена

Издание официальное Е

Переиздание. Март 1986 г.

© Издательство стандартов, 1987

3.2.2. Для непроволочных резисторов испытание по группе К-4, последовательности 8 и 9, не проводят для резисторов, демонтаж которых затруднен или невозможен (например, при креплении за корпус путем его приклеивания или заливки, или приклеиванием корпуса с припаиванием выводов).

3.2.3. Для непроволочных резисторов испытание по группе К-8 проводят только для резисторов, демонтаж которых затруднен или невозможен (например, при креплении резисторов за корпус путем его приклеивания или заливки, или приклеиванием корпуса с припаиванием выводов),

3.2.4. Последовательность проведения испытания резисторов конкретных типов по группе К-4 в стандартах или ТУ допускается изменять.

3.2.5. Стойкость резисторов к воздействию атмосферных конденсированных осадков (инея и росы), плесневых грибов, соляного тумана и испытание на пожарную безопасность в составе квалификационных испытаний не контролируют.

Соответствие резисторов указанным требованиям подтверждают на основе данных проверок, полученных при разработке резисторов, или результатами испытаний резисторов, проведенных до начала квалификационных испытаний.

При изменении конструкции, технологического процесса изготовления и (или) материалов, которые могут повлиять на стойкость резисторов к воздействию указанных факторов, контроль проводят в составе типовых испытаний.

3.2.6. Стойкость негерметичных резисторов к воздействию атмосферного повышенного давления и атмосферного пониженного давления в составе квалификационных испытаний не контролируют. Соответствие резисторов указанному требованию обеспечено их конструкцией.

3.2.7. Испытание резисторов на виброустойчивость, ударную устойчивость в составе квалификационных испытаний не проводят.

По конструкции и принципу работы постоянных резисторов их параметры не зависят от воздействия вибрации и ударов.

3.2.8. Испытания на проверку отсутствия резонансных частот конструкции в заданном диапазоне частот в составе квалификацй-онных испытаний не проводят. Соответствие резисторов указанному требованию обеспечено их конструкцией.

3.2.9. Испытания по группам К-1 и К-2 проводят последовательно на одной выборке резисторов.

Резисторы, прошедшие испытания по группам К-1 и К-2, используют для испытания по любой другой группе.

Испытания по группам К-3-К-9; КП-К15 для непроволочных резисторов и К-3-К-6; К8-К12 для проволочных резисторов проводят на самостоятельных выборках.

3.2.10. Выборки комплектуют по следующим правилам:

для группы испытаний К-3 — по правилам, установленным для группы П-1;

для групп испытаний К-4, К-И для непроволочных резисторов и К-4, К-8 для проволочных резисторов -по правилам, установленным для группы П-2;

для групп испытаний К-5-К-8 для непроволочных резисторов и К-5 для проволочных резисторов — по правилам, установленным для групп П-3-П-6;

для групп испытаний К-10 для непроволочных резисторов и К-7 для проволочных резисторов — по правилам, установленным для испытаний на долговечность. Испытания на долговечность являются продолжением испытаний на безотказность. Часть выборки, предназначенной для испытаний на долговечность, определяют заранее до начала испытаний на безотказность;

для групп испытаний К-9, К-12-К-15 для непроволочных резисторов и К-6, К-9 — К-12 для проволочных резисторов — от всей совокупности резисторов, предусмотренной в стандартах или ТУ на резисторы конкретных типов и находящихся в производстве.

3.2.11. Для проведения испытаний применяют следующие планы контроля:

для групп испытаний К-1 и К-2 -планы контроля, установленные для групп С-1 и С-2 соответственно;

для группы испытаний К-3 — план контроля, установленный для группы П-1;

для групп испытаний К-4-К-8, К-П-К-14 для непроволочных резисторов и К-4-К-6, К-8-К-П для проволочных резисторов — план контроля, установленный для групп П-2, П-3-П-6 для непроволочных резисторов и П-2-П-3 для проволочных резисторов;

для групп испытаний К-10 для непроволочных резисторов и К-7 для проволочных резисторов число резисторов, подлежащих испытанию, выборка (я д), допускаемое число отказов А должны

быть указаны в стандартах или ТУ на резисторы конкретных типов по ГОСТ 25359-82 . Доверительная вероятность />* = 0,6, пе-ресчетный коэффициент должен быть указан в стандартах или ТУ на резисторы конкретных типов;

для групп испытаний К-15 для непроволочных резисторов и К-12 для проволочных резисторов объем выборки п = 3, C = Q.

3.2.12. Резисторы, подвергавшиеся квалификационным испытаниям по группе К-3, допускается поставлять потребителю отдельными партиями, если параметры резисторов соответствуют нормам при приемке и поставке.

3.3. Приемо-сдаточные испытания

3.3.1 Резисторы для приемки предъявляют партиями.

3.3.2. Состав испытаний, деление состава испытаний на группы испытаний и по в пределах каждой группы должны соответствовать приведенным в табл. 4.

Таблица 4

Номера пунктов

испытаний

технических

требований

контроля

1. Проверка внешнего вида

жания маркировки

4. Проверка общего вида, габаритных, установочных и присоединительных размеров

1. Измерение сопротивления

2. Измерение уровня шумов

3. Измерение сопротивления изоля-

3.3.3. Последовательность проведения испытаний резисторов конкретных типов по группе С-2 допускается изменять.

3.3.4. Испытание по группе С-2 проводят на резисторах, прошедших испытания по группе С-1.

3.3.5. Испытания по группам С-1 и С-2 проводят по планам выборочного одноступенчатого контроля, приведенным в табл. 5 по ГОСТ 18242-72 , или сплошным контролем.

Таблица 5

Группа испытаний

Объем партии N, шт.

Приемочный уровень 1 дефектности, %

Объем выборки л, шт.

Приемочное число С х, шт.

Браковочное число шт.

нормальный

контроль

усиленный

контроль

нормальный

контроль

усиленный

контроль

нормальный

контроль

усиленный

контроль

Примечание. При объеме партий до 25 шт. по группе испытаний С-1 и 90 шт. по группе испытаний С-2 применяют сплошной контроль.

3.3.6. Изготовитель анализирует причины неудовлетворительного состояния производства и принимает меры по их устранению, если количество возвращенных партий (в том числе повторно предъявленных) равно 4 из 10.

При числе предъявленных приемке партий более 100 в месяц, это число составляет 8 из 20.

3.3.7. Резисторы должны быть перепроверены перед отгрузкой потребителю, если после их приемки истекло время, превышающее 6 мес.

Перепроверку производят по группе приемо-сдаточных испытаний С-2.

Дата перепроверки должна быть указана дополнительно на потребительской таре.

3.4. Периодические испытания

3.4.1, Состав испытаний, деление состава испытаний на группы испытаний, периодичность испытаний для каждой группы, а так* же последовательность их проведения в пределах групп должны соответствовать приведенным в табл. 6 для непроволочных резисторов и в табл. 7 — для проволочных резисторов.

3.4.2. Для непроволочных резисторов испытание по группе П-2, последовательности 8 и 9, не проводят для резисторов, демонтаж которых затруднен или невозможен (например, при креплении за корпус путем его приклеивания или заливки, или приклеиванием корпуса с припаиванием выводов).

Таблица 6

дичность

Номера пунктов

Наименование видов испытаний и по-

следовательность их проведения

технических

ния ИСПЫ-

требований

контроля

Испытание на безотказность

раз в 12 мес.

1. Определение температурного

коэффициента сопротивления

раз в 6 мес.

3. Испытание на воздействие по-

4. Испытание на воздействие повышенной рабочей температуры сре-

5. Испытание на воздействие по-

вышенной предельной температуры

6. Испытание на воздействие пониженной рабочей температуры сре-

раз в 3 мес.

1. Определение изменения сопро-

тивления от изменения напряжения

1. Испытание выводов на воздей-

растягивающей силы, изгибающей силы,

крутящего момента

2. Испытание на теплостойкость

при пайке

Продолжение табл, б

Таблица 7

Номера пунктов

Наименование видов испытаний и пс-

следовательность их проведения

технических

ния испытаний

требований

контроля

Испытание на безотказность

раз в 12 мес.

1. Испытание на теплостойкость

при пайке

2. Испытание на вибропрочность (кратковременное)

3. Испытание на воздействие ударов одиночного действия

4. Испытание выводов на воздей-

растягивающей силы; крутящего момента

5. Испытание на воздействие из-

менения температуры среды 6. Испытание на воздействие повышенной рабочей температуры сре-

7. Испытание на воздействие повышенной предельной температуры среды

8. Испытание на воздействие пониженной рабочей температуры сре-

9. Испытание на воздействие по-

ниженной предельной температуры среды

10. Испытание на воздействие по-

вышенной влажности воздуха (кратковременное)

11. Проверка электрической проч-

ГОСТ 24238-84

Продолжение табл 7

3 4 3. Для непроволочных резисторов испытание по группе П-6 проводят только для резисторов, демонтаж которых затруднен или невозможен (например, при креплении резисторов за корпус путем его приклеивания или заливки, или приклеиванием корпуса с при-паиванием выводов).

3.4.4. Последовательность проведения испытаний резисторов конкретных типов по группе П-2 допускается изменять.

3 4.5. Испытания по группам П-1 — П-6 проводят на самостоятельных выборках.

3.4 6 Правила комплектования выборки по группам испытаний П-1 — П-6 должны быть указаны в стандартах или ТУ на резисторы конкретных типов

34 7 Испытания по группе П-1 проводят в соответствии с ГОСТ 25359-82 . Объем выборки и допускаемое число отказов устанавливают в стандартах или ТУ на резисторы конкретных типов.

Испытания проводят в течение 1000 ч

Значение интенсивности отказов А и должно быть 3-10~ 6 1/ч„ Значение доверительной вероятности Р* = 0,6

3.4.8. Испытания по группам П-2-П-6 проводят по планам выборочного двухступенчатого контроля, приведенным в табл. 8

Таблица 8

[ Приемом ный уро вень де фектности

План контроля

1 я ступень

2 я ступень

объем выборки п и и т

приемочное число Ci, шт

браковоч ное число С 2 , шт

объем вы борки п 2 , шт

суммарное приемочное число С 3 , шт

суммарное браковочное число С 4 , шт.

Примечание Объем выборки с приемочным уровнем качества 1,5 °/о применяют для резисторов, предназначенных для использования в уникальной аппаратуре.

3.4.9. При получении отрицательных результатов испытаний по группе П-1 возобновление приемки и отгрузки проводят по истечении 100 ч испытаний.

3.4.10. Резисторы, подвергавшиеся периодическим испытаниям по группе П-1, допускается поставлять потребителю отдельными партиями, если параметры резисторов соответствуют нормам при приемке и поставке.

Резисторы, подвергавшиеся испытаниям по остальным группам, поставке не подлежат.

3.5. Испытания на сохраняемость

3.5.1. Испытания на сохраняемость проводят по ГОСТ 21493 -■ -76.

4. МЕТОДЫ КОНТРОЛЯ

4Л. Общие положения

4.1.1. Испытания резисторов проводят при нормальных климатических условиях, установленных ГОСТ 20.57.406-81 , если другие условия не указаны при изложении конкретных методов контроля.

Испытания проводит контролер с остротой зрения 0,8-1 для обоих глаз (при необходимости с коррекцией) и нормальным све-тоощущением при освещенности резисторов (50-100) лк.

4.1.2. Параметры-критерии годности при начальных и заключительных измерениях контролируют в одинаковых электрических режимах.

4.2. Проверка на соответствие требованиям к конструкции

4.2.1. Общий вид, габаритные, установочные и присоединительные размеры резисторов (п. 2.2.1) проверяют по ГОСТ 21395.1-75 сличением с конструкторской документацией и измерением размеров любыми средствами измерений, обеспечивающими измерение с погрешностями, не превышающими установленные ГОСТ 8.051-81.

4.2.2. Внешний вид резисторов (п. 2.2.2) проверяют по ГОСТ 21395.1-75.

4.2.3. Массу резисторов (п. 2.2.3) проверяют по ГОСТ 21395.1 —

4.2.4. Механическую прочность выводов (п. 2.2.4) проверяют по ГОСТ 20.57.406-81 испытаниями:

выводов на воздействие растягивающей силы, метод 109-1;

гибких проволочных и ленточных выводов на изгиб, методы 110-1, 110-2;

резьбовых выводов на воздействие крутящего момента, метод 113-1.

При испытании на изгиб конкретное направление изгибов указывают в стандартах или ТУ на изделия конкретных типов.

ГОСТ 24238-84

При испытании резисторов с одножильными осевыми проволочными выводами выборку резисторов после испытания на воздействие растягивающей силы делят на две равные части, одну из которых подвергают испытаниям на воздействие изгибающей силы, а вторую — на воздействие скручивания.

При начальных и заключительных проверках проводят внешний осмотр резисторов.

при заключительных проверках после каждого вида испытания отсутствуют обрывы выводов и другие механические повреждения, не нарушена герметичность;

при заключительных измерениях изменение сопротивления резисторов с допускаемым отклонением свыше 1 % соответствует норме, указанной в стандартах или ТУ на резисторы конкретных типов, выбираемой из ряда: ±2; ±5; ±10;

изменение сопротивления резисторов с допускаемым отклонением до 1 % включительно, высоковольтных, высокомегаомных, высокочастотных и импульсных резисторов соответствует норме, установленной в стандартах или ТУ на резисторы конкретных типов.

4.2.5. Определение резонансных частот конструкции (п. 2.2.7)

проводят по ГОСТ 20.57.406-81, метод 100-1 при ускорении

10-50 м*с~ 2 (1-5 g).

Диапазон частот — до 1000 Гц.

Число испытуемых резисторов — 3 шт.

Направление воздействия вибрации указывают в стандартах или ТУ на резисторы конкретных типов.

При испытании резисторы крепят за выводы тем же способом, что и при испытании на вибропрочность.

Испытания проводят без электрической нагрузки.

В процессе воздействия вибрации определяют резонансные частоты резисторов.

Индикацию резонансов определяют электретным методом.

4.2.6. Способность резисторов к пайке (п. 2.2.5) проверяют по ГОСТ 20.57.406-81 , метод 402-1 или 402-2.

Перед проверкой способности к пайке резисторы подвергает ускоренному старению одним из методов, предусмотренных ГОСТ 20.57.406-81.

Конкретный метод указывают в стандартах или ТУ на резисторы конкретных типов.

После ускоренного старения резне юры подвергают конечной стабилизации в течение времени не менее 2 ч, после чего проводят проверку способности выводов резисторов к пайке.

При испытании применяют припой марки ПОС-61 по ГОСТ 21931-76 .

Применяемый флюс должен состоять из 25 % по массовой доле канифоли (ГОСТ 19113-84) и 75% по массовой доле этилового спирта (ГОСТ 18300-72).

Метод 402-1 применяют при проверке способности выводов резисторов, предназначенных для групповой пайки.

Метод 402-1

При начальных проверках проводят внешний осмотр резисто-ров.

Испытания проводят с применением теплового экрана.

Материал, толщину экрана и способ экранирования указывают в стандартах или ТУ на резисторы конкретных типов.

Площадь отдельных несмоченных участков измеряют любыми средствами измерения, обеспечивающими измерения с погрешностью в пределах ±0,5 мм (например, циркуль разметочный ГОСТ 24472-80), суммируют и вычисляют площадь, не смоченную расплавленным припоем.

Площадь поверхности вывода (б) в процентах, покрытую сплошным слоем припоя, определяют по формуле

где 5 -суммарная площадь несмоченных участков на оцениваемой поверхности, мм 2 ;

5оцеп, -площадь оцениваемой поверхности вывода, мм 2 .

При оценке различают:

несмоченные участки в виде точек (проколов), максимальные размеры которых до 1 мм. Площадь отдельной точки принимают равной 1 мм 2 ;

несмоченные участки в виде пятен (участков). Максимальные размеры пятен — более 1 мм. Площадь пятна (участка) и совокупность несмоченных участков в виде точек и пятен, расстояние между которыми не более 2 мм, определяют как площадь описанного прямоугольника.

Метод 402-2

При начальных проверках проводят внешний осмотр резисторов.

Конкретный тип паяльника указывают в стандартах или ТУ на резисторы конкретных типов.

Время пайки 2-5 с.

Необходимость применения теплоотвода и его вид указывают в стандартах или ТУ на резисторы конкретных типов.

При заключительных проверках проводят внешний осмотр резисторов.

ГОСТ 24238-84

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Резисторы должны быть изготовлены в соответствии с требованиями настоящего стандарта, а также стандартов или ТУ на резисторы конкретных типов по рабочей конструкторской и технологической документации, утвержденной в установленном порядке.

Обозначение комплекта конструкторской документации должно быть приведено в стандартах или ТУ на резисторы конкретных типов.

Конструкция резисторов, предназначенных для использования при автоматизированной сборке (монтаже) аппаратуры, должна обеспечивать механизацию и автоматизацию процессов сборки аппаратуры, если данное требование указано в стандартах или ТУ на резисторы конкретных типов.

2.2. Требования к конструкции

2.2.1. Общий вид, габаритные, установочные и присоединительные размеры резисторов должны соответствовать указанным в стандартах или ТУ на резисторы конкретных типов.

2.2.2. Внешний вид резисторов должен соответствовать образцам внешнего вида, отобранным и утвержденным в установленном порядке.

Образцы внешнего вида хранят на предприятии-изготовителе ш потребителям не высылают.

2.2.3. Масса резисторов не должна превышать значений, установленных в стандартах или ТУ на резисторы конкретных типов.

2.2.4. Выводы резисторов, включая места их присоединения, должны выдерживать без механических повреждений воздействия растягивающей силы, направленной вдоль оси вывода, крутящего момента (для резьбовых выводов) и скручивания (для гибких одножильных осевых проволочных выводов диаметром от 0,3 до

1,2 мм. Угол поворота и допускаемое число поворотов должны соответствовать значениям, установленным в стандартах или ТУ на резисторы конкретных типов).

Конкретные значения растягивающей силы, крутящего момента и скручивания устанавливают в стандартах или ТУ на резисторы конкретных типов.

Гибкие лепестковые, ленточные и проволочные выводы резисторов должны выдерживать без механических повреждений воздействие изгибающей силы. Допускаемое число изгибов должно соответствовать значению, установленному в стандартах или ТУ на резисторы конкретных типов.

2.2.5. Выводы резисторов и контактные поверхности резисторов без выводов должны обладать способностью к пайке без дополнительного обслуживания в течение времени, выбранного из ряда:

ГОСТ 24238-84

Метод испытания на способность к пайке резисторов без выводов устанавливают в стандартах или ТУ на резисторы конкретных типов.

Теплостойкость резисторов при пайке (а. 2.2.6) проверяют по ГОСТ 20.57.406-81 , метод 403-1 или 403-2.

Конкретный метод или метод проверки резисторов без выводов указывают в стандартах или ТУ на резисторы конкретных типов.

При начальных проверках проводят внешний осмотр резисторов и измеряют сопротивление резисторов.

Температура припоя в ванне (260±5)°С.

Испытание по методу 403-1 проводят с применением теплового экрана. Материал, толщину экрана и способ экранирования указывают в стандартах или ТУ на резисторы конкретных типов. *

Общее число выводов, подвергаемых испытаниям, устанавливают в стандартах или ТУ на резисторы конкретных типов.

Продолжительность конечной стабилизации — не менее 2 ч.

При заключительных проверках проводят внешний осмотр резисторов и измерение сопротивления резисторов.

Резисторы считают выдержавшими испытания, если:

при заключительных проверках внешний вид резисторов соответствует требованиям п. 2.2.2;

изменение сопротивления резисторов соответствует значениям, установленным в стандартах или ТУ на резисторы конкретных типов, выбираемых из ряда: ±2; ±3; ±5; ±10 %.

4.2.8. Герметичность резисторов (п. 2.2.8) проверяют по ГОСТ 20.57.406-81 одним из методов, указанных в стандартах или ТУ на резисторы конкретных типов.

Проводят предварительную очистку резисторов от загрязнений способом, указанным в ТУ, и выдерживают в нормальных климатических условиях в течение времени, указанного в стандартах или ТУ на резисторы конкретных типов.

4.2.9. Коррозионную стойкость резисторов (п. 2.2.9) проверяют при испытании на воздействие повышенной влажности воздуха и соляного тумана.

4.2.10. Пожароопасность резисторов (и. 2.2.11) проверяют испытанием на способность вызывать горение и испытанием на горючесть.

Испытания резисторов на пожарную безопасность проводят в нормальных климатических условиях по ГОСТ 20.57.406-81 ,

Испытания проводят в вытяжном шкафу с использованием измерителя времени, источников питания (для испытания на способность вызывать горение) и средств измерения, обеспечивающих задание и контроль параметров режима, испытания и регистрацию признаков пожарной опасности резисторов.

Точность измерения продолжительности признаков пожарной опасности должна быть не менее ± 1 с.

12, 18 мес с даты их изготовления при соблюдении режимов и правил выполнения пайки, указанных в разд. 6.

Конкретный срок паяемости резисторов должен быть указан в стандартах или ТУ на резисторы конкретных типов.

Покрытия выводов, предназначенных для пайки, не должны иметь просветов основного металла, коррозионных поражений, отслаивания и шелушения.

При использовании покрытий выводов расстояние непокрытой части вывода от границы покрытия до корпуса резистора не должно превышать значения, установленного в стандартах или ТУ на резисторы конкретных типов.

2.2.6. Резисторы должны быть теплостойкими при пайке при условии соблюдения режимов и правил выполнения пайки, указанных в разд. 6. Минимальное расстояние от корпуса резистора до места пайки должно соответствовать значению, установленному в стандартах или ТУ на резисторы конкретных типов.

2.2.7. Резисторы не должны иметь резонансных частот в диапазоне с верхней частотой, установленной в стандартах или ТУ на резисторы конкретных типов.

2.2.8. Резисторы должны быть герметичными (только для герметичных резисторов).

2.2.9. Резисторы должны обладать коррозионной стойкостью или быть надежно защищены от коррозии.

2.2.10. Температура перегрева резисторов не должна превышать значений, установленных в стандартах или ТУ на резисторы конкретных типов.

2.2.11. Резисторы в пожаробезопасном исполнении не должны самовоспламеняться и воспламенять окружающие его элементы и материалы аппаратуры в диапазоне от 1,1 Р нсм до значения, установленного в стандартах или ТУ на резисторы конкретных типов из ряда: 5, 10, 15, 20, 25 Р ном

Резисторы должны быть трудногорючими.

2.2.12. Удельная материалоемкость резисторов не должна превышать значений, установленных в стандартах или ТУ на резисторы конкретных типов.

2.3 Требования к электрическим параметрам и режимам эксплуатации

2.3 1. Электрические параметры резисторов при режиме и поставке должны соответствовать приведенным в пп. 2.3.1.1-2.3.1.6.

2.3.1.1. Сопротивление резисторов должно соответствовать номинальному значению с учетом допускаемого отклонения, установленного в стандартах или ТУ на резисторы конкретных типов.

Номинальное значение и допускаемое отклонение сопротивления резисторов устанавливают в соответствии с ГОСТ 24013-80 .

2.3.1.2. Температурный коэффициент сопротивления (ТКС) резисторов в интервале положительных температур должен быть установлен в стандартах или ТУ на резисторы конкретных типов по ГОСТ 24013-80 .

ТКС в интервале отрицательных температур должен быть установлен в стандартах или ТУ на резисторы конкретных типов.

2.3.1.3. Уровень шумов непроволочных резисторов, кроме высокочастотных и импульсных, должен быть установлен в стандартах или ТУ на резисторы конкретных типов из ряда:

0,5; 1; 5 мкВ/В-для резисторов с допускаемым отклонением до 1 % включительно;

1; 5 мкВ/В -для резисторов с допускаемым отклонением свыше 1 %.

Для высоковольтных и высокомегаомных резисторов уровень шумов устанавливают в стандартах или ТУ на резисторы конкретных типов.

2.3.1.4. Сопротивление изоляции изолированных резисторов дол

жно быть не менее значений, установленных в стандартах или ТУ на резисторы конкретных типов, выбираемых из ряда: 100, 500,

1000, 5000, 10000 МОм.

2.3.1.5. Изолированные резисторы должны обладать электрической прочностью. Испытательное напряжение должно быть равно двойному номинальному напряжению.

2.3.1.6. Изменение сопротивления от изменения напряжения композиционных резисторов должно соответствовать нормам, установленным в стандартах или ТУ на резисторы конкретных ти-пов.

2.3.2. Электрические параметры резисторов в течение наработки (п. 2.5.1) в пределах времени, равного сроку сохраняемости (п. 2.5.2), при эксплуатации в режимах и условиях, допускаемых настоящим стандартом, а также стандартами или ТУ на резисторы конкретных типов, должны соответствовать нормам, установленным в стандартах или ТУ.

2.3.3. Электрические параметры резисторов в течение срока сохраняемости (п. 2.5.2) при хранении в условиях, допускаемых настоящим стандартом, а также стандартами или ТУ на резисторы конкретных типов, должны соответствовать нормам, установленным в стандартах или ТУ.

2.3.4. Предельно допускаемые значения электрических параметров резисторов и режимов их эксплуатации должны соответствовать приведенным в пп. 2.3.4.1-2.3.4.4.

2.3.4.1. Номинальная мощность рассеяния резисторов должна соответствовать значениям по ГОСТ 24013-80 . Конкретное значение номинальной мощности рассеяния должно быть установлено в стандартах или ТУ на резисторы конкретных типов.

2.3.4.2. Допускаемая мощность рассеяния резисторов для интервала рабочих температур и давлений должна соответствовать значениям, установленным в стандартах или ТУ на резисторы конкретных типов.

2.3.4.3. Предельное рабочее напряжение резисторов должно соответствовать значениям, установленным в стандартах или ТУ на резисторы конкретных типов по ГОСТ 24013-80 .

2.3.4.4. Резисторы должны выдерживать воздействие импульсной нагрузки. Параметры импульсной нагрузки должны быть указаны в стандартах или ТУ на резисторы конкретных типов.

2.4. Требования по стойкости к внешним воздействующим факторам

2.4.1. Резисторы должны быть стойкими к воздействию механических факторов, установленных в стандартах или ТУ на резисторы конкретных типов согласно табл. 1 по ГОСТ 25467-82 .

Примечание. Требование к стойкости при воздействии ударов многократного и одиночного действия предъявляют по прочности,

2.4.2. Резисторы должны быть стойкими к воздействию климатических факторов, установленных в стандартах или ТУ на резисторы конкретных типов по ГОСТ 25467-82 .

Для высоковольтных высокомегаомных резисторов повышенная рабочая температура должна быть установлена в стандартах или ГУ на резисторы конкретных типов из ряда: 40, 55, 70, 85, 100, 125, 155, 175, 200 °С.

2.5. Требования к надежности

2.5.1. Интенсивность отказов Я э, отнесенная к нормальным климатическим условиям по ГОСТ 20.57.406-81 , в электрических режимах, установленных в стандартах или ТУ на резисторы конкретных типов, в течение наработки t d не должна превышать значений, установленных в стандартах или ТУ на резисторы конкрет-

ных типов из ряда 5*10~ 8 ; 3-10~ 8 ; 2-10 8 1/ч и далее в соответствии с ГОСТ 25359-82 .

Значение наработки 1 Н должно соответствовать установленному в стандартах или ТУ на резисторы конкретных типов из ряда: 15000, 20000, 25000, 30000, 40000 ч и далее в соответствии с ГОСТ 25359-82.

2.5.2. 95-процентный срок сохраняемости резисторов при хранении в условиях, допускаемых настоящим стандартом, а также стандартами или ТУ на резисторы конкретных типов, должен быть не менее значений, установленных в стандартах или ТУ из ряда: 12, 15, 20, 25 лет.

3. ПРАВИЛА ПРИЕМКИ

3.1. Правила приемки резисторов — по ГОСТ 25360-82 .

Отдельные виды и группы квалификационных и периодических

испытаний, а также испытания резисторов на долговечность допускается, по согласованию со службой технического контроля не проводить, если на том же предприятии-изготовителе проводят аналогичные испытания резисторов той же конструкции специального назначения, изготовляемых по той же технологии за контролируемый период.

3.2. Квалификационные испытания

3.2.1. Состав испытаний, деление состава испытаний на группы испытаний и последовательность их проведения в пределах каждой группы должны соответствовать приведенным в табл. 2 для непро-волочных резисторов и табл. 3 — для проволочных резисторов.

Таблица 2 f

испытаний

Наименование видо* испытаний и последовательность их проведения

технических

требований

контроля

1. Проверка внешнего вида

2. Проверка разборчивости и содер-

жания маркировки

3. Проверка прочности маркировки

4. Проверка общего вида, габаритных, установочных и присоединитсль-

ных размеров

1. Измерение сопротивления

2. Измерение уровня шумов

3. Измерение сопротивления изоляции

4. Проверка электрической прочности

5. Проверка герметичности

Продолжение табл. 2

испытаний

Наименование видов испытаний и последовательность их проведения

технических

требовании

контроля

Испытание на безотказность

1. Определение температурного коэффициента сопротивления

2. Испытание на воздействие изменения температуры среды

3. Испытание на воздействие повышенной влажности воздуха (кратковременное)

4. Испытание на воздействие повышенной рабочей температуры среды

5. Испытание на воздействие повышенной предельной температуры среды

6. Испытание на воздействие пониженной рабочей температуры среды

7. Испытание на воздействие пониженной предельной температуры среды

8. Испытание на вибропрочность (кратковременное)

9. Испытание на воздействие ударов одиночного действия

10. Испытание на воздействие атмосферного пониженного давления

И. Испытание на воздействие атмосферного повышенного давления

Испытание на способность к пайке

1. Определение изменения сопротив-юния от изменения напряжения

2. Проверка импульсной нагрузкой

1. Проверка массы

2. Испытание выводов на воздействия.

растягивающей силы изгибающей силы крутящего момента 3. Испытание на теплостойкость при пайке

1. Испытание на вибропрочность (кратковременное)

2. Испытание на воздействие ударов одиночного действия

Продолжение табл. 2

Номера пунктов

испытаний

Наименование видов испытаний и последовательность их проведения

технических

требовании

контроля

Испытание на долговечность

Испытание на воздействие плесневых грибов

Испытание на воздействие соляного тумана

Испытание на пожарную безопасность

Таблица 3

Номера пунктов

вспытаний

Наименование видов испытаний и последовательность их проведения

технических

требований

контроля

1. Проверка внешнего вида

2. Проверка разборчивости и содер-

жания маркировки

3. Проверка прочности маркировки

4. Проверка общего вида, габаритных, установочных и присоединитель-

ных размеров

1. Измерение сопротивления

2. Измерение сопротивления изоля-

3. Проверка электрической прочности

Испытание на безотказность

Продолжение табл. 8

Номера пунктов

испытании

Наименование видов испытаний и последовательность их проведения

технических

требований

контроля

1. Проверка массы

2. Испытание на теплостойкость при пайке

3. Испытание на вибропрочность (кратковременное)

4. Испытание на воздействие ударов одиночного действия

5. Испытание выводов на воздействия:

растягивающей силы крутящего момента 6. Проверка герметичности

7. Определение температурного коэффициента сопротивления

8. Испытание на воздействие изменения температуры среды

9. Испытание на воздействие повышенной рабочей температуры среды

10. Испытание на воздействие повышенной предельной температуры среды

31. Испытание на воздействие пониженной рабочей температуры среды

12. Испытание на воздействие пониженной предельной температуры среды

13. Испытание на воздействие повышенной влажности воздуха (кратковременное)

14. Испытание на воздействие атмосферного пониженного давления

15. Испытание на воздействие атмосферного повышенного давления

16. Проверка электрической прочности

Испытание на способность к пайке

1. Проверка габаритных размеров тары

2. Проверка прочности упаковки

Испытание на долговечность

Испытание на воздействие повышенной влажности воздуха (длительное)

Испытание на воздействие инея и росы

Под надежностью резисторов понимается их свойство сохранять свою работоспособность (проводимость, контактирование, плавность регулирования) и параметры (сопротивление, уровень шумов и др.) в пределах установленных норм при определенных условиях эксплуатации (или испытаний) в течение заданного времени.

Надежность оценивается с помощью количественных показателей, для описания которых используются методы математической статистики. Основными параметрами, характеризующими надежность изделия электронной техники, являются вероятность безотказной работы P(t) на заданное время t и интенсивность отказов λ(t).

Вероятность безотказной работы — это вероятность того, что в определенном режиме эксплуатации (или испытаний) в течение заданного времени отказ не произойдет. Практически эта величина может быть определена по результатам испытаний резисторов на надежность как отношение числа резисторов N-n i , оставшихся исправными в интервале времени испытаний t i к общему числу резисторов N, поставленных на испытание в данном режиме: P i ≈(N-n i)/N, где n i — число отказавших резисторов за время t i .

Степень надежности резисторов в каждый данный момент времени характеризуется интенсивностью отказов, которая приближенно определяется как число отказов Δn i за промежуток времени Δt i , отнесенное к числу резисторов, оставшихся исправными к началу рассматриваемого промежутка времени: λ(t)≈Δn i /[(N-n i)*Δt i ], где n i — число отказавших резисторов к началу рассматриваемого промежутка времени. По существу, интенсивность отказов — это вероятность отказа в единицу времени.

Под отказом резистора понимается как полное нарушение его работоспособности, так и ухудшение основных параметров свыше установленных норм. В соответствии с этим отказы классифицируются на полные и условные (параметрические).

Полный отказ возникает в результате нарушения электрической или механической прочности резистора и характеризуется значительным скачкообразным изменением его основных параметров. В частности, критериями полного отказа являются перегорание (обрыв) токопроводящего элемента, поломка основания и выводов, потеря контакта между средним выводом и проводящим элементом. Условный отказ резистора может проявляться в виде ухода одного из параметров (чаще всего сопротивления) за нормы, установленные в качестве критериев годности.

Поскольку степень допустимых изменений параметров резисторов, приводящих к нарушению работоспособности электронной аппаратуры, различна и зависит от требований к конкретной электронной схеме, условные отказы не имеют единых численных критериев. В самом деле, изменение сопротивления резистора в прецизионной аппаратуре, например, на ±2% может привести к отказу, но практически не скажется на работе схем, где резисторы используются в качестве гасящих элементов.

Количественные показатели надежности резисторов, полученные на основании информации об их отказах в процессе эксплуатации электронной аппаратуры и в результате специальных испытаний статистически обоснованных выборок из выпускаемой продукции, имеют усредненный характер и являются опытными значениями. Полученная таким образом экспериментальная оценка надежности определена с некоторой заданной достоверностью, т. е. вероятностью того, что показатель, характеризующий надежность всей совокупности резисторов, находится между некоторыми предельными значениями, внутри доверительного интервала. Различаются нижняя и верхняя доверительные границы.

Определение и проверка параметра надежности резисторов в условиях производства осуществляется выборочным испытанием в режиме номинальной электрической нагрузки при максимальной рабочей температуре, при которой техническими условиями допускается рассеяние номинальной мощности. Объем выборки устанавливается в зависимости от ожидаемого (контролируемого) значений вероятности безотказной работы, заданных достоверности и ожидаемого (приемочного) числа отказавших резисторов, которые приводятся в документах на поставку (ГОСТ, ТУ). Поскольку параметр надежности определяется с достоверностью, отличной от 100%, то всегда имеется вероятность того, что будет принята партия резисторов с уровнем надежности ниже, чем контролируемое значение (риск заказчика), и будет забракована партия резисторов с равным или более высоким, по сравнению с контролируемым значением, уровнем надежности (риск поставщика).

Количественные показатели надежности резисторов одного типа, полученные по данным эксплуатации и испытаний, неодинаковы, Это обусловлено тем, что при эксплуатации аппаратуры на элементы воздействует комплекс внешних и внутренних факторов, связанных с климатическими и метеорологическими особенностями эксплуатации, реальными режимами работы систем и условиями их обслуживания, в то время как при испытаниях резисторы подвергаются воздействию номинальной электрической и тепловой нагрузок. Поэтому указываемые в технических условиях показатели надежности резисторов служат для контроля уровня производства и не рекомендуются для использования при расчете надежности аппаратуры.

Долговечность резистора — это его свойство длительно сохранять работоспособность в определенных режимах и условиях эксплуатации до разрушения или другого предельного состояния. Для определения установленной в технической документации гарантийной наработки проводят определительные испытания резисторов в заданном режиме (обычно номинальном) до наработки, при которой обеспечивается вероятность безотказной работы не ниже установленной с заданной достоверностью. Принято ограничивать продолжительность испытаний до получения минимальной вероятности безотказной работы не менее 0,8 при достоверности, равной 0,7-0,9.

Сохраняемость резисторов — это свойство сохранять заданные эксплуатационные показатели в течение и после срока хранения и транспортирования, установленного в технической документации. При воздействии климатических факторов внешней среды параметры резисторов изменяются и с течением времени могут превысить нормы, допускаемые техническими условиями. В результате процессов старения наибольшему изменению при хранении подвергаются величина сопротивления и сопротивление изоляции. Кроме того, у проволочных переменных резисторов в результате коррозии может нарушаться контакт подвижной части с обмоткой.

Количественно сохраняемость характеризуется гарантированным сроком хранения , который для большинства типов резисторов составляет 12 лет. В качестве критерия при оценке сохраняемости может быть принята допустимая вероятность отказа за гарантированный срок хранения. Сохраняемость резисторов по сравнению с другими элементами электронной аппаратуры довольно высокая. Интенсивность отказов резисторов при хранении на 2-3 порядка ниже, чем у электровакуумных и полупроводниковых приборов. При этом большее число отказов приходится, как правило, на композиционные переменные резисторы.

Наибольшее изменение параметров резисторов при хранении имеет место в первый год хранения. Дальнейшее изменение, особенно величины сопротивления непроволочных резисторов, с известной степенью точности может быть аппроксимировано прямой линией. Это обстоятельство дает возможность прогнозировать будущее состояние резисторов. К концу срока хранения изменение величины сопротивления у металлодиэлектрических резисторов не превышает 5-6%, у углеродистых резисторов 10%, у композиционных 10-15% и у проволочных резисторов 1-2. Сохранение резисторов на складах производится в заводских упаковках. Раньше упаковки изготовлялись из картона и предохраняли они в основном от механических повреждений. В настоящее время разработаны и внедряются в производство упаковки из полиэтилена и пенопласта, которые защищают от воздействия влажной среды. Для длительного хранения рекомендуется использовать металлические запаянные коробки.

1.Элементы Радиоэлектронной Аппаратуры. Выпуск 26. Стальбовский В.В., Четвертков И.И. Резисторы. Москва: Издательство «Советское радио», 1973 год.
2.Резисторы: Справочник / В. В. Дубровский, Д. М. Иванов, Н. Я. Пратусевич и др.; под ред. И. И. Четверткова и В. М. Терехова. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1991 год.

E3, E6, E12, E24, E48, E96, E192

Как часто вам приходилось подбирать резистор для замены в какой-либо плате или в для конструирования нового устройства. Несмотря на большое разнообразие существующих моделей, значение омического сопротивления каждого из них не является случайным и не формируется одной лишь прихотью производителя. На практике существует конкретный  ряд номиналов резисторов, который и определяет возможные варианты для заводских сопротивлений.

Что такое ряд номиналов?

Данное понятие устанавливает определенную закономерность чередования значений для любых радиодеталей, включая и резисторы. Впервые существующий стандарт был утвержден еще в 1948году и получил обозначение латинской буквой E, означающей EIA в расшифровке Electronic Industries Alliance. Следом за буквой E указывается цифра, обозначающая конкретную линейку значений, она же показывает число доступных в этом ряду номиналов. К примеру, E6 разбивает номинальные мощности, емкости или сопротивления в пределах от 0 до 10 на шесть единиц, если сравнить с E96, то в нем этих единиц окажется уже 96.

С математической точки зрения, номинальные величины представляют собой логарифмическую функцию, поэтому шаг изменения номинальных сопротивлений можно определить по формуле:

где n – это порядковый номер конкретного члена, а N – это номер ряда.

Чтобы подобрать из предложенных линеек данных нужную модель, установленное значение, к примеру, у  E12 – это 1… 1,2 … 1,5 … и т.д. и умножается на десятичный множитель – 10, 100, 1000 и т.д. до достижения желаемой величины. Всего выделяют семь стандартных номиналов, правда, первый из них сегодня уже не выпускают, но встретить в старых устройствах его вы еще можете. Далее рассмотрим особенности каждого из ряда номиналов деталей.

Ряд Е3

Номинальный ряд Е3 включает в себя только три величины сопротивления: 1; 2,2; 4,7. Помимо этого  электрическое сопротивление резисторов может иметь отклонение от заявляемого параметр. То же может повторять и  емкость конденсатора, и другие характеристики деталей электронных схем, подчиняющихся стандартам Е3. Нормальными колебаниями основных характеристик считаются не более 50%, это означает, что если вы хотите приобрести непроволочный резистор на 10 Ом, то завод может выпускать его в пределах от 5,1 до 14,9 Ом, не выступая за отведенные стандартом границы.

Ряд Е6

Здесь для обозначения номиналов содержится шесть возможных величин: 1; 1,5; 2,2; 3,3; 4,7; 6,8. При указании номинальных емкостей, сопротивлений и других характеристик радиодеталей, Е6 обладает такими отличиями:

  • величина допуска на погрешность составляет не более 20%, что дает немалое отклонение, которое обязательно следует учитывать при работе точных приборов;
  • при использовании цветовых маркировок для керамических или углеродистых резисторов, детали будут иметь черную полосу, характеризующую их возможную погрешность;
Определение допустимого отклонения по цветовой маркировке
  • наибольшее распространение они получили в силовом оборудовании, где основная роль резистора заключается в гашении величины токовой нагрузки, а существующая погрешность не окажет существенного влияния.

Ряд Е12

В сравнении с предыдущим, будет иметь уже не шесть, а двенадцать вариантов номиналов для электронных компонентов от 1 до 8,2. Значение номинальных данных имеет пропорциональное увеличение.

По своим характеристикам ряды Е12 отличаются следующими данными:

  • допустимая погрешность катушек индуктивности или резисторов составляет не больше 10%;
  • если у резистора имеется цветная маркировка, то полоска, указывающая на возможное отклонение от заявленного сопротивления должна иметь серый или серебристый цвет;
  • их сфера применения охватывает сферу подстроечных и переменных резисторов, также используется для некоторых бытовых приборов.

Ряд Е24

Такой тип маркировки имеет в два раза большее количество номиналов, в сравнении с предыдущим. 

Отличительными особенностями ряда Е24 является:

  • отклонение от установленного производителем значения допускается не более чем на 5%, большая величина недопустима по причине перекрытия соседнего номинала
  • цветные полоски для таких номинальных рядов имеют золотистую расцветку;
  • наиболее распространен среди радиолюбителей, так как проволочне выводы легко припаивать и использовать для сборки электрических схем, а процент погрешности не сильно влияет на электрические параметры.

Ряд Е48

Количество вариантов сопротивления электрическому току еще в два раза превосходит Е24, начиная с него, номиналы разделяются не только десятыми, но уже и сотыми долями. Отличительной особенностью этого и последующих рядов является их высокая точность, а именно, Е48 может отклоняться от заявленных данных всего на 2%.

Для обозначения ряда Е48 из цветных полос наносится красного цвета, в работе бытовых приборов подобное отклонение совершенно незаметно, так как обычные колебания напряжения в электрической цепи оказывают куда более существенное влияние.  Поэтому их использование в моделировании имеет узконаправленную специфику и принадлежит к точным элементам.

Ряд Е96

Обладает в два раза более широким спектром номиналов, чем Е48. В сравнении с другими, ряд  Е96 обладает такими отличительными особенностями:

  • погрешность элемента, изготовленного по стандарту этого номинала, может отличаться не более чем на 1% от паспортного значения, к примеру, резистор на 100 Ом не выйдет за пределы 99 или 101 Ома;
  • цветовое обозначение точности на корпусе радиодетали будет иметь коричневую полоску;
  • на практике используется в сборке печатных плат, устанавливается в цепях управления, релейной защиты, телемеханики и т.д.

Существенным недостатком является относительно более высокая себестоимость , в сравнении с менее точными резисторами.

Ряд Е192

Является наибольшее число номиналов, ряд включает в себя 192 единицы возможных вариантов и предоставляет самый широкий спектр для выбора. Отличается такими данными:

  • погрешность сопротивления не может превышать 0,5%, 0,25 и даже 0,1%, что выводит их в категорию сверхточного оборудования, часто на их основе разрабатывают smd резисторы;
  • с точки зрения цветового обозначения ряда, то на корпусе прибора изображается зеленая, синяя или фиолетовая полоска;
  • применяется в сверхточных измерительных комплексах и электронно-вычислительных машинах.

Существенный недостаток – самая высокая стоимость, в сравнении с другими. Для удобства понимания разницы между номинальными рядами трех последних порядков ниже приведена таблица с значениями сопротивлений резисторов.

Таблица: номиналы рядов Е48, Е96, Е192

Таблица: номиналы рядов Е48, Е96, Е192Цветовой код резистора

| Стандарты и коды резисторов

Как работает цветовой код резистора?

Ознакомьтесь с калькулятором цветовых кодов резисторов All About Circuits, удобным инструментом для считывания значений цветовых кодов резисторов.

Номиналы резисторов

часто обозначаются цветовыми кодами. Практически все резисторы с выводами мощностью до одного ватта отмечены цветными полосами. Кодировка определена в международном стандарте IEC 60062. Этот стандарт описывает коды маркировки резисторов и конденсаторов.Помимо определения цветовых полос, стандарт также включает числовые коды, которые часто используются для резисторов поверхностного монтажа SMD.

Цветовой код дается несколькими полосами. Вместе они определяют значение сопротивления, допуск, а иногда и надежность или интенсивность отказов. Количество полос варьируется от трех до шести. Как минимум, две полосы указывают значение сопротивления, а одна полоса служит множителем. Значения сопротивления стандартизированы; эти значения называются предпочтительными значениями.

Таблица цветов резистора

В таблице ниже показано, как определить сопротивление и допуск для резисторов. Таблица также может использоваться для указания цвета полос, если значения известны. Чтобы быстро найти значения резисторов, можно использовать автоматический калькулятор резисторов.

Советы по считыванию кодов резисторов

В следующих разделах приведены примеры для разного количества цветных полос. Но, сначала, вот несколько общих советов по чтению цветового кода:

  • Направление чтения не всегда может быть четким.Иногда увеличенное расстояние между полосами 3 и 4 указывает направление чтения. Кроме того, первая полоса обычно находится ближе всего к отведению. Золотая или серебряная полоса (допуск) всегда последняя полоса.
  • Рекомендуется проверить документацию производителя, чтобы убедиться в используемой системе цветового кодирования.
  • В случае сомнений измерьте сопротивление омметром. В некоторых случаях это может быть даже единственный способ определить сопротивление; например, когда цветные полосы выгорели.

4-х полосный резистор

Четырехполосный цветовой код является наиболее распространенным вариантом. Эти резисторы имеют две полосы для значений сопротивления, один множитель и одну полосу допуска. В показанном здесь примере 4 полосы — это зеленый, синий, красный и золотой. Используя таблицу цветовых кодов, можно обнаружить, что зеленый цвет означает 5, а синий — 6. Третья полоса представляет собой множитель, а красный цвет представляет значение множителя 2 (10 2 ). Следовательно, номинал этого резистора составляет 56 · 10 2 = 56 · 100 = 5600 Ом.Золотая полоса означает, что резистор имеет допуск 5%. Следовательно, значение сопротивления находится между 5320 и 5880 Ом (5560 ± 5%). Если оставить поле допуска пустым, результатом будет трехполосный резистор. Это означает, что значение сопротивления остается прежним, но допуск составляет 20%.

5-ти полосный резистор

У резисторов

с высокой точностью есть дополнительная полоса для обозначения третьей значащей цифры. Таким образом, первые три полосы указывают значащие цифры, четвертая полоса — это коэффициент умножения, а пятая полоса представляет собой допуск.Для показанного здесь примера: коричневый (1), желтый (4), фиолетовый (7), черный (x 10 0 = x1), зеленый (0,5%) представляет резистор 147 Ом с допуском 0,5%.

Есть исключения из этой 5-полосной цветовой системы. Например, иногда дополнительная полоса может указывать на интенсивность отказов (военная спецификация) или температурный коэффициент (старые или специализированные резисторы). Пожалуйста, прочтите подраздел «Исключения цветового кода» ниже для получения дополнительной информации.

6-ти полосный резистор

Резисторы

с 6 полосами обычно предназначены для высокоточных резисторов, которые имеют дополнительную полосу для определения температурного коэффициента (ppm / ˚C = ppm / K).Наиболее распространенный цвет шестой полосы — коричневый (100 ppm / ˚C). Это означает, что при изменении температуры на 10 ˚C значение сопротивления может измениться на 1000 ppm = 0,1%. Для примера 6-полосного резистора, показанного выше: оранжевый (3), красный (2), коричневый (1), коричневый (x10), зеленый (1%), красный (50 ppm / ° C) представляют собой резистор 3,21 кОм с Допуск 1% и температурный коэффициент 50 ppm / ° C.

Исключения цветового кода

Диапазон надежности

Резисторы

, которые производятся в соответствии с военными спецификациями, иногда включают дополнительную полосу для обозначения надежности.Это указывается в количестве отказов (%) на 1000 часов работы. Это редко используется в коммерческой электронике. Чаще всего полосу надежности можно встретить на четырех полосных резисторах. Более подробную информацию о надежности можно найти в военном справочнике США MIL-HDBK-199.

Одиночная черная полоса или резистор с нулевым сопротивлением

Резистор с одной черной полосой называется резистором с нулевым сопротивлением. В основном он используется как проводное соединение, которое служит для соединения дорожек на печатной плате (PCB).Использование комплекта резисторов позволяет тем же автоматизированным установкам для захвата и размещения компонентов размещать компоненты на печатной плате.

5-ти полосный резистор с 4-й полосой из золота или серебра

Пятиполосные резисторы с четвертой полосой из золота или серебра составляют исключение и используются в специализированных и старых резисторах. Первые две полосы представляют собой значащие цифры, 3-я — коэффициент умножения, 4-я — допуск, а 5-я — температурный коэффициент (ppm / ˚C).

Разные цвета

Для высоковольтных резисторов золотой и серебряный цвета часто заменяются желтым и серым.Это необходимо для предотвращения попадания металлических частиц в покрытие.

Обозначение стойкости по цвету. Обозначения и маркировка резистора

Любой, кто работает с электроникой или когда-либо видел электронную схему, знает, что почти ни одно электронное устройство не обходится без резисторов.

Функция резистора в цепи может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени заряда или разряда конденсатора в RC-цепочке и т. Д.В любом случае, каждая из этих функций резистора выполнима благодаря главному свойству резистора — его активному сопротивлению.

Само слово «резистор» — это русскоязычное прочтение английского слова «резистор», которое, в свою очередь, происходит от латинского «resisto» — я сопротивляюсь. В электрических схемах применяются постоянные и переменные резисторы, а предметом данной статьи будет обзор основных типов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и их схемах.

Первые фиксированные резисторы, классифицируемые по максимальной мощности, рассеиваемой компонентом: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и более, до 1 кВт (резисторы для специальных применений).

Данная классификация не случайна, поскольку в зависимости от назначения резистора в цепи и от условий, в которых резистор должен работать, рассеиваемая на нем мощность не должна приводить к разрушению самого компонента и компонентов, расположенных рядом, что В крайнем случае резистор должен нагреваться от проходящего через него тока и уметь рассеивать тепло.

Например, керамический резистор SQP-5 с цементным наполнителем (5 Вт) При номинальном значении 100 Ом уже при постоянном напряжении 22 В, постоянно подаваемом на его выводы, он нагревается до температуры более 200 ° C. , и это необходимо учитывать.

Итак, лучше выбрать резистор необходимого номинала, скажем на те же 100 Ом, но с запасом на максимальную рассеиваемую мощность, скажем 10 Вт, который в условиях нормального охлаждения не нагревается выше 100 °. C — это будет менее опасно для электронного устройства.

Резисторы SMD

для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 Вт — сегодня также можно встретить на печатных платах. Такие резисторы, как и выходные, всегда берутся с запасом мощности. Например, в цепи 12 В вы можете использовать резистор SMD 100 кОм размером 0402, чтобы подтянуть потенциал к отрицательной шине. Или на выходе 0,125 Вт, так как рассеиваемая мощность будет в десять раз дальше от максимально допустимой.

Резисторы проволочные и непроволочные, прецизионные

Резисторы разного назначения используют разные.Нежелательно например проволочный резистор вставлять в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения тоже достаточно провода.

Проволочные резисторы, изготовленные путем наматывания проволоки из манганина, нихрома или константана на керамическую или порошковую основу.

Изготовлены не из проволоки, а из токопроводящих пленок и смесей на основе связующего диэлектрика. Итак, они излучают тонкие слои (на основе металлов, сплавов, оксидов, металл-диэлектрик, углерод и бор-углерод) и композит (пленка с неорганическим диэлектриком, объемная и пленка с органическим диэлектриком).

Непроволочные резисторы часто представляют собой высокоточные резисторы, которые характеризуются высокой стабильностью параметров, способны работать на высоких частотах, в высоковольтных цепях и внутри цепей.

Резисторы

в принципе делятся на резисторы общего и специального назначения. Резисторы общего назначения доступны с номинальными значениями от Ом до 10 МОм. Резисторы специального назначения могут иметь номинал от десятков мегаом до тераом и способны работать при напряжении 600 вольт и более.

Резисторы специальные высоковольтные способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, потому что у них крайне малы собственные емкости и индуктивности. Прецизионность и сверхточность отличает точность номинальных значений от 0,001% до 1%.

Номинальные характеристики и маркировка резисторов

Резисторы

доступны в различных номиналах, и есть так называемые серии резисторов, такие как широко распространенная серия E24.В общем, существует шесть стандартных рядов резисторов: E6, E12, E24, E48, E96 и E192. Число после буквы «E» в названии серии отражает количество значений номиналов на десятичный интервал, а в E24 эти значения равны 24.

Значение резистора указывается числом из ряда, умноженным на 10 в степени n, где n — отрицательное или положительное целое число. Каждый ряд отличается своей терпимостью.

Цветовая маркировка выходных резисторов в виде четырех-пяти полос давно стала традиционной.Чем больше полос — тем выше точность. На рисунке показан принцип цветовой маркировки резисторов четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD — резисторы) с допуском 2%, 5% и 10% обозначены цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичном формате вместо нее ставим букву R. Маркировка 473 означает 47, умноженное на 10 в степени 3, то есть 47х1000 = 47 кОм.

Резисторы SMD

, начиная с типоразмера 0805, с допуском 1%, маркируются четырьмя цифрами, где первые три — мантисса (число, которое нужно умножить), а четвертая — степень числа 10, на которое мантисса должно приумножаться. Итак, 4701 означает 470×10 = 4,7 кОм. Чтобы обозначить десятичную точку, вместо нее поставьте букву R.

.


В маркировке sMD резисторов размера 0603 используются две цифры и одна буква. Цифры — это код для определения мантиссы, а буквы — это код для показателя степени числа 10 — второго множителя.12D означает 130×1000 = 130 кОм.

На схемах резисторы обозначены белым прямоугольником с надписью, причем надпись иногда содержит как информацию о номинале резистора, так и информацию о его максимальной рассеиваемой мощности (если это критично для данного электронного устройства). Вместо точки в десятичной системе обычно ставят буквы R, K, M — если они означают Ом, кОм и МОм соответственно. 1R0 — 1 Ом; 4K7 — 4,7 кОм; 2M2 — 2,2 МОм и т. Д.

Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. Д., а в сопроводительной документации на схему или плату под этими номерами указан список компонентов.

Что касается мощности резистора, то она может быть буквально указана на схеме, например 470 / 5W — значит — 470 Ом, резистор 5 ватт? или символ в прямоугольнике. Если прямоугольник пустой, значит резистор берется не очень мощный, то есть 0,125 — 0,25 Вт, если речь идет о выходном резисторе или максимум 1210 размера, если выбран SMD резистор.

Резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току.

В соответствии с классификацией резисторов по функциональным характеристикам, резисторы можно разделить на постоянные и переменные. Резисторы, сопротивление которых не может быть изменено в процессе настройки и во время работы оборудования, относятся к группе постоянных резисторов. Резисторы, сопротивление которых можно изменять при наладке и настройке оборудования (обычно с помощью инструментов), составляют довольно большую группу ЭРЭ, называемых подстроечными резисторами.По типу токопроводящего материала, из которого изготовлены резисторы, они делятся на проволочные и непроволочные. В свою очередь непроволочные резисторы делятся на пленочные и насыпные. В пленочных резисторах используется металлический сплав или другой проводящий материал с высоким удельным сопротивлением, который наносится тонким слоем на поверхность корпуса резистора, который обычно изготавливается из керамического материала или другого термостойкого материала.

Пленочные резисторы имеют малые габаритные размеры, незначительную массу, минимальную собственную индуктивность, высокое постоянство сопротивления в широком диапазоне частот, проверенные технологии изготовления и относительно невысокую стоимость.Токопроводящая часть объемных непроволочных резисторов представляет собой стержень из материала с высоким удельным сопротивлением, покрытый слоем влагостойкой эмали.

Особую классификационную группу резисторов составляют непроволочные нелинейные резисторы — варисторы. Сопротивление этих резисторов широко варьируется в зависимости от величины приложенного к ним напряжения.

Специальную группу непроволочных резисторов составляют фоторезисторы , сопротивление которых изменяется под действием световых лучей.

Проволочные резисторы представляют собой керамическую фарфоровую трубку, на которую намотана проволока с высоким сопротивлением.

Как правило, буквенные и цифровые коды, используемые для обозначения постоянных резисторов, могут указывать на тип и размер резистора; показать марку материала, из которого изготовлен корпус резистора, и его токопроводящий слой; обозначить конструктивные и конструктивные особенности; значения сопротивления и максимально возможные отклонения от номинала; номинальная рассеиваемая мощность; максимальные шумы ЭДС; дата изготовления резистора; товарный знак производителя и вид приемки резисторов заказчиком или ОТК.

В соответствии с требованиями государственных стандартов буквенные и цифровые коды могут состоять из трех, четырех и пяти знаков. Эти коды обычно включают две буквы и число, три цифры и букву или четыре цифры и букву. В этом случае буквы заменяют десятичную запятую.

и допуски, нанесенные на корпус резистора, определяют его качественные показатели. Номинальное сопротивление резисторов стандартизировано и определяется математическими рядами, которые имеют следующие условные обозначения: Е6, Е12, Е24, Е96, Е192.Число в обозначении серии Е определяет качество значащих цифр — номиналов в каждом десятичном интервале. Например, в строке Е6 шесть номиналов сопротивления в разряде Ом, десятки и сотни в следующих цифрах.

Номинальное значение сопротивления обозначается, как правило, цифрами, обозначающими основные единицы измерения, а символы Ом и Ом обозначают заглавными буквами латинского алфавита K и M. Таким образом, резистор с сопротивлением 2.2 Ом можно обозначить: 2.2; 2,2 Ом; 2,2 Ом; 2.2E; 2E2. Резистор сопротивлением 220 Ом может иметь маркировку: 220; 220 Ом; 220 E; К220.

Допуски номинальные значения сопротивления указываются цифрами и рассчитываются в процентах. Например, ± 2%; ± 5% или всего 2; пять; 10.

Как упоминалось ранее, в некоторых обозначениях вы можете встретить букву или цифру дополнительного кода, который ставится после буквы, обозначающей допуск, и размещается так, чтобы не было путаницы между кодами, указывающими значение сопротивления и терпимость.Значения сопротивления, выраженные в омах, умножаются на соответствующие множители, которые кодируются буквами латинского алфавита R K M T и соответствуют 1; 10 3, 10 6, 10 9.

Резистор номинальной мощности — наибольшая мощность постоянного или переменного тока, при которой резистор может длительное время надежно работать, если его температура не превышает номинальную температуру t н.

Табл. 1. Примеры обозначений номиналов сопротивлений резисторов

Таблица 2 Маркировка допустимых отклонений сопротивлений резисторов

Отклонения, ±,%

Буквенные символы

Латиница

Табл.3. Буквенное обозначение года выпуска постоянных резисторов по международным правилам

Табл. 4. Буквенно-цифровое кодирование месяца изготовления

Например, март 1999 года обозначается L3; Декабрь 1999 г. — К.Д.

Табл. 5. примеры полной буквенно-цифровой маркировки резисторов

Обозначение на резисторе

Характеристика резистора

Постоянный резистор

Номинальное сопротивление резистора 1.5 Ом

Допустимое отклонение сопротивления от номинала ± 1%

Год выпуска — 1986

Резистор постоянный.

Сопротивление резистора 5,1 МОм

Отклонение от номинала ± 20% (I — русская буква, M — латинская буква)

Дата изготовления — 1996

ᴓ — Код производителя

СП-1 680 5-89

Переменный экранированный резистор

Максимальное сопротивление резистора 680 Ом

Допустимое отклонение от номинального значения сопротивления ± 20%

Резистор имеет обратно-логарифмическую характеристику функциональной зависимости изменения сопротивления (В)

Резистор номинальной мощности 0.5 W

Дата изготовления — май 1989 г.

ᴓ — Код производителя.

Цветовая маркировка резисторов. Постоянные резисторы, изготовленные на основе углеродной или металлооксидной пленки небольшого размера, могут иметь маркировку цветового кода, обозначающего их номинальное сопротивление и предельно допустимое отклонение. Такая маркировка наносится на поверхность резистора в виде концентрических поясов (колец) краской разного цвета, количества и размеров, которые обозначаются определенными цифрами, соответствующими значениям закодированных значений.

Для облегчения считывания цветовой маркировки первый ремень расположен ближе к краю резистора, либо последний ремень сделан намного шире, чем все остальные.

Первые два цвета на ремнях показывают два значимых числа сопротивления резистора, выраженные в омах, в полном соответствии с установленным параметрическим рядом E6, E12 или E24.

Пояс третьего цвета означает градус с множителем 10, пояс четвертого цвета определяет величину допуска от номинального значения резистора.Отсутствие пояса четвертого цвета на резисторе означает симметричное значение допуска ± 20%.

Иногда на резисторах можно встретить дополнительные цветные кольца, которые можно использовать, например, для обозначения температурного коэффициента. Затем наносится полоска пыльцы в качестве шестой более широкой полоски или проводится спиральная линия. В этом случае цветовое кодирование температурного коэффициента сопротивления применяется только к значениям с тремя значащими цифрами.

Рис. 1. Цветовая маркировка постоянных резисторов отечественного производства с сопротивлением: а — 510 кОм, ± 2%; б — 9.1 Ом, ± 5%; в — 680 кОм, ± 20%

Таблица 6 Цветовая маркировка значений номинальных сопротивлений и допусков отечественных резисторов.

Большинство людей приходят на радиолюбительство из-за желания сделать что-то своими руками, что-то уникальное, что несомненно принесет пользу и себе, и окружающим … Но выбор конструкции для самостоятельной сборки часто вызывает массу проблем связанных с плохой запас знаний в области радиоэлектроники. Конечно, обычное чтение книг по соответствующей тематике и извлечение оттуда ценной информации о разнообразии радиоэлементов, о работе транзистора и других устройств начинается немедленно.Когда много чего прочитано, уже есть представление об условном графическом отображении элементов на схеме, и есть некоторые представления о принципе действия, возникает проблема переноса схемы с бумаги в реальность, а именно: поиск компонентов схемы. Сейчас не проблема составить список, чтобы пойти и купить радиодетали, но у многих все еще нет возможности закупить запчасти, и на помощь приходит старое сломанное радиооборудование. О том, как найти нужные радиодетали в старой технике и пойдет речь в этой статье.Я специально не буду описывать какую-либо конкретную схему, так как в одном устройстве невозможно охватить все разнообразие электронных компонентов. Также я не буду описывать принцип работы элементов, все это вы уже должны знать.

Пассивные компоненты

Резисторы

Самым распространенным элементом является резистор , без него невозможно построить любую схему. Встретить его можно практически в любом электронном устройстве, резистор представляет собой цилиндр с двумя диаметрально противоположными выводами.Он служит для ограничения тока в цепи и имеет определенное сопротивление, измеряемое в Ом. Обозначается прямоугольником с двумя черточками на противоположных сторонах, внутри прямоугольника обычно указывается мощность (рис. 1).

В бытовой технике используются резисторы с номиналами, расположенными по ряду Е24, это означает, что в диапазоне от 1 до 10 имеется 24 значения сопротивления. Типов резисторов много, вот самые распространенные:

Рис. 1. Обозначение резисторов. Тип MLT

Резисторы типа МЛТ (жаростойкий металл с лакированным покрытием) — часто встречаются в ламповом оборудовании (обычно не менее 0.12).

18 — 18 Ом, при обозначении единиц Ом букву иногда не ставят, в том числе на схемах.

Если номинальное сопротивление выражается целым числом с дробью, то единица измерения указывается через запятую.

1М5-1,5 МВт.

К51- 510 Ом, если перед цифрой стоит буква, значит сопротивление меньше килоом (мегаома), следующая цифра показывает сопротивление.

Далее в обозначении буква, обозначающая допуск в процентах: (Е = ± 0.001; L = ± 0,002; R = ± 0,005; Р = ± 0,01; U = ± 0,02; В (Ж) = ± 0,1; С (Y) = ± 0,25; D (D) = ± 0,5; F (P) = ± 1; G (L) = ± 2; J (U) = ± 5; К (С) = ± 10; M (B) = ± 20; N (Ф) = ± 30. Значение допуска может применяться к номинальному сопротивлению во второй строке и будет выражаться в процентах.

Резисторы типа ВС (водонепроницаемые) можно встретить в ламповой аппаратуре 60-70-х годов (рис. 2). А именно в радио и в черно-белых телевизорах. Практической ценности в настоящее время не несет. Маркировка аналогична МЛТ, имеет несколько габаритов в зависимости от мощности.


Рис. 2. Тип ВС

В середине 80-х годов появилась цветовая маркировка резисторов (рис. 3, рис. 4), которая существует и сегодня, что позволило быстро определить номинал без пайки из схемы (тоже под рукой, ищем желаемый резистор сильно разгонялся). Резисторы с такой маркировкой производятся многими отечественными и зарубежными компаниями, поэтому определить конкретный тип резистора очень сложно, а зачастую и не нужно.


Рис. 3. Резисторы с цветовой кодировкой


Рис. 4. Расшифровка цветовой маркировки резисторов

В таблице показан метод определения номинала резистора и класса точности. Класс точности показывает, на сколько процентов сопротивление может отличаться от заявленного номинального значения.

Для определения сопротивления цветных полосок можно использовать :.

В последнее время наметилась тенденция к минимизации, и начали появляться SMD-компоненты. Вот так называемые чип-резисторы (рис.3 = 12000 Ом = 12 кОм. Часто встречаются чип-резисторы с обозначением 0, это резистор нулевого сопротивления или просто перемычка.

Для построения усилителей, а точнее их выходных каскадов часто требуются силовые резисторы более 2 Вт с сопротивлением не более 1 Ом. Обычно это резисторы марки PE или PEV — проволочные резисторы мощностью от 1 до нескольких сотен ватт (рис. 7). Также самые современные из различных производителей (рис. 8). Можно встретить в старинных ламповых телевизорах, магнитолах и устройствах промышленной автоматики.При отсутствии необходимого резистора его можно изготовить самостоятельно из спирали от электронагревателя, отрезав необходимую длину, подобрав сопротивление омметром.



Рис. 7. Резисторы шить


Фиг. Восемь

Особое место среди постоянных резисторов занимают резисторные сборки (рис. 9), которые очень удобны при построении схем, где требуется много одинаковых резисторов.


Рис. 9. Резисторные сборки дип и smd

Сборки

имеют два типа подключения, либо в виде нескольких обычных резисторов, только в одном корпусе, либо резисторов с одним общим выводом.Можно встретить во многих цифровых устройствах, где они обычно используются в качестве подтягиваний.

В электронных устройствах часто используются резисторы с переменным сопротивлением, их можно разделить на переменных, — используется для быстрого изменения параметров устройства во время работы, таких как громкость, тембр, яркость, контрастность, — подстроечные резисторы — используются для настроить устройство при сборке и вводе в эксплуатацию.

Переменные резисторы:



Фиг.10. Переменные резисторы

.

Резисторы переменные рис.10:

1. Со встроенным тумблером можно встретить в ламповых телевизорах и в магнитоле 70-х годов
2. Резистор типа СП3-30а можно было встретить в телевизорах, ресиверах, абонентских громкоговорителях до 90-х годов выпуска. №
3. Резистор Сп-04, встречающийся в телевизорах и носимых магнитофонах 80-х годов.
4. СП3-4а в всей технике конца 80-х — начала 90-х годов. №
5. Специализированный квадроцикл с тумблером СП3-33-30, обычно встречается в различных типах магнитол.


Рис. 11. Ползунковые переменные резисторы

Ползунковые резисторы

(рис.11) часто встречаются в магнитофонах 80-90-х годов в качестве регуляторов звука и тона.


Рис. 12. Современные переменные резисторы

Более современные резисторы (рис. 12) можно встретить в любой импортной технике начала 90-х годов, от кассетных плееров и автомагнитол до телевизоров и музыкальных центров. Часто встречаются сдвоенные резисторы для регулировки звука сразу на двух каналах (стерео).Очень интересен последний резистор (на картинке), так называемый 3D резистор или джойстик. Он состоит из нескольких сочлененных резисторов и отслеживает движение ручки влево-вправо, вверх-вниз и вращение вокруг своей оси. Вы можете встретить такой экземпляр в джойстиках игровых приставок.

Для всех переменных резисторов, помимо сопротивления, есть очень важный параметр — зависимость сопротивления от угла поворота вала (линейное смещение), обозначаемая буквой после значения сопротивления:

Советский:
А — линейная зависимость
Б — логарифмическая зависимость
Б — обратная логарифмическая зависимость

Импортировано:
A — логарифм
B — линейный
C — обратный логарифм

Для регулировки громкости обычно используют резисторы с логарифмической зависимостью.

Подстроечные резисторы :



Рис. 13. Подстроечные резисторы СССР

Подстроечные резисторы Рис.13:
1,2,3 — обычно встречаются в старых ламповых телевизорах.
4.7 (РП1-64Б), 8 (СП3-29А) — в полупроводниковых цветных телевизорах
5 — во всей советской технике 80-х годов
6 — СП5-50МА — мощный проволочный резистор, в цветных ламповых телевизорах.
9 — многооборотный подстроечный резистор СП3-36, обычно используется в тюнере телеканала.


Фиг.14



Рис. 15. Резисторы многооборотные

Многооборотный подстроечный резистор, используемый в усилителях для установки тока покоя и во всех системах, где требуется точная настройка.

Все переменные и подстроечные резисторы также различаются по мощности, которая обычно указывается на корпусе или в документации на элемент. Практически любые из перечисленных могут быть применены к их конструкциям исходя из требуемых размеров и мощности.

Со временем и подстроечный резистор, и переменные резисторы выходят из строя, и возникает нежелательное явление, называемое шорохом.Это явление вызвано недостаточным прижатием (контактом) ползуна или износом подложки, как правило, нет смысла ремонтировать резисторы, хотя иногда встречаются очень редкие и уникальные (например, в большинстве микшерных пультов), которых нет. можно найти замену. В этом случае резистор нужно аккуратно разобрать, загнуть контакт, твердым карандашом восстановить графитовое покрытие и заново собрать силиконовой смазкой. Резистор после такой реанимации еще может служить.

Есть еще резисторы, которые реагируют на изменения окружающей среды, в любительских конструкциях мало используются, но все же стоит упомянуть: термисторы


Рис. 16. Термисторы

Применяются для термостабилизации схемы, встречаются очень часто, а в самодельных устройствах используются очень мало.


Рис. 17. Фоторезистор

Изменяет свое сопротивление в зависимости от света. Могут сниматься с любительских фотоаппаратов, где они используются как светочувствительный элемент.

Тензодатчики


Рис.18. Тензодатчики

Они меняют свое сопротивление в зависимости от деформации, очень редко встречаются в бытовой технике и обычно используются в виде датчиков в устройствах автоматики.

Варистор — это полупроводниковый резистор, сопротивление которого эффективно уменьшается под действием приложенного к нему напряжения, а ток, протекающий в цепи, увеличивается.


Рис. 19. Варисторы

Применяются как устройство защиты в импульсных блоках питания бытовой техники от перенапряжения.Встретить можно в любом современном устройстве.

Привет. Сегодня статья будет посвящена такому радиоэлементу, как резистор, или, как раньше его называли, сопротивление.

Основная задача резисторов — создание сопротивления электрическому току. Для большей наглядности представим себе электрический ток, как вода, текущая по трубе. В конце этой трубы установлен кран, который полностью откручивается, и он просто пропускает воду через себя. Как только мы начнем закрывать кран, мы сразу увидим, что поток слабее до того момента, когда поток воды полностью прекратится.

По этому принципу работают резисторы, только вместо трубы у нас электрический провод, вместо воды — ток, а вместо крана — резистор. Чем выше номинал резистора, тем больше сопротивление электрическому току. Сопротивление резистора измеряется единицей измерения, например ом.

Поскольку в схемах могут использоваться очень большие резисторы, номинальное значение которых может составлять около 1000-1000000 Ом, для упрощения расчетов используются производные единицы, такие как кОм , МОм и гом .

Для лучшего понимания этих единиц, вот следующая расшифровка:

1 кОм = 1000 Ом;

1 мОм = 1000 кОм;

1 гОм = 1000 мОм;

На практике все очень просто. Если ударить резистор с надписью 1.8 кОм, то, не сложив расчетов, увидим, что номинал в Ом будет 1800 Ом.

По принципу действия резисторы делятся на постоянных и переменных .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные резисторы могут изменять свой номинал во время работы и используются для выполнения какой-то настройки. Примером использования переменных резисторов могут быть ручки регулировки громкости, тембра на магнитофонах.

Постоянные резисторы

Поговорим подробнее о постоянных резисторах. На практике обозначение номинальных резисторов наносят на корпус.Это может быть буквенно-цифровой код или цветные полосы (). Как узнать номинал по цветовой маркировке резистора, можно узнать из этого.

Что касается буквенно-цифрового обозначения, то его обычно обозначают так:

  1. Letter R Omah . Положение этого письма очень важно. Если резистор типа надит 12 R тогда резистор будет 12Ом . Если буква в начале R 12 , тогда сопротивление будет 0.12 Ом . Также возможно обозначение типа. 12 R1 , что означает 12,1 Ом.
  2. Буква К — означает, что резистор будет мерять от до Ом . Применяются те же правила, что и в предыдущем примере. 12 K = 12кОм K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква M — означает, что резистор будет измеряться в м Ом . 12 M = 12 мОм, M 12 = 0,12 мОм и 12M1 = 12,1 мОм.

Также на корпусе резистора обозначить такую ​​величину, как отклонение от номинала . В случае массового производства сопротивлений из-за несовершенства технологий производства сопротивления могут иметь некоторые отклонения от заявленного значения. Это возможное отклонение указано на корпусе резистора как ± 0,7% или ± 5%. Цифры могут быть разными, в зависимости от способа производства.

В процессе работы при высоких нагрузках резистор выделяет тепло. Если в цепь питания больших нагрузок поместить маломощный резистор, то он быстро нагреется и сгорит. Чем больше резистор, тем больше его мощность. На рисунке ниже показано обозначение силовых резисторов на схемах.

Обозначение силовых резисторов на схеме

Переменные резисторы

Как упоминалось ранее, переменные резисторы используются для плавной регулировки тока и напряжения в пределах номинала резистора.Переменные резисторы конструкции и регулировочные . Через подстроечные резисторы осуществляются постоянные нестандартные настройки оборудования (регулировка звука, яркости тембра и др.), А строительная техника используется для настройки оборудования в режиме настройки при сборке оборудования. Для регулировки резисторов допустимо иметь удобную ручку, а вот строительные обычно регулируются отверткой.



Если на переменном резисторе указано, что он имеет номинал 10 кОм , это означает, что он выполняет регулировки в диапазоне от 0 перед 10 кОм .В среднем положении рукоятки ее номинал будет примерно 5 кОм , крайний 0 или 10 кОм .

Мы продолжаем нашу серию справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах , они присутствуют в любой электронной схеме, даже самой простой. Они делятся на два типа: переменные и константы. Обычные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0,125 до 2 Вт. Если быть более точным, это серия из 0.125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт. Конечно, есть более мощные резисторы, например проволочные, но в электронных схемах они используются редко. На рисунке ниже показан внешний вид и размеры резисторов, а также их обозначения на принципиальных схемах.

Из них наиболее часто используются в электронике резисторы мощностью от 0,125 до 0,5 Вт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0,1-1%. Есть более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется.Если резистор может изменять сопротивление — это называется переменным (или подстроечным). Фото переменных резисторов:


Переменные резисторы тоже встречаются. Wire и nonwire Wire Wire обычно рассчитаны на большую мощность. Непроволочное устройство переменного резистора можно увидеть на картинке:


Резистор устроен следующим образом, на основе гетинакса нанесен слой сажи, смешанный с лаком, в виде дуги.Этот резистор между первым и вторым контактами (на рисунке), другими словами, между крайними выводами, сопротивление постоянное, а между средним и крайним выводами изменяется при повороте ручки резистора. К этому слою с сопротивлением прикреплен подвижный контакт, который подключен к центральному выводу. Очень часто при интенсивном использовании регулятора этот слой сажи истирается, и сопротивление резистора при повороте ручки резистора резко изменяется, иногда даже становясь больше максимального установленного значения.Из-за этого износа и из динамиков появляется шорох и треск, а иногда при сильном износе звук пропадает полностью. Переменные резисторы бывают как одинарными, так и сдвоенными, сдвоенные обычно используются в устройствах со стереозвуком. Также к переменным резисторам относятся подстроечные резисторы:


Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отверткой. Также переменные резисторы бывают однооборотные и многооборотные.Схематическое изображение переменного и подстроечного резистора на рисунке ниже:


На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка нанесена цветными кольцами, первые два кольца кодировали номинал , третье кольцо — умножитель, четвертое кольцо — допуск резистора (для обычных неточных резисторов).


Имеется маркировка с более чем четырьмя кольцами, расшифровать маркировку поможет следующий рисунок:

Иногда возникает необходимость узнать номинал резистора и по цветовым причинам. по каким-то причинам это сделать сложно.В этом случае нужно обратиться к концепции устройства. В таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы не указаны), 100 К означает 100 кОм, 2 МОм означает 2 МОм. Иногда при сборке какой-либо схемы желаемого номинала нет под рукой, но есть много резисторов других номиналов, в этом случае резисторы последовательного или параллельного включения. Формулы счета всем известны из учебников физики, но если кто забыл, приведу здесь:

При последовательном подключении


При параллельном подключении


В последнее время многие переходят на SMD-детали, из которых наиболее распространены резисторы типоразмеров 0805 и 1206.Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра — количество нулей. Пример : маркировка 332 , значит 33 плюс два нуля, получается 3300, то есть 3,3 кОм. Реже встречается в электронике, но все же используются термисторы и фоторезисторы. На рисунке ниже показана схема термисторов:

В термисторах сопротивление зависит от температуры.Если сопротивление термистора увеличивается с повышением температуры, температурный коэффициент сопротивления TKS положительный, но если сопротивление уменьшается с повышением температуры, TKS отрицательный. Термистор изображен ниже:


На следующем рисунке показан фоторезистор, как он изображен на схемах:


Это полупроводниковый прибор, сопротивление которого изменяется под действием света.


Фоторезисторы особенно широко используются в устройствах автоматизации.Приведу типичную схему включения полупроводникового фотоприемника:


Обсудить статью РЕЗИСТОРЫ

Цветовые коды резисторов

и идентификация компонентов

Полосы цветового кода резисторов


и идентификация других компонентов

Цветовой код резистора Обозначение

Хотя эти коды чаще всего связаны с резисторами, они также могут применяться к конденсаторам и другие компоненты.

Стандартный метод цветовой кодировки резисторов использует разные цвета для обозначения каждого числа от 0 до 9: черный, коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.На 4-полосном резисторе первые два полосы представляют собой значащие цифры. На полосах 5 и 6 первые три полосы являются значащими цифрами. Следующая полоса представляет собой множитель или «декаду». Как и в приведенном выше примере с 4 полосами, первые две полосы красные и пурпурные, обозначающие 2 и 7. Третья полоса оранжевая, обозначающая 3, что означает 10 3 или 1000. Это дает значение 27 * 1000 или 27000 Ом. Золотая и серебряная декадные полосы делятся на степень 10, с учетом значений менее 10 Ом.Резисторы 5 и 6 диапазонов работают точно так же, как резисторы 4 диапазона. Они просто добавляют еще одну значащую цифру. Полоса после декады — это толерантность. Это говорит о том, насколько точно сопротивление по сравнению с его спецификацией. 4-полосный резистор имеет допуск на золото или 5%, что означает, что истинное значение резистора может составлять 5%. более или менее 27000 Ом, допустимые значения от 25650 до 28350 Ом. Последняя полоса на 6-полосном резисторе — это температурный коэффициент резистора, измеряемый в PPM / C или частей на миллион на градус Цельсия.Коричневые (100 PPM / C) являются наиболее популярными и подходят для большинства разумный температурный режим. Остальные специально разработаны для критических температурных приложений.

Обозначение буквенно-цифрового кода

Из-за того, что размеры резисторов и других компонентов уменьшаются или меняют форму, становится все больше. сложно уместить все цветные полосы на резисторе. Следовательно, более простая буквенно-цифровая система кодирования используется. В этом методе используются три числа, иногда за которыми следует одна буква.Цифры представляют то же, что и первые три полосы на 4-полосном резисторе. В приведенной выше сети SIL 4 и 7 являются значащие цифры, а 3 — декада, что дает 47 x 1000 или 47000 Ом. Буква после цифр это терпимость. Различные представления: M = ± 20%, K = ± 10%, J = ± 5%, G = ± 2%, F = ± 1%.

Соглашение об именах

Чтобы упростить запись больших номиналов резисторов, сокращения K и M используются для одной тысячи и один миллион. Чтобы сохранить стандарт соглашения, R используется для представления 0.Из-за проблем со зрением десятичная точка в некоторых печатных текстах, 3 буквы: K M или R используются вместо десятичной точки. Таким образом, резистор 2700 Ом записывается как 2K7, а резистор 6,8 Ом записывается как 6R8.

Серия E12

Они идентифицируют ряд резисторов, которые известны как «предпочтительные значения». В линейке E12 есть являются 12 «предпочтительными» или «основными» значениями резисторов, а все остальные — просто десятки значений этих значений:

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8 и 8.2

В таблице ниже перечислены все номиналы резисторов из диапазона предпочтительных значений E12. Вы заметите что есть 12 строк, содержащих основные значения резисторов, а в столбцах перечислены декады их значения. Этот диапазон обычно охватывает стандартные углеродные пленочные резисторы, которые не являются легко доступны при значениях выше 10 МОм — 10 МОм (10 миллионов Ом)

902 902 1202 12015 902 902 1R2 нет данных 902 902 902 902 180K 9014 9014 902 6R8 902 902
1R0 10R 100R 1K0 10K 100K 1M0 10M
1R2
1R5 15R 150R 1K5 15K 150K 1M5 нет данных
1M8 н / д
2R2 22R 220R 2K2 22K 220K 2M2 902 902 902 902 14 902 902 902 902 2K7 27K 270K 2M7 нет данных
3R3 33R 330R 3K3 33K 330K 3M3 н / д
3R9 39R 390R 3K9 39K 390K 902 902 902 902 902 902 902 470R 4K7 47K 470K 4M7 н / д
5R6 56R 560R 5K6 562 902 5K6 68R 680R 6K8 68K 680K 6M8 н / д
8R2 82R 82R 902 902 / a

Серия E24

Диапазон предпочтительных значений E24 включает все значения E12 плюс еще 12 для включения подбор более точных сопротивлений.В диапазоне E24 предпочтительные значения:

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2 и 9.1

В таблице ниже перечислены все номиналы резисторов из диапазона предпочтительных значений E24. Вы заметите что есть 24 строки, содержащие основные значения резисторов, и столбцы в правом списке их десятилетние значения. Чаще всего в этот диапазон входят резисторы с металлической пленкой, которые не легко доступны в значениях выше 1 МОм — 1M0.

11015 902 902 11R 1102 902 902 11R 902 562 902 902 902 910R 902 902 902 Также существуют таблицы E48 и E96, в которых есть еще больше значений.Резисторы в этих группы менее распространены и, как правило, имеют лучший рейтинг переносимости.

В таблице ниже показаны цветовые коды для предпочтительных значений E12 и E24. Обратите внимание, как первые два цвета в каждой строке одинаковы, и последний цвет в каждом столбце одинаков. Каждый столбец — декада, и каждая строка в этом столбце представляет собой другое значение E24.

Резисторы

| Закон Ома | Учебник по электронике

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько регулярное, мы можем надежно контролировать любую переменную в цепи, просто управляя двумя другими.Возможно, самой простой переменной в любой цепи для управления является ее сопротивление. Это можно сделать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, производятся специально для создания точного количества сопротивления для вставки в цепь. Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды.

В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку электрическая энергия рассеивается ими в рабочем контуре. Однако, как правило, резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и значения на схеме резистора

Наиболее распространенным условным обозначением резистора на схеме является зигзагообразная линия:

Значения резисторов в омах обычно отображаются как смежные числа, и если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, например R 1 , R 2 , R 3 и т. Д. .Как видите, символы резисторов могут отображаться как по горизонтали, так и по вертикали:

Реальные резисторы не похожи на зигзагообразный символ. Вместо этого они выглядят как маленькие трубки или цилиндры с двумя торчащими проводами для подключения к цепи. Вот образцы резисторов разных типов и размеров:

В соответствии с их внешним видом, альтернативное схематическое обозначение резистора выглядит как небольшая прямоугольная коробка:

Можно также показать, что резисторы

имеют переменное, а не фиксированное сопротивление.Это может быть сделано с целью описания реального физического устройства, разработанного с целью обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто случайно имеет нестабильное сопротивление:

Фактически, каждый раз, когда вы видите символ компонента, нарисованный через диагональную стрелку, этот компонент имеет переменную, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным условным обозначением электронных символов.

Переменные резисторы

Переменные резисторы должны иметь какие-либо физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать для изменения величины электрического сопротивления. На фотографии показаны некоторые устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию, поскольку электрические токи через них преодолевают «трение» их сопротивления, резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждений.Естественно, эта номинальная мощность указывается в физических единицах измерения «ватты». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше.

Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резистора, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная рассеиваемая мощность. Также обратите внимание, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое ничего не делает, кроме сопротивления электрическому току, резисторы — чрезвычайно полезные устройства в схемах.

Поскольку они просты и широко используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и батарей.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов, рассмотрите фотографию ниже. Это изображение печатной платы или печатной платы: сборка, состоящая из прослоенных слоев изоляционной фенольной волокнистой платы и проводящих медных полос, в которые можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой».”

Различные компоненты на этой печатной плате обозначены печатными этикетками. Резисторы обозначаются любой этикеткой, начинающейся с буквы «R».

Эта конкретная печатная плата представляет собой компьютерный аксессуар, называемый «модемом», который позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть как минимум дюжину резисторов (все с мощностью рассеиваемой мощности 1/4 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами») также содержит собственный массив резисторов для своих внутренних функций.Другой пример печатной платы показывает резисторы, упакованные в еще меньшие блоки, называемые «устройствами для поверхностного монтажа».

Эта конкретная печатная плата является нижней стороной жесткого диска персонального компьютера, и снова припаянные к ней резисторы обозначены этикетками, начинающимися с буквы «R»:

На этой печатной плате более сотни резисторов для поверхностного монтажа, и это количество, конечно, не включает количество резисторов, встроенных в черные «микросхемы».Эти две фотографии должны убедить любого, что резисторы — устройства, которые «просто» препятствуют прохождению электрического тока, — очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

На схематических диаграммах символы резисторов иногда используются для иллюстрации любого общего типа устройства в цепи, выполняющего что-то полезное с электрической энергией. Любое неспецифическое электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схематическую диаграмму, показывающую символ резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей некоторые концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ цепей резисторов

Чтобы обобщить то, что мы узнали в этом уроке, давайте проанализируем следующую схему, определив все, что мы можем, исходя из предоставленной информации:

Все, что нам здесь дано для начала, — это напряжение батареи (10 вольт) и ток цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Изучая наш массив уравнений закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных величин напряжения и тока:

Подставляя известные величины напряжения (E) и тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

Для условий цепи 10 В и 2 А сопротивление резистора должно быть 5 Ом.Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы указать резистор с минимальной номинальной мощностью 20 Вт, иначе он перегреется и выйдет из строя.

Материалы резистора

Резисторы

могут быть изготовлены из самых разных материалов, каждый из которых имеет свои свойства и специфические области применения. Большинство инженеров-электриков используют указанные ниже типы:

Резисторы с проволочной обмоткой
Резисторы с проволочной обмоткой

изготавливаются путем наматывания резистивного провода вокруг непроводящего сердечника по спирали.Обычно они производятся для высокоточных и силовых приложений. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивный провод из никель-хромового сплава не подходит для приложений с частотами выше 50 кГц.

Низкий уровень шума и устойчивость к колебаниям температуры являются стандартными характеристиками проволочных резисторов. Доступны значения сопротивления от 0,1 до 100 кОм с точностью от 0,1% до 20%.

Резисторы металлопленочные

Нитрид тантала или нихрома обычно используется для изготовления металлопленочных резисторов.Комбинация керамического материала и металла обычно составляет резистивный материал. Значение сопротивления изменяется путем вырезания спирального рисунка в пленке, очень похоже на углеродную пленку с помощью лазера или абразива. Металлопленочные резисторы обычно менее устойчивы к температуре, чем резисторы с проволочной обмоткой, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлических пленочных резисторов.Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. Из-за этого металлооксидные пленочные резисторы используются в приложениях, требующих высокой прочности.

Фольгированные резисторы

Разработанный в 1960-х годах резистор из фольги по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете и используются в приложениях с высокими требованиями к точности. Керамическая подложка, к которой приклеена тонкая объемная металлическая фольга, составляет резистивный элемент.Фольговые резисторы имеют очень низкотемпературный коэффициент сопротивления.

Резисторы из углеродного состава (CCR)

До 1960-х годов резисторы из углеродного состава были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Смесь мелких частиц углерода и непроводящего керамического материала используется для резистивного элемента резисторов CCR.

Вещество формуют в форме цилиндра и запекают.Размеры корпуса и соотношение углерода и керамики определяют величину сопротивления. Больше углерода, используемого в процессе, означает меньшее сопротивление. Резисторы CCR по-прежнему полезны для определенных приложений из-за их способности выдерживать импульсы высокой энергии, хорошим примером применения может быть источник питания.

Углеродистые пленочные резисторы

Углеродные пленочные резисторы имеют тонкую углеродную пленку (со спиралью, вырезанной в пленке для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике.Это позволяет получить более точное значение сопротивления, а также увеличивает значение сопротивления. Резисторы из углеродной пленки намного точнее, чем резисторы из углеродной композиции. Специальные углеродные пленочные резисторы используются в приложениях, требующих высокой импульсной стабильности.

Ключевые показатели эффективности (КПЭ)

Ключевые показатели эффективности для каждого материала резистора можно найти ниже:

1R0 10R 100R 1K0 10K 100K 1M0
1R1 11R 1R2 12R 120R 1K2 12K 120K нет
1R3 13R 130R 902 902 902 1302 1R5 15R 150R 1K5 15K 150K н / д
1R6 16R 160R 902 902 160R 902 902 902 902 151 1R8 18R 180R 1K8 18K 180K нет данных
2R0 20R 2 00R 2K0 20K 200K нет данных
2R2 22R 220R 2K2 22K 22015 902 902 902 902 902 902 240R 2K4 24K 240K нет данных
2R7 27R 270R 2K7 27K 27014 902 902 902 902 902 14 27014 902 902 902 902 902 902 300R 3K0 30K 300K н / д
3R3 33R 330R 3K3 33K 33015 902 902 902 902 902 902 902 14 902 153 360R 3K6 36K 360K нет данных
3R9 39R 390R 3K9 39K 390K н / д
4R3 43R 430R 4K3 43K 430K н / д
4715 4714 902 902 902 4R14 4714 902 902 902 н / д
5R1 51R 510R 5K1 51K 510K н / д
5R6 902 562
нет
6R2 62R 620R 6K2 62K 620K нет
6R8 6815 902 902 902 нет данных
7R5 75R 750R 7K5 75K 750K нет данных
8R2 82R 820R 8K2 82K 82OK нет данных
9R1 91R 910R 9K14 9K14
Характеристика Металлическая пленка Толстая металлическая пленка Прецизионная металлическая пленка Углеродный состав Углеродная пленка
Темп.диапазон -55 + 125 -55 + 130 -55 + 155 -40 + 105 ,55 + 155
Макс. темп. коэфф. 100 100 15 1200 250-1000
Vмакс. 200-350 250 200 350-500 350-500
Шум (мкВ на вольт приложенного постоянного тока) 0,5 0,1 0.1 4 (100 КБ) 5 (100 КБ)
R Insul. 10000 10000 10000 10000 10000
Припой (изменение значения сопротивления в%) 0,20% 0,15% 0,02% 2% 0,50%
Влажное тепло (изменение значения сопротивления в%) 0,50% 1% 0,50% 15% 3.50%
Срок годности (изменение значения сопротивления,%) 0,10% 0,10% 0,00% 5% 2%
Полный рейтинг (2000 ч при 70 ° C) 1% 1% 0,03% 10% 4%

ОБЗОР:

  • Устройства, называемые резисторами, созданы для обеспечения точного значения сопротивления в электрических цепях.Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (ватты).
  • Номинальное сопротивление резистора не может быть определено по физическому размеру резистора (ов), о котором идет речь, хотя приблизительные значения мощности могут быть определены. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет какую-либо полезную задачу с помощью электроэнергии, обычно называется нагрузкой. Иногда символы резисторов используются на принципиальных схемах для обозначения неспецифической нагрузки, а не для обозначения фактического резистора.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Попробуйте наш калькулятор цветового кода резистора в разделе «Инструменты » .

Как читать цветовые коды резисторов

Считывание цветовых кодов резисторов становится проще, если вы понимаете значение и математические расчеты каждой полосы, используемой для обозначения значения сопротивления, допуска, а иногда даже температурного коэффициента. Мы создали простую диаграмму, чтобы объяснить вам цветовую кодировку резисторов.

Резисторы

доступны в различных номиналах, формах и физических размерах. Практически все резисторы с выводами с номинальной мощностью до одного ватта имеют рисунок из цветных полос, который используется для обозначения значения сопротивления, допуска, а иногда даже температурного коэффициента. На корпусе резистора может быть от трех до шести цветных полос, причем четыре полосы являются наиболее распространенным вариантом. Первые несколько полос всегда представляют собой цифры в значении сопротивления.Затем вы найдете полосу множителя, чтобы обозначить перемещение десятичной дроби вправо или влево. Последние полосы представляют собой допуск и температурный коэффициент.

Самый популярный комплект резистора Arrow | Купить

Посмотреть связанный продукт

Давайте взглянем на таблицу цветовых кодов ниже и сразу же рассмотрим несколько примеров:

Скачать диаграмму.

Трех- или четырехполосные резисторы

Первые две полосы всегда обозначают первые две цифры значения сопротивления в Ом. На трех- или четырехполосном резисторе третья полоса представляет собой умножитель. Этот множитель в основном сдвигает десятичный разряд, чтобы изменить ваше значение с мегаом на миллиом и в любом другом месте. Четвертая цветная полоса обозначает толерантность. Имейте в виду, что если эта полоса отсутствует и вы смотрите на трехполосный резистор, допуск по умолчанию составляет ± 20%.

Пяти- или шестиполосный резистор

Резисторы

с высокой точностью имеют дополнительную цветовую полосу для обозначения третьей значащей цифры. Если ваш резистор имеет пять или шесть цветных полос, третья полоса становится этой дополнительной цифрой вместе с полосами один и два. Все остальное смещается вправо, в результате чего четвертая цветная полоса становится множителем, а пятая — допуском. Шестиполосный резистор — это, по сути, пятидиапазонный тип с дополнительным кольцом, указывающим надежность или температурный коэффициент (ppm / K).Например, если взять коричневый, наиболее распространенный цвет шестой полосы, каждое изменение температуры на 10 ° C изменяет значение сопротивления на 0,1%.

Общий цветовой код резистора Вопросы:

Как узнать, с какого конца резистора начинать считывание?
— Многие резисторы имеют некоторые цветные полосы, сгруппированные ближе друг к другу или сгруппированные по направлению к одному концу. Держите резистор с этими сгруппированными полосами слева от вас. Всегда считывайте резисторы слева направо.

— Резисторы никогда не начинаются с металлической полосы слева.Если у вас есть резистор с золотой или серебряной полосой на одном конце, у вас есть резистор с допуском 5% или 10%. Поместите резистор с этой полосой с правой стороны и снова прочитайте свой резистор слева направо.

— Значения базового резистора варьируются от 0,1 Ом до 10 МОм. Зная это, поймите, что на четырехполосном резисторе третий цвет всегда будет синим (106) или меньше, а на пятиполосном резисторе четвертый цвет всегда будет зеленым (105) или меньше.

Почему в моем высоковольтном резисторе не используются цвета металлик?
Золото и серебро заменены желтым и серым в высоковольтных резисторах, чтобы предотвратить попадание металлических частиц на внешнее покрытие.

Что такое резистор нулевым сопротивлением?
Резисторы с нулевым сопротивлением, легко распознаваемые по одной черной полосе, в основном представляют собой перемычки, используемые для соединения дорожек на печатной плате. Они упакованы как резисторы, поэтому то же автоматическое оборудование, которое используется для установки резисторов, также может быть использовано для их размещения на печатной плате. Такая конструкция исключает необходимость в отдельной машине для установки перемычки.

Есть ли необычный способ запомнить порядок цветов на диаграмме?
Хотя в Интернете есть несколько мнемоник, которые помогут вам запомнить порядок цветов для таблицы цветовых кодов резисторов, некоторые из них более приятны, чем другие.Другой способ сохранить цветовую диаграмму в памяти — представить черный цвет как отсутствие цвета, поэтому он равен «0», а белый — это комбинация всех цветов, так что это наивысшее значение, «9». В середине цветовой таблицы вы найдете стандартные цвета радуги в порядке от номеров от 2 до 7, так что в игру вступает ваш детский акроним ROY-G-BIV, за вычетом цвета индиго. Просто помните, что коричневый цвет соответствует черному и красному, как цифра «1», а серый — между фиолетовым и белым, как цифра «8», и вы поняли!

Что такое диапазон «надежности»?
Резисторы, рекомендованные военными, часто включают дополнительную полосу на четырехполосных резисторах, чтобы указать надежность или частоту отказов (%) на 1000 часов работы.Это редко используется в коммерческой электронике.

История резистора

Резисторы являются основным компонентом электрических цепей. Ранние ученые пришли к пониманию концепции сопротивления вскоре после того, как они провели тесты для определения результатов прохождения электричества через все виды материалов и впоследствии обнаружили электрический ток. В то время как медь, золото и алюминий оказались отличными проводниками , с низким сопротивлением, воздух, слюда и керамика считались резисторами из-за их способности значительно ограничивать поток электрического тока.Хотя люди в отрасли знали об их фундаментальных возможностях в течение десятилетий, надежный резистор в том виде, в каком мы знаем его сегодня, появился только в 1961 году, когда Отис Бойкин создал недорогой и надежный резистор, который позволял передавать точное количество электричества. компонент. Благодаря его открытиям резисторы стали менее подвержены воздействию экстремальных температур и ударов, и, наконец, стало возможным их экономичное производство. Когда военные США, IBM и многие производители бытовой электроники разместили заказы на новый резистор Бойкина, они стали использоваться во всем, от бытовой техники и компьютеров до управляемых ракет.

Резисторы

широко используются в современной электронике. Как пассивные устройства они рассеивают мощность, но никогда не обеспечивают ее. У них есть много применений в схемах, таких как, например, регулирование потока тока на светодиоды или управление величиной напряжения, достигающего активного устройства, такого как транзистор. Резисторы могут использоваться для оконечной нагрузки линии передачи и предотвращения отражений или в качестве подтягивающего или понижающего резистора на GPIO микроконтроллера для повышения стабильности системы. Совместное использование резистора и конденсатора может создать источник синхронизации, необходимый для световых мигалок или электронных схем сирены.«Последовательное соединение» резисторов, соединенных последовательно, может создать делитель напряжения, полезный для компонентов, которым необходимо работать при меньшем напряжении, чем напряжение, подаваемое на вход.

Теперь, когда вы знаете основы резисторов и приемы считывания их цветовых кодов, выходите и поразите всех своих друзей!

Хотите узнать больше? Посмотрите наше видео о том, как снижение номинальных характеристик резистора влияет на вашу конструкцию, а также ознакомьтесь с законом Ома и основами резисторной технологии.

Популярные резисторы

Посмотреть связанный продукт
Посмотреть связанный продукт
Посмотреть связанный продукт

Электронные компоненты — резисторы | FDA

[Предыдущая глава] [Содержание] [Следующая глава]

ОТДЕЛЕНИЕ.ЗДРАВООХРАНЕНИЯ, ОБРАЗОВАНИЯ И
WELFARE ОБЩЕСТВЕННАЯ СЛУЖБА ЗДРАВООХРАНЕНИЯ
УПРАВЛЕНИЕ ПРОДУКТАМИ И НАРКОТИКАМИ
* ORA / ORO / DEIO / IB *

Дата: 16.01.78 Номер: 31
Смежные программные области:
Радиологическое здоровье


ITG ТЕМА: ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ — РЕЗИСТОРЫ

Этот ITG был написан для ознакомления исследователя с одним из электронных компонентов, обычно используемых в медицинских устройствах.Этот ITG охватывает теорию, применение и тестирование резистора, а также некоторые конструктивные особенности, которые следует учитывать при использовании резисторов. Если к этому подходу проявится достаточный интерес, дополнительные компоненты будут рассмотрены в будущих выпусках ITG.

Теория

Резисторы

— это устройства, специально изготовленные для обеспечения постоянного или переменного сопротивления, подходящего для конкретной области применения электрической цепи. Функцию резистора или сопротивления можно просто объяснить, используя аналогию между переменным резистором в последовательной цепи с дополнительными постоянными резисторами и клапаном в ватерлинии.Предположим, что у нас есть единственный регулируемый клапан в водопроводе, подключенном к источнику воды под некоторым давлением. Как вы знаете, мы можем уменьшить или увеличить поток воды через линию, частично закрывая или открывая клапан. Точно так же, если у нас есть регулируемое сопротивление в электрической цепи, мы можем эффективно уменьшить или увеличить ток в цепи, увеличивая или уменьшая сопротивление цепи. Давление воды в водопроводе аналогично напряжению в электрической цепи. По мере того, как мы постепенно открываем водяной клапан, поток воды увеличивается, а перепад давления на клапане уменьшается до тех пор, пока не будет значительной разницы давлений между каждой стороной клапана, когда водяной клапан полностью открыт.Точно так же, когда мы уменьшаем сопротивление переменного резистора (открываем клапан), разность напряжений на резисторе уменьшается до тех пор, пока мы не достигнем конца сопротивления (где, по сути, происходит короткое замыкание), не будет заметной разницы напряжений на резисторе. резистор. Разница напряжения на резисторе в любой момент времени называется «падением напряжения». По мере того, как клапан постепенно закрывается, перепад давления на клапане увеличивается до тех пор, пока при полностью закрытом клапане и отсутствии потока воды перепад давления на клапане не станет таким же, как давление в источнике.Точно так же предположим, что у нас есть резистор, который можно настроить на очень большое значение. По мере увеличения сопротивления разность напряжений на сопротивлении увеличивается до тех пор, пока при максимальном значении резистора (представляющем разомкнутую цепь) ток через резистор практически не протекает, а напряжение на резисторе не будет таким же, как и на источнике напряжения. . Абсолютная достоверность приведенной аналогии зависит от других схемных факторов, но аналогия достаточно близка для нашего использования.

Вероятно, самая простая формула, которую нужно усвоить при работе с электричеством, — это закон Ома -.

Напряжение (В) = ток (I) X сопротивление (R)

Другой способ записать закон Ома —

Напряжение (В) Ток (I) = ————— Сопротивление (R)

Используя эту формулу, легко увидеть, что по мере уменьшения общего сопротивления (R) (при условии постоянного напряжения) ток (I) будет увеличиваться. И наоборот, с увеличением сопротивления ток будет уменьшаться.Соответственно, единицей измерения сопротивления являются омы. Напряжение — это электродвижущая сила, и в приведенных формулах иногда может обозначаться буквой «Е».

Заявление

Резисторы используются для обеспечения совместимости выхода одной схемы с входом другой (согласование импеданса), для введения сопротивления в электрическую или электронную схему, чтобы установить количество используемого тока (нагрузка), установить рабочие уровни напряжения и тока. для активных компонентов, таких как транзисторы (смещение), а также для ограничения протекания тока и снижения напряжения для многих других приложений.Регулятор громкости автомобильного радио, телевизора или стереосистемы представляет собой регулируемый резистор.

Типы резисторов

В зависимости от режима работы существует два основных типа резисторов; фиксированные и переменные. Как следует из названий, постоянный резистор имеет фиксированное значение, а переменный резистор можно изменять или настраивать на разные значения сопротивления. Условные обозначения для постоянных и переменных резисторов следующие:

(Обозначения)

(размер изображения 5 КБ)

Имеющиеся в продаже резисторы, обычно используемые в медицинских устройствах, можно подразделить на три основных типа в зависимости от технологии изготовления; композиция, проволока и пленка.Эти базовые технологии резисторов различаются по размеру, стоимости и электрическим характеристикам. Тип, который выбирается для конкретной конструкции, зависит от ограничений по размеру и необходимых электрических параметров, а также от среды, в которой, как ожидается, будет работать резистор. Некоторые из них лучше других для конкретных целей, ни один отдельный тип не обладает всеми лучшими характеристиками.

Состав — составные резисторы, вероятно, являются наиболее распространенными резисторами, которые изготавливаются путем объединения резистивного материала, такого как углерод, со связующим.Связующее используется для удерживания углерода вместе, так что ему можно формовать или придавать различные желаемые формы.

Из-за несоответствий в материалах и методах, используемых при производстве резисторов, все резисторы имеют указанное допустимое отклонение (указанное в процентах) изготовленного значения от указанного «номинального» значения при указанных условиях окружающей среды (обычно при 25 ° C). Это указанное отклонение называется «допуском». Каждый резистор имеет определенный диапазон допуска, в котором значение сопротивления может изменяться; где-нибудь примерно от 0.От 1% до 20% от номинальной стоимости. Большинство применений резисторов допускают отклонения допусков, но для резисторов, используемых в критических положениях, где необходим жесткий или ограниченный допуск сопротивления, любое изменение параметров, которое приводит к их отклонению за пределы выбранных значений, может привести к дефектному продукту (± 1% или меньше будет считаться жестким допуском).

Составной резистор считается резистором общего назначения. Обычно композиционные резисторы доступны с допуском от ± 5% до ± 20%.Составные резисторы не следует использовать в критических приложениях, где можно ожидать изменений окружающей среды. Воздействие влажности, температуры и давления, а также нормальное старение может привести к тому, что состав резистора может отличаться на ± 15% или более за пределами указанного диапазона допусков.

С проволочной обмоткой — резистор с проволочной обмоткой считается одним из самых стабильных резисторов с коммерчески доступными допусками до ± 0,1%. Проволочные резисторы конструируются путем наматывания резистивного провода вокруг изолированной формы и покрытия конечного продукта изоляционным материалом.

Пленка — Пленочные резисторы изготавливаются путем формирования тонкого слоя резистивного материала на изолированной форме. Наиболее часто используемые пленочные резисторы можно разделить на типы в зависимости от используемых материалов: углеродная пленка, металлический сплав и металлооксид. Один популярный металлопленочный резистор изготавливается путем нанесения металлической пленки на керамический цилиндр. Одним из обычно используемых материалов для этих резисторов является металлокерамика. Кермет представляет собой комбинацию керамических и металлических материалов, отсюда и название кермет.’

Одной из последних технологий пленочных резисторов является производство толстых и тонких пленочных резисторов, которые используются в микроэлектронных и гибридных схемах. Толстопленочные резисторы формируются путем нанесения резистивной металлической пасты или краски по трафарету на основу почти так же, как это делается при шелкографии. Обычно резистивные материалы считаются собственностью. Тонкопленочные резисторы образуются путем осаждения из паровой фазы тонкого слоя резистивного материала на основу. Толстые и тонкопленочные резисторы обычно подгоняются до определенного значения путем травления резистивного материала с помощью лазера, пескоструйной обработки и т. Д.

Большинство составных и проволочных фиксированных резисторов имеют цилиндрическую форму с осевыми выводами. Толстые и тонкопленочные резисторы производятся различных форм и размеров. Сети пленочных резисторов упаковываются в пластиковые двухрядные корпуса (DIP), однорядные пакеты (SIP), плоские корпуса и круглые металлические корпуса, идентичные тем, в которых упакованы интегральные схемы. Отдельные резисторы могут быть упакованы в виде чипов и таблеток. Микросхема в микроэлектронике — это любой небольшой (обычно квадратный или продолговатый) кусок материала, содержащий схему или компонент.Толстопленочные резисторы обычно используются в гибридных схемах, где они наносятся непосредственно на подложку схемы. Подложка — это крошечная платформа, на которой размещены схемы. Толстые и тонкопленочные резисторы нашли множество применений при разработке микроэлектроники, поскольку их можно сделать меньше, чем резисторы других сопоставимых типов. Пленочные резисторы часто используются в критических местах схемотехники. Их можно приобрести в готовом виде с минимальным допуском ± 0,1%, они мало изменяются в стоимости при изменении температуры и обычно стабильны при изменении влажности и давления.

Силовые резисторы — силовые резисторы должны пропускать большой ток и впоследствии рассеивать много тепла. Следовательно, они обычно больше, чем те, которые рассчитаны на меньшее количество тока. Силовые резисторы обычно заключены в материалы, которые способствуют отводу тепла, и обычно спроектированы таким образом, чтобы их можно было установить на радиаторе или шасси оборудования, чтобы облегчить отвод тепла за счет теплопроводности. Обычные силовые резисторы могут быть составными, проволочными или пленочными.

Переменные резисторы — Переменный резистор обычно называют «горшком»; имеется в виду потенциометр. Потенциометр содержит элемент из непрерывного резистивного материала со скользящим контактом, который пересекает элемент по круговой или прямой линии, в зависимости от типа потенциометра. Обычно он регулируется валом, соединенным с круговой шкалой или винтом с накатанной головкой, либо с помощью отвертки или регулировочного инструмента. Переменные резисторы могут быть проволочными, композиционными или пленочными. Маленькие прецизионные регулируемые резисторы называются «подстроечными резисторами» и используются для точной настройки в слаботочных приложениях.Переменные резисторы, которые сконструированы так, чтобы выдерживать большие значения тока или мощности, называются «реостатами» и обычно используются для регулировки скорости двигателя и температуры печи и нагревателя.

Резисторы

обычно имеют маркировку, указывающую номинал, допуск, а иногда и состав и рейтинг надежности. Рейтинг надежности выражается в процентах отказов на 1000 часов работы. Эти значения могут быть записаны на резисторах или могут иметь цветовой код, как показано на резисторе из углеродного состава на Рисунке 1.(Рис.) Цветовой код обычно представлен четырьмя или пятью цветными полосами (представленными вариациями цветовых оттенков на черно-белой фотографии) вокруг корпуса резистора. Интерпретация этого цветового кода приведена в таблице 1. Приведенный цветовой код является общим кодом военного стандарта для цветных полос или точек, используемых на электронных компонентах и ​​используемых большинством производителей.

На рис. 2 (рис.) Показаны некоторые типы резисторов, обычно используемых в схемах медицинских устройств. Как видите, металлические пленочные, проволочные и композиционные резисторы слева выглядят практически одинаково.Это делает чрезвычайно трудным определение конструкции резистора простым наблюдением, если наблюдатель не знаком с продуктом производителя. Разница в размере в пределах каждой показанной группы резисторов связана с изменением номинальной мощности и ее значения. Обычно в резисторе одного типа, чем выше номинальная мощность (ватт), тем больше резистор. Например, номинальная мощность показанных резисторов из углеродного состава варьируется от 1/4 Вт (показано наименьшее значение) до 2 Вт (показано наибольшее значение). Но конкретная мощность в одном типе резистора может быть больше или меньше, чем такая же мощность у другого типа.Например, самый большой из показанных резисторов из углеродного состава составляет 2 Вт, в то время как мощность резистора с проволочной обмоткой, расположенного непосредственно над ним, составляет 3 Вт, хотя углеродный резистор немного больше, чем резистор с проволочной обмоткой.

Таблица I — Код цветовой маркировки (MIL-STD-1285A)

1-й цвет 2-й цвет 3-й цвет 4-й цвет 5-й цвет, отказ

Цвет 1-е число 2-е число Символ уровня допуска множителя

Черный 0 0 1 ± 20% L (как указано)

Коричневый 1 1 10 ± 1% M (1% / 1000)

Красный 2 2100 ± 2% P (0.1% / 1000)

Оранжевый 3 3 1,000 R (0,01% / 1000)

Желтый 4 4 10,000 S (0,001% / 1000)

Зеленый 5 5 100,000

Синий 6 6 1,000,000

Фиолетовый 7 7 10,000,000

Серый 8 8 —

Белый 9 9 —

Золото — — — ± 5%

Серебро — — — ± 10%

Определите значение, начиная с цвета, ближайшего к концу резистора. Если цвета равноудалены от обоих концов, начните с конца, наиболее удаленного от золотой или серебряной полосы (допуск).

(размер изображения 1 КБ)

Тестирование

Предлагаемые GMP для медицинских устройств потребуют, чтобы электронные компоненты, когда это необходимо, подвергались проверке, отбору образцов и тестированию на соответствие спецификациям. Если готовое устройство является критическим устройством, а резистор используется в критическом положении, предлагаемые GMP потребуют индивидуального тестирования критических партий резисторов либо 100%, либо на основе выборки. Следующие ниже тесты резисторов могут проводиться в плановом порядке производителями критических медицинских устройств.

Значение сопротивления — значение резистора измеряется с помощью омметра или резистивного моста, чтобы убедиться, что значение сопротивления находится в пределах допуска, указанного в технических характеристиках резистора. Номиналы резисторов обычно указываются в Ом (X1), Киломах (X1000) или МОмах (X1 000 000). Типичные допуски составляют от ± 0,1% до ± 20%.

Устойчивость к растворителям — некоторые фирмы проводят испытание на устойчивость к растворителям, чтобы убедиться, что маркировка компонентов не обесцвечивается или не удаляется при воздействии производственных чистящих растворителей.Испытание также проводится для проверки того, что растворители не повредят материал или отделку компонента.

Паяемость — Цель испытания на паяемость — определить, восприимчивы ли выводы компонентов к процессу пайки. В основном этот тест определяет, будет ли припой полностью прилипать к выводам компонентов.

Burn-in — Этот тест иногда проводится на толстых и тонкопленочных резисторах и цепях резисторов (см. ITG № 19).

Предлагаемые GMP потребуют, чтобы все инструменты, используемые для измерения приемлемости компонентов, были откалиброваны в соответствии с письменными процедурами.

Режимы отказа

Отказ резистора считается электрическим обрывом, коротким замыканием или радикальным отклонением от технических характеристик резистора. Виды отказов зависят от типа конструкции. Резистор фиксированного состава обычно выходит из строя в разомкнутой конфигурации при перегреве или чрезмерном напряжении из-за удара или вибрации.

Чрезмерная влажность может вызвать повышение сопротивления. Резистор переменного состава может изнашиваться после длительного использования, а изношенные частицы могут вызвать короткое замыкание с высоким сопротивлением.Резисторы с проволочной обмоткой могут иметь разомкнутые обмотки из-за перегрева или напряжения или короткое замыкание обмоток из-за накопления грязи, пыли, разрушения изоляционного покрытия или высокой влажности. Пленочные резисторы выходят из строя по тем же причинам, что и проволочная обмотка и состав, но также не работают из-за изменений в характеристиках резистивного материала, что приводит к уменьшению и увеличению значения сопротивления.

Соображения по конструкции

Следующая информация предоставлена, чтобы помочь исследователю в оценке отказов резисторов и правильного использования и встраивания резисторов в медицинское устройство.Это только рекомендации, поскольку нет официальных стандартов или правил, регулирующих эти области. Это некоторые из факторов, которые производитель должен учитывать на этапе проектирования, и если они не будут учтены, они могут легко привести к неисправному устройству.

При оценке правильного использования резисторов в конструкции температура является одним из наиболее важных факторов, поскольку перегрев является основной причиной отказа резистора. Влияние слишком большого количества тепла обычно не сразу, но если оно продолжительное, обычно приводит к ухудшению работы в течение определенного периода времени, пока в какой-то момент резистор не выйдет из строя, что обычно приводит к обрыву цепи.Если резистор является критическим компонентом, это может привести к катастрофическому отказу устройства, в которое он встроен.

Помимо воздействия окружающей среды, резисторы генерируют собственное внутреннее тепло, поскольку они оказывают сопротивление протеканию тока. Это внутреннее тепло представляет собой потерю энергии или мощности, которую резистор поглощает и рассеивает. Потери энергии измеряются в «ваттах», и каждый резистор оценивается в ваттах в зависимости от того, сколько мощности он может безопасно рассеивать.Эта «номинальная мощность» обычно устанавливается при температуре окружающей среды (обычно 25 ° C) и учитывает, насколько повысится внутренняя температура резистора при приложенной номинальной мощности.

Хотя большинство производителей электронных компонентов указывают электрические параметры своих продуктов при 25 ° C, очень немногие компоненты фактически работают при таких низких температурах после включения в работающее устройство. Это особенно верно в отношении цепей питания, например, используемых в источниках питания.Обычно электронные схемы медицинских устройств содержатся в каком-то корпусе. Комбинированное нагревание всех компонентов схемы внутри корпуса вскоре поднимает внутреннюю температуру воздуха намного выше 25 C. Часто резистор является основным источником этого тепла, особенно когда используются резисторы большой мощности, когда блоки питания являются частью устройства. . Когда резисторы должны пропускать значительные токи, их следует размещать с учетом воздействия их собственного тепла на соседние компоненты.Тепло от горячего резистора может вызвать преждевременный выход из строя соседнего пограничного компонента. Силовые резисторы, которые должны рассеивать много тепла, должны иметь надлежащий отвод тепла и располагаться таким образом, чтобы охлаждающий воздух свободно циркулировал вокруг резисторов. Радиаторы обычно представляют собой металлические приспособления с «ламелями» или «лопатками», на которых устанавливаются компоненты, способствующие отводу тепла от устройства за счет теплопроводности. Иногда компоненты монтируются непосредственно на металлический корпус устройства, и корпус действует как радиатор.Иногда в дополнение к радиаторам необходим охлаждающий вентилятор. Желательно, чтобы резисторы были установлены так, чтобы рассеиваемое тепло могло быть немедленно отведено, а не передано через другие компоненты. Электронный компонент, работающий в прохладной среде, прослужит намного дольше, чем горячий компонент, и надежность устройства будет повышена.

Когда в устройство встроены источники питания или генерируется высокое напряжение, на стадии проектирования прототипа следует проводить исследования «распределения тепла» внутри корпуса устройства.При измерении горячих точек или чрезмерных температур необходимо установить охлаждающие вентиляторы, вентиляционные отверстия, источники питания и т. Д., Чтобы исключить неблагоприятные условия.

Если медицинское устройство будет использоваться в операционной, где используются взрывоопасные газы, воспламеняемость резисторов может быть важным фактором, который следует учитывать. Если они нагреются достаточно сильно, некоторые резисторы действительно загорятся. Примером могут служить резисторы из углеродного состава, которые используются во всех электронных устройствах. Если воспламеняемость является фактором, проектировщик должен указать требования к устойчивости к воспламенению при заказе компонентов.

Все электронные компоненты, включая резисторы, следует устанавливать так, чтобы они не могли двигаться относительно выбранной монтажной базы. Большинство медицинских устройств подвержены вибрации и ударам, и при ненадежной установке компоненты могут замыкаться на соседние компоненты или провода, а соединения могут быть ослаблены или сломаны. Если компоненты, предназначенные для установки горизонтально к монтажной поверхности, должны стоять вертикально, выводы должны быть изолированы для предотвращения коротких замыканий.Компоненты также должны быть установлены так, чтобы предотвратить скопление грязи и влаги между проводниками, что может привести к короткому замыканию.

При проектировании электронного устройства необходимо учитывать изменения электрических параметров из-за других изменений окружающей среды и старения. Колебания могут привести к выходу ограниченных допусков критически важного компонента за установленные пределы, в результате чего медицинское устройство будет выходить за пределы его рабочих пределов.

Резистор — простой компонент, поскольку он не выполняет активных функций, и исторически он был самым надежным компонентом, используемым в электрических схемах.Но в последние несколько лет из-за экономической ситуации и увеличения стоимости материалов было введено множество резистивных материалов для использования в резисторах, особенно толстых и тонких пленках. Часто пользователь не знает идентичности используемых материалов, поскольку некоторые из них являются собственностью. Нельзя ожидать, что все резисторы будут надежно работать, если их надежность не будет подтверждена путем длительного использования в выбранном приложении или путем обширной квалификации и испытаний.

Артикул:

  1. MIL-STD-199B Выбор и использование резисторов
  2. MIL-STD-202E Методы испытаний электронных и электрических компонентов
  3. MIL-STD-1285A Маркировка электрических и электронных деталей

Общие типы резисторов

(размер изображения 11 КБ)

[Предыдущая глава] [Содержание] [Следующая глава]

Как правильно выбрать резистор (ы) для вашего проекта | Компоненты квеста

Как правильно выбрать резистор (ы) для вашего проекта

Резисторы

являются одними из самых распространенных среди всех электронных компонентов, но не все резисторы одинаковы.Резисторы изготавливаются из разных материалов и бывают разных типов. Каждый из них обладает уникальными свойствами, которые делают его более подходящим для конкретных приложений и менее чем идеальным для других приложений. Вот что вам нужно знать, чтобы выбрать подходящий резистор для вашего проекта.

Сопротивление

Основным критерием выбора резистора является его значение сопротивления. Резисторы продаются в стандартных диапазонах значений, установленных IEC (Международной электротехнической комиссией). Значения в каждом диапазоне следуют экспоненциальной кривой, сохраняя допуск в пределах заданного процента.Доступны нестандартные значения сопротивления, но они являются элементами специального заказа. Сообщите нам, если у вас есть какие-либо необычные значения сопротивления, которые вам нужны, и мы можем предоставить расценки на поставку необходимых вам деталей.

Допуск

Допуск — это величина, на которую сопротивление указанного резистора может отличаться от заданного значения. Большинство резисторов имеют допуск 5%, хотя легко доступны допуски 1%. Резисторы большой мощности имеют допуск 10% или даже 20%, хотя доступны прецизионные модели.Доступны высокоточные резисторы с допусками от 0,1% до 0,01% и ниже, но, как правило, они немного дороже по сравнению с базовым 5% -ным резистором. Резисторы с высокоточными допусками очень полезны для контрольно-измерительных приборов, прецизионных измерительных устройств и эталонных приложений, и это лишь некоторые из них.

Упаковка и установка

Резисторы

упаковываются по-разному и имеют разные способы монтажа. Для одноразовых приложений с ручной пайкой это не обязательно является большой проблемой.Если вы массово производите компьютерные микросхемы, то упаковка и стиль монтажа могут стать первоочередными задачами.

Вот некоторые распространенные пакеты:

  • Осевые выводы
  • Монтаж на поверхность
  • Радиальные выводы
  • Монтаж на проволоке

Номинальная рассеиваемая мощность

Поскольку функция резистора заключается в том, чтобы препятствовать прохождению тока, некоторая мощность рассеивается в виде тепла. Имеет ли это значение, зависит от размера резистора, размера устройства, в которое он помещен, и термостойкости устройства.Крошечный одиночный резистор в аналоговом устройстве вряд ли будет рассеивать достаточно мощности, чтобы быть заметным, в то время как группа больших резисторов, работающих на максимальной мощности, может выделять значительное тепло.

Номинальное напряжение

В физически небольших устройствах номинальное напряжение обычно низкое. В больших высоковольтных системах, как правило, лучше и безопаснее повышать напряжение цепи путем последовательного соединения нескольких резисторов, а не использования одного резистора с максимальным номинальным напряжением.

Резистивный материал

Не считая полупроводников, существует три основных типа резистивных материалов: композиционные, металлическая пленка и проволочная намотка. У каждого свои уникальные свойства:

Пленочные резисторы

изготовлены из токопроводящей пасты оксида металла на керамической подложке и вырезаны лазером для обеспечения жестких допусков. Благодаря низкому уровню шума и температурной стабильности пленочные резисторы идеально подходят для радиочастотных или высокочастотных применений.

Некоторые распространенные типы пленочных резисторов:

Резисторы с проволочной обмоткой изготавливаются путем наматывания проволоки из тонкого металлического сплава на изолирующую керамику.Обладая высокой номинальной мощностью и прецизионным низким сопротивлением, эти резисторы являются отличным выбором для измерительных цепей и радиаторов. В дополнение к сопротивлению некоторые из них также имеют индуктивность, создавая комбинированный эффект, известный как импеданс.

Некоторые распространенные типы проволочных резисторов:

Составные резисторы изготовлены из графита или угольной пыли, связанной с непроводящей керамической глиной. Они недорогие, малой и средней мощности, малой индуктивности и подходят для различных применений.Однако шум и стабильность становятся проблематичными, когда эти резисторы нагреваются.

Некоторые распространенные типы композиционных резисторов:

Диапазон температур

При нормальной температуре окружающей среды проверка рассеиваемой мощности резистора в порядке. Однако, если резистор будет работать при значительно повышенных температурах, важно смотреть на кривую снижения мощности рассеиваемой мощности. Чем ближе резистор к его максимально допустимой температуре, тем меньше мощности может рассеиваться.Это подвергает резистор и все устройство риску перегрева и выхода из строя.

Шум

Резисторы

могут подавлять три типа шума: дробовой шум, мерцающий шум и тепловой шум. Дробовой шум звучит как мчащаяся река, но, как правило, это очень низкий уровень неприятного белого шума. Мерцание шума более случайное и может быть гораздо более раздражающим. Составные резисторы имеют наибольший фликкер-шум, а резисторы большего размера имеют меньше резисторов того же типа.Тепловой шум становится проблемой при более высоких температурах, и резисторы с металлической пленкой, как правило, имеют меньше всего. В целом резисторы более низкого номинала создают меньше шума, чем резисторы более высокого номинала.

Выбор подходящего резистора для вашего проекта может быть сложной задачей. Лучше всего работать с профессионалом, который может дать вам необходимые рекомендации, чтобы вы действительно получили то, что вам нужно.

Готовы начать работу?

Здесь, в Quest Components, мы стремимся предоставить вам информацию, необходимую для того, чтобы ваш бизнес продолжал работать бесперебойно.Компания Quest Components, имеющая сертификат ISO 9001: 2015 со штаб-квартирой в промышленности, Калифорния, специализируется на пассивных и активных компонентах уровня платы. Мы также предоставляем различные услуги OEM-производителям (производителям оригинального оборудования) и CEM (контрактным производителям электроники) по всему миру. Свяжитесь с Quest Components сегодня по телефону 626-333-5858, чтобы получить все необходимые электронные компоненты!

Большой приклад. Быстрый ответ. Умные люди.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *