Обмотки трансформатора сделаны из провода разной толщины: Упражнение 5

Содержание

Эффективное использование электроэнергии

Самый естественный и единственный на первый взгляд способ — строительство новых мощных электростанций: тепловых, гидравлических и атомных. Однако строительство новой крупной электростанции требует нескольких лет и больших затрат. При этом тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ.

Одновременно они наносят большой ущерб экологическому равновесию на нашей планете. Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом. Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не росту мощности электростанций.

По этой ссылке вы найдёте полный курс лекций по математике:

Возможности для более эффективного использования электроэнергии имеются, и немалые. Одна из них связана с освещением, на которое тратится около 25% всей производимой электроэнергии. В настоящее время в США и других странах разработаны компактные люминесцентные лампы, которые потребляют на 80% меньше электроэнергии, чем лампы накаливания. Стоимость таких ламп значительно превышает стоимость обычных, но окупятся они быстро.

Наряду с этим самые простые меры по экономному применению освещения в домах и производственных помещениях способны дать немалый эффект. Не надо оставлять включенными без нужды лампы, следует стремиться к тому, чтобы освещались лишь рабочие участки и т.д. Имеется множество других возможностей повышения эффективности использования электроэнергии в быту: в холодильных установках, телевизорах, компьютерах и т. д.

Сэкономленные средства можно использовать для разработки устройств, преобразующих солнечную энергию в электрическую.

Большие надежды возлагаются учеными на получение энергии с помощью управляемых термоядерных реакций. Такие устройства не будут представлять столь большой опасности, как обычные атомные электростанции. УПРАЖНЕНИЕ 5 1. Как должны быть расположены изолированные друг от друга стальные пластины сердечника ротора индукционного генератора для уменьшения вихревых токов? 2.

Проволочная прямоугольная рамка вращается в однородном магнитном поле.

Возможно вам будут полезны данные страницы:

В каком случае наводимая в рамке ЭДС максимальна: когда плоскость рамки перпендикулярна линиям магнитной индукции или когда она параллельна им? 3. Обмотки трансформатора сделаны из провода разной толщины. Какая из обмоток содержит большее число витков? 4. Придумайте способ определения числа витков обмотки трансформатора, не разматывая катушку. 5. Что может произойти, если случайно подключить трансформатор к источнику постоянного тока?

6. Если в обмотке трансформатора замкнется один виток, трансформатор выходит из строя. Почему? 7.Найдите коэффициент трансформации всех понижающих трансформаторов, которые должны использоваться при передаче электроэнергии от генератора к потребителям в соответствии со схемой, приведенной на рисунке 102. (Потерями энергии можно пренебречь.)

Решите ту же задачу для повышающего

трансформатора. КРАТКИЕ ИТОГИ ГЛАВЫ 5 1. Электрический ток вырабатывается преимущественно электромеханическими индукционными генераторами. Эти генераторы превращают механическую энергию в энергию электрического тока. 2. Переменный электрический ток преобразуется с помощью трансформаторов. Трансформатор имеет две обмотки, надетые на стальной сердечник.

Его назначение состоит в увеличении или уменьшении напряжения при минимальных потерях энергии. Получаемое изменение напряжения определяется отношением числа витков N] в первичной обмотке к числу витков N2 во вторичной обмотке: 3. Во сколько раз увеличивается (уменьшается) напряжение, во столько же (приблизительно) раз уменьшается (увеличивается) сила тока: 4. Потери энергии в проводниках пропорциональны квадрату силы тока.

Передаваемая же мощность пропорциональна произведению силы тока на напряжение. Поэтому передачу электрической энергии по проводам выгодно осуществлять при высоком напряжении и малой силе тока. Трансформаторы на электростанциях повышают напряжение перед передачей энергии на большие расстояния. На конце линии электропередачи напряжение понижают с помощью трансформаторов, и электрический ток поступает к потребителям.

Самодельный станок для резки пенопласта – электрическая схема

Тепло и звукоизоляционные строительные материалы на рынке представлены в широком ассортименте, это вспененный полиэтилен, минеральная и базальтовая вата и многие другие. Но самым распространенным для утепления и звукоизоляции является экструдированный пенополистирол и пенопласт, благодаря высоким физико-химическим свойствам, простоте монтажа, малому весу и низкой стоимости. Пенопласт имеет низкий коэффициент теплопроводности, высокий коэффициент звукопоглощения, устойчив к воздействию воды, слабых кислот, щелочей. Пенопласт устойчив к воздействию температуры окружающей среды, от минимально возможной до 90˚С. Даже через десятки лет пенопласт не меняет своих физико-химических свойств. Пенопласт также обладает достаточной механической прочностью.

Пенопласт обладает еще очень важными свойствами, это пожароустойчивость (при воздействии огня пенопласт не тлеет как древесина), экологическая чистота (так как пенопласт сделан из стирола, то в таре из него можно хранить даже пищевые продукты). На пенопласте не возникают грибки и очаги бактерий. Практически идеальный материал для утепления и звукоизоляции при строительстве и ремонте домов, квартир, гаражей, и даже упаковки для хранения продуктов питания.

В магазинах строительных материалов пенопласт продается в виде пластин разной толщины и размеров. При ремонте зачастую нужны листы пенопласта разной толщины. При наличии электрического резака пенопласта всегда можно нарезать из толстой пластины листы нужной толщины. Станок также позволяет фигурную пенопластовую упаковку от бытовой техники превратить в пластины, как на фотографии выше, и успешно разрезать толстые листы поролона для ремонта мебели.

Как легко режется пенопласт на самодельном станке, наглядно демонстрирует видео ролик.

Всего просмотров: 70546

При желании сделать резак для пенопласта и поролона многих останавливает сложность с организацией подачи питающего напряжения для разогрева нихромовой струны до нужной температуры. Это препятствие преодолимо, если разобраться в физике вопроса.

Конструкция станка

Основанием приспособления для резки пенопласта послужил лист ДСП (древесно-стружечной плиты). Размер плиты нужно брать исходя из ширины пластин пенопласта, которые планируется разрезать. Я использовал дверку от мебели размером 40×60 см. При таком размере основания можно будет разрезать пластины пенопласта шириной до 50 см. Основание можно сделать из листа фанеры, широкой доски, закрепить струну резки непосредственно на рабочем столе или верстаке.

Натягивать нихромовую струну между двумя гвоздями предел лени домашнего мастера, поэтому я реализовал простейшую конструкцию, обеспечивающую надежную фиксацию и плавную регулировку высоты расположения струны в процессе резки над поверхностью основания станка.

Крепятся концы нихромовой проволоки за пружины, одетые на винты М4. Сами винты закручены в металлические стойки, запрессованные в основание станка. При толщине основания 18 мм, я подобрал металлическую стойку длиной 28 мм, из расчета, чтобы при полном вкручивании винт не выходил за пределы нижней стороны основания, а при максимально выкрученном состоянии обеспечивал толщину нарезки пенопласта 50 мм. Если потребуется нарезать листы пенопласта или поролона большей толщины, то достаточно будет заменить винты более длинными.

Чтобы запрессовать стойку в основание, сначала в нем просверливается отверстие, диаметром на 0,5 мм меньше, чем внешний диаметр стойки. Для того, чтобы стойки легко можно было забить молотком в основание, острые кромки с торцов были сняты на наждачной колонке.

Прежде, чем закручивать в стойку винт, у его головки была проточена канавка, чтобы нихромовая проволока при регулировке не могла произвольно перемещаться, а занимала требуемое положение.

Чтобы проточить в винте канавку, сначала его резьбу нужно защитить от деформации, надев пластиковую трубку или обернуть плотной бумагой. Затем зажать в патроне дрели, включить дрель и приложить узкий надфиль. Через минуту канавка будет готова.

Для исключения провисания нихромовой проволоки из-за удлинения при нагреве, она закреплена к винтам через пружины.

Подходящей оказалась пружина от компьютерного монитора, используемая для натяжения заземляющих проводников на кинескопе. Пружина была длиннее, чем требовалось, пришлось сделать из нее две, для каждой стороны крепления проволоки.

После подготовки всех крепежных деталей можно закреплять нихромовую проволоку. Так как ток при работе потребляется значительный, около 10 А, то для надежного контакта токоподводящего провода с нихромовой проволокой я применил способ крепления скруткой с обжатием. Толщину медного провода при токе 10 А необходимо брать сечением не менее 1,45 мм

2. Выбрать сечение провода для подключения нихромовой проволоки можно из таблицы. В моем распоряжении имелся провод сечением около 1 мм2. Поэтому пришлось каждый из проводов сделать из двух сечением 1 мм2, соединенных параллельно.

После снятия изоляции с концов проводов на длину около 20 мм, медные проводники навиваются на струну нихромовой проволочки в месте ее крепления к пружине. Затем, удерживая нихромовую проволочку за петлю плоскогубцами, сделанная обвивка медного провода овивается свободным концом нихромовой в противоположную сторону.

Такой способ соединения токоподводящего медного провода с нихромовым проводом обеспечит большую площадь их контакта и исключит сильный нагрев в месте соединения при работе станка для резки пенопласта. Это подтвердила практика, после продолжительной резки пенопласта, полихлорвиниловая оболочка токоподводящего провода не оплавилась, медный провод в зоне соединения не изменил своего цвета.

Для возможности регулировки толщины резки пенопласта на приспособлении, отвод токоподводящих проводников сделан с петлей. Чтобы провода не мешали при работе, они пропущены через отверстия в основании и закреплены на обратной его стороне скобками. По углам основания прибиты такие же скобки в качестве ножек.

Токоподводящие провода резака, чтобы не запутывались, свиты между собой. На концах проводов для подключения к источнику питания, запаяны накидные клеммы.

Выбор нихромовой проволоки

Нихромовая проволока по внешнему виду мало чем отличается от стальной проволоки, но сделана она из сплава хрома и никеля. Наиболее распространена проволока марки Х20Н80, содержащая 20% хрома и 80% никеля. Однако в отличие от стальной или медной проволоки, нихромовая проволока имеет большее удельное сопротивление и выдерживает, сохраняя, высокую механическую прочность температуру нагрева до 1200˚С. Нихромовая проволока выпускается диаметром от 0,1 мм до 10 мм.

Нихромовая проволока широко используется в качестве нагревательных элементов в бытовых и промышленных изделиях, таких как электрический фен, утюг, электроплитка, лучевые обогреватели, паяльники, водонагреватели и даже в электрочайниках. И это далеко не полный перечень. Так называемые нагреватели типа ТЭН тоже изготовлены из нихромовой проволоки, только спираль размещена в металлической трубке, которая заполнена для изоляции и передаче тепла от спирали к стенкам трубки, кварцевым песком. Привел перечень приборов не случайно, просто из вышедшего из строя нагревательного элемента можно взять нихромовую проволоку для изготовления станка, конечно, если она не успела перегореть от долгой работы.

Резка пенопласта на станке заключается в расплавлении его по линии прохода, разогретой нихромовой проволоки. Температура плавления пенопласта составляет около 270˚С. Чтобы пенопласт плавился при соприкосновении с проволокой, температура ее должна быт в несколько раз больше, так как тепло будет расходоваться не только на плавление, но и за счет теплопроводности поглощаться самим пенопластом, снижая температуру проволоки. Количество поглощаемого пенопластом тепла будет напрямую зависеть от его плотности. Чем плотнее пенопласт, тем больше потребуется тепловой энергии.

Из вышесказанного следует, что в зависимости от плотности пенопласта для его резки необходимо выбирать проволоку соответствующего диаметра, чтобы нихромовая проволока не расплавилась от выделяющегося на ней тепла. Чем выше плотность пенопласта, тем большего диаметра должна быть нихромовая проволока. Стоит заметить, что резаком, на котором установлена проволока для резки плотного пенопласта с успехом будет резаться и неплотный, только продвигать его надо будет быстрее.

Длина нихромовой проволоки для резака выбирается исходя из размеров пластин пенопласта, предназначенного для резки, и от плотности пенопласта не зависит.

В результате продведенных экспериментов, было определено, что для эффективной резки пенопласта мощность, которую необходимо подавать на единицу длины проволоки должна быть в пределах 1,5-2,5 Вт на сантиметр длины проволоки, для такого режим работы лучше всего подходит нихромовая проволока диаметром 0,5-0,8 мм. Она позволяет выделить достаточное количество тепла для быстрой резки пенопласта любой плотности, сохраняя при этом свою механическую прочность. Поэтому для изготовления станка для резки пенопласта была использована нихромовая проволока диаметром 0,8 мм.

Расчет параметров источника электропитания


для нагрева проволоки

Надо отметить, что для разогрева нихромовой проволоки станка для резки пенопласта подойдет источник электропитания как переменного тока, так и постоянного.

С учетом того, что на сантиметре длины проволоки нужно выделять мощность не более 2,5  ватта и длине проволоки 50 см, можно рассчитать мощность источника электропитания. Для этого нужно умножить величину выделяемой мощности на длину проволоки. В результате получается, что для разогрева проволоки станка для резки пенопласт понадобится источник электропитания мощность 125 Вт.

Теперь необходимо определить величину напряжения источника электропитания. Для этого нужно знать сопротивление нихромовой проволоки.

Сопротивление проволоки можно рассчитать по удельному сопротивлению (сопротивлению одного метра проволоки). Удельное сопротивление проволоки из нихрома марки Х20Н80 приведено в таблице. Для других марок нихрома значения отличаются незначительно.

Как видно из таблицы, для проволоки диаметром 0,8 мм удельное сопротивление составляет 2,2 Ом, следовательно, нихромовая проволока длинной 50 см, которая была выбрана для станка резки пенопласта, будет иметь сопротивление 1,1 Ом. Если выбрать проволоку диаметром 0,5 мм, то сопротивление отрезка проволоки длиной 50 см составит 2,8 Ом.

Воспользовавшись преобразованными формулами законов Ома и Джоуля – Ленца, получим формулу для расчета величины питающего напряжения для станка резки пенопласта. Величина питающего напряжения будет равна корню из произведения величины потребляемой мощности и сопротивления проволоки. Для упрощения расчета предлагаю онлайн калькулятор. Он выполняет расчет исходя из того, что на сантиметр длины проволоки необходима мощность 2,5 Вт. Для того, чтобы узнать какой нужен источник питания достаточно ввести в соответствующие поля длину нихоромовой проволоки и ее сопротивление, выбранное из таблицы.

В результате расчетов определено, что для нагрева нихромовой проволоки изготовленного станка необходим источник питания переменного или постоянного тока, выдающий напряжение 11,7 В, и обеспечивающий ток нагрузки 10,7 А, мощностью 125 Вт.

При уменьшении или увеличении длины проволоки, напряжение источника питания необходимо будет пропорционально уменьшить или увеличить соответственно. При этом величина тока не изменится.

Выполненный расчет является оценочным, так как не учтено переходное сопротивление в точках соединения проводов и сопротивление токоподводящих проводников. Поэтому оптимальный режим нагрева проволоки в конечном итоге приходится устанавливать непосредственно при резке пенопласта на приспособлении.

Электрические схемы источника электропитания

Подать питающее напряжение на нихромовую нить станка для резки пенопласта можно с помощью нескольких схем.

Схема с использованием ЛАТР

Наиболее простым вариантом источника электропитания станка для резки пенопласта является автотрансформатор с возможностью плавной регулировки выходного напряжения. Но эта схема имеет существенный недостаток, не имеет гальванической развязки с питающей сетью, так как выход ЛАТРа непосредственно соединен с электросетью. Поэтому при использовании ЛАТРа необходимо его подключать таким образом, чтобы общий провод был подключен к нулевому проводу питающей сети.

Электрическая схема подключения нихромовой спирали к ЛАТРу.

Что такое ЛАТР и как он устроен

Промышленностью выпускаются лабораторные автотрансформаторы, которые принято называть ЛАТР (лабораторный автотрансформатор регулируемый). Они подключаются непосредственно к бытовой электросети 220 В и в зависимости от типа ЛАТРа рассчитаны на различный ток нагрузки.

ЛАТР представляет собой тороидальный трансформатор с одной первичной обмоткой, по виткам которой при вращении расположенной сверху ручки, перемещается графитовое колесико, позволяющее снимать напряжение с любого участка обмотки. Таким способом на выходе ЛАТРа можно изменять напряжение от 0 до 240 В.

Провода к ЛАТРу подсоединяются с помощью клеммной колодки, на которой нарисована его электрическая схема и нанесены надписи «Сеть» и «Нагрузка». К клеммам «Сеть» подсоединяется шнур с вилкой, для подключения к бытовой сети. К клеммам «Нагрузка» подключается изделие, которое нужно запитать напряжением, отличным от бытовой электросети.

Внимание! Один из сетевых проводов, нижние клеммы на фото, соединен непосредственно с одним из проводов нагрузки. Таким образом, если на нижний вывод попадет фаза, то прикосновение к этой цепи может привести к поражению электрическим током.

Поэтому, в случае использования ЛАТРа для нагрева нихромовой проволоки станка резки пенопласта без развязывающего трансформатора, необходимо обязательно индикатором фазы проверить отсутствие фазы на общем проводе. Если на нем фаза, вынуть питающую ЛАТР вилку из розетки и, развернув ее на 180 градусов, опять вставить. Повторно проверить нижний провод на предмет наличия фазы.

Обычно на корпусе ЛАТРа имеется этикетка, на которой приводятся данные по его нагрузочной способности. На ЛАТРе, который изображен на фотографии, этикетка установлена непосредственно на регулировочной ручке.

Из этикетки следует, что это ЛАТР типа ЛОСН, выходное напряжение можно регулировать в диапазоне от 5 до 240 вольт, максимальный ток нагрузки составляет 2 А.

Если расчетный ток не превышает 8 А, то вполне можно запитать нихромовую проволоку через ЛАТР типа РНО 250-2.

Этот ЛАТР позволяет подключать нагрузку с током потребления до 8 А, но учитывая кратковременность работы приспособления для резки пенопласта, вполне выдержит ток нагрузки и 10 А.

Перед использованием ЛАТРа в качестве источника питания, необходимо проверить его работоспособность. Для этого нужно подключить к клеммам «Сеть» ЛАТРа сетевой шнур, а к клеммам «Нагрузка» мультиметр или стрелочный тестер, включенный в режим измерения переменного напряжения, на предел не менее 250 В. Установить ручку регулировки напряжения ЛАТРа в положение минимального напряжения. Вставить вилку в розетку.

Медленно поворачивая ручку ЛАТРа по часовой стрелке убедиться, что выходное напряжение увеличивается. Вернуть ручку ЛАТРа в нулевое положение. Вынуть вилку из сети и подключить провода, идущие от нихромовой нити к клеммам «Нагрузка». Вставить вилку сетевого шнура в розетку и индикатором фазы проверить отсутствие фазы на нихромовой проволоке. Разобравшись с фазой, можно, медленно поворачивая ручку ЛАТРа подать напряжение на нихромовую проволоку. При этом нужно учесть, что проволока нагревается постепенно, в течение нескольких секунд.

Внимание! Категорически запрещается прикасаться к проволоке рукой для проверки степени ее нагрева, когда на нее подано питающее напряжение! Температура проволоки очень высокая и можно получить ожог!

Когда проволока нагреется до чуть заметного свечения, можно приступать к резке пенопласта на станке.

Схема с использованием ЛАТР и понижающего трансформатора

Если величина тока, потребляемого нихромовой проволоки будет больше, чем может обеспечить ЛАТР, то придется дополнительно после него включить понижающий трансформатор по, ниже приведенной электрической схеме.

Как видите, в отличие от предыдущей схемы, к выходу ЛАТРа подключена сетевая обмотка силового трансформатора, нихромовая спираль подсоединена к вторичной выходной обмотке трансформатора. В этой схеме, благодаря развязывающему понижающему трансформатору, нихромовая спираль гальванически не связана с электрической сетью и поэтому безопасна для эксплуатации. В дополнение появилась возможность более плавной регулировки выходного напряжения и следовательно более точной установки температуры резки пенопласта на станке.

Мощность трансформатора и напряжение на его вторичной обмотке берется на основании расчетов, выполненных по выше приведенной методике. Например, для предложенной конструкции станка для резки пенопласта, при диаметре нихромовой проволоки 0,8 мм и длине 50 см, источником электропитания послужил ЛАТР с выходным током 2 А с включенным после него понижающим трансформатором мощностью 150 Вт с напряжением на вторичной обмотке 12 В.

Схема с использованием понижающего трансформатора с отводами вторичной обмотки

Для электропитания нихромовой спирали резака для пенопласта можно применить трансформатор с отводами во вторичной обмотке. Это самый простой, надежный и безопасный вариант, особенно если станок для резки пенопласта будет использоваться регулярно. Ведь при резке пенопласта на приспособлении регулировать температуру нагрева нихромовой проволоки не нужно. Температура подбирается один раз при настройке станка. Поэтому подобрав нужное напряжение, провода от выводов нихромовой проволоки припаиваются к выводам вторичной обмотки трансформатора навсегда.

Несмотря на простоту и надежность этой схемы, стандартных готовых трансформаторов с отводами, да еще и на нужное напряжение нет. Придется найти подходящий трансформатор по напряжению и току на вторичной обмотке и отмотать лишние витки. Можно разобрать трансформатор и отмотав часть вторичной обмотки, намотать ее заново, но уже с отводами. Но эта работа требует знаний и опыта.

Схема с использованием понижающего трансформатора и токоограничивающего конденсатора

Установить стабильный выходной ток с вторичной обмотки трансформатора можно с помощью обыкновенных конденсаторов, включенных в первичную обмотку трансформатора.

Конденсатор должен быть рассчитан на напряжение не менее 300 В и иметь емкость, в зависимости от типа трансформатора и тока потребления нихромовой спиралью, порядка 50 мкФ. На таком принципе стабилизации тока на вторичной обмотке мной разработана Схема зарядного устройства для автомобильных аккумуляторов. Трансформатор должен быть соответствующей мощности и иметь 10% запас по напряжению.

Схема с использованием понижающего трансформатора и тиристорного регулятора мощности

Еще одна, несколько необычная схема регулятора температуры нагрева нихромовой проволоки, с помощью тиристора. Она подобна регулировке с помощью ЛАТРа с трансформатором, но малогабаритная. Классическая схема тиристорного регулятора для этой схемы не подходит, так как искажает форму синусоидального тока.

Поэтому необходима специальная схема тиристорного регулятора, выдающая на выходе синусоидальный сигнал и рассчитанная на работу с индуктивной нагрузкой.

Возможно включение тиристорного регулятора также после вторичной обмотки трансформатора. В данном случае при выборе схемы регулятора следует учесть, что он должен быть рассчитан на ток, который необходим для разогрева нихромовой проволоки.

Схема с использованием любых электроприборов

Если ни одна из выше приведенных электрических схем разогрева нихромовой проволоки для приспособления резки пенопласта не может быть реализована, то предлагаю нестандартную схему ее разогрева.

При подключении любого электроприбора, он потребляет из электросети ток. Величина тока напрямую зависит от мощности электроприбора. Чем больше мощность, тем больше будет течь по проводам ток. Сопротивление куска нихромовой проволоки станка для резки пенопласта чуть больше сопротивления медных проводов и, следовательно, включение станка в разрыв одного из проводов электроприбора на работе его не скажется, а нихромовая проволока будет нагреваться. Этим и можно воспользоваться.

При использовании подключения станка для резки пенопласта по этой схеме, обязательно нужно проследить, чтобы нихромовой провод не был подключен непосредственно к фазному проводу электросети. Физически подключение лучше всего выполнить с помощью переходника, наподобие того, который описан для измерения силы тока потребления.

Подходят для работы в схеме электроприборы непрерывного действия, например обогреватель, пылесос. Оценить, какой ток потребляют электроприборы можно по таблице на странице сайта «Выбор сечения провода кабеля для электропроводки».

Если не известны электрические параметры нихромовой проволоки, то нужно сначала попробовать подключить маломощный электроприбор, например электрическую лампочку 200 Вт (потечет ток около 1 А), далее обогреватель на 1 кВт (4,5 А), и так увеличивать мощность подключаемых приборов, пока нихромовая проволока резака не нагреется до нужной температуры. Электроприборы можно подключать и параллельно.

К недостаткам последней схемы подключения нихромовой спирали следует отнести необходимость определения фазы для правильного подключения и низкий КПД (коэффициент полезного действия), киловатты электроэнергии будут расходоваться бесполезно.


Николай 07.05.2014

Здравствуйте, уважаемый Александр Николаевич!
Меня интересует вопрос резки пенополистирола. Пересмотрев гору информации, остановился на Вашем сайте. У Вас собрана, пожалуй, самая полная и исчерпывающая информация по интересующему меня вопросу.
Хотел бы обратиться к Вам со своим вопросом. Возможно ли использование в качестве источника питания вместо ЛАТРа или понижающего трансформатора, автомобильного зарядного устройства (с регулятором зарядного тока) заводского изготовления?
Заранее благодарю за уделенное мне время! Спасибо за объёмный, информативный сайт! С уважением Николай!

Александр

Уважаемый Николай! Спасибо за добрые слова.
Технически вполне возможно. Зарядное устройство если у него имеется регулятор тока испортить, подключая нихромовую проволоку невозможно. Но тут могут возникнуть трудности. Если зарядное устройство имеет автоматику, то оно может просто не заработать, считая, что аккумулятор не подключен.
Нужно просто попробовать, предварительно установив в ЗУ минимальный ток заряда и подключить к его выходным клеммам требуемой длины и диаметра нихромовую нить. Включить ЗУ и понемногу увеличивать ток пока нить не разогреется до нужной температуры.
Если нить будет разогреваться, но температура не достигнет требуемой, значит, мощности ЗУ не хватает, либо недостаточной величины ток или не хватает напряжения. В случае если не хватает напряжения то, можно либо укоротить длину нити, если это возможно или взять нихром большего диаметра.

Алексей 14.02.2015

Здравствуйте, Александр Николаевич!
Прочитал довольно содержательную и полезную статью по изготовлению станка для резки пенопласта, очень благодарен Вам за предоставленную информацию!
У меня возник вопрос, как рассчитать параметры источника электропитания для нагрева сразу 2-х струн проволоки (для резки пенопласта сразу на несколько заданных размеров), проволока толщиной 1 мм и длина каждой струны 1,5 м и можно ли использовать для такого подключения (2-х струн одновременно) предложенную Вами схему подключения с использованием ЛАТРа и понижающего трансформатора?
Спасибо, с уважением Алексей!

Александр

Здравствуйте Алексей! Я рад, что статьи сайта приносят пользу людям. Спасибо за добрые слова.
Резать сразу двумя струнами можно используя один ЛАТР и один понижающий трансформатор. Нихромовую проволоку лучше не разрезать на две части, а сделать петлю, так ток будет меньше и контактов всего два. То есть нихромовая проволока закрепляется на стойке с пружиной, далее идет над столом на высоте первого реза, на противоположной стороне закрепляется на одной стойке на такой же высоте. Рядом можно установить вторую стойку, чтобы закрепить струну при повороте на следующей высоте. Далее струна возвращается в исходное место, и крепиться через пружину за еще одну стойку. Таким образом, общая длина струны составит 3 м.
По оценочному расчету для нагрева нихромовой проволоки диаметром 1 мм, длиной 3 м, понадобиться мощность 750 Вт (напряжение около 56 В и ток 13 А). При параллельном соединении двух отрезков по 1,5 м ток нужен будет 26 А при напряжении 28 В. Трансформатор понадобиться мощностью, как Вы уже поняли 750 Вт. ЛАТР понадобится на ток не менее 3 А.

Виктор 04.02.2021

Здравствуйте, Александр Николаевич!
Вопрос по станку для резки пенопласта и иже с ним. Могу ли я в качестве ЛАТРа использовать сварочный аппарат инверторного типа. Есть несколько видео в ЮТубе, где народ его применяет. Однако они устанавливают ток 40 А имея проволоку диаметром 0,9-1,0 мм.
У меня будет использоваться нихромовая проволока (диаметр прошу вас подсказать) длиной порядка 1,2 метра (для резки пенопласта шириной 1 метр).
Заранее благодарен за ответ и совет.
С уважением, Виктор.

Александр

Здравствуйте, Виктор!
Сварочный аппарат инверторного типа прекрасно обеспечит нагрев нихромовой нити для резки пенопласта. Но он не должен иметь функцию защиты от короткого замыкания AntiStik, или иметься возможность ее отключения, так как будет срабатывать защита и ток не потечет.
Диаметр проволоки нужно брать 0,9-1,0 мм, и если в инверторе нет возможности регулировать величину тока плавно, то придется, нагрев нити регулировать, подбирая ее длину.
Поэтому лучше всего взять инвертор без функции AntiStik и с возможностью плавной регулировки величины тока, например, сварочный аппарат инвертор РЕСАНТА САИ-160К.

Обмотки трансформаторов

Обмотки трансформаторов отличаются друг от друга типом, количеством витков, поперечным сечением и маркой провода, направлением намотки, изоляционными расстояниями и толщиной витковой изоляции. Чем больше напряжение трансформатора, тем больше количество витков; с увеличением мощности возрастают сечения проводов и размеры обмоток. Плотность тока в обмотках выбирают по условиям нагрева в пределах 2,5—4 А/мм2.
Следует строго различать направление намотки обмоток. Обмотки, намотанные в один слой, — однослойные, независимо от того, какой конец считать началом (верхний или нижний), имеют то направление, какое было получено при намотке. В многослойных обмотках, состоящих из нескольких слоев с переходами из слоя в слой (рис. 1, а), направление намотки чередуется. У таких обмоток за направление намотки принимают направление того слоя, у которого входной конец принят за начало.

Рис. 1. Схемы обмоток правого и левого направлений

Дисковые катушки, имеющие форму плоской спирали, считаются левыми или правыми в зависимости от того, какой конец выбран началом — внутренний или наружный. Из рис. 1,6 видно, что если за начало у этих катушек принять наружные концы, то в расположенной справа катушке обмотка будет правой, а слева — левой. Если же за начало принять внутренние концы, то направление намотки обмоток изменится соответственно на левое и правое. Если дисковую катушку повернуть к наблюдателю другой плоскостью, то она будет иметь другое направление: левая станет правой, а правая — левой.
Обычно дисковые катушки делают парными (рис. 1, б). В этом случае наружные концы являются входными, а переход из одной катушки в другую осуществляется соединением внутренних концов. При этом направление намотки остается определенным и обмотка, состоящая из любого числа последовательно соединенных парных катушек одинаковой намотки, будет иметь то же направление намотки, что и отдельные парные катушки. В некоторых случаях для придания обмоткам большей механической прочности и повышения влагостойкости после сушки их пропитывают лаком и запекают в термошкафах при 100—110°С.


Рис.   2.   Устройство двухслойной  цилиндрической обмотки
Рис. 3. Многослойная цилиндрическая обмотка:
а — общий вид,  б — межслоевая и концевая изоляция

В трансформаторах наибольшее применение получили обмотки следующих типов: однослойные и двухслойные цилиндрические, многослойные цилиндрические, многослойные катушечные, непрерывные, винтовые и дисковые.
В двухслойной, цилиндрической обмотке, намотанной двумя параллельными проводами (рис. 2), переход из слоя 4 в слой / сделан в нижней части. Между слоями образован канал 2 изоляционными планками 5, который служит для увеличения охлаждающей поверхности. Для выравнивания торцов обмотки установлены выравнивающие кольца 3.
При маркировке, показанной на рис. 2, обмотка является правой. Двухслойную обмотку, как и однослойную, применяют в основном в качестве обмотки НН трансформаторов мощностью 40—630 кВ-А.

Многослойную цилиндрическую обмотку (рис. 3, а) обычно наматывают проводом круглого сечения марок ПБ или АПБ. Остовом обмотки служит бумажно-бакелитовый цилиндр 1, на него намотан первый слой обмотки, а последующие— на бумажных цилиндрах 2, состоящих из нескольких слоев кабельной бумаги, служащей межслоевой изоляцией. Цилиндры 2 выступают за слои обмотки. В промежутках между выступающими слоями располагают бортики 5 (рис. 30,6), представляющие собой электрокартонные полосы толщиной 1—1,5 и шириной 12 мм, наклеенные на телефонную или кабельную бумагу шириной 60—80 мм. Для увеличения поверхности охлаждения обмотку разделяют на две части вертикальным каналом 3 (рис. 30, а). Его образуют рейки 4У установленные от цилиндра / на расстоянии, приблизительно равном 1/3 толщины обмотки. При напряжении 6—10 кВ часто применяют рейки из бука, при 35 кВ — из склеенного электрокартона.


Рис. 4. Магнитно-симметричная схема многослойной цилиндрической обмотки
Рис. 5. Устройство непрерывной катушечной обмотки

Для придания большей механической стойкости многослойные цилиндрические обмотки часто выполняют по магнитно-симметричным схемам с пятью ответвлениями (рис. 4). По этой схеме регулировочные витки располагаются в двух слоях или одном наружном слое. Каждая ступень регулирования разделена на две симметричные и последовательно соединенные группы витков Р1 и Р2. На первом ответвлении в работе находится весь регулировочный слой обмотки, на втором из работы выключаются две средние группы, на третьем — две следующие, симметричные к краям, на четвертом — две предпоследние, на пятом — весь регулировочный слой.
Многослойные цилиндрические обмотки применяют главным образом в качестве обмоток ВН трансформаторов мощностью до 630 кВ-А, напряжением 3—35 кВ.
Обмотка, состоящая из плоских спиральных катушек, у которой, переход провода из катушки в катушку осуществляется без разрыва с помощью особых технологических приемов, называется непрерывной катушечной обмоткой. У такой обмотки (рис. 5) спиральные катушки 1 имеют одинаковый радиальный размер и расположены друг над другом; для охлаждения между ними образованы дистанционными прокладками 3 горизонтальные каналы 2. Каждый виток может состоять из одного или нескольких прямоугольных параллельных проводов. Обмотка, показанная на рис. 32, намотана одним проводом с шестью регулировочными ответвлениями 8 в середине.
Обмотка намотана на рейки 6, уложенные на бумажно-бакелитовом цилиндре 7, поэтому между цилиндром и обмоткой образован охлаждающий канал 5. Для создания надежной опорной поверхности на торцах обмотки установлены опорные кольца 4 из склеенного электрокартона.
Непрерывные обмотки трансформаторов IV габарита и выше, как правило, не имеют бумажно-бакелитовых цилиндров. Их наматывают на рейки, уложенные на специальной металлической оправке, которую после намотки вынимают. Горизонтальные каналы между катушками образованы дистанционными прокладками 2, нанизанными на рейки 1 (как показано на рис. 6). Для придания обмоткам большей механической прочности их наружную сторону «прошивают» электрокартонными рейками, пропуская их через прокладки 3 с двусторонним замком.
У обмоток напряжением 110 кВ для большей электрической прочности две первые катушки (входные) и две последние наматывают проводом с усиленной витковой изоляцией (1,68— 1,92 мм).
В непрерывных катушечных обмотках, состоящих из нескольких параллельных проводов, более удаленные от оси витки провода имеют большую длину, а менее удаленные — меньшую. Чтобы уравнять длины, а следовательно, сопротивления проводов при переходах из катушки в катушку, их меняют местами — делают транспозицию, как показано на рис. 7; тогда ток поровну распределяется между всеми параллельными проводами. Непрерывные обмотки монолитны и механически устойчивы; их применяют в качестве обмоток НН, СН и ВН.


Рис. 6. Рейки  и дистанционные прокладки обмоток

Рис. 7. Транспозиция проводов непрерывной обмотки:
1 и 6 — верхняя и нижняя катушки, 2 и 4 — транспонируемые провода, 3 — рейки, 5 — дистанционные прокладки

В конструкцию обмоток ВН напряжением 110 кВ и выше входят емкостные кольца, которые, увеличивая входную емкость обмоток, выравнивают электрическое поле первых катушек и витков и тем самым уменьшают градиентные перенапряжения в обмотке.
В винтовой обмотке витки следуют друг за другом по винтовой линии и каждый из них составлен из нескольких концентрически расположенных параллельных проводов (такую обмотку часто называют спиральной).
Винтовая обмотка рис. 8; имеет такие же изоляционные детали, как и непрерывная; она намотана многими параллельными проводами 6. Прокладки 7 между витками 1 образуют горизонтальный канал, идущий параллельно виткам, а рейки 4— вертикальные каналы между обмоткой и цилиндром 5.
Для трансформаторов небольшой мощности винтовые обмотки наматывают на рейки, уложенные на бумажно-бакелитовом цилиндре, для мощных — на рейки, уложенные на раздвижной оправке. Торцы обмоток выравнивают сегментами 2 и путем равномерного увеличения высоты прокладок между опорным кольцом 3 и крайним витком.

Так как параллельные провода винтовой обмотки расположены концентрично и находятся на разном расстоянии от ее оси, то для выравнивания активных и индуктивных сопротивлений параллельных проводов и снижения потерь от циркулирующих токов, вызванных потоками рассеяния, в винтовых обмотках выполняют две групповые и одну общую транспозицию проводов (рис. 9, а). Групповая транспозиция (рис. 9,6) заключается в том, что провода витка делят поровну на две группы — верхнюю и нижнюю и при переходе в следующий виток верхнюю группу перемещают на место нижней, а нижнюю — на место верхней. Групповые транспозиции делают на ½ и 3/4 части витков обмотки. Общую транспозицию (рис. 9, в) выполняют в середине обмотки. Для этого при переходе витка из одной половины обмотки в другую верхний провод переставляют на место нижнего, а за ним поочередно перемещают на новое место остальные «параллельные провода. Количество переходов получается равным числу параллельных проводов. Переходы делают в пролетах между прокладками.

Рис. 8. Винтовая обмотка

Рис. 9. Транспозиция проводов непрерывной обмотки:
а — схема, б — групповая  транспозиция, в — общая транспозиция

Кроме рассмотренной одноходовой винтовой обмотки применяют двух- и четырехходовые. Их устройство напоминает винт, резьба которого образована двумя или четырьмя нитками. Транспозиция у таких обмоток несколько сложнее, но совершеннее. Винтовые обмотки имеют  сравнительно небольшое количество витков, их изготовляют на большие токи и применяют главным образом в трансформаторах III—VIII габаритов.

Методическая разработка по теме 3.17 Трансформатор. Передача и распределение электрической энергии.

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

НОВОСИБИРСКОЙ ОБЛАСТИ

«БАРАБИНСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»

Рассмотрена на заседании

ЦМК ОГСЭД

Протокол № ___________

от ____________ 2018 г.

Председатель ЦМК

Хританкова Н. Ю.

(Ф. И. О.)

______________________

(подпись)

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

КОМБИНИРОВАННОГО ЗАНЯТИЯ ДЛЯ ПРЕПОДАВАТЕЛЯ

Специальность 34.02.01 Сестринское дело (с базовой подготовкой)

Дисциплина: «Физика»

Раздел 3 Электродинамика. Колебания и волны. Оптика

Тема 3.17 Трансформатор. Передача и распределение электрической энергии.

Разработчик – преподаватель Вашурина Т. В.

2018

СОДЕРЖАНИЕ

Методический лист

3

Примерная хронокарта занятия

5

Исходный материал

9

Приложение №1 Контроль знаний по предыдущей теме

15

Приложение №2 Задания для закрепления и систематизации новых знаний

19

Приложение №3 Задания для предварительного контроля знаний

20

Приложение №4 Контролирующий материал

20

Задание для самостоятельной внеаудиторной работы студентов

21

Список использованных источников

22

Выписка из рабочей программы дисциплины «Физика»

для специальности 34.02.01 Сестринское дело (с базовой подготовкой)

Наименование разделов и тем

Содержание учебного материала, лабораторные и практические работы, самостоятельная работа обучающихся, курсовая работ (проект) (если предусмотрены)

Объем часов

Тема 3.17

Трансформатор. Передача и распределение электрической энергии.

Содержание учебного материала

2

Понятие трансформатора. Назначение трансформатора. Виды трансформаторов. Отработка навыка решения задач. Формирование умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни.

Лабораторная работа

Практическое занятие

Контрольная работа

Самостоятельная работа обучающихся:

— Работа с электронным приложением к учебнику «Физика 10»;

— работа с учебником, выполнение упражнений [2, с. 111-122, упр.5 (1,2)];

— работа с конспектом лекции.

1

МЕТОДИЧЕСКИЙ ЛИСТ

Тип занятия: комбинированный урок.

Вид занятия: беседа, объяснение с демонстрацией наглядных пособий, решение задач.

Продолжительность: 90 минут.

ЦЕЛИ ЗАНЯТИЯ

Учебные цели: сформировать представления о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений через изучение понятия трансформатор, передачи и распределение электрической энергии; способствовать формированию умения владеть основополагающими физическими понятиями, уверенно пользоваться физической терминологией и символикой. Способствовать формированию умения организовывать собственную деятельность, выбирать типовые методы и способы выполнения упражнений (ОК 2).

Развивающие цели: развивать интерес к будущей профессии, понимание сущности и социальной значимости (ОК 1), способствовать формированию умения решать физические задачи.

Воспитательные цели: способствовать развитию коммуникативных способностей; создавать условия для развития скорости восприятия и переработки информации, культуры речи; формировать умение работать в коллективе и команде (ОК 6).

Методы обучения: объяснительно-иллюстративный с использованием информационных технологий, репродуктивный.

Место проведения: аудитория колледжа.

МОТИВАЦИЯ

Тема 3.17 «Трансформатор. Передача и распределение электрической энергии» входит в программу по учебной дисциплине «Физика» и имеет большое значение, т.к. знания, полученные при изучении данной темы необходимы для изучения многих тем как в рамках программы по физике, так и при изучении смежных дисциплин (химия, математика).

Уже второй век человечество использует электрический ток в промышленных масштабах. И все эти годы используется в основном переменный ток. В странах Европы и Америки наибольшее распространение получил ток, меняющий свое направление 100-120 раз в секунду. В России частота переменного тока 50 Гц.

Логично предположить, что переменный ток, имеет какие то преимущества перед постоянным. Разные потребители электрического тока рассчитаны на разные напряжения. Так, большинство электробытовых приборов рассчитано на напряжение 27 и 220 В., промышленные электродвигатели на 200, 360 и 600 в.

Электрический ток никогда не получил бы такого широкого применения, если бы его нельзя было преобразовывать почти без потерь энергии. ЭДС мощных генераторов электростанций довольно велика. При передаче электроэнергии используется напряжение в сотни киловатт. Между тем на практике чаще всего нужно не слишком высокое напряжение. Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности (при неизменной частоте тока), осуществляется с помощью трансформаторов. 

Первый трансформатор был изобретен в 1878 году русским ученым П. Н. Яблочковым и усовершенствован в 1882 году другим русским ученым И. Ф. Усагиным.

На данное занятие отводится 2 учебных часа. Во время комбинированного занятия проводится актуализация знаний в форме устного опроса, с целью проверки остаточных знаний, которые необходимых при изучении нового материала; непосредственное изучение нового материала; первичного закрепление нового материала с помощью решения задач по данной теме. Контроль уровня усвоения нового материала проводится в форме тестирования студентов. Каждому образованному человеку необходимо непрерывно пополнять свои знания в области физики, развивать интерес к будущей профессии, понимать сущность и социальную значимость (ОК 1), научиться организовывать свою деятельность, уметь выбирать методы и способы выполнения задач и в дальнейшем оценивать их качество (ОК2), а также необходимо для будущего медицинского работника научится работать в коллективе и команде (ОК6).

ПРИМЕРНАЯ ХРОНОКАРТА КОМБИНИРОВАННОГО ЗАНЯТИЯ

п/№

Наименование этапа

Время

Цель этапа

Деятельность

Оснащение

преподавателя

студентов

-1-

-2-

-3-

-4-

-5-

-6-

-7-

Организационный этап

2

Организация начала занятия, формирование способности организовывать собственную деятельность (ОК 2).

Приветствие. Проверка готовности аудитории. Отмечает отсутствующих студентов в журнале.

Староста называет отсутствующих студентов. Студенты приводят в соответствие внешний вид, готовят рабочие места.

Журнал, тетради для конспектов.

Контроль знаний по предыдущей теме

15

Оценка уровня сформированности знаний по предыдущей теме. Развитие грамотной речи обучающихся, самоконтроль своих знаний.

Инструктирует и проводит контроль знаний.

Повторяют домашнее задание, отвечают устно.

Вопросы для устного опроса. Приложение 1.

Мотивационный этап и целеполагание

3

Развитие интереса к будущей профессии, понимания сущности и социальной значимости (ОК 1), установка приоритетов при изучении темы.

Объясняет студентам важность изучения данной темы, озвучивает цели занятия.

Слушают, задают вопросы, записывают новую тему в тетради.

Методическая разработка комбинированного занятия, мультимедийная презентация.

Изложение исходной информации

20

Формирование знаний, понимания сущности и социальной значимости своей будущей профессии (ОК 1),

Формирование представления о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений через изучение понятия трансформатор, передачи и распределение электрической энергии; способствовать формированию умения владеть основополагающими физическими понятиями, уверенно пользоваться физической терминологией и символикой.

Излагает новый материал, демонстрирует презентацию.

Слушают, читают материал на слайдах, записывают.

Методическая разработка (исходный материал), мультимедийное оборудование, мультимедийная презентация.

Выполнение заданий для закрепления знаний

15

Закрепление, систематизация, обобщение новых знаний. Отработать навык решения задач. Организация собственной деятельности, выбор типовых методов и способов решения задач, оценка их выполнения (ОК2).

Инструктирует и контролирует выполнение заданий, обсуждает правильность ответов, отвечает на вопросы студентов.

Выполняют задания, слушают правильные ответы после выполнения, вносят коррективы, задают вопросы.

Физика 11 Разноуровневые самостоятельные и контрольные работы А. Кирик стр. 34 средний уровень №1-5.

Предварительный контроль новых знаний

10

Оценка эффективности занятия и выявление недостатков в новых знаниях.

Инструктирует и проводит контроль.

Устно отвечают на вопросы.

Вопросы для предварительного контроля знаний.

Приложение 3.

С. р.

Итоговый контроль. Взаимопроверка

20

Закрепление материала, формирование умения делать выводы, обобщать.

Формирование умения работать в команде (ОК6). Контроль усвоения знаний и умений учащихся.

Контролирует ход работы.

Контролирует взаимопроверку, поясняет критерии оценки.

Работают в малых группах, решают задачи по образцу (письменно).

Предоставляют выполненное задание, сопоставляют ответы с эталонами, выставляют оценки.

Контролирующий материал.

Приложение 4.

Слайд презентации с эталонами ответов и критериями отметки.

Подведение итогов занятия

3

Развитие эмоциональной устойчивости, дисциплинированности, объективности оценки своих действий, умения работать в коллективе и команде (ОК6).

Оценивает работу группы в целом. Объявляет оценки, мотивирует студентов, выделяет наиболее подготовленных.

Слушают, участвуют в обсуждении, задают вопросы.

Журнал группы.

Задание для самостоятельной внеаудиторной работы студентов

2

Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.

Дает задание для самостоятельной внеаудиторной работы студентов, инструктирует о правильности выполнения, критериях оценивания.

Записывают задание.

Слайд презентации с домашним заданием.

ИСХОДНЫЙ МАТЕРИАЛ

План изложения учебного материала по теме «Трансформатор. Передача и распределение электрической энергии»

  1. Из истории открытия трансформатора. Биография П.Н. Яблочкова. 

  2. Устройство трансформатора.

  3. Принцип действия трансформатора.

  4. Работа трансформатора на холостом ходу.

  5. Работа трансформатора с нагрузкой. 

  6. Использование трансформаторов.

1. Из истории открытия трансформатора. Биография П.Н. Яблочкова. 

Уже второй век человечество использует электрический ток в промышленных масштабах. И все эти годы используется в основном переменный ток. В странах Европы и Америки наибольшее распространение получил ток, меняющий свое направление 100-120 раз в секунду. В России частота переменного тока 50 Гц.

Логично предположить, что переменный ток, имеет какие то преимущества перед постоянным. Разные потребители электрического тока рассчитаны на разные напряжения. Так, большинство электробытовых приборов рассчитано на напряжение 27 и 220 В., промышленные электродвигатели на 200, 360 и 600 в.

Электрический ток никогда не получил бы такого широкого применения, если бы его нельзя было преобразовывать почти без потерь энергии.
ЭДС мощных генераторов электростанций довольно велика. При передаче электроэнергии используется напряжение в сотни киловатт. Между тем на практике чаще всего нужно не слишком высокое напряжение. Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности ( при неизменной частоте тока), осуществляется с помощью трансформаторов. 

Трансформатор преобразует переменный ток так: , P и v не изменяются. Первый трансформатор был изобретен в 1878 году русским ученым П.Н. Яблочковым и усовершенствован в 1882 году другим русским ученым И.Ф. Усагиным.

Биография П.Н. Яблочкова.

Павел Николаевич Яблочков родился в 1847 году в семье мелкопоместного дворянина. Электротехник, изобретатель и предприниматель. Получил образование военного инженера, окончив в 1866 году Николаевское инженерное училище. Стал сапером, но вскоре вышел в отставку. Отставной поручик увлекался электротехникой. Изучать эту область техники можно было в Офицерских гальванических классах в Петербурге. Яблочков, вновь одевает военную форму и работает над проблемами, связанными с применением электричества в военном и гражданском деле. Он окончательно вышел в отставку и в 1873 году был назначен начальником телеграфной службы Московско-Курской железной дороги. Он организовал мастерскую, где проводил работы по электротехнике, которые легли в основу его изобретений в области электрического освещения, электрических машин, гальванических элементов и аккумуляторов.

К 1875 году относится одно из главных изобретений П.Н.Яблочкова – электрическая свеча, первая модель дуговой лампы. Идея создать электрическое освещение увлекла Яблочкова настолько, что он бросает работу и на свои скромные сбережения открывает в Москве лабораторию, где проводит работы по электротехнике. В 1878 году в Париже вскоре он пришел еще к одному гениальному решению: стал питать »русский свет» переменным током так, как это происходит и сегодня, изобрел трансформатор. В 1879 году Яблочков организовал »Товарищество электрического освещения» и электромеханический завод. В последние годы жизни Яблочков работал над созданием генераторов электрического тока, гальванических элементов. Был одним из инициаторов создания журнала »Электричество». 

В историю отечественной науки П. Н. Яблочков вошел, как автор »свечи Яблочкова», »русского света», »северного света», изобретатель трансформатора. Умер П. Н. Яблочков в 1894 году.

2. Устройство трансформатора.

Трансформатор состоит: из замкнутого сердечника, изготовленного из специальной листовой трансформаторной стали. На нем располагаются две катушки с различным числом витков из медной проволоки. Одна из обмоток, называется первичной, она подключается к источнику переменного напряжения. Устройства, потребляющие электроэнергию, подключаются к вторичной обмотке, их может быть несколько.

3. Принцип действия трансформатора.

Принцип действия основан на законе электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике возникает переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Магнитное поле концентрируется внутри сердечника и одинаково во всех его сечениях. Мгновенное значение индукции Ei в любом витке и первичной, и вторичной обмоток одинаково: Е1 = Е2

Потери энергии при работе трансформатора:

  • на нагревание обмоток;

  • на рассеивание магнитного потока в пространство;

  • на вихревые токи в сердечнике и на его перемагничивание.

Меры, принимаемые для уменьшения потерь:

  • обмотка низкого напряжения делается большого сечения так, как по ней протекает ток большой силы;

  • сердечник делают замкнутым, чтобы уменьшить рассеяние магнитного потока;

  • сердечник делают пластинчатым, чтобы уменьшить вихревые токи.

Благодаря этим мерам КПД современных трансформаторов достигает 95-99%.
Это означает, что практически вся энергия тока, проходящего по первичной обмотке трансформатора, превращается в энергию индукционного тока, возникающего во вторичной обмотке. Поскольку каждый виток первичной и вторичной обмоток пронизывает один и тот же магнитный поток, то в них возникают одинаковые ЭДС , равные по закону Фарадея для электромагнитной индукции, то:

е1 = е2 = – Ф’

ЭДС Е1 и Е2 действующие во всей первичной или вторичной обмотках, равны произведению ЭДС в одном витке е1 или е2 на число витков в обмотке N1и N2

Е1 = е1• N1
Е
2 = е2• N2

Вывод: ЭДС, действующие в обмотках, прямо пропорциональны числу витков в них.

Сила тока в первичной обмотке трансформатора во столько раз больше силы тока во вторичной обмотке, во сколько раз напряжение в ней больше напряжения в первичной обмотке:

Если пренебречь падением напряжения на сопротивлениях обмоток, когда сопротивления малы, то можно записать отношение и для напряжений на обмотках трансформатора

4. Работа трансформатора на холостом ходу.

Если первичную обмотку подключить к источнику переменного напряжения, а вторичную оставить разомкнутой, (этот режим трансформатора называют холостым ходом), то тока в ней не будет, а в первичной обмотке появится слабый ток, создающий в сердечнике переменный магнитный поток. Этот поток наводит в каждом витке обмоток одинаковую ЭДС, поэтому ЭДС индукции в каждой обмотке будет прямо пропорциональна числу витков в этой обмотке.

Е ~ N

При разомкнутой вторичной обмотке напряжение на ее зажимах U2 будет равно наводимой в ней ЭДС Е2.

U2  Е2

В первичной обмотке ЭДС Е1 по числовому значению мало отличается от подводимого к этой обмотке напряжения U1, практически их можно считать равными.

U1  Е1

Величина, показывающая, во сколько раз данный трансформатор изменяет напряжение переменного тока, называется коэффициентом трансформации.

При подаче на первичную обмотку трансформатора какого-либо напряжения U1 на вторичной обмотке мы получаем на выходе U2. Оно будет больше первичного, если обмотка содержит больше витков, чем первичная.

Итак, если N2  N1, то U2  U1, коэффициент трансформации k  и трансформатор называется повышающим.

Если N2 1 и U2 1, то k 1 и трансформатор называется понижающим.

Эти формулы справедливы, если ни первичная, ни вторичная обмотки не содержат активного сопротивления R. Первичная обмотка, как правило, не содержит такого сопротивления, а вторая обмотка может его содержать. Если она все же не содержит сопротивления или им можно пренебречь, то напряжение на выходе такой обмотки равно напряжению U2.

Когда вторичная обмотка трансформатора не имеет сопротивления R2 = 0, то кпд = 100%

Апол = А затр, тогда UIt = UIt и UI= UI2 , то Р1 = Р2

 и 

следует, что

5. Работа трансформатора с нагрузкой. 

Если во вторичную цепь трансформатора включить нагрузку, то во вторичной обмотке возникает ток. Этот ток создает магнитный поток, который согласно правилу Ленца, должен уменьшить изменение магнитного потока в сердечнике, что в свою очередь, приведет к уменьшению ЭДС индукции в первичной обмотке, поэтому ток в первичной обмотке должен возрасти, восстанавливая начальное изменение магнитного потока. При этом увеличивается мощность, потребляемая трансформатором от сети. (Рис.5).

Если же вторичная обмотка трансформатора имеет сопротивление вторичной обмотки R2 (говорится о длине проводников из которых изготовлена обмотка, или о материале проводника, или о сечении и диаметре проводов обмотки), то на выходе вторичной обмотки напряжение U2‘ будет меньше расчетного напряжения U2 на величину падения напряжения U = I2 • R2 на этом сопротивлении из-за потерь энергии тока на джоулево тепло. На выход (на нагрузку) Rн »пойдет» меньшее напряжение:

U2‘ = U2 – U = U2 – I2 • R2

Потери напряжения U находят по закону Ома для участка цепи: U = I2 • R2, откуда 

(отмечаем, что такой же ток течет и в нагрузке Rн, так как R2 и Rн соединены последовательно).

Напряжение на нагрузке по закону Ома для участка цепи сопротивлением , тогда 

Учитывая, что   можем всегда найти нужную величину напряжения или силы тока, количество витков в катушках.

 , где Ап = U2‘• I2 • t ; Аз = U1 • I1 • t , то 

6.Использование трансформаторов. 

Трансформаторы используются в технике и могут быть устроены очень сложно, однако незыблемым остается принцип их действия: » изменяющееся магнитное поле, созданное переменным током в первичной обмотке, пронизывая витки вторичной обмотки, индуцирует в ней переменный ток той же частоты, но другого напряжения». В современных мощных трансформаторах суммарные потери энергии не превышают 2–3%.

  • на заводах и фабриках при подаче напряжения к двигателям станков 380–660 В.

  • при передаче электроэнергии по проводам от 100 до 1000В;

  • для электросварки и электроплавки;

  • в радиотехнике; и др.

ПРИЛОЖЕНИЕ №1

КОНТРОЛЬ ЗНАНИЙ ПО ПРЕДЫДУЩЕЙ ТЕМЕ (устно)

«Электромагнитные колебания. Колебательный контур. Переменный электрический ток»

  1. Свободные и вынужденные электромагнитные колебания

  2. Колебательный контур

  3. Характеристики электромагнитных колебаний

  4. Переменный электрический ток

Эталоны ответов:

  1. СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Электромагнитные колебания — взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания, так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания — незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания — частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

  1. КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур — электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

Величины, выражающие свойства самой системы (параметры системы): L и m, 1/C и k

величины, характеризующие состояние системы:

величины, выражающие скорость изменения состояния системы: u = x'(t) и i = q'(t) .

  1. ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Можно показать, что уравнение свободных колебаний для заряда q = q(t) конденсатора в контуре имеет вид

где  — вторая производная заряда по времени. Величина

является циклической частотой. Такими же уравнениями описываются колебания тока, напряжения и других электрических и магнитных величин.

Одним из решений уравнения (1) является гармоническая функция

Период колебаний в контуре дается формулой (Томсона):

Величина φ = ώt + φ0, стоящая под знаком синуса или косинуса, является фазой колебания.

Фаза определяет состояние колеблющейся системы в любой момент времени t.

Ток в цепи равен производной заряда по времени, его можно выразить

Чтобы нагляднее выразить сдвиг фаз, перейдем от косинуса к синусу

  1. ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

1. Гармоническая ЭДС возникает, например, в рамке, которая вращается с постоянной угловой скоростью в однородном магнитном поле с индукцией В. Магнитный поток Ф , пронизывающий рамку с площадью ,

где- угол между нормалью к рамке и вектором магнитной индукции .

По закону электромагнитной индукции Фарадея ЭДС индукции равна

где — скорость изменения потока магнитной индукции.

Гармонически изменяющийся магнитный поток вызывает синусоидальную ЭДС индукции

где — амплитудное значение ЭДС индукции.

2. Если к контуру подключить источник внешней гармонической ЭДС

,

то в нем возникнут вынужденные колебания, происходящие с циклической частотой ώ, совпадающей с частотой источника.

При этом вынужденные колебания совершают заряд q, разность потенциалов , сила тока и другие физические величины. Это незатухающие колебания, так как к контуру подводится энергия от источника, которая компенсирует потери. Гармонически изменяющиеся в цепи ток, напряжение и другие величины называют переменными. Они, очевидно, изменяются по величине и направлению. Токи и напряжения, изменяющиеся только по величине, называют пульсирующими (переменными).

В промышленных цепях переменного тока России принята частота 50 Гц.

Для подсчета количества теплоты Q, выделяющейся при прохождении переменного тока по проводнику с активным сопротивлением R, нельзя использовать максимальное значение мощности, так как оно достигается только в отдельные моменты времени. Необходимо использовать среднюю за период мощность — отношение суммарной энергии W, поступающей в цепь за период, к величине периода:

Поэтому количество теплоты, выделится за время Т:

Действующее значение I силы переменного тока равно силе такого постоянного тока, который за время, равное периоду T, выделяет такое же количество теплоты, что и переменный ток:

Отсюда действующее значение тока:

Аналогично действующее значение напряжения:

Критерии оценки:

Оценка «5» — на поставленный вопрос студент дал полный развернутый ответ и ответил на дополнительный вопрос;

Оценка «4» — на поставленный вопрос студент дал полный развернутый ответ, но не ответил на дополнительный вопрос;

Оценка «3» — на поставленный вопрос студент дал неполный ответ и не смог ответить на дополнительный вопрос;

Оценка «2» — не ответил на поставленный вопрос.

ПРИЛОЖЕНИЕ №2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ И СИСТЕМАТИЗАЦИИ НОВЫХ ЗНАНИЙ (письменно, не оценивается)

Физика 11 Разноуровневые самостоятельные и контрольные работы А. Кирик стр. 34 средний уровень №1-5.

Эталоны ответов к заданиям для закрепления и систематизации

Уровень /№

1

2

3

4

5

Средний уровень

0,25

44 В

35

10 А

1000

ПРИЛОЖЕНИЕ № 3

ЗАДАНИЯ ДЛЯ ПРЕДВАРИТЕЛЬНОГО КОНТРОЛЯ ЗНАНИЙ

(Устно, не оценивается. Эталоны ответов к вопросам для предварительного контроля знаний содержатся в исходном материале)

  1. Когда и кем был изобретен первый в мире трансформатор?

  2. Перечислите элементы, входящие в устройство трансформатора.

  3. Почему происходят потери энергии при работе трансформатора?

  4. Какие меры применяются для уменьшения потерь энергии?

  5. Что называют коэффициентом трансформации?

  6. Какой трансформатор называется повышающим?

  7. Какой трансформатор называется понижающим?

  8. Где нашли применение трансформаторы?

ПРИЛОЖЕНИЕ №4

КОНТРОЛИРУЮЩИЙ МАТЕРИАЛ (письменно)

Тест

№№

Вопросы

Варианты ответов

1

Работа трансформатора основана на явлении …

а) вращающегося магнитного поля;

б) взаимоиндукции;

в) взаимодействия токов в обмотках;

г) возникновения вихревых токов.

2

Обмотка трансформатора, которую подключают к источнику переменного напряжения, называется …

а) первичной;

б) вторичной;

в) нагрузкой;

г) потребителем.

3

Обмотку низшего напряжения трансформатора делают из … сечения

а) медного провода большого;

б) медного провода малого;

в) алюминиевого провода большого;

г) алюминиевого провода малого.

4

Сердечник трансформатора собирают из …

а) железных стержней;

б) алюминиевых листов;

в) листов электротехнической стали;

г) стержней электротехнической стали.

5

Трансформатор будет понижающим, если …

а) U1 U2;

б) E1 = E2;

в) U1 U2

г) U1 E1

Эталоны ответов к заданиям контролирующего материала:

Номер задания

1

2

3

4

5

Ответы

Б

А

А

В

А

Критерии оценки:

за 3 правильных ответа – «3» балла;

за 4 правильных ответа – «4» балла;

за 5 правильных ответов – «5» баллов.

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ

Цель: Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.

Время для выполнения задания: 45 минут.

Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 11 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни — М.: Просвещение, 2011 г., с. 111 — 122, параграфы 37 — 41 прочитать, конспект выучить; стр. 123, упр. 5 (1, 2).

Эталоны решения задач:

  1. Как должны быть расположены изолированные друг от друга стальные пластины сердечника ротора индукционного генератора для уменьшения вихревых токов?

Решение задачи №1.

  1. Обмотки трансформатора сделаны из провода разной толщины. Какая из обмоток содержит большее число витков?

Решение задачи №2.

Критерии оценки:

  • студент выучил конспект – «3» балла;

  • студент прочитал параграфы и выучил конспект, решил верно одну задачу по теме – «4» балла;

  • студент выучил конспект, владеет информацией из учебника, решил верно две задачи по теме – «5» баллов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Лекция «Электромагнитные колебания. Переменный ток» [Электронный ресурс]/ Yaklass // Режим доступа http://www.yaklass.ru/materiali?mode=lsntheme&themeid=132

  2. Тест по теме «Трансформатор» [Электронный ресурс]/ Infourok // Режим доступа https://infourok.ru/test-po-teme-transformator-686966.html

  3. Лекция «Механические колебания Infourok // Режим доступа https://infourok.ru/test-po-fizike-na-temu-mehanicheskie-kolebaniya-klass-471833.html

  4. Урок по физике в 11-м классе по теме: «Трансформатор» [Электронный ресурс]/ открытыйурок // Режим доступа http://открытыйурок.рф/статьи/412080/

  5. Физика. 11 класс: Учебник для общеобразоват. учреждений с приложением на электронном носителе: базовый и профильный уровни: [Текст]/ Г. Я. Мякишев, Б. Б. Буховцев, Н.Н. Соцкий.-20-е изд. — М. : Просвещение, 2011. – 399 с.

Проволока. Виды и применение. Производство и особенности

Проволока – вид металлопроката, представляющий собой металлическую нить обычно круглого сечения. Обычно производится из стали, меди, алюминия, нихрома и различных сплавов.

Технология производства

Для производства проволоки используются различные металлы и их сплавы. В зависимости от их качеств и способа обработки зависят технические параметры готового изделия. К примеру, одни виды проволоки отлично проводят электричество, другие легко сгибаются, а третьи обладают упругостью. Вне зависимости от свойств применяемого металла или его сплава начальная технология получения проволоки одинакова. Сырье разогревается для получения пластичной массы. Затем путем непрерывного литья из него формируется прут, который с помощью прокатного станка калибруется в тонкую нить необходимой толщины.

Диаметр проволоки может составлять от долей миллиметров до 17 мм. Более толстое изделие уже является прутом. Сформированная нить может сразу сматываться в бухты или поддаваться дополнительной обработке. Она может покрываться цинком или полимером. Это позволяет защитить металл от окисления или создать на нем диэлектрическую оболочку.

Закаливание проволоки позволяет увеличить ее твердость и упругость. Отжиг наоборот делает ее более пластичной. Обычно такая обработка уже делается на изделиях, которые производятся из проволоки. До этого сырье термически не обрабатывается, за исключением используемого для армирования проводов, изготовления некоторых разновидностей тросов и сеток.

Полученная на производственном оборудовании проволока сматывается в бухты или ее наматывают на барабаны. Преимущественно предприятия, задействованные в ее производстве, не занимаются ее переработкой в готовые изделия. Поэтому полуфабрикат отправляется на продажу. Как и остального металлопроката, оценка ее стоимости проводится в зависимости от состава металла и массы. В розничной продаже возможна ее оценка по длине. При этом фактическое сечение на стоимость практически не влияет. Цена бухты проволоки разной толщины, но одинакового веса, почти идентична.

Где используется проволока
Данное изделие является полуфабрикатом, который применяется для изготовления различных товаров:

Преобладающая часть производимой промышленностью проволоки используется в качестве полуфабриката для получения других изделий. Небольшая доля из нее применяется как вязальный материал. Им увязывается арматура при бетонных работах, завязываются мешки и т.д.

Применение стальной проволоки

Наиболее широкое распространение получила проволока из стали. Для ее получения применяются различные марки стали. Из пружинных делают проволоку для изготовления сеток, пружин, некоторых специализированных тросов. Подобные изделия после закалки становятся упругими. При этом при сильном механическом воздействии они ломаются, поэтому для других целей неприменимы.

Из более мягких сортов стали делают проволоку для изготовления гвоздей, саморезов, винтов. Ее податливость позволяет сформировать на обрезанном стержне шляпку или резьбу. Такой материал хорошо поддается ковке. Сформированное из него изделие закаляется, что избавляет его от гибкости. В результате изготовленный метиз менее склонен к загибанию.

Производство проволоки из стали выполняется по строгим стандартам. Благодаря этому готовая продукция является полностью совместимой со станками, формирующими из проволоки метизы, сверла, звеньевые цепи и т.д.

Из стальной проволоки изготовляют струны для музыкальных инструментов, электроды для электросварки. В частности для получения первых применяется нержавеющая сталь, а для вторых обычный черный металл, который покрывается специальным напылением.

Весьма востребованный полуфабрикат плющенную ленту получают путем раскатки стальной проволоки большого сечения. Полученное в результате изделие может использоваться для изготовления лезвий для безопасной бритвы, трубок небольшого диаметра и т.п.

В целом из стали делают несколько групп проволоки:
  • Для армирования.
  • Вязальная.
  • Марочная.
  • Холодной высадки.
  • Канатная.
  • Телеграфная.

Каждая из них обладает рядом особенностей, которые делает ее идеальной для использования в специфических целях. К примеру, стальная нить холодной высадки может обрабатываться холодной высадкой, в то время как аналоги совершенно не совместимы с подобным оборудованием.

Использование медной проволоки

Доля производства медной проволоки существенно ниже, чем стальной. Это обусловлено дороговизной этого металла и его недостаточными механическими свойствами. При этом медь является одним из самых эффективных электрических проводников. Благодаря этому проволока из нее используется в качестве токопроводящих жил при изготовлении кабельной продукции.

Токопроводящие жилы могут быть сформированы из одной проволоки большого сечения или пучка тонких проволок (многожилка). Использование пучков позволяет придать готовому изделию более высокую гибкость. В частности подобные провода используются для изготовления электрических удлинителей, шнуров питания электротехники и т.п.

Кроме этого из медной проволоки состоит обмотка ротора и статора электромоторов. Благодаря природной гибкости она легко вплетается в сердцевину без образования заломов. Для предотвращения замыкания, такая струна покрывается диэлектрическим прозрачным составом. Также она используется для изготовления обмотки трансформаторов. Ее можно встретить внутри любого зарядного устройства, электросварки и т.п.

Назначение алюминиевой проволоки

Также как и медная, алюминиевая проволока является хорошим проводником. Однако при пропускании через нее электричества наблюдается более высокое сопротивление. Это делает кабельную продукцию из нее менее эффективной. Она больше нагревается, поэтому для передачи токов требуется использование проволоки большего сечения.

Применение проводов из алюминиевой проволоки встречается все реже. Она менее долговечна, больше склонна к замыканию от перегрева. В связи с этим ее преимущественно применяют для изготовления сетки рабицы, заклепок. Любую алюминиевую проволоку можно использовать как вязальную. Также из нее делают электроды для сварки алюминия.

Использование нихромовой проволоки

Из нихрома делается проволока для изготовления нагревательных элементов, в частности спиралей для электроплит, электрических горнов, обогревателей, ТЭНов. Она обладает высокой сопротивляемостью электричеству. Благодаря этому при пропуске через нее электрического тока происходит сильный разогрев металла. Прочие разновидности проволоки при использовании подобным образом плавятся, в результате чего контакт прерывается. Изделия из нихрома сохраняют свою целостность даже при нагреве докрасна.

Назначение вязальной проволоки

Практически все разновидности проволоки являются полуфабрикатом, не интересующим частного потребителя. Он практически не применим в бытовой жизни. К примеру, без наличия специализированного оборудования сделать из проволоки пружины, гвозди или сетку не получится. Единственным исключением является вязальная проволока. Она малопригодная для получения из нее каких-либо изделий, при этом ее качества дают возможность использования в различных направлениях.

В первую очередь вязальная проволока применяется для связывания стальной арматуры при работе с бетоном. Она отлично сгибается, легко перекусывается кусачками или плоскогубцами. Вязальной проволокой привязывают сетку к столбам. Возможно ее использование в качестве ремонтного материала.

Также возможно ее применение для изготовления струнных маяков для штукатурки. Для этого она натягивается возле плоскости стены до состояния звенящей струны и используется как направляющая для скольжения правила. Это позволяет разровнять штукатурку в идеальной плоскости.

К примеру, материал применяется в сельском хозяйстве для сооружения электропастуха. Для этого производится натягивание проволоки по периметру и ее подключение к электротрансформатору. В результате при контакте с таким ограждением происходит слабое поражение током, что отпугивает животных от забора.

Оценка характеристик проволоки

Качества проволоки в первую очередь отличаются от металла, из которого она изготовлена. При этом незначительные отличия состава сплава могут кардинально влиять на эксплуатационные характеристики изделия. В связи с этим оценка проводится по целому ряду характеристик:

  • Диаметр.
  • Тип покрытия.
  • Относительное удлинение при растяжении.
  • Порог разрыва при растяжении.
  • Электрическая сопротивляемость.
  • Число перегибов.

Перечисленные качества могут выступать приоритетными для одних видов проволоки и маловажными для других. К примеру, для проволоки используемой для обмотки моторов и трансформаторов, не столь важен уровень разрывного усилия.

Из названных критериев оценки рабочих качеств проволоки крайне важным является число перегибов. Оно отображает сколько раз нужно согнуть проволоку в одном месте, чтобы она сломалась. У пружинных материалов это число может составить 4 раза, а у медных или стальных вязальных может доходить до нескольких десятков раз. При этом, чем выше жесткость, тем быстрее произойдет перелом материала при механическом воздействии.

Похожие темы:

Проверка на межвитковое замыкание обмотки импульсного трансформатора. Простые советы о том, как проверить трансформатор мультиметром на работоспособность. Основы и принцип работы

Трансформатор является простым электротехническим устройством и служит для преобразования напряжения и тока. На общем магнитном сердечнике наматываются входная и одна или несколько выходных обмоток. Подаваемое на первичную обмотку переменное напряжение индуцирует магнитное поле, которое вызывает появление переменного напряжения такой же частоты во вторичных обмотках. В зависимости от соотношения числа витков изменяется коэффициент передачи.

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его , где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв.

На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Межвитковое замыкание трансформатора: как определить

Еще один распространенный дефект трансформаторов – межвитковое замыкание, распознать его лишь с помощью мультиметра практически невозможно. Тут могут помочь внимательность, острое зрение и обоняние. Проволока изолируется только за счет своего лакового покрытия, при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к местному нагреву. При визуальном осмотре на исправном трансформаторе не должно быть почернений, потеков или вздутия заливки, обугливания бумаги, запаха гари.

В случае, если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого используем мультиметр в режиме мегомметра. После измерения сопротивления изоляции обмоток трансформатора сравниваем со справочным: отличия более чем в 50% указывают на неисправность обмотки. Если сопротивление обмоток трансформатора не указано, то всегда приводится количество витков, и тип провода и теоретически, при желании, его можно вычислить.

Можно ли проверить бытовые понижающие трансформаторы?

Можно попробовать проверить мультиметром и распространенные классические понижающие трансформаторы, используемые в блоках питания для различных устройств с входным напряжением 220 вольт и выходным постоянным от 5 до 30 вольт. Осторожно, исключив возможность коснуться оголенных проводов, подается на первичную обмотку 220 вольт.

При появлении запаха, дыма, треска выключить надо сразу, эксперимент неудачен, первичная обмотка неисправна.

Если все нормально, то прикасаясь только щупами тестера, измеряется напряжение на вторичных обмотках. Отличие от ожидаемых более чем на 20% в меньшую сторону говорит о неисправности этой обмотки.

Для сварки в домашних условиях необходим функциональный и производительный аппарат, приобретение которого сейчас слишком дорогое удовольствие. Собрать из подручных материалов вполне возможно, предварительно изучив соответствующую схему.

Что такое солнечные батареи и как с их помощью создать систему домашнего энергоснабжения, расскажет на эту тему.

Может помочь мультиметр и в случае, если имеется такой же, но заведомо исправный трансформатор. Сравниваются сопротивления обмоток, разброс менее 20% является нормой, но надо помнить, что для значений меньше 10 Ом не каждый тестер сможет дать верные показания.

Мультиметр сделал все, что мог. Для дальнейшей проверки понадобятся уже и осциллограф.

Подробная инструкция: как проверить трансформатор мультиметром на видео

Н.Тюнин

Проверка импульсных трансформаторов (ИТ), используемых в источниках питания и выходных каскадах строчной развертки (ТДКС) современных телевизоров, с помощью омметра (даже цифрового) не дает положительных результатов. Причина заключается в том, что обмотки ИТ, за исключением высоковольтных обмоток ТДКС, имеют очень низкое активное сопротивление. Самый простой (но не самый доступный) способ заключается в измерении индуктивностей обмоток и сравнении их с паспортными данными, если они есть. Другой способ, предложенный в , заключается в проверке ИТ с помощью НЧ-генератора, работающего на резонансной частоте контура, образованного внешним конденсатором С1 и обмоткой ИТ Т1 (рис. 1).


Предлагаемый способ проверки ИТ не требует наличия отдельного генератора, а использует имеющийся практически в каждом осциллографе калибратор. Как правило, это генератор прямоугольных импульсов частотой 1.. .2 кГц. Проверяемый трансформатор подключают к осциллографу по схеме, представленной на рис. 2. Осциллограмма 1 (рис. 3) соответствует форме выходного сигнала калибратора, когда он не подключен к ИТ, а осциллограмма 2 — форме сигнала в контрольной точке КТ (см. рис. 2) после подключения калибратора к первичной обмотке Т1. Если продифференцированные импульсы присутствуют в контрольной точке и амплитуда сигнала Um2 примерно соответствует амплитуде выходного сигнала калибратора Um1, то проверяемый ИТ можно считать исправным. Если импульсов нет, то можно сделать однозначный вывод, что одна из обмоток ИТ имеет короткое замыкание. Возможен вариант, когда сигнал имеет форму, показанную на осциллограмме 3 (см. рис. 3) и его амплитуда сильно занижена. Это свидетельствует о том, что в одной из обмоток ИТ имеются короткозамкнутые витки.

Предлагаемый способ проверки можно с успехом применять, не выпаивая ИТ из схемы. В этом случае отключают один из выводов первичной обмотки от схемы и подключают к выходу калибратора (см. рис. 2) и проверяют ИТ в указанной выше последовательности. Форма сигнала на исправном ИТ должна соответствовать осциллограмме 2 (см. рис. 3). Если неисправен один из диодов вторичных выпрямителей в схеме или в одной из обмоток ИТ имеются короткозамкнутые витки, то форма сигнала будет соответствовать осциллограмме 3.

Литература
А. Родин, Н. Тюнин. Ремонт импортных телевизоров. Ремонт, Выпуск 9. Москва: Солон, 2000.
[email protected]

Основным элементом источника питания цифровых приборов является устройство преобразования тока и напряжения. Поэтому при поломке оборудования часто подозрение падает именно на него. Проще всего проверить импульсный трансформатор мультиметром. Существуют несколько способов измерений. Какой выбрать — зависит от ситуации и предполагаемых повреждений. При этом самостоятельно выполнить проверку любым из них совсем несложно.

Конструкция преобразователя

Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.

Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.

Магнитопровод в трансформаторе выполняется из пластин электротехнической стали, кроме тороидальной формы, в которой он сделан из рулонного или ферромагнитного материала. Каркасы катушек размещаются на изоляторах, а провода используются только медные. Толщина пластин подбирается в зависимости от частоты.

Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго — выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Подготовка и проверка

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

С цифровым мультиметром проще. В его конструкции используется анализатор, который следит за состоянием батареи и при ухудшении её параметров выводит на экран тестера сообщение о необходимой её замене.

При проверке параметров трансформатора используется два принципиально разных подхода. Первый заключается в оценке исправности непосредственно в схеме, а второй — автономно от неё. Но важно понимать, что если ИТ не выпаять из схемы, или хотя бы не отсоединить ряд выводов, то погрешность измерения может быть очень большой. Связано это с другими радиоэлементами, шунтирующими вход и выход устройства.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного. В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом -|>| —))). Для определения обрыва к цифровому прибору подключаются измерительные провода. Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM. Галетный переключатель переводится в область прозвонки. Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на короткое замыкание. Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока. Для проведения тестирования мультиметр переключается в режим проверки сопротивления. Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки). Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Измерения напряжения и тока

При подозрении на неисправность трансформатора тестирование можно провести, и не отключая его полностью от схемы. Такой метод проверки называется прямым, но связан с риском получить удар электрическим током. Суть действий в измерении тока заключается в выполнении следующих этапов:

  • из схемы выпаивается одна из ножек вторичной обмотки;
  • провод чёрного цвета вставляется в гнездо мультиметра COM, а красного — подключается к разъёму, обозначенному буквой А;
  • переключатель устройства переводится в положение, соответствующее зоне ACA.
  • щупом, подключённым к красному проводу, касаются свободной ножки, а к чёрному — места, к которому она была припаяна.

При подаче напряжения, если трансформатор работоспособный, через него начнёт протекать ток, значение которого и можно будет увидеть на экране тестера. Если ИТ имеет несколько вторичных обмоток, то сила тока проверяется на каждой из них.

Измерение же напряжения заключается в следующем. Схема с установленным трансформатором подключается к источнику питания, а затем тестер переключается на область ACV (переменный сигнал). Штекеры проводов вставляются в гнёзда V/Ω и COM и прикасаются к началу и концу обмотки. Если ИТ исправен, то на экране отобразится результат.

Снятие характеристики

Чтобы иметь возможность проверить трансформатор мультиметром таким методом, необходима его вольт-амперная характеристика. Этот график отображает зависимость между разностью потенциалов на выводах вторичных обмоток и силы тока, приводящей к их намагничиванию.

Суть метода лежит в следующем: трансформатор извлекается из схемы, на его вторичную обмотку с помощью генератора подаются импульсы разной величины. Подводимой на катушку мощности должно быть достаточно для насыщения магнитопровода. Каждый раз при изменении импульса измеряется сила тока в катушке и напряжение на выходе источника, а магнитопровод размагничивается. Для этого после снятия напряжения ток в обмотке увеличивается за несколько подходов, после чего снижается до нуля.

По мере снятия ВАХ её реальная характеристика сравнивается с эталонной. Снижение её крутизны свидетельствует o появление в трансформаторе межвиткового замыкания. Важно отметить, что для построения вольт-амперной характеристики необходимо использовать мультиметр с электродинамической головкой (стрелочный).

Таким образом, используя обычный мультиметр, можно с большой долей вероятности определить работоспособность ИТ , но для этого лучше всего выполнить комплекс измерений. Хотя для правильной интерпретации результата, следует понимать принцип работы устройства и представлять, какие процессы происходят в нём, но в принципе для успешного измерения достаточно лишь уметь переключать прибор в разные режимы.

Частотный диапазон «прогонки»:
Трансформаторов питания НЧ: 40-60 Гц.
Трансформаторов питания импульсного блока питания: 8-40 кГц.
Трансформаторов разделительных, ТДКС: 13-17 кГц.
Трансформаторов разделительных, ТДКС мониторов (для ПЭВМ):
CGA: 13-17 кГц.
EGA: 13-25 кГц.
VGA: 25-50 кГц.

Если взять импульсный трансформатор питания, например разделительный трансформатор строчной развертки, подключить его согласно рис. 1, подать на I обмотку U = 5 — 10В F = 10 — 100 кГц синусоиду через С = 0.1 — 1.0 мкФ, то на II обмотке с помощью осциллографа наблюдаем форму выходного напряжения.

Рис. 1. Схема подключения для способа 1

«Прогнав» на частотах от 10 кГц до 100 кГц генератор ЗЧ, нужно, чтобы на каком-то участке Вы получили чистую синусоиду (рис. 2 слева) без выбросов и «горбов» (рис. 2 в центре). Наличие эпюр во всем диапазоне (рис. 2. справа) говорит о межвитковых замыканиях в обмотках и т.д. и т.п.

Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы. Важно лишь подобрать частотный диапазон.


Рис. 2. Формы наблюдаемых сигналов

Способ 2

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы основан на явлении резонанса. Увеличение (от 2-х раз и выше) амплитуды колебаний с генератора НЧ указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура.

Для проверки закоротите обмотку II трансформатора. Колебания в контуре LC исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления в LC контуре, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC контуре.


Рис. 3. Схема подключения для способа 2

Добавим, что для проверки импульсных трансформаторов блоков питания конденсатор С имел номинал 0,01мкФ-1 мкФ, Частота генерации подбирается опытным путем.

Способ 3

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы тот же, что и во втором случае, только используется вариант последовательного колебательного контура.


Рис. 4. Схема подключения для способа 3

Отсутствие (срыв) колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс контура LC. Все остальное, как и во втором способе, не приводит к резкому срыву колебаний на контрольном устройстве (осциллограф, милливольтметр переменного тока).

Трансформаторы получили широкое применение в радиоэлектронике. Они являются преобразователями переменного напряжения и, в отличие от других радиоэлементов, выходят из строя редко. Для определения их исправности нужно знать, как проверить трансформатор мультиметром. Этот способ достаточно простой, и необходимо понять принцип работы трансформатора и его основные характеристики.

Основные сведения о трансформаторах

Для преобразования номиналов переменного напряжения применяются специальные электрические машины — трансформаторы.

Трансформатор — это электромагнитное устройство, предназначенное для преобразования переменного напряжения и тока одной величины в переменный ток и напряжение другой величины.

Устройство и принцип действия

Используется во всех схемах питания потребителей, а также для осуществления передачи электроэнергии на значительные расстояния. Устройство трансформатора достаточно примитивно:

  1. Ферромагнитный сердечник выполнен из ферромагнетика и называется магнитопроводом. Ферромагнетики — это вещества, обладающие самопроизвольной намагниченностью, параметры (атомы обладают постоянным спиновым или орбитальным магнитными моментами) сильно изменяются благодаря магнитному полю и температуре.
  2. Обмотки: первичная (подключается сетевое напряжение) и вторичная (питание потребителя или группы потребителей). Вторичных обмоток может быть больше 2-х.
  3. Дополнительные составляющие применяются для силовых трансформаторов: охладители, газовое реле, индикаторы температуры, поглотители влаги, трансформаторы тока, системы защиты и непрерывной регенерации масла.

Принцип действия основан на нахождении проводника в переменном электрическом поле. При движении проводника, например, соленоида (катушка с сердечником), на его выводах можно снять напряжение, которое зависит прямо пропорционально от количества витков. В трансформаторе реализован этот подход, но осуществляет движение не проводник, а электрическое поле, образованное переменным током. Он движется по магнитопроводу, выполненному из ферромагнетика. Ферромагнетик — это специальный сплав, идеально подходящий для . Основные материалы для сердечников:

  1. Электротехническая сталь содержит большую массовую долю кремния (Si) и соединяется под действием высокой температуры с углеродом, массовая доля которого не более 1%. Ферромагнитные свойства нечетко выражаются, и происходят потери на вихревые токи (токи Фуко). Потери прямо пропорционально растут с увеличением частоты. Для решения этой проблемы и происходит добавление Si в углеродистую сталь (Э42, Э43, Э320, Э330, Э340, Э350, Э360). Расшифровывается аббревиатура Э42: Э — электротехническая сталь, содержащая 4% — Si с 2% магнитных потерь.
  2. Пермаллой — вид сплава, и его составляющими частями являются никель и железо. Этот вид характеризуется высоким значением магнитной проницаемости. Применяется в маломощных трансформаторах.

При протекании тока по первичной обмотке (I) в ее витках образуется магнитный поток Ф, который распространяется по магнитопроводу на II обмотку, вследствие чего в ней образуется ЭДС (электродвижущая сила). Устройство может работать в 2-х режимах: нагрузки и холостого хода.

Коэффициент трансформации и его расчет

Коэффициент трансформации (k) является очень важной характеристикой. Благодаря ему можно выявить неисправности. Коэффициент трансформации — это величина, показывающая отношение количества витков I обмотки к числу витков II обмотке. По k трансформаторы бывают:

  1. Понижающими (k > 1).
  2. Повышающими (k

Найти его просто, и для этого необходимо узнать отношение напряжений каждой из обмоток. При наличии более 2-х обмоток расчет производится для каждой из них. Для точного определения k нужно пользоваться 2-мя вольтметрами, так как напряжение сети может изменяться, и эти изменения нужно отслеживать. Подавать нужно только напряжение, указанное в характеристиках. Определяется k несколькими способами:

По паспорту, в котором указаны все параметры устройства (напряжение питания, коэффициент трансформации, сечение провода на обмотках, количество витков, тип магнитопровода, габариты).

  1. Расчетный метод.
  2. При помощи моста Шеринга.
  3. При помощи специальной аппаратуры (например, УИКТ-3).

Рассчитать k несложно, и существует ряд формул, позволяющих сделать это. Нет необходимости учитывать потери магнитопровода, применяемые при изготовлении на заводе. Исследования показали взаимосвязь магнитопровода (железняк) и k. Для улучшения КПД трансформатора нужно уменьшить магнитные потери:

  1. Использование специальных сплавов для магнитопровода (уменьшение толщины и спецобработка).
  2. Уменьшение количества витков при использовании толстого провода, а на высоких частотах большое сечение является пространством для создания вихревых токов.

Для этих целей применяют аморфную сталь. Но и она обладает ограничением, называемым магнитострикцией (изменение геометрических размеров материала под действием электромагнитного поля). При использовании этой технологии удается получать листы для железняка толщиной в сотые доли миллиметров.

Расчетные формулы

При отсутствии соответствующей документации нужно производить расчеты самостоятельно. В каждом конкретном случае способы расчета различны. Основные формулы расчета k:

  1. Без учета возможных погрешностей: k = U1 / U2 = n1 / n2, где U1 и U2 — U на I и II обмотках, n1 и n2 — количество витков на I и II обмотках.
  2. При учете погрешностей: k = U1 / U2 = (e *n1 + I1 * R1) / (e * n2 + I2 * R2), где U1 и U2 — напряжения на I и II обмотках; n1 и n2 — кол-во витков на I и II обмотках; е — ЭДС (электродвижущая сила) в каждом из витков обмоток; I1 и I2 — силы токов I и II обмоток; R1 и R2 — сопротивления для I и II.
  3. По известным мощностям при параллельном подключении обмоток: kz = Z1 / Z2 = ku * ku, где kz — k по мощности, Z1 и Z2 — мощности на первичной и вторичной обмотках, ku — k по напряжению (k = U1 / U2).
  4. По токам при последовательном подключении обмоток: k = I1 / I2 = n2 / n1. При учете результирующего тока холостого хода (ток потерь Io): I1 * n1 = I2 * n2 + Io.

Проверка исправности

В основном трансформаторы применяются в блоках питания. Намотка и изготовление самого трансформатора с нуля — сложная задача и под силу не каждому. Поэтому за основу берется уже готовый и модернизируется путем изменения количества витков вторичной обмотки. Основные неисправности трансформатора:

  1. Обрыв выводов.
  2. Повреждение магнитопровода.
  3. Нарушение изоляции.
  4. Сгорание при КЗ.

Диагностика начинается с визуального осмотра. Первоначальная диагностика включает в себя осмотр выводов трансформатора, его катушек на предмет обугливаний, целостность магнитопровода.

При изношенных выводах необходимо зачистить их, а в некоторых случаях при обрыве — разобрать трансформатор, припаять их и прозвонить тестером.

При поврежденном магнитопроводе нужно его заменить или узнать из справочников об аналогичном для конкретной модели, так как он ремонту не подлежит. Можно заменить отдельные пластины.

При КЗ необходимо провести диагностику на работоспособность при помощи измерительных приборов (проверка трансформатора мультиметром).

При пробитой изоляции происходит контакт между витками обмоток или на корпус. Определить эту неисправность достаточно сложно. Для этого необходимо произвести следующие действия:

  1. Включить прибор в режим измерения сопротивления.
  2. Один щуп должен быть на корпусе, а другой нужно присоединить к каждому выводу трансформатора поочередно.
  3. Прибор должен во всех случаях прозвонок показывать бесконечность, что свидетельствует об отсутствии КЗ на корпус.
  4. При любых показаниях прибора пробой на корпус существует, и нужно полностью разбирать трансформатор и даже разматывать его обмотки для выяснения причины.

Для поиска короткозамкнутых витков нужно определить, где I обмотка (вход), а где II (выход) у неизвестного трансформатора. Для этого стоит воспользоваться следующим алгоритмом:

  1. Выяснить сопротивление первичной обмотки трансформатора 220 вольт при помощи измерений мультиметра в режиме «сопротивления». Необходимо записать показания прибора. Выбрать обмотку с наибольшим сопротивлением.
  2. Взять лампочку на 50 Вт и подключить ее последовательно с этой обмоткой.
  3. Включить в сеть на 5−7 секунд.

После этого отключить и проверить обмотки на нагрев. Если заметного превышения температуры нет, то приступить к поиску короткозамкнутых витков. Как проверить трансформатор на межвитковое замыкание: необходимо воспользоваться мегаомметром при напряжении 1000 В. При измерении пробоя изоляции необходимо прозванивать корпус и выводы обмоток, а также независимые между собой обмотки, например, вывод I и II.

Нужно определить коэффициент трансформации и сравнить его с документом. Если они совпадают — трансформатор исправен.

Существуют еще два метода проверки:

  1. Прямой — подразумевает проверку под нагрузкой. Для его осуществления необходимо собрать цепь питания I и II обмоток. Путем измерения значений тока в обмотках, а затем по формулам (4) определить k и сравнить его с паспортными данными.
  2. Косвенные методы. Включают в себя: проверку полярности выводов обмоток, определение характеристик намагничивания (используется редко). Полярность находится при помощи вольтметра или амперметра магнитоэлектрического исполнения с определением полярности на выходе. При отклонении стрелки вправо — полярности совпадают.

Проверка импульсного трансформатора достаточна сложная, и ее может произвести только опытный радиолюбитель. Существует много способов проверки исправности импульсников.

Таким образом, трансформатор можно легко проверить мультиметром, зная основные особенности и алгоритм проверки. Для этого нужно выяснить тип трансформатора, найти документацию по нему и рассчитать коэффициент трансформации. Кроме того, необходимо произвести визуальный осмотр прибора.

Пошаговая перемотка трансформатора на практическом примере. Мощный блок питания из трансформатора микроволновки Как правильно намотать трансформатор для блока питания

Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником. На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.

Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.

В зависимости от формы магнитопровода различают три вида трансформаторов:

Материалы пластин

Сердечники для трансформаторов изготавливают либо из металла, либо из феррита. Феррит, или ферромагнетик, — это железо с особым строением кристаллической решётки. Применение феррита увеличивает КПД трансформатора. Поэтому чаще всего сердечник трансформатора изготавливается именно из феррита. Существует несколько способов изготовления сердечника:

  • Из наборных металлических пластин.
  • Из намотанной металлической ленты.
  • В виде отлитого из металла монолита.

Любой трансформатор может работать как в повышающем, так и в понижающем режиме. Поэтому условно все трансформаторы делятся на две большие группы. Повышающие: на выходе напряжение больше, чем на входе. Например, было 12 В, стало 220 В. Понижающие: на выходе напряжение ниже, чем на входе. Было 220, а стало 12 вольта. Но в зависимости от того, на какую обмотку подаётся первичное напряжение, можно превратить в повышающий, который 10 А превратит в 100 А.

Тороидальный трансформатор своими руками

Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.

Преимущества и недостатки тора

Тор обладает несомненными достоинствами по сравнению с другими видами:

Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.

Расчет мощности тороидального трансформатора

Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.

Мощность будущего трансформатора рассчитывается по следующей формуле:

U — напряжение холостого хода

I — сила тока

cos f — коэффициент мощности, равный 0.8

n — коэффициент полезного действия, равный 0.7

Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.

После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:

U — напряжение тока на первичной обмотке.

I — ток вторичной обмотки, или сварочный ток.

S — площадь сечения магнитопровода.

Количество витков на вторичной обмотке вычисляется по следующей формуле:

Тороидальный сердечник

Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.

Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.

Особенности намотки тора

Первичная обмотка осуществляется медным проводом в стеклотканевой или хлопчатобумажной изоляции. Ни в коем случае нельзя использовать провода в резиновой изоляции. Для силы тока на первичной обмотке в 25 А наматывающийся провод должен иметь сечение 5−7 мм. На вторичной необходимо использовать провод значительно большего сечения — 30−40 мм. Это необходимо ввиду того, что на вторичной обмотке будет протекать ток значительно большей силы — 120−150 А. В обоих случаях изоляция провода должна быть термостойкой.

Для того чтобы правильно перемотать и собрать самодельный трансформатор, необходимо понимать некоторые детали процесса его работы. Нужно грамотно осуществлять намотку проводов. Первичная обмотка производится с помощью провода меньшего сечения, а количество самих витков здесь значительно больше, это приводит к тому, что первичная обмотка испытывает очень большие нагрузки и, как следствие, может очень сильно греться в процессе работы. Поэтому укладка первичной обмотки должна производиться особенно тщательно.

В процессе намотки каждый намотанный слой необходимо изолировать. Для этого используют либо специальную лакоткань, либо строительный скотч. Предварительно изоляционный материал нарезается на полоски шириной 1−2 см. Изоляцию укладывают таким образом, что внутренняя часть обмотки покрывается двойным слоем, а внешняя, соответственно, одним слоем. После этого весь изоляционный слой обмазывается толстым слоем клея ПВА. Клей в этом случае несёт двойную функцию. Он укрепляет изоляцию, превращая её в единый монолит, а также значительно уменьшает звук гудения трансформатора во время работы.

Приспособления для намотки

Намотка тора — сложный процесс, занимающий много времени. Для того чтобы как-то его облегчить, используют специальные приспособления для намотки.

  • Так называемый вилочный челнок. Предварительно на него наматывается необходимое количество провода, и затем посредством челночных движений производят последовательную намотку провода на сердечник трансформатора. Этот способ годится лишь в том случае, если наматываемый провод достаточно тонок и гибок, а внутренний диаметр тора настолько велик, что позволяет свободно протаскивать челнок. При этом намотка происходит достаточно медленно, поэтому если необходимо намотать большое количество витков, то придётся потратить на это очень много времени.
  • Второй способ более продвинутый и требует для своего осуществления специального оборудования. Но зато с его помощью можно намотать трансформатор практически любого размера и с очень большой скоростью. При этом качество намотки будет очень высоким. Приспособление называется «размыкаемый обод». Суть процесса состоит в следующем: намоточный обод аппарата вставляется в отверстие тора. После этого намоточный обод замыкается в единое кольцо. Затем на него наматывается необходимое количество обмоточной проволоки. И в заключение намоточный провод сматывается с обода аппарата на катушку тора. Такой станок можно изготовить в домашних условиях. Его чертежи находятся в свободном доступе в Интернете.

Стоят сварочные инверторы недорого, приобрести их сегодня – не проблема. И все же многих домашних мастеров интересует вопрос, как сделать трансформатор (сварочный) своими руками. Насколько это сложно, и как будет работать самодельный аппарат. В принципе, сделать его при правильном подходе несложно. Главное – это намотка трансформатора, потому что от правильно подобранного количества витков, от сечения используемой проволоки зависит мощность агрегата, качество его работы.

Итак, перед тем как намотать сварочный трансформатор, необходимо рассчитать его по всем требуемым параметрам. Необходимо отметить, что проводимый расчет не всегда соответствует типовым правилам и схемам, потому что собирается сварочный аппарат подчас не из тех материалов, которые используются при сборке в заводских условиях. То есть, что нашли, то и использовали.

К примеру, использовалось не самое лучшее трансформаторное железо или обмоточная проволока. Но даже после такой намотки трансформаторы прекрасно варят, хотя гудят и сильно нагреваются. Добавим, что выбирая трансформаторное железо, нужно обращать внимание на такой показатель, как форма сердечника. Она бывает броневой или стержневой. Второй тип используется в самодельных сварочных трансформаторах чаще, потому что обладают лучшим коэффициентом полезного действия. Правда, трудоемкость намотки трансформатора своими руками здесь намного выше. Но это не пугает мастеров.

Добавим, что намотать трансформатор можно по нескольким схемам.

  • Сетевая обмотка – это когда обе катушки получаются равноправными по числу витков и соединены они последовательно.
  • Обе обмотки соединены по принципу встречно-параллельно.
  • Намотанный провод расположен с одной стороны сердечника.
  • То же самое, что и в предыдущем положении, только на двух сторонах, соединенных последовательно.

Самая простая схема – последняя. Ее обычно и используют для сборки трансформатора в домашних условиях. В ней вторичная обмотка состоит из двух равных половинок. И они расположены на противоположных плечах магнитопровода. Соединение, как уже было сказано выше, последовательное.

В основе расчета лежат теоретические параметры, на основе которых придется сделать выбор фактических параметров магнитопровода. Главным параметром сварки является ток, который подается на электрод. Так как в быту чаще всего используют электроды диаметром 2; 3 или 4 мм, то для них достаточен будет ток мощностью 120-130 ампер. Теперь можно правильно рассчитать мощность сварочного трансформатора вот по этой формуле:

P=U x I x cos φ / η

U – это напряжение холостого хода, I – это сила тока (120-130 А), cos φ – принимается равным 0,8, η – это коэффициент полезного действия, который для самодельных сварочных аппаратов составляет 0,7.

Расчетная величина мощности должна по таблице свериться с сечением магнитопровода. Табличное значение при таких параметрах обычно составляет 28 см², но фактически необходимо выбирать из диапазона 25-60 см². Теперь по другим таблицам справочников подбирается количество витков провода относительно сечения сердечника.

Очень важный момент – чем больше площадь используемого сердечника для трансформатора, тем меньше витков в катушке должно быть. Все дело в том, что большое количество наматываемых витков может не поместиться в отверстие магнитопровода. Сам расчет количества витков производится вот по этой формуле:

N = 4960 × U/(S × I), где U – это напряжение источника питания на первичной обмотке, I – это ток вторичной обмотки, по сути, это тот самый сварочный ток, S – площадь сечения сердечника.

А количество витков на вторичной обмотке можно вычислить, используя соотношение:

U1/U2=N1/N2

Напряжение холостого хода на вторичной обмотке в самодельных сварочных трансформаторах равно 45-50 вольтам.

Как намотать трансформатор

Итак, расчеты проведены, определены параметры используемых элементов повышающего трансформатора, определена схема намотки, можно переходить к самому процессу перемотки. Но перед этим необходимо разобраться с проводами, которые будут наматываться на сердечник.

На первичную обмотку наматывается медный провод в стеклотканевой или хлопчатобумажной изоляции. Никакой резины. Исходя из силы тока на первичной обмотке, равной 25 ампер, сечение наматывающего провода – 5-6 мм². Сечение провода на вторичной обмотке должно быть 30-35 мм², потому что по ней протекает ток большой силы (120-130 А). Особое внимание изоляции этого провода, она должна быть термостойкой. Теперь все готово, можно переходить к намотке тероидального трансформатора.

Перед тем как перемотать трансформатор, необходимо понять одну истину, что провода первичной обмотки подвергаются большим нагрузкам, потому что здесь используется проводник меньшего сечения. К тому же плотность уложенных витков здесь выше, поэтому они и греются больше. Вот почему качеству укладки в первичной обмотке надо уделить особое внимание.

Случается так, что самодельный трансформатор собирается не из цельного куска провода, а из нескольких отрезков. Ничего страшного в этом нет, ведь концы кусков можно соединить. Для этого нельзя использовать скрутку, лучше соединить два конца медной проволочкой в несколько витков, а затем пропаять стык и заизолировать.

Мотать витки надо аккуратно, плотно прижимая их друг к другу. При этом укладка провода должна проводиться не строго перпендикулярно касательной железа, а немного в сторону. Но как бы впереди должна идти внутренняя намотка. Это просто обеспечит простоту прижима следующего витка к предыдущему. При этом нет необходимости подравнивать провод.

Обратите внимание, чтобы в процессе перемотки трансформатора провод подавался в ровном состоянии. Перегибы и изгибы только усложнят сам производимый процесс. Поэтому лучше провод смотать на руку и натягивать во время укладки.

Для намотки тороидального трансформатора необходимо каждый уложенный слой изолировать. Для этого лучше использовать специальную пропитанную латоткань, которая при соприкосновении прилипает ко всему. Или можно использовать строительный скотч, который наматывается на трансформатор своими руками. Удобнее всего, если скотч нарезать на полоски шириною 15 мм. Ими легко покрывать слой провода, и при этом нужно постараться сделать так, чтобы внутренняя часть обмотки была покрыта изоляционным материалом в два слоя, а снаружи в один.

После чего всю обмотку надо смазать клеем ПВА. Он, во-первых, укрепит изоляцию, сделав ее монолитной. Во-вторых, обмотка не будет гудеть. ПВА жалеть не стоит, надо хорошо им обработать всю поверхность. После чего прибор надо высушить. А после еще намотать слой витков и так далее до полной готовности сварочного трансформатора. Намотка тороидального трансформатора своими руками закончена.

Перемотка трансформатора, правильно проведенная – это гарантия высокого качества и долгосрочной его эксплуатации. Перемотанный прибор будет работать точно так же, как практически новый. Конечно, он сильнее гудит, но во всем остальном это все тот же необходимый прибор.

Материалы для намотки

В качестве сердечника используют в основном профильные пластины, изготовленные из специального сплава. Их собирают по необходимой толщине, учитывая расчетное сечение сердечника. Существует несколько форм пластин, но чаще всего используются Ш-образные элементы.

Каркас трансформатора – это, в принципе, изолятор, который ограждает сердечник от обмоток. На нем же держится и катушка. Изготавливают каркас и диэлектрического материала, он должен быть тонким (0,5-2,0 мм), чтобы поместиться в окошке сердечника. Если будет перематываться старый трансформатор, то функции каркаса могут выполнять картон, текстолит и так далее. Размеры каркаса и его форма определяются параметрами сердечника. Но высота конструкции должна быть больше размеров обмотки.

Для тороидальных трансформаторов лучше использовать медные провода, покрытые защитной эмалью. Для сварочных аппаратов лучше использовать провода медные или алюминиевые с целлюлозной, хлопчатобумажной и ли стекловолокнистой изоляцией. Последний вид не самый лучший. Он прекрасно справляется с нагрузками, особенно с высокими температурами, но в процессе вибрации волокна расслаиваются, а это нарушение изоляционного слоя. Что касается выводных проводов, то оптимально, если они будут разного цвета. Это упростит способ подключения.

Как видите, перемотать свой собственный старый трансформатор не очень сложно. Это, конечно, займет много времени, но работать прибор будет неплохо. Во всяком случае он будет дешевле, чем покупать новый.

Часто возникает необходимость
перемотать первичную, или вторичную обмотку трансформатора . Осуществить такую операцию вполне под силу самому, если знать элементарные физические законы и соблюдать правила безопасности.
Последовательность действий зависит от типа трансформатора, его размера и поставленной задачи.
Очень часто с неисправностями
обмотки сталкиваются пользователи малогабаритных электроприборов (например — автомобильных магнитол), в этом случае трансформатор имеет небольшой размер и требует особого обращения. Рассмотрим технику перемотки первичной и вторичной обмотки на его примере.
Для замены первичной обмотки (а чаще всего сгорает именно она) понадобится полная разборка трансформатора, за исключением тех случаев, когда вторичная обмотка намотана рядом с первичной, а не поверх нее.

Для удаления старой обмотки ее срезают ножом, отметив на корпусе уровень, где она заканчивалась. После удаления обмотки тщательно зачищают каркас шкуркой или надфилем, убирая остатки заливочного лака и заусеницы. Затем каркас трансформатора необходимо плотно закрепить на валу электрического двигателя. В домашних условиях в качестве двигателя можно использовать шуруповерт, закрепленный в струбцинах. Посадить каркас на вал удобно зажав в патроне сверло или прут и намотав на него изоляционную ленту до необходимого диаметра.

Проводят тщательный замер диаметра провода, который был использован для обмотки и подбирают идентичный. Неточность на этом этапе может сыграть злую шутку, поскольку провод большего диаметра может просто не поместиться в окне. Конец намотки прикрепляют к монтажному провода, который станет выводом, место пайки изолируют и фиксируют несколькими витками обмотки. Выступающий конец убирают внутрь и начинают наматывание провода на небольших оборотах. Витки намотки должны ложиться строго последовательно, без зазоров и наложений. Так продолжают ряд за рядом, до того момента, пока уровень обмотки не достигнет сделанной ранее отметки. После этого рекомендовано наложить еще несколько витков, поскольку плотность заводской намотки в любом случае выше кустарной. Выходное напряжение изменится не значительно, но конструкция станет более надежной. К концу провода обмотки припаивают второй вывод, после чего собирают пластины трансформатора. Вторичная обмотка перематывается по тому же принципу.

Еще один вариант перемотки касается того случая, когда нужно изменить параметры трансформатора. В этом случае необходимо провести тщательные расчеты, в результате которых вы должны подобрать сечение провода и выяснить необходимое количество его витков.
Особенности и последовательность расчетов заслуживают отдельного разговора, поэтому переходим непосредственно к технике перемотки (про расчеты витков вы можете почитать в статье).

При перемотке первое, что нужно сделать – проверить влезет ли рассчитанное количество витков в окно. Сделать это можно экспериментально, или с помощью простой прикидки. Если все нормально, можно приступать к намотке, в противном случае – совершить пересчет на более тонкий провод. Еще один вариант экономии места – использование провода квадратного сечения, но в большинстве он подходит для вторичной обмотки.

Установив необходимое количество витков первичной обмотки можно начинать. Оставляем вывод в несколько сантиметров и накладываем первые витки. Намотав определенное круглое количество, поставьте метку, в случае случайной невнимательности (сбились со счета или кто-то отвлек) это спасет от полного переделывания. Когда нужное количество витков на месте нужно аккуратно вывести конец провода в боковое отверстие. Старайтесь заканчивать витки возле края. Можно дополнительно зафиксировать конец клейкой лентой.

Если в результате расчетов выяснилось что вам необходимо уменьшить количество витков первичной обмотки, можно просто отмотать лишние, не производя полную разборку обмотки.
Следующий шаг – обеспечение изоляции первичной обмотки от вторичной. Следует учитывать большую разность потенциалов между обмотками, поэтому изоляция должна быть плотной и качественной. Лучше всего для этого использовать старую обмотку, аккуратно снятую при разборке трансформатора, ее тоже удобно зафиксировать клейкой лентой.

Наматывание вторичной обмотки производим аналогично описанной процедуре. Есть и свои тонкости. При работе с проводами прямоугольного сечения нужно все время следить, чтобы тот не перекрутился, поскольку это будет мешать последующим виткам. Витки накладываем последовательно, считая и делая пометки время от времени. Часто возникает необходимость сделать несколько выводов вторичной обмотки (для возможности получения тока разной силы), в этом случае появляется проблема – если делать выводы в щечки катушки, то последующие слои витков будут постоянно огибать вывод, что крайне неудобно. Решить подобную проблему просто – сделать выводы на самой обмотке, продолжая мотать дальше. Позже, когда вся обмотка будет готова, все выводы будут на поверхности и легко доступны.

При постройке приемника, усилителя или другой радиоаппаратуры радиолюбителю приходится сталкиваться с работой по переделке старого или по изготовлению нового трансформатора. Радиолюбители, впервые приступающие к такой работе, часто не представляют себе достаточно ясно, как произвести намотку, какой подобрать материал и как испытать изготовленный трансформатор. Сведения по этим вопросам, почерпнутые из журнальных статей и книг, обычно бывают недостаточны, и радиолюбителю приходится большую часть работы делать, полагаясь на свою смекалку или прибегать к помощи и советам более опытного товарища. На этой странице будут даны рекомендации по самостоятельному изготовлению сетевыого трансформатора.

ПРИСПОСОБЛЕНИЯ ДЛЯ НАМОТКИ

На заводах при массовом серийном или поточном производстве трансформаторы обычно наматываются на специальных, часто автоматизированных станках. Радиолюбителям трудно, конечно, рассчитывать на специальный намоточный станок, и поэтому намотку трансформаторов оии производят обычно или непосредственно от руки, или с помощью простых намоточных приспособлений.
Рассмотрим, как можно из подручных материалов и при помощи обычных инструментов изготовить простые приспособления для намотки.
Простейшее такое приспособление показано на фиг. 1. Оно состоят из двух стоек / (или металлической скобы), укрепленных на доске 2, и оси 3 из толстого (диаметром 8-10 мм) металлического прутка, продетого сквозь отверстия в стойках и изогнутого на одном конце в виде рукоятки.
Для намотки провода на готовый каркас 4 изготовляют деревянную колодку 5, по размерам немного меньшую, чем окно каркаса. В колодке просверливают отверстие для насадки ее на ось. Каркас надевают на колодку, которая затем помещается на оси и закрепляется там шпилькой 5. Для того чтобы каркас не болтался и не съезжал с колодки, между ними надо вставить уплотняющий клин 7 из твердого картона или тонкой фанеры. Чтобы избежать при намотке осевого люфта, что очень важно для ровной укладки витков, на свободные участки оси между колодкой и стойками необходимо надеть отрезки трубок 8, которые можно изготовить из металлических листочков, обернув их вокруг оси 3.
Для снятия намотанного каркаса нужно вынуть шпильку 5 и вытащить ось 3.
Более удобное и надежное намоточное приспособление выполняется из ручной дрели / (фиг. 2), которую надо зажать в тиски 2 или прикрепить к столу так, чтобы ничто не мешало свободному вращению рукоятки дрели. В патрон дрели зажимается металлический прут 3, на который насаживают колодку с каркасом. Прут диаметром 4-6 мм лучше всего нарезать, и тогда колодку с каркасом можно зажимать между двумя гайками 4. В этом случае можно обойтись без колодки, зажимая каркас двумя щечками из фанеры или текстолита с отверстиями в центре.
В качестве намоточного приспособления удобно также использовать готовый станочек для текстильных шпулей, моталку для перемотки кинопленки, телефонный индуктор и пр. Особенно удобна моталка для кинопленки (после небольшой переделки), так как она сделана прочно и имеет мягкий безлюфтозый ход. Переделка ее заключается в замене короткого валика с замком для бобин с кинопленкой на длинную ось с резьбой и барашками для закрепления различных каркасов.

Не меньшее значение для намоточных работ, чем сам намоточный станок, имеет размоточное приспособление, на которое надевается катушка с проводом или каркас старого трансформатора, провод которого используется для новой намотки. Чтобы у разматываемого провода не портилась изоляция, а также чтобы не было толчков (что важно при рядовой укладке витков), провод должен итти совершенно равномерно.

Простейшее приспособление для размотки провода изображено на фиг. 3. Это обычный металлический пруток /, продетый в отверстия деревянных стоек 2, укрепленных на доске 3. Изготовление деревянной колодки для каркаса разматываемой катушки 4 в этом случае необязательно. Для того чтобы она не била и не прыгала при размотке, можно из толстого картона или бумаги свернутьнужного диаметра трубку 5, пропустить сквозь нее прут и достаточно плотно вставить ее в окно каркаса.
Лучше, однако, изготовить специальное размоточное приспособление, изображенное на фиг. 4. Из полосы мягкой стали или другого подходящего материала сгибается скоба /, которая крепится к доске 2 (или столу). В вертикальных стойках скобы делают отверстия (диаметром 5-6 мм) с нарезкой (резьба М-5 или М-6), в которые ввинчивают заточенные с концов на конус болтики 3. Из металлического прута диаметром 5-6 мм изготовляется нарезанная по всей длине шпилька 4, с торцов которой высверлены неглубокие отверстия (3-4 мм). Конусы и шпилька комплектуются соответствующими гайками (лучше барашками) 5 и щечками 6 для зажима катушки или каркаса с проводом.

Весьма важным в процессе намотки является возможность точного счета числа витков. Простой, но требующий особого внимания способ — это устный отсчет каждого оборота (пли через один оборот) ручки станка. Если обмотка должна содержать большое число витков, то удобнее, отсчитав сотню витков, делать отметку на бумаге (в виде палочки), суммируя затем все отметки. В станочке с шестеренчатой передачей учитывается при этом коэффициент передачи, который следует всегда помнить.
Гораздо лучше применение механического счетчика, в качестве которого можно приспособить велосипедный спидометр или счетный механизм от электросчетчика, водометра и т. д.
Сочленение счетчика со станком можно выполнить при помощи гибкого валика (куска толстостенной резиновой трубки), соединяющего ось счетчика с осью станка (фиг. 5,а). В этом случае каждый раз при установке нового каркаса приходится разъединять сочленение осей, снимая гибкий валик, и после установки нового каркаса надевать его вновь. Более удобный, но и более сложный способ сочленения заключается в том, что счетчик связывается со станком посредством пары одинаковых шестерен (фиг. 5,б). При этом способе счетчик сцеплен со станком все время.

КАРКАС

Каркас трансформатора (или дросселя) нужен для изоляции обмоток от сердечника и для удержания в порядке обмоток, изоляционных прокладок и выводов. Поэтому он должен быть изготовлен из достаточно прочного изоляционного материала. Вместе с тем он должен выполняться из достаточно тонкого материала, для того чтобы не занимать много места в окне сердечника. Обычно материалом для каркаса служат плотный картон (прессшпан), фибра, текстолит, гетинакс и т. п. В зависимости от размеров трансформатора или дросселя толщина листового материала для каркаса берется от 0,5 до 2,0 мм.
Для клейки картонного каркаса можно употреблять конторский универсальный клей или обычный столярный клей. Лучшим клеем, обладающим хорошей влагоустойчивостью, следует считать нитроклей (эмалит, геркулес). Гетинаксо-вые или текстолитовые каркасы обычно не склеиваются, а собираются «в замок».

По размерам сердечника определяются форма и размеры каркаса, после чего вычерчиваются, а затем нарезаются его детали. Если применяются трансформаторные пластины с просечкой среднего керна,то высоту каркаса делают на несколько миллиметров меньше высоты окна, чтобы без затруднений можно было вставлять пластины сердечника. Во избежание ошибок размеры пластин сердечника нужно тщательно измерить (если они неизвестны) и начертить на бумаге эскиз с размерами отдельных частей каркаса. Особенно важно согласование отдельных частей каркаса при сборке его «в замок». Соотношения размеров каркаса и пластин сердечника для разного типа пластин даны на фиг. 6.
Обычный каркас для трансформатора можно изготовить так. Сначала вырезают щечки каркаса и выкраивают гильзу с отворотами на торцевых сторонах согласно фиг. 7. Сделав надрезы в местах сгиба, выкройку свертывают в коробочку, причем сторона / склеивается со стороной 5. После этого обе щечки надеваются на гильзу. Затем нужно отогнуть отвороты гильзы и, раздвинув щечки на края гильзы, приклеить отвороты к наружным плоскостям щечек. В углы на наружной стороне щечек можно вклеить кусочки того же картона, из которого изготовлялась гильза каркаса. Если клей достаточно прочен и надежен, то гильзу можно делать без отворотов, приклеивая щечки непосредственно на краях гильзы.

Более сложным в изготовлении является сборный каркас, но зато он обладает большой прочностью и не требует склеивания. Детали сборного каркаса изображены на фиг. 8. Они изготовляются следующим образом. Размеры с эскиза путем разметки переносятся на лист материала (текстолита, гетинакса, фибры). Если материал не слишком толст, то детали вырезают ножницами. Затем напильником пропиливают в них пазы. В щечках /, после высверливания в них нескольких отверстий, выпиливают окна. После этого, разложив детали на столе, производят подгонку сторон 2 и 3 гильзы так, чтобы при сборке каркаса сошлись все пропилы и выступы «замка». При разметке и изготовлении деталей 2 у одной из них можно «замочную» часть сделать значительно больших размеров (контуры показаны пунктирам на фиг. 8) для размещения на ней контактов или лепестков для подпайки выводов обмоток. Чтобы не спутать детали, их следует перед сборкой пронумеровать. Порядок сборки каркаса ясен из фиг. 9.

Сразу же после изготовления щечек лучше заранее насверлить в них «в запас» отверстия для выводов. При сборке каркаса или приклейке щечек необходимо учесть, с какой из сторон трансформатора (или с обеих) и на какой из сторон щечек будут сделаны выводы, чтобы правильно расположить стороны щечек, имеющие отверстия для выводов. Надо обратить внимание на то, чтобы стороны щечек с отверстиями в случае квадратного сечения сердечника не оказались закрытыми пластинами сердечника.
Готовый склеенный или собранный каркас нужно подготовить к намотке, для чего следует напильником скруглить углы гильзы и щечек, а также снять заусеницы. Полезно (но необязательно) промазать или пропитать каркас шеллаком, бакелитом и пр.

ИЗОЛЯЦИОННЫЕ ПРОКЛАДКИ

В ряде случаев между соседними рядами обмоток трансформатора образуется большое напряжение, и тогда прочность изоляции самого провода оказывается недостаточной. В таких случаях между рядами витков необходимо класть изоляционные прокладки из тонкой плотной бумаги, кальки, кабельной, конденсаторной или папиросной бумаги. Бумага должна быть ровной и при рассматривании на просвет в ней не должно быть видимых пор и проколов.
Изоляция между обмотками в трансформаторе должна быть еще лучше, чем* между рядами витков, и тем лучше, чем выше напряжение. Лучшая изоляция — лакоткань, но кроме нее, нужна еще и плотная кабельная или оберточная бумага, которые прокладываются также и с целью выравнивания поверхности для удобства намотки сверху следующей обмотки. Один слой лакоткани всегда желателен, однако ее можно заменить двумя-тремя слоями кальки или кабельной бумаги.
Измерив расстояние между щечками готового каркаса, можно приступить к заготовке изоляционных полос бумаги. Для того чтобы крайние витки обмотки не заваливались между краями полос и щечками, бумагу нарезают несколько более широкими полосами, чем расстояние между щёчками каркаса, а края на 1,5-2 мм надрезаются ножницами или просто загибаются. При намотке надрезанные или загнутые полосы закрывают крайние витки обмотки. Длина полос должна обеспечить перекрытие периметра намотки с нахлестом концов на 2-4 см.

Для изоляции выводов, мест паек и отводов обмоток применяются отрезки кембриковых или хлорвиниловых трубок и кусочков лакоткани.
Для затяжки и закрепления начала и конца толстых обмоток (накальных и выходных), заготавливают куски (10-15 см) киперной ленты или полоски, вырезанные из лакоткани и сложенные для прочности втрое, вчетверо.
Если наружный ряд обмотки близко подходит к сердечнику, то из тонкого листового текстолита или картона вырезают прямоугольные пластинки, которые вставляются между обмоткой и сердечником после сборки трансформатора.

НАМОТОЧНЫЕ И ВЫВОДНЫЕ ПРОВОДА

Обмотки трансформаторов, с которыми приходится иметь дело радиолюбителю, чаще всего выполняются проводом с эмалевой изоляцией марки ПЭ или ПЭЛ.
В силовых трансформаторах для сетевых и повышающих обмоток применяется исключительно провод ПЭ, а для обмоток накала ламп — тот же провод или, при большом диаметре (1,5-2,5 мм), провод с двойной бумажной изоляцией марки ПБД.
Выводы концов и отводы от обмоток, выполненных тонким проводом, делаются проводом несколько большего сечения, чем провод обмотки. Для них лучше брать гибкий многожильный провод с эластичной изоляцией (например, хлорвиниловой или резиновой). По возможности желательно брать провода с различной расцветкой, чтобы по ним можно было потом легко узнать любой вывод. Выводы от обметок, выполняемые толстым проводом, можно делать тем же проводом. На концы или отводы этих обмоток надо надеть кусочки тонкостенных изоляционных трубок. Выводные проводники должны быть такой длины, чтобы их можно было свободно присоединить к элементам схемы или к рас-шивочной планке (гребенке).

НАМОТКА

Катушка с проводом, предназначенным для очередной намотки, зажимается между съемными щечками нарезной шпильки размоточного устройства. Шпилька с катушкой устанавливается в конусах этого устройства (фиг. 4). В зависимости от диаметра провода регулируются нажим конусов и степень притормаживания разматываемой катушки.
Катушку необходимо зажимать так, чтобы она при размотке не била, так как от этого зависят успешность и легкость укладки провода виток к витку. Размоточное приспособление располагается впереди намоточного станка не ближе 1 м (дальше -лучше).
Подготовленный каркас трансформатора зажимается между двумя свободно насаженными на шпильке щечками. Шпилька затем вставляется в патрон дрели или зажимается на валу намоточного станка. Каркас, так же как и катушку с проводом, надо хорошо отцентровать, чтобы он при намотке равномерно вращался и не бил. Зажимные щетки нужно располагать таким образом, чтобы не закрыть ими отверстий для выводов в каркасе.
Устанавливать катушку с проводом на размоточном приспособлении и намоточный станок на столе надо так, как изображено на фиг. 10. Провод должен итти сверху катушки на верх каркаса трансформатора. Станок или дрель располагается над столом на такой высоте, чтобы между осью станка и плоскостью стола было расстояние 15-20 см\ тогда при намотке левую руку можно свободно положить на стол, не мешая вращению станка с каркасом.
Перед тем как приступить к намотке, надо приготовить изоляционные прокладки, выводные проводники, изоляционную трубку для.выводов, лист бумаги и карандаш для отметок при счете витков, если нет счетчика, ножницы для подрезки прокладок, кусочек мелкой наждачной бумаги для зачистки изоляции и разогретый паяльник для припайки выводов. Самому надо свободно сесть против стола (верстака) и поупражняться во взаимодействиях рук. Правой рукой надо вращать намоточный станок с таким расчетом, чтобы провод ложился на каркас сверху, а левой — придерживать и натягивать провод, направляя его движение так, чтобы он ложился равномерно виток к витку (для этого левую руку надо положить на стол под ось станка или приспособления, вытянув ее как можно дальше вперед). Чем дальше от каркаса направлять провод, тем точнее и легче укладывается провод.

Выверенный и закрепленный на станке или дрели каркас обертывают тонкой бумажной полоской. Чтобы полоска
держалась, ее можно слегка приклеить.
Выводной проводник или конец самого наматываемого провода обмотки можно закрепить двумя способами. Если провод тонкий, то вывод делают другим, гибким проводом. Такой вывод должен быть достаточно длинным, чтобы, пропустив его сквозь отверстие в каркасе, можно было обернуть им (одним оборотом) гильзу каркаса. К заранее зачищенному и залуженному на 2-3 мм кончику выводного проводника припаивают зачищенный конец наматываемого провода и, изолировав место спайки сложенным вдвое кусочком бумаги или лакоткани, начинают намотку (фиг. 11,а). Изолирующая накладка прижимается при намотке последующими витками (фиг. 11,6). Продетый в отверстие каркаса вывод надо несколько раз обернуть вокруг оси (шпильки) намоточного станка или привязать его к ней, чтобы при дальнейшей намотке он не выдернулся из каркаса. Для большей надежности выводы можно привязывать к гильзе несколькими витками крепкой нитки. Другой способ заключается в том, что выводной провод после пропуска его сквозь отверстия в щечке каркаса захватывается полоской прокладочной бумаги, край которой загибается под провод (фиг. 11,в). Затем полоска, которая должна иметь ширину каркаса, обертывается вокруг гильзы и прижимает выводной провод. Под полоску при этом (у конца выводного провода) нужно подложить изолирующую накладку, которая потом прикроет место спайки выводного и наматываемого проводов.
К выступающему из-под прокладки залуженному концу выводного провода, находящемуся у другой щечки каркаса, припаивают зачищенный кончик наматываемого провода и производят намотку. Изолирующая накладка при этом будет прижата первыми витками обмотки, а выводной конец- витками ее первого ряда (фиг. 11,г).

Намотку нужно производить сначала не спеша, приспосабливая руку так, чтобы провод шел и ложился виток к витку с некоторым натяжением. В процессе намотки данного ряда левую руку следует равномерно передвигать за укладкой витков, стараясь сохранять угол натяжения. Таким образом, последующие витки первого ряда прижимают предыдущие. К&ждый ряд надо на 2-3 мм не доматывать до щечки каркаса, чтобы предотвратить этим проваливание витков вдоль щечки. Особенно это важно при намотке высоковольтных обмоток (например, повышающей в силовом или анодной в выходном трансформаторах).
Перед началом намотки (когда заправлен и припаян первый вывод) счетчик оборотов нужно поставить на нуль или записать его показания. При отсутствии счетчика обороты считают про себя или вслух, причем каждая сотня оборотов отмечается на бумаге палочкой.
После намотки каждого ряда провод надо оставлять натянутым, чтобы во время наложения бумажной прокладки намотанная часть обмотки не распускалась. Для этого можно прижать провод к щечке каркаса бельевым зажимом. Прокладка должна закрывать весь ряд обмотки. Она склеивается или же временно (до удержания ее витками следующего ряда) прижимается к обмотке резиновым кольцом, которое можно изготовить из тонкой шнуровой резинки.
Последний вывод обмотки можно делать так же, как и первый. Перед намоткой последнего полного или неполного ряда этот выводной проводник вместе с бумажной прокладкой (фиг. 11,0) нужно уложить на каркасе и, обернув каркас полосой прокладки, прижать проводник резиновым кольцом. После намотки последнего ряда наматываемый провод обрезается и после зачистки припаивается к залуженному кончику выводного проводника (фиг. 11,д). Если выводной конец должен выходить из щечки, около которой кончается последний ряд обмотки, то заготовка выводного конца делается в виде петли (фиг. 11,е), которая укладывается на каркасе точно так же, как и обычный выводной проводник.
Отводы от части витков обмотки, наматываемой не слишком тонким проводом (от 0,3 мм и более), можно делать в виде петли тем же проводом (не обрезая его), как это показано на фиг. 12,а. Петля в этом случае пропускается через отверстие сложенной вдвое бумажной полоски, которая затягивается после прижатия ее к обмотке последующими витками (фиг. 12,6). Можно обойтись и без-бумажной полоски, если на петлеобразный отвод надеть изоляционную трубку. Отводы от обмотки, выполняемой тонким проводом (менее 0,3 мм), делаются обычно гибким выводным проводником, который припаивается к проводу, как показано на фиг. 12,в.

Начало и конец обмоток из толстого провода выводятся непосредственно (без отдельных выводных проводов) через отверстия в щечках каркаса. На выходящие из каркаса концы нужно только надеть гибкие изоляционные трубки. Крепление концов обмотки производится с помощью узкой хлопчатобумажной ленты. Ленту складывают вдвое, образуя петлю, в которую пропускается первый выводной конец провода. Придерживая затем ленту рукой и намотав на нее туго 6-8 витков, петлю затягивают (фиг. 13,а). Так же закрепляется и второй выводной конец обмотки. Не домотав в этом случае 6-8 последних витков, на каркас кладут сложенную петлей ленту, наматывают последние витки, ко торые прижимают эту ленту к каркасу, и, пропустив в петлю конец обмотки, затягивают петлю (фиг. 13,6). Если обмотка из толстого провода содержит небольшое число витков (не более 10), то выводные концы можно закреплять лентой путем двусторонней затяжки, как показано на фиг. 13,в.
В многослойных обмотках из толстого провода после каждого ряда рекомендуется делать бумажные прокладки. Если каркас не особенно прочный, то каждый последующий ряд надо делать на один-два витка меньше, а пустоты между обмоткой и щечками каркаса заполнить потом шпагатом или нитками. Это важно в том случае, когда сверху еще будут другие обмотки.
При обрывах провода во время намотки или когда обмотка выполняется из отдельных кусков провода, концы проводов соединяют следующим образом. У проводов небольшого диаметра (до 0,3 мм) концы на 10-15 мм зачищают наждачной бумагой, аккуратно скручивают их и спаивают. Место соединения проводов затем изолируется кусочком прокладочной бумаги или лакоткани. Концы более толстых проводов обычно спаиваются без скрутки. Тонкие провода (0,1 мм и меньше) можно сваривать, скрутив концы на 10-15 мм (без зачистки изоляции) и помещая их затем в пламя спиртовки, газа или нескольких спичек. Соединение проводов в этом случае считается надежным, если на конце скрутки образуется небольшой шарик.
Обмотки из тонкого провода с числом витков в несколько тысяч можно наматывать не виток к витку, а «в навал». Однако укладывать витки следует равномерно, чтобы обмотка не имела бугров и провалов. Примерно через каждый миллиметр толщины такой намотки надо делать бумажные прокладки.
Для симметрирования двух обмоток или половин обмоток часто применяют каркасы, перегороженные посредине щечкой. Сначала наматывается одна половина обмотки, а затем каркас перевертывают на 180° и наматывается другая половина. Так как витки каждой половины обмотки будут при этом намотаны в разные стороны, то при последовательном включении половин нужно соединить их начала или концы. Выводы от обмоток в этом случае удобнее делать с противоположных сторон каркаса.
Обмотки трансформатора или дросселя можно выполнять и без каркаса. Намотка производится в основном так же, как и с каркасом, но прокладки между обмотками (или рядами) делают очень широкими (в три раза шире обмотки) .
По окончании намотки каждой секции выступающие края прокладки разрезают на углах ножницами или лезвием безопасной бритвы и, загибая их, закрывают намотанную секцию (фиг. 14). Торцевые стороны намотанных обмоток
нужно залить потом смолкой (от сухих элементов и бата!рей).

Снаружи, если верхний ряд витков последней обмотки намотан толстым проводом и выполнен достаточно аккуратно, катушку можно ничем не обертывать. Если же верхняя обмотка сделана из тонкого провода, да еще намотана не виток к витку, то катушку следует обернуть бумагой или дерматином.
Для того чтобы при монтаже трансформатора можно было легко разобраться в выводах и отводах, желательно применять разноцветные выводные проводники. Например, выводы сетевой обмотки трансформатора делать желтыми, начало и конец повышающей обмотки — красными, отвод от середины повышающей обмотки и провод от экрана — черными и т. д. Можно, конечно, применять и одноцветные выводные проводники, но тогда необходимо на каждый вывод надевать картонную бирку с соответствующим обозначением.

СБОРКА СЕРДЕЧНИКА И МОНТАЖ ВЫВОДОВ

Закончив намотку трансформатора, приступают к сборке его сердечника. Если выводы обмоток сделаны с одной стороны щечки каркаса, то он кладется на стол выводами вниз. Если же выводы сделаны с обеих сторон щечек, то каркас надо расположить так, чтобы внизу оказалось наибольшее число выводов и наиболее толстые из них; верхние же выводы надо сложить в несколько раз и привязать их временно к обмотке, чтобы они не мешали при сборке сердечника (фиг. 15,я). Это особенно важно при форме пластин сердечника с просечкой на среднем керне.
Пластины сердечника силового трансформатора собираются без зазора, в перекрышку (поочередно то слева, то справа), как показано на фиг. 15,6. Сердечники же выходных трансформаторов или дросселей фильтра часто собирают с воздушным зазором, вставляя пластины только с одной стороны (фиг. 15,е). Чтобы этот зазор оставался неизменным, в стык между пластинами и накладками сердечника вставляют полоску бумаги или картона. В пластинах с просечкой на среднем керне толщина зазора определяется толщиной просечки.
Если каркас не очень прочен, то заполнять его пластинами (особенно в конце сборки) надо очень осторожно, так как иначе можно острым краем среднего керна разрезать гильзу и повредить обмотку. Для предотвращения этого желательно в окно каркаса вставить и загнуть защитную полоску из мягкой стали (фиг. 15,6).

При сборке сердечника из пластин с просечкой среднего керна нужно применять вспомогательную направляющую пластинку (фиг. 15,г), вырезав ее, например, из одной пластины сердечника.
Окно каркаса заполняется возможно большим числом пластин. Если трансформатор был разобран и перематывался, то при его новой сборке надо использовать все вынутые раньше пластины. В процессе сборки сердечник следует несколько раз поджимать, просунув для этого в окно каркаса линейку или пруток. Последние пластины, если они входят туго, можно забить молотком, легко ударяя им через деревянную подкладку. После этого, поворачивая трансформатор разными сторонами и ставя его на ровную поверхность, надо легкими ударами молотка через деревянную подкладку подравнять сердечник.
Сердечник, после его сборки, должен быть хорошо стянут. Если в пластинах имеются отверстия, то он стягивается болтиками через накладные планки или угольники (фиг. 16,а и б). Вместе с этим> можно установить и щнток с лепестками для подпайки выводных концов обмоток.
Сердечник небольшого размера, собранный из пластин без отверстий, можно стянуть одной общей скобой, вырезанной из нетолстой мягкой стали (фиг. 16,в).

Очень удобно для крепления трансформатора и стягивания его сердечника использовать шасси, на котором трансформатор должен быть установлен. В шасси вырезают окно для прохода нижней части катушки с выводами, устанавливают трансформатор и стягивают сердечник болтиками через общую накладную рамку (фиг. 16,г). Выводные концы при этом соединяются с соответствующими участками схемы либо непосредственно, либо через установленный на шасси щиток с контактными лепестками.

ПРОСТЕЙШИЕ ИСПЫТАНИЯ

Трансформатор, после его намотки и сборки необходимо испытать.
Силовые трансформаторы испытываются путем включения первичной (сетевой) обмотки в электросеть.
Для проверки отсутствия коротких замыканий в обмотках трансформатора можно рекомендовать следующий простой способ. В сеть последовательно с первичной обмоткой / проверяемого трансформатора включается электрическая лампа Л (фиг. 17), рассчитанная на соответствующее напряжение сети. Для трансформаторов мощностью 50-100 вт берут лампу 15- 25 вт, а для трансформаторов 200-300 вт — лампу 50- 75 вт. При исправном трансформаторе лампа должна гореть примерно «в четверть накала». Если при этом замкнуть накоротко какую-либо из обмоток трансформатора, то лампа будет гореть почти полным накалом. Таким путем проверяются целость обмоток, правильность выводов и отсутствие короткозамкнутых витков в трансформаторе.

После этого, проследив за тем, чтобы выводы обмоток не были замкнуты, первичную обмотку трансформатора надо включить на один-два часа непосредственно в сеть (замкнув выключателем Вк лампу Л). В это время можно вольтметром измерить напряжение на всех обмотках трансформатора и убедиться в соответствии их величин с расчетными.
Кроме того, нужно испытать надежность изоляции между отдельными обмотками трансформатора. Для этого одним из выводных концов повышающей обмотки // надо поочередно коснуться каждого из выводов сетевой обмотки /. В этом случае напряжение повышающей обмотки совместно с напряжением сетевой обмотки будет действовать на изоляцию между этими обмотками. Таким же образом, прикасаясь выводным концом повышающей обмотки // к выводным концам других обмоток, испытывается изоляция и этих обмоток. Отсутствие искры или слабое искрение (за счет емкости между обмотками) при этом показывает достаточность изоляции между обмотками трансформатора.
Испытание трансформатора нужно производить внимательно, соблюдая осторожность, чтобы не попасть под высокое напряжение повышающей обмотки.
Другие виды трансформаторов (выходные и т. п.) с обмотками из достаточно большого числа витков испытываются таким же образом. Измеряя при этом напряжения на обмотках трансформатора, можно определить коэффициент трансформации.
Убедившись в результате испытания в исправности изготовленного трансформатора, последний можно считать готовым к установке и монтажу.

Программу для расчета трансформатора можно

Трансформатор представляет собой агрегат, предназначенный для передачи электроэнергии с измененными показателями по сети к конечному потребителю. Это оборудование отличается определенной схемой. Трансформаторы могут понижать или повышать напряжение.

Со временем сердечнику может потребоваться перемотка. В этом случае радиолюбитель сталкивается с вопросом, как намотать трансформатор . Этот процесс занимает достаточно много времени и требует концентрации внимания. Однако сложного ничего в перемотке контура нет. Для этого существует пошаговая инструкция.

Конструкция

Трансформатор работает по принципу электромагнитной индукции. Он может иметь различную конструкцию магнитопривода. Однако одной из самых распространенных является тороидальная катушка. Ее конструкция была изобретена еще Фарадеем. Чтобы понимать, как намотать тороидальный трансформатор или прибор любой другой конструкции, необходимо изначально рассмотреть конструкцию его катушки.

Тороидальные устройства преобразуют переменное напряжение одной мощности в другую. Бывают однофазные и трехфазные конструкции. Они состоят из нескольких элементов. В состав конструкции входит сердечник из ферромагнитной стали. Есть резиновая прокладка, первичная, вторичная намотка, а также изоляция между ними.

Обмотка имеет экран. покрыт и сердечник. Также применяется предохранитель, крепежные элементы. Чтобы соединить обмотки в единую систему, применяется магнитопривод.

Приспособление для намотки

Тороидальные трансформаторы могут быть разных видов. Это необходимо учитывать в процессе создания контура. Намотать трансформатор 220/220 , 12/220 или прочие разновидности можно при помощи специального инструмента.

Чтобы упростить процесс, можно изготовить особый аппарат. Он состоит из которые скреплены между собой металлическим прутом. Он имеет форму рукояти. Этот вертел поможет быстро намотать контуры. Прутик должен быть не толще 1 см. Он будет пронизывать каркас насквозь. При помощи дрели выполнить этот процесс будет проще.

Дрель крепится на плоскости стола. Она будет находиться параллельно. Рукоять должна свободно вращаться. Прут вставляется в патрон дрели. Перед этим на металлический штырь нужно надеть колодку с каркасом будущего трансформатора. Прут может иметь резьбу. Этот вариант считается предпочтительнее. Колодку можно будет зажать с обеих сторон при помощи гайки, текстолитовыми пластинами или дощечками из дерева.

Другие инструменты

Чтобы намотать трансформатор 12/220, импульсный, ферритовый или прочие разновидности конструкций, необходимо подготовить еще несколько инструментов. Вместо представленной выше конструкции можно воспользоваться индуктором от телефона, устройством для перемотки пленки, машиной для шпули с ниткой. Вариантов существует множество. Они должны обеспечить плавность, равномерность процесса.

Также потребуется подготовить прибор для размотки. По своему принципу подобное оборудование похоже на представленные выше устройства. Однако при обратном процессе можно производить вращение без ручки.

Чтобы не считать число витков самостоятельно, следует приобрести специальный прибор. Он будет учитывать количество витков на катушке. Для этих целей может подойти обыкновенный водяной счетчик или велосипедный спидометр. При помощи гибкого валика выбранный прибор учета соединяется с наматывающим оборудованием. Можно сосчитать количество витков катушки устно.

Расчеты

Чтобы понять, как намотать импульсный трансформатор, необходимо произвести расчеты. Если же осуществляется перемотка уже существующей катушки, можно просто запомнить изначальное количество ее витков и приобрести провод идентичного сечения. В этом случае без расчетов можно обойтись.

Но если требуется создать новый трансформатор, нужно определить количество и тип материалов. Например, для устройства с рабочей нагрузкой от 12 до 220 В потребуется аппарат от 90 до мощностью. Взять магнитопривод можно, например, из старого телевизора. Сечение проводника определяется в соответствии с мощностью агрегата.

Количество витков катушек определяется для 1В. Этот показатель приравнивается к 50 Гц. Первичная (П) и вторичная (В) обмотки рассчитываются так:

  • П = 12 х 50/10 = 60 витков.
  • В = 220 х 50/10 = 1100 витков.

Чтобы определить в них токи, применяется следующая формула:

  • Тп = 150: 12 = 12,5 А.
  • Тв = 150: 220 = 0,7 А.

Полученный результат необходимо учесть при выборе материалов для создания нового прибора.

Изоляция слоев

Чтобы намотать ферритовый трансформатор или другую разновидность приборов, необходимо изучить еще один нюанс. Между определенными слоями проводников следует устанавливать Чаще всего для этого применяется конденсатная или кабельная бумага. Все необходимые материалы можно приобрести в специализированных магазинах. Бумага должна обладать достаточной плотностью, быть ровной без просветов или отверстий.

Между отдельными катушками изоляционные слои создаются из более прочных материалов. Чаще всего применяется лакоткань. Ее с обеих сторон обкладывают бумагой. Это необходимо еще и для выравнивания поверхности перед проведением намотки. Если лакоткань найти не удалось, вместо нее можно использовать сложенную в несколько слоев бумагу.

Бумагу режут на полоски, ширина которых должна быть больше, чем контур. Они должны выходить за края обмотки на 3-4 мм. Лишний материал будет подворачиваться вверх. Это позволит хорошо защитить края катушки.

Каркас

Чтобы понять, как правильно намотать трансформатор , следует уделить внимание каждой детали этого процесса. Подготовив изоляцию, провод и инструмент, следует сделать каркас. Для этого можно взять картон. Внутренняя часть каркаса должна быть больше стержня сердечника.

Для О-образного магнитопривода необходимо подготовить 2 катушки. Для сердечника Ш-образной формы потребуется один контур. В первом варианте круглый сердечник необходимо покрыть изоляционным слоем. Только после этого приступают к намотке.

Если же магнитопривод будет Ш-образный, каркас выкраивают из гильзы. Из картона вырезаются щетки. Катушку в этом случае необходимо будет завернуть в компактную коробку. Щетки надеваются на гильзы. Подготовив каркас, можно приступать к намотке проводника.

Пошаговая инструкция намотки

Будет достаточно просто. Для этого катушку с проводом следует установить в оборудовании для размотки. С нее будет снят старый провод. Каркас будущего трансформатора нужно поставить в оборудование для намотки. Далее можно производить вращательные движения. Они должны быть размеренные, без рывков.

В процессе такой процедуры провод со старой катушки будет перемещен на новый каркас. Между проводом и поверхностью стола расстояние должно составлять не менее 20 см. Это позволит положить руку и фиксировать кабель.

На стол нужно заранее выложить все необходимые инструменты и оборудование. Под рукой должна быть бумага изоляционная, ножницы, наждачная бумага, паяльник (включенный в сеть), ручка или карандаш. Одной рукой необходимо поворачивать ручку устройства для наматывания, а второй — проводник фиксировать. Нужно чтобы витки укладывались равномерно, ровно.

Рассматривая пошаговую инструкцию, как намотать трансформатор , следует уделить внимание последующим операциям. После укладывания проводника каркас потребуется заизолировать. Сквозь его отверстие необходимо продеть конец провода, выведенный из контура. Фиксация будет временной.

Опытные радиолюбители рекомендуют перед проведением намотки сначала потренироваться. Когда получится накладывать витки ровно, можно приступать к работе. Угол натяжения и провода должны быть постоянными. Каждый следующий слой не требуется мотать до упора. Иначе проводник может соскользнуть с предназначенного для него места.

В процессе наматывания витков нужно установить счетчик на нулевую отметку. Если же его нет, нужно проговаривать количество поворотов проволоки вслух. При этом следует максимально сконцентрироваться, чтобы не сбиться со счета.

Изоляцию нужно будет прижать кольцом из мягкой резины или клеем. Каждый последующий слой будет на 1-2 витка меньше, чем предыдущий.

Процесс соединения

Рассматривая, как намотать трансформатор , необходимо изучить процесс соединения проводов. Если при наматывании жила оборвется, следует произвести процесс спайки. Эта процедура может потребоваться и в том случае, если изначально предполагается создавать контур из нескольких отдельных кусков проволоки. Спайку выполняют в соответствии с толщиной провода.

Для проволоки толщиной до 0,3 мм необходимо очистить концы на 1,5 см. Затем их можно просто скрутить и спаять при помощи соответствующего инструмента. Если же жила толстая (более 0,3 мм), можно спаять концы напрямую. Скручивание в этом случае не потребуется.

Если же провод очень тонкий (менее 0,2 мм), его можно сварить. Их скручивают без проведения процедуры зачистки. Место соединения подносят в пламя зажигалки или спиртовки. В месте соединения должен появиться наплыв из металла. Место соединения проводов нужно обязательно изолировать лакотканью или бумагой.

Испытание

Изучив процедуру, как намотать трансформатор, следует учесть еще несколько рекомендаций. Количество витков тонкого проводника может достигать несколько тысяч. В этом случае лучше использовать специальное счетное оборудование. Обмотку защищают сверху бумагой. Для толстого проводника наружная защита не требуется.

Чтобы оценить надежность изоляции, необходимо поочередно касаться выведенным проводником каждого выхода сетевых контуров. Процедуру проверки нужно выполнять очень осторожно. Следует исключить вероятность удара током.

Рассмотрев пошаговую инструкцию намотки трансформатора, можно отремонтировать старый или создать новый прибор. При четком следовании всем ее пунктам удается создать надежный, долговечный агрегат.

Тематические материалы:

Обновлено: 02.09.2019

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Первичная обмотка — обзор

Потери в железе

Первичная обмотка трансформатора имеет конечную индуктивность, поэтому она представляет собой реактивное сопротивление в цепи питания, которое потребляет ток даже при отсутствии вторичной нагрузки. Вместо того, чтобы рассчитывать на конкретное первичное реактивное сопротивление или соответствующий ток, старые трансформаторы просто использовали «восемь витков на вольт», хотя многие современные трансформаторы с железным сердечником (особенно тороиды) используют только четыре витка на вольт.

Поскольку сердечник последовательно намагничивается и размагничивается за счет противоположных полярностей, необходимо выполнить работу по изменению ориентации магнитных диполей.Эти потери известны как гистерезисные потери и могут быть рассчитаны путем исследования кривых гистерезиса для конкретного используемого материала сердечника. Поскольку это потери, вызванные изменением намагниченности сердечника в течение одного полного цикла приложенной формы волны переменного тока, потери будут больше в данный момент времени, если пройдено больше циклов намагничивания. Следовательно, гистерезисные потери прямо пропорциональны частоте и могут быть уменьшены только путем выбора материала сердечника с меньшими потерями.

Магнитопроводы металлические и поэтому проводят электричество.Что касается первичной обмотки, нет никакого различия между преднамеренной вторичной обмоткой, подключенной к нагрузке, и токопроводящим путем, параллельным первичной обмотке через сердечник. Токопроводящие пути через сердечник вызывают протекание вихревых токов , которые, поскольку являются короткими замыканиями, вызывают потери. Чтобы уменьшить эти потери, сердечник может быть изготовлен из пакета из пластин , поверхности которых были подвергнуты химической обработке, чтобы сделать их изоляторами. Окончательный подход к этой проблеме состоит в том, чтобы сделать ядро ​​из частиц железной пыли, поверхность которых была обработана, а затем связать их с керамикой, чтобы сформировать твердый сердечник, известный как сердечник из ферритовой пыли .

Потери на вихревые токи пропорциональны f 2 , потому что не только потери пропорциональны количеству проходов петли намагничивания за заданное время, но и более высокие частоты имеют меньшие длины волн и позволяют формировать больше петель тока. внутри ядра. Хотя тонкие стальные пластины подходят для звуковых частот, ферриты необходимы для радиочастот, а на УКВ почти все материалы сердечника имеют чрезмерные потери, поэтому необходимо использовать трансформаторы с воздушным сердечником.

Первичные токи из-за конечной индуктивности первичной обмотки, потери на гистерезис и потери на вихревые токи часто объединяются и называются током намагничивания в силовых трансформаторах и ответственны за нагрев сердечника, даже когда нагрузка не подключена.

Не весь поток от первичной обмотки проходит через вторичную обмотку, и эти потери в сочетании с гистерезисом и потерями на вихревые токи известны как индуктивность рассеяния в аудиотрансформаторах. Теоретически индуктивность рассеяния (относящаяся к первичной обмотке) определяется путем измерения индуктивности первичной обмотки при коротком замыкании вторичной обмотки.На практике индуктивность рассеяния трудно измерить, поскольку измерения на одной частоте легко искажаются паразитными емкостями, что требует измерения качающейся частоты. Тем не менее, индуктивность рассеяния является важным теоретическим понятием, так как она определяет рабочий предел высокочастотного трансформатора.

Индуктивность утечки зависит от размера ( q ), отношения витков N 2 и геометрии трансформатора ( k ), но не зависит от μ r :

Lleakage ∝qN2k

Для данной частоты трансформатор с более высокой номинальной мощностью будет больше, чем трансформатор с более низкой номинальной мощностью, и, следовательно, будет иметь более высокую индуктивность рассеяния.

Поскольку индуктивность рассеяния пропорциональна Н 2 , мы всегда должны: стараться поддерживать как можно более низкое отношение витков, поэтому параллельное включение выходных клапанов в ламповом усилителе полезно, поскольку оно снижает требуемое отношение витков.

Геометрию можно улучшить двумя основными способами: мы можем либо улучшить форму сердечника, либо улучшить нашу технику намотки.

Стандартные трансформаторы изготавливаются с сердечниками E / I, где каждая пластина сердечника состоит из E-образной и I.Машина, которая выглядит (и звучит) скорее как продавец карт, вставляет пластинки поочередно с обеих сторон катушки, так что при альтернативных пластинах ориентация форм меняется на противоположную, чтобы уменьшить воздушный зазор в стыке (см. Рис. 4.28).

Рисунок 4.28. Расположение слоев сердечника E / I для уменьшения потока утечки.

Традиционно ядра высшего качества делались как ядра C. Они были сделаны путем наматывания сердечника из непрерывной полосы, которую затем разрезали пополам, а получившиеся грани шлифовали.Затем катушки были намотаны, и сердечники были вставлены так, чтобы заземленные поверхности были идеально выровнены с минимальным воздушным зазором, и были использованы стальные ленты, чтобы прочно удерживать сборку вместе (см. Рисунок 4.29).

Рисунок 4.29. C-core устройства.

Сердечник C был дорогостоящим процессом, и неточная сборка могла создать воздушный зазор, создавая тем самым то самое несовершенство, которого конструкция пыталась избежать. Более современный подход состоит в том, чтобы намотать сердечник как тороид, но не разрезать его, и использовать специальную машину для намотки катушек, чтобы намотать катушки непосредственно на сердечник, что приводит к очень низкой утечке сердечника (см. Рисунок 4.30).

Рисунок 4.30. Расположение сердечника тороидально.

Между прочим, хотя тороиды считаются современными, первым из когда-либо созданных трансформаторов был тороид с использованием изолированного шелком провода от свадебного платья его жены! (Майкл Фарадей, август 1831 г.).

И сердечник C, и тороид имеют дополнительное преимущество, заключающееся в том, что магнитный поток всегда течет в одном и том же направлении относительно направления зерна кристаллической структуры сердечника, тогда как в сердечнике E / I он должен течь через зерно. в некоторых частях ядра.Это важно, потому что кремнистая сталь с ориентированной зернистостью (GOSS) может выдерживать более высокую плотность магнитного потока до насыщения в направлении зерна, чем поперек зерна. Следовательно, сердечники E / I могут работать только при плотностях потока ниже насыщения по зерну, тогда как сердечники C и тороиды могут работать при значительно более высоких плотностях потока, что позволяет уменьшить размер сердечника и количество витков на вольт.

Наихудшая геометрия обмотки по индуктивности рассеяния — это разделенная камера (см. Рисунок 4.31).

Рисунок 4.31. Разделенная катушка обеспечивает хорошую первичную / вторичную изоляцию, но высокую индуктивность рассеяния.

Геометрию трансформатора можно улучшить, намотав первичную и вторичную обмотки из множества чередующихся слоев или секций, вместо того, чтобы наматывать одну половину бобины на первичную, а другую половину — на вторичную. Увеличение количества секций улучшает связь между первичной и вторичной обмотками, таким образом уменьшая утечку L , но обычно увеличивает паразитную емкость.

Хотя разделение обмоток относительно легко на сердечнике E / I или C, на тороиде это очень сложно; кроме того, геометрия обмотки на тороиде довольно плохая, и поэтому легко потерять преимущества улучшенного сердечника из-за плохой катушки.Тороидальные сетевые трансформаторы известны своим потоком утечки в месте выхода обмоток именно по этой причине.

Альтернативным методом улучшения геометрии обмотки является использование бифилярной обмотки , при которой два провода одновременно наматываются рядом. Если один из этих проводов является частью первичной обмотки, а другой — вторичной, это способствует отличной связи между обмотками и значительно снижает индуктивность рассеяния. Этот метод дешевле, чем секционирование, и при условии, что машина для намотки катушек может справиться с этим, нет причин останавливаться на двух проводах — можно использовать три или четыре.

К сожалению, есть два препятствия для многофилярной намотки. Во-первых, тонкая полиуретановая изоляция на медном проводе легко повреждается во время намотки и может выйти из строя, если между обмотками> 100 В, что затрудняет создание трансформатора, способного изолировать питание HT. Тем не менее, в оригинальном усилителе McIntosh [5] на 50 Вт использовался многофазный выходной трансформатор и источник питания 440 В HT! Во-вторых, значительно увеличенная емкость между первичной и вторичной обмотками может резонировать с уменьшенной индуктивностью рассеяния, создавая более низкую резонансную частоту, чем у секционного трансформатора.

Мультифилярная обмотка лучше всего подходит для трансформаторов слабого сигнала с очень низким соотношением витков (в идеале 1: 1), таких как симметричные линейные выходные трансформаторы, используемые в студиях.

Толщина провода трансформатора | Telecaster Guitar Forum

Номинальное напряжение 300 В относится к изоляции, а не к проводнику. Пиковое испытание — это неразрушающая процедура для трансформаторов, в которой определяется пробой изоляции между первичной и вторичной обмотками. В основном это напряжение 1500 вольт в Великобритании, чтобы обеспечить безопасность использования трансформатора с двойной изоляцией без заземления.
Просмотреть вложение 747837
Это та информация, которую я должен был узнать после сдачи экзаменов по электротехнике 17-го издания. (Мертвая скука, но это нужно знать).
Надеюсь это ответит на твой вопрос.

Щелкните, чтобы раскрыть …

Что ж, это информация, которая действительно не нужна гитаристу, но производитель усилителей может захотеть хотя бы знать о ней, если не до конца понимать!

В любом случае, когда я узнаю, что я чего-то не знаю, я думаю, что мне нравится получать более подробный ответ, чем «иди» или «нет».

Трансформаторы немного похожи на датчики в том, что AFAIK ток индуцируется во вторичной обмотке под действием магнетизма, поскольку нет электрического соединения с первичной обмоткой. Таким образом, провод во вторичной обмотке действительно довольно тонкий, не такой тонкий, как обмотки датчика, но вторичная обмотка, которая должна «улавливать» магнитную энергию, наведенную в пластинах первичной обмоткой, намного тоньше, чем первичная обмотка?

Это примерно верно?
Если посмотреть, например, на трансформаторы типа Partridge, где мы можем видеть вторичную обмотку, соединяющуюся с соединительным проводом, я считаю, что соединительный провод толще, чем вторичная обмотка, и тогда мы можем видеть, что вторичная обмотка действительно довольно тонкая.
В то время как ОП спрашивал о вторичном проводе подключения? Не провод вторичной обмотки?
AFAIK вторичные компоненты работают как 70v?
Не уверен, что первичная обмотка передает напряжение или ток, но она должна пропускать больше тока, чем вторичная обмотка?

(здесь имеет меньшее значение, но все же электрически факт, что 300 В при высокой силе тока, вероятно, расплавят эту изоляцию 300 В, а достаточно высокая сила тока даже расплавит провод! Нет? На самом деле, гораздо более низкое напряжение расплавит эту изоляцию 300 В и сердечник провода с достаточно высокой силой тока? Сила тока отсутствует в Champ, но, возможно, присутствует в других гражданских электрических устройствах, OP может применить свои знания EE, полученные из TDPRI!)

Я считаю, что часто полезно «запутать» OP когда они задают вопрос о сборке усилителя, потому что могут быть такие участники, как вы, которые действительно разбираются в этом материале, где мы, увлеченные инженеры-любители усилителей и строители, вроде как раскрашиваем числами, часто даже не понимая, над чем мы работаем на уровне EE.
Понимание сейчас не требуется, как раньше, но это хорошо!

Вторичные обмотки трансформатора, в котором класс 13 по физике CBSE

Подсказка: Мы должны знать, что трансформатор используется для повышения или понижения напряжения и тока в электрической цепи. Существует два типа трансформаторов, известных как повышающие и понижающие трансформаторы. Обычно первичные обмотки трансформатора потребляют энергию от источника, а вторичные обмотки подают измененное напряжение на нагрузку.

Полный пошаговый ответ:
Сначала мы обсудим трансформаторы и различные части трансформатора. В основном трансформатор состоит из 3-х частей. Они включают в себя железный сердечник, который обеспечивает цепь с низким сопротивлением для магнитных силовых линий, первичную обмотку, которая получает электрическую энергию от источника, и вторичную обмотку, которая получает электрическую энергию за счет индукции от первичной катушки. Эти обмотки намотаны на закрытый сердечник для получения максимального индуктивного эффекта между двумя катушками.

Теперь мы обсудим понижающий трансформатор и почему вторичные обмотки толще первичных. Понижающий трансформатор разработан, поскольку на первичной обмотке больше витков, чем на вторичной. Здесь наведенное напряжение на первичной катушке больше, чем приложенное напряжение на вторичной катушке. То есть напряжение понижается.
Причина увеличения толщины вторичных обмоток в том, что при работе с трансформатором переменный ток будет проходить через обе обмотки.Эти катушки будут иметь сопротивление, и из-за нагрева будут потери энергии. Эти потери можно уменьшить, используя для намотки провода с меньшим сопротивлением. Напряжение во вторичной катушке будет выше, поэтому есть вероятность больших потерь. Итак, чтобы снизить температуру, мы используем более толстые провода с низким удельным сопротивлением.

Примечание:
Обычно для вторичной обмотки используются толстые медные провода. Медь имеет низкое удельное сопротивление. Мы должны знать, как толщина снижает сопротивление. Сопротивление проводника прямо пропорционально длине провода и обратно пропорционально площади поперечного сечения / толщине.Итак, если мы увеличим толщину, сопротивление уменьшится.

Консультации — Инженер по подбору | Выбор и расчет трансформатора

Рисунок 4: Это образец паспортной таблички трансформатора с коэффициентом К. Обратите внимание, что К-фактор четко определен. Предоставлено: NV5

Цели обучения

  • Изучите концепции проектирования для выбора и определения размеров электрических трансформаторов.
  • Ознакомьтесь с правилами и рекомендациями, связанными с конструкцией трансформатора.
  • Оцените профиль тематического исследования, чтобы выделить передовой опыт.

В США трансформаторы регулируются NFPA 70: Национальный электротехнический кодекс; в этом случае будет использоваться последняя версия кода, опубликованная в 2017 году. Трансформаторы являются основными компонентами многих различных коммерческих, промышленных и жилых электрических систем. Они позволяют «повышать» или понижать рабочее напряжение. Трансформаторы могут повышать или понижать напряжение за счет использования магнитного поля, пассивно создаваемого токонесущими обмотками.

Самая простая версия этой концепции может быть проиллюстрирована двумя медными петлями разного размера, одна внутри другой без контакта. Если через один из этих контуров проходит ток, то на выводах другого контура наблюдается индуцированное напряжение. Напряжение и ток во втором контуре пропорциональны напряжению и току, связанным с первым контуром. Количество петель или обмоток может быть изменено для создания различных напряжений для работы.

Обмотки трансформатора изготавливаются из алюминия или меди.Алюминий является обычным выбором, потому что он менее дорогой, но по своим электрическим характеристикам похож на медь. Алюминий легче меди, но обычно больше по физическим размерам.

Типоразмеры номинальной мощности силового распределительного трансформатора

стандартизированы во всей отрасли. Наиболее распространенным типом применения на коммерческом объекте являются понижающие трансформаторы, соединяющие трехфазную первичную обмотку со вторичной звездой. Стандартные промышленные размеры трансформаторов со звездочкой на 480–120 / 208 В обычно составляют 15, 30, 45, 75, 112.5, 225, 300 и 500 киловольт-ампер.

Также доступны однофазные трансформаторы на 277 или 480 вольт на 5, 7,5, 10, 15, 25, 37,5, 50, 75 и 100 киловольт-ампер. Это не полный список, но он иллюстрирует разнообразие и ассортимент, которые имеются в продаже.

Рис. 1: Этот трансформатор для подавления гармоник не имеет виброизолирующих прокладок. Как правило, они отмечаются во время проверки компетентными органами или во время полевых наблюдений инженером.Предоставлено: NV5

В общем, трехфазные трансформаторы являются наиболее часто используемыми для приложений и выбора электрических проектировщиков. Однофазные трансформаторы обычно используются для специальных приложений или напряжений. Примером может быть единичное оборудование, для которого требуется однофазное напряжение 240 В, а рабочее напряжение составляет 120/208 В для трехфазного соединения звездой. Для такого особого случая обычно предусматривают только однофазный трансформатор для оборудования, потому что он не обслуживает множество нагрузок.Когда однофазный трансформатор используется для общего распределения, это может вызвать дисбаланс фаз при использовании трехфазной сети. В противном случае, если свойство обслуживается однофазным и используется трансформатор (например, для изоляции), то однофазный трансформатор будет подходящим.

Все трансформаторы должны иметь паспортную табличку с информацией, описанной в NEC 450.11 (A) (1-8). Эта информация включает в себя название производителя, номинальные киловольт-амперы, частоту, первичное и вторичное напряжения, импеданс трансформаторов 25 киловольт-ампер или больше, необходимые зазоры для трансформаторов с вентиляционными отверстиями, количество и вид изоляционной жидкости, если она используется.Для сухих трансформаторов — температурный класс системы изоляции.

Типоразмер трансформатора

Первым шагом при выборе трансформатора является определение нагрузки, которая будет обслуживаться на уровне ответвления, фидера или обслуживания. Это начинается с оценки или расчета нагрузки спроса с использованием статьи 220 NEC, а затем применения соответствующих коэффициентов спроса. В зависимости от типов обслуживаемых нагрузок факторы спроса уменьшают расчетную нагрузку для определения подходящего размера трансформатора.‘

Эта расчетная расчетная нагрузка представляет собой базовую нагрузку или начальную точку для выбора трансформатора. После того, как вы определили базовую нагрузку, в зависимости от типа проекта, необходимо будет учесть несколько соображений при определении окончательного размера трансформатора. Эти соображения включают будущую гибкость, доступное физическое пространство, стоимость и тип проекта.

Будущая емкость или расширение объекта недвижимости — один из наиболее важных факторов, влияющих на определение размера. Это важно, потому что и малоразмерный, и крупногабаритный трансформаторы работают с более низким КПД и со временем могут привести к серьезным повреждениям оборудования.Крайне важно понимать, как владелец использует объект по назначению. Есть случаи, когда недвижимость вряд ли расширится, и поэтому владельцам могут не потребоваться мощности для будущих нагрузок или оборудования.

Рис. 2: Образец паспортной таблички сухого трансформатора на 1500 киловольт-ампер со списком всех параметров, относящихся к конструкции и возможностям трансформатора. Предоставлено: NV5

Однако некоторые владельцы могут не использовать свои помещения на полную мощность по завершении проекта (например,, фармацевтическая лаборатория, заполненная наполовину), и было бы разумно предусмотреть мощность для будущего расширения на трансформаторе. Такие соображения относительно расширяемости должны обсуждаться и согласовываться консультантом по проектированию с правом собственности в соответствии с их потребностями.

Кроме того, в зависимости от типа проекта (например, новое строительство, улучшение арендатора, реконструкция) может не хватить физического пространства для расширения. Добавление трансформатора к существующей собственности может быть дорогостоящим в зависимости от местоположения и размера.Расположение добавленного трансформатора требует согласования для вентиляции, размещения зазоров, требуемых согласно нормам, и может потребовать структурных распорок. Кроме того, трансформаторы выделяют избыточное тепло, которое инженер-механик должен оценить существующие системы, чтобы определить, будут ли они поддерживать достаточное охлаждение.

Еще одно соображение — это вес; некоторые трансформаторы меньшего размера весят менее 1000 фунтов и могут быть встроены с минимальной структурной координацией. Эти соображения следует оценить перед добавлением трансформатора к существующей электрической системе.Как правило, с точки зрения затрат и координации легче разместить трансформатор большего размера в новой строительной конструкции, но проект реконструкции может оказаться более дорогостоящим и потребовать большей координации.

И последнее, что важно учитывать владельцу, — это стоимость трансформатора. Обычно чем больше размер трансформатора, тем выше стоимость оборудования и монтажа. Часто для трансформаторов больших размеров они также могут повлечь дополнительные затраты на проектирование и конструкцию.Например, трансформатор сухого типа на 225 киловольт-ампер, расположенный на верхнем этаже, обычно весит от 2 000 до 4 000 фунтов и потребует от инженеров-строителей и архитекторов учета веса и дополнительных распорок, необходимых для поддержки нагрузки оборудования.

В целом, как и в случае с большинством других аспектов электротехники, лучше всего быть консервативным и увеличивать размер на ранних стадиях проекта, пока не будет проведена дальнейшая разработка проекта и окончательное решение не будет принято с учетом всех предыдущих пунктов.Стоит отметить, что легче уменьшить размеры трансформатора на более позднем этапе проектирования в целях согласования, чем увеличивать размеры трансформатора после предварительных этапов проектирования.

Информация об установке трансформатора содержится в NEC, статья 450. В статьях 450.3 (A) и (B) приведены таблицы для максимальных номинальных значений или уставок максимальной токовой защиты для трансформаторов с напряжением для обоих, равным / меньше и больше 1000 вольт. . Числа, приведенные в таблицах, представляют собой проценты от номинального тока трансформатора, который получается путем деления номинальной мощности трансформатора в киловольт-амперах на напряжение фидера.

Само собой разумеется, что первичный и вторичный фидеры трансформатора будут иметь разные требования к току, соответствующие их напряжению, за одним исключением — трансформаторы, используемые для силовой развязки. Первичная защита позволяет инженеру упростить конструкцию, но использование комбинации одиночной и вторичной защиты обеспечивает большую гибкость при использовании номинального тока трансформатора. Можно использовать полную мощность трансформатора, если фидеры по-прежнему защищены в соответствии с этими таблицами.

Рис. 4: Это образец паспортной таблички трансформатора с коэффициентом К. Обратите внимание, что К-фактор четко определен. Предоставлено: NV5

Типы трансформаторов

После определения размера трансформатора рассмотрите применение и типы нагрузок, которые будет обслуживать трансформатор. В коммерческом проектировании существует несколько широко используемых типов трансформаторов с характеристиками, описанными ниже:

Сухие трансформаторы используют окружающий воздух для охлаждения сердечника и обмоток.Эти трансформаторы, как правило, больше, чем трансформаторы, заполненные жидкостью, но, как правило, дешевле в материалах и затратах на установку.

Два обычно используемых сухих трансформатора герметизированы и вентилируются. Невентилируемые или инкапсулированные, они полностью герметичны с поверхностным охлаждением, подходят для зон мытья и коррозионных, горючих или других вредных условий. Вентилируемые трансформаторы сухого типа имеют отверстия, позволяющие воздуху проходить внутрь, имеют больший размер, используют другие изоляционные материалы и содержат кожух для обмоток, обеспечивающий физическую защиту оборудования и персонала.

Трансформаторы с жидкой изоляцией используют жидкость для охлаждения и в качестве изолятора для сердечников. Минеральное масло и масла на биологической основе являются наиболее часто используемыми жидкостями. Трансформаторы с жидкостной изоляцией обеспечивают лучшее охлаждение, что позволяет получить более компактный трансформатор, чем трансформатор сухого типа.

Однако эти трансформаторы требуют периодического анализа масла, но считаются менее дорогостоящими для ремонта. Масла на биологической основе менее огнеопасны и являются экологически безопасными в случае утечки.Считается, что менее воспламеняемыми считаются жидкости с температурой воспламенения не менее 300 ° C. Трансформаторы, устанавливаемые на внешней площадке, обычно используются с минеральным маслом и считаются горючими. Для трансформаторов с напряжением менее 35 киловольт для внутренней установки могут потребоваться минимальные требования, такие как автоматическая спринклерная система или зона удержания жидкости, в которой не хранятся горючие вещества.

NEC 450.23 покрывает требования для внутренней и наружной установки для этих типов с жидкой изоляцией.Кроме того, негорючие трансформаторы с жидкостной изоляцией, в которых используется негорючая диэлектрическая жидкость, требуют установки трансформаторного шкафа в помещении в соответствии с NEC 450.24. Трансформаторы с масляной изоляцией должны устанавливаться в трансформаторном шкафу в соответствии с NEC 450.26 в помещении.

Рис. 5: Пример смонтированного на площадке трансформатора на 300 кВ с масляной изоляцией, установленного вне помещения на специальной площадке для оборудования. Предоставлено: NV5

Специальные приложения

Трансформаторы с номиналом

К и подавляющие гармоники обычно используются для гармонических, нелинейных нагрузок, таких как компьютеры / серверы с импульсными источниками питания, игровые игровые автоматы, светодиодное освещение, двигатели или частотно-регулируемые приводы.HMT могут использоваться для исправления гармонических проблем, вызванных нелинейными нагрузками.

С другой стороны, трансформаторы с номиналом

К не ослабляют гармоники, а позволяют создать более надежную систему, которая выдерживает гармоники. Отказ трансформатора из-за гармоник вызван чрезмерным и / или постоянным перегревом катушек, что приводит к более быстрому разрушению изоляции катушек. Электрические системы с чрезмерным количеством гармоник могут вызвать отказ электронных компонентов из-за искаженной синусоидальной волны.

Основное различие между трансформаторами с рейтингом K и HMT заключается в том, что трансформаторы с рейтингом K рассчитаны на то, чтобы выдерживать напряжения и деформации нелинейных нагрузок в зависимости от уровня. Между тем, HMT физически сконструированы таким образом, чтобы уменьшать или ослаблять гармонические токи от устройств, расположенных ниже по потоку, чтобы предотвратить электрические токи отключения перед трансформатором.

В настоящее время большая часть электронного оборудования питается от импульсных источников питания. SMSP преобразуют синусоидальный переменный ток в постоянный постоянный ток с помощью выпрямителей и конденсаторов, которые потребляют короткие и резкие всплески тока, которые изменяют исходную синусоидальную волну переменного тока.Эта измененная волна теперь представляет собой нелинейную нагрузку и имеет нечетные гармоники, которые могут стать вредными для трансформатора из-за увеличения тока в обмотках, что приведет к избыточному нагреву катушек трансформатора. HMT подавляют или уменьшают влияние этих нечетных гармоник, в частности третьей гармоники, которая добавляется к нейтральному проводнику.

Таблица 1: КПД низковольтных распределительных трансформаторов сухого типа регулируется Министерством энергетики. Предоставлено: NV5

Рекомендации по проектированию трансформатора

Местоположение: Важным фактором, который следует учитывать, является физическое расположение трансформатора.Следует учитывать тип окружающей среды / строительного материала, в котором расположен трансформатор, а также окружающие помещения или комнаты, прилегающие к трансформатору.

Например, для трансформатора с масляной изоляцией, установленного в помещении, требуются зоны локализации разливов, которые обычно являются более дорогостоящими. В частности, для трансформаторов с масляной изоляцией в соответствии со статьей 450.26 NEC требуется хранилище, если не выполнено хотя бы одно из шести исключений. Существуют преимущества и недостатки использования трансформаторного хранилища в зависимости от любого количества переменных, однако они требуют особого внимания и, как правило, приводят к значительным затратам, которые следует принимать во внимание.Несмотря на то, что они не регулируются теми же правилами строительства зданий, которые предписаны NEC, коммунальные предприятия обычно используют трансформаторы с масляной изоляцией.

Кроме того, при размещении трансформатора следует учитывать его физическое расположение в здании и зону, в которой он предназначен для обслуживания и распределения электроэнергии. Трансформатор 277/480 вольт-треугольник лучше подходит для длительной эксплуатации в зданиях среднего размера из-за падения напряжения. Чтобы избежать подбора фидеров большего размера для более продолжительных работ, лучше использовать более высокое напряжение для распределения мощности по мере необходимости.

Линия «звезда» 120/208 обычно используется для непромышленных применений на уровне параллельной цепи, но более низкое напряжение делает ее субстандартной для распределения на большие расстояния. Средневольтные объекты, где напряжение относительно земли составляет 1000 вольт или более, обеспечивают передачу энергии от кластеров зданий по всему объекту.

Шум: Шум также следует учитывать в зависимости от типа размещения в здании. Постоянная вибрация трансформатора может вызвать нежелательный шум для клиента или пассажиров.Например, при размещении в башне отеля трансформаторные комнаты на верхних этажах, где расположены номера, могут нуждаться в звукоизоляции или акустической обработке для уменьшения шума из электрического пространства.

Такого обращения с помещениями можно избежать, если трансформаторы расположены на уровне пола или на крыше в месте, обеспечивающем достаточное расстояние от трансформаторов и гостей. Другим решением может быть установка виброизоляционных прокладок, снижающих уровень шума до приемлемого для клиента уровня.Для уменьшения шума может быть привлечен инженер-акустик или консультант.

Конструкция помещения должна соответствовать требованиям, изложенным в статье 450 Части II NEC. В частности, трансформаторы сухого типа, устанавливаемые в помещении, требуют расстояния не менее 12 дюймов от горючего материала для трансформаторов с номиналом менее 112,5 кВ в соответствии с NEC 450.21 (A). Для сухих трансформаторов мощностью более 112,5 кВ в помещении требуется огнестойкая конструкция, выдерживающая не менее одного часа в соответствии с NEC 250.21 (В).

Однако есть обычно применяемое исключение: устройства класса 155 или выше, полностью закрытые, за исключением вентиляционных отверстий, не обязательно размещать в помещениях с ограниченным сроком службы. Рисунок 1 представляет один из этих трансформаторов; Таким образом, помещение, в котором он находится, не требует одночасовой огнестойкости.

Требования к энергоэффективности

Энергоэффективность сухих распределительных трансформаторов регулируется Министерством энергетики США.Таким образом, соответствующие трансформаторы имеют маркировку DOE-2016, чтобы обозначить их соответствие с 1 января 2017 года. В зависимости от мощности трансформатора и его количества фаз КПД варьируется от 97,0% до 98,9% при использовании 35% паспортной таблички. -Номинальная нагрузка. Помимо требований Министерства энергетики США к имеющимся в продаже трансформаторам, многие компетентные органы требуют, чтобы трансформаторы соответствовали этим требованиям.

Не все проекты будут следовать точной методологии, описанной здесь, но могут быть расширены для дальнейшего рассмотрения.Нет двух одинаковых свойств, и поэтому никакие два проекта не будут одинаковыми. Инженер-проектировщик несет ответственность за принятие соответствующих решений и консультации со своим клиентом в соответствии с их потребностями.

Что делает хороший тороидальный трансформатор? : Группа Талема

Выбор основного материала

Как правило, цена трансформатора определяется его сердечником и медью, при этом вклад всех других материалов в цену составляет всего 10 ~ 15%. Цены на медь обычно определяются Лондонской биржей металлов (LME), но стоимость сердечника может сильно варьироваться в зависимости от выбора материала

Некоторые производители недорогих изделий (многие из которых находятся в Китае) могут снизить цены, используя переработанную сталь (марка B) для сердечников трансформаторов.Однако этот более дешевый материал сердечника имеет меньшую надежность и производительность.

Высокопроизводительные сердечники изготавливаются из непрерывной полосы первичной стали премиум-класса, не оставляя воздушных зазоров, незакрепленных стальных листов или пластин, вызывающих вибрацию. Использование первичного материала также позволяет инженерам проектировать трансформаторы в точке магнитной индукции, указанной заводом, что снижает потери, связанные с трансформаторами.

Низкий уровень шума и высокий КПД — две популярные причины выбора тороидальных трансформаторов.Talema разработала специальные производственные технологии, чтобы обеспечить максимально тихие сердечники без каких-либо общих недостатков, таких как более высокие потери и большие размеры.

Выбор магнитного провода

Проволока для намотки, используемая в электрическом оборудовании, обычно называется магнитной проволокой. Для этой цели используются и алюминий, и медь, но медь обычно предпочтительнее в тороидальных трансформаторах из-за ее пропускной способности по току, стоимости, размера, а также электрических и тепловых свойств.

Обмотки тороидального трансформатора открыты по всей поверхности трансформатора, обеспечивая оптимальную передачу тепла от медных обмоток. Это часто позволяет разработчику использовать провод несколько меньшего сечения, чем было бы разумно в противном случае — без превышения указанного предела повышения температуры — если это позволяют регулирование нагрузки и соображения эффективности.

Эмалированный провод с двойным покрытием также важен для снижения риска короткого замыкания после наматывания провода на сердечник.

Методы намотки

Процесс намотки тороидального трансформатора также имеет особое значение. Конструкция обмотки может сильно влиять на индуктивность рассеяния, поэтому необходимо соблюдать особые меры предосторожности для конкретных приложений с током утечки.

Намотка эмалированного провода должна быть равномерно расположена и выровнена, а прочность намотки машины должна быть должным образом отрегулирована, чтобы избежать перфорации эмалированного провода в процессе намотки. Таким образом, эмалированный провод может равномерно окружать тороидальный сердечник без риска короткого замыкания.

Техника намотки банка

Обмотка группы — это обмотка, в которой обмотка намотана таким образом, что части всей обмотки намотаны в виде нескольких сегментов в форме пирога вокруг тороида. После того, как желаемое нечетное количество сегментов наматывается в одном направлении (по часовой стрелке), последующее четное количество сегментов наматывается в другом направлении (против часовой стрелки). Это повторяется до завершения намотки. Обмотка банка значительно снижает максимальный градиент межвиткового напряжения или нагрузку на изоляцию проводника.Таким образом обеспечивается защита от скачков напряжения, которые очень распространены в любом приложении.

Метод межобмоточной изоляции

При использовании метода межобмоточной изоляции слой майларовой изоляции размещается посередине одиночной первичной обмотки или между отдельными обмотками в конфигурации с двойной первичной обмоткой.

Выбор подходящих изоляционных материалов

Материал изоляции тороидального трансформатора определяет его безопасность и срок службы.Чем лучше изоляционный материал, тем выше ударопрочность. Правильная изоляция значительно снижает возможность короткого замыкания и утечки, что обеспечивает очень долгий срок службы трансформатора.

Как правило, все трансформаторы должны соответствовать международным стандартам безопасности, таким как стандарты, выпущенные Underwriters Laboratories (UL) и Международной электротехнической комиссией (IEC). Эти нормы безопасности определяют данные по изоляции для сухой пластмассовой изоляции, используемой между первичной и вторичной обмотками тороидальных силовых трансформаторов, такие как минимальная общая толщина изоляции (DTI), минимальное количество слоев пластиковой пленки и минимальный путь утечки. по поверхности изоляционного материала.

Тороидальные трансформаторы требуют изоляции в разных местах или на разных этапах строительства. Международные стандарты безопасности определяют минимальные требования к общей толщине изоляции, а также к требуемому количеству слоев изоляции и пути утечки. Изоляция обеспечивается между тороидальным сердечником и первой обмоткой (изоляция заземления), между последовательными обмотками (межобмоточная изоляция) и на внешней стороне последней обмотки (внешняя обмотка).

Изоляция жилы обычно выполняется одним из следующих способов:

  1. Отверждение изоляционного слоя из пластмассы или керамики на внешней поверхности сердечника.
  2. Установка пластиковых колпачков сверху и снизу сердечника.
  3. Намотка узкой полоски пластика внахлест через центральное отверстие в тороиде.

Первые два метода изоляции жил не подходят для изоляции, расположенной на обмотке, потому что обмотка не может выдерживать высокую температуру отверждения, а размер и форма обмоток настолько изменчивы, что нельзя использовать стандартные колпачки. Таким образом, изоляция обмоток выполняется почти исключительно путем наматывания узкой полоски пластикового материала через центр тороида внахлест.

Пропитка

Трансформаторы с малой мощностью и малым сечением проводов можно пропитывать, чтобы продлить срок службы и избежать короткого замыкания. В специальных приложениях, таких как аудио, тороидальный сердечник часто пропитывают, чтобы подавить слышимый гул.

Провода и гильзы

Как и изоляция, подводящие провода и гильзы должны соответствовать международным стандартам безопасности. Talema обычно использует подводящие провода категории UL AVLV2 с кабелями минимум 300 В и гильзы категории UL YDPU2 / UZFT2 с минимумом трубок 300 В.Оба они выбраны в соответствии со стандартами EN61558, UL5085, UL60601-1 и UL62368. Подводящие провода и гильзы более высоких категорий напряжения / температуры используются на трансформаторах с более высокими классами изоляции (класс B и F).

Электростатический экран

Электростатические экраны иногда добавляются к тороидальным трансформаторам для фильтрации электростатических помех от сети электропитания и вывода на землю в случае выхода из строя основной изоляции. Экраны построены с использованием обмотки со слоем меди, изолированной полиэстером, который обычно наматывается между первичной и вторичной обмотками.Доступны две технологии строительства: снаружи закрыто и снаружи открыто.

Магнитный экран

Тороидальные трансформаторы уже по своей природе обладают низкими магнитными полями рассеяния. Если требуется дополнительное снижение, то трансформаторы могут поставляться с дополнительным магнитным экраном. В этом экранировании используется тонкий лист кремнистой стали с ориентированной зеренной структурой с несколькими слоями, плотно намотанными по окружности тороидального трансформатора и закрепленными внешней оберткой.

Заливка или инкапсуляция

Термопластический материал используется для заливки или герметизации и обеспечивает отличную защиту от ударов и вибрации.При желании заливочный материал также может быть теплопроводным.

Заключение

Общее качество тороидального трансформатора определяется множеством конструктивных решений. Как и в случае любого другого инженерного компонента, стоимость зависит от качества материалов и методов строительства. Инженеры-конструкторы Talema имеют многолетний совместный опыт разработки нестандартных магнитов и будут рады помочь вам определить компоненты для вашего следующего проекта. Свяжитесь с нами сегодня!

  • Йогананд Велаютам — инженер по дизайну и разработке в Talema India.Он имеет степень магистра электротехники и электроники Университета Анна в Ченнаи. Он был связан с Талемой с 2006-2008 и с 2010 года.

    Просмотреть все сообщения

Соленоиды и трансформаторы

3.Катушки и трансформаторы

3.1 Катушки

Катушки не очень общий компонент в электронных схемах, однако, когда они используются, они нужно понимать. Они встречаются в генераторах, радиоприемниках, передатчиках и подобных устройствах, содержащих колебательные контуры. В любительские устройства, катушки могут быть изготовлены путем намотки одного или нескольких слоев изолированный медный провод на каркас, такой как ПВХ, картон, и т.п.Катушки заводского изготовления бывают разных форм. и размеров, но общим для всех является утепленный корпус с витками медной проволоки.

Основная характеристика каждой катушки — это ее индуктивность. Индуктивность измеряется в Генри (H), но чаще всего используются миллигенри (мГн) и микрогенри (H) как единое целое. Генри имеет довольно высокое значение индуктивности. Напоминаем:

1H = 1000 мГн = 10 6 H.

Катушка индуктивность обозначена как X L и может быть рассчитана с помощью по следующей формуле:

где ф представляет частоту напряжения в Гц, а L представляет индуктивность катушки в Гн.

Например, если f равно 684 кГц, а L = 0,6 мГн, импеданс катушки будет:

Та же катушка иметь в три раза больший импеданс и в три раза больше частота. Как видно из приведенной выше формулы, импеданс катушки прямо пропорционален частоте, так что катушки, как как и конденсаторы, используются в схемах для фильтрации на заданных частотах. Обратите внимание, что импеданс катушки равен нулю для постоянного тока ( f = 0).

Несколько катушек показаны на рисунках 3.1, 3.2, 3.3 и 3.4.

Самая простая катушка однослойная катушка с воздушным сердечником. Это сделано на цилиндрической изолятор (ПВХ, картон и др.), как показано на рисунке 3.1. На рисунке 3.1a, повороты между ними остается пробел, в то время как общие Практика заключается в том, чтобы наматывать провод без промежутков между витками. Во избежание раскручивания бухты концы следует продеть через небольшие отверстия, как показано на рисунке. показано на рисунке.

Рис. 3.1: Однослойный змеевик

На рис. 3.1b показано, как катушка сделана. Если катушке нужно 120 витков при постукивании на тридцатом витке две катушки L1 с 30 витками и L2 с 90 витками. Когда конец первого и начало второй катушки припаиваем, получаем «отвод».

Многослойная катушка показана на рисунке 3.2a. В внутри пластмассового каркаса есть резьба, так что можно вставить ферромагнитный сердечник в форме винта.Ввинчивание сердечника перемещает его по оси в центр катушки для увеличения индуктивности. Таким образом, хорошо можно изменить индуктивность.

Рис. 3.2: а. Многослойная катушка с сердечником, б. В сочетании катушки

На рис. 3.2b показан высокочастотный трансформатор. Как видно, это две катушки, соединенные магнитной индукцией на общем теле. Когда требуется, чтобы катушки имели точные значения индуктивности, каждая катушка имеет ферромагнитный сердечник, который можно регулировать вдоль катушки ось.

На очень высоком частот (выше 50 МГц) индуктивность катушки мала, поэтому катушкам требуется только несколько поворотов. Эти катушки сделаны из толстый медный провод (около 0,5 мм) без корпуса катушки, как показано на рисунке 3.3a. Их индуктивность можно регулировать путем физического растяжения или сжимая витки вместе.

Рис. 3.3: а. Катушка высокой частоты , б. Трансформатор межчастотный

Рисунок 3.3b показан металлический кожух, содержащий две катушки, схематически на право. Параллельное соединение первой катушки и конденсатора С образует колебательный контур. Вторая катушка используется для передачи сигнал к следующему этапу. Используется в радиоприемниках и подобные устройства. Металлический кожух служит экраном для предотвращения внешние сигналы, воздействующие на катушки. Чтобы оболочка была эффективной, он должен быть заземлен.

На рис. 3.4 показан индуктор с сердечником. Ядро состоит из двух половинки и склеены.Сердечник изготовлен из ферромагнитного материала, обычно называют «ферритом». Эти индукторы используются на частотах до 100 кГц. Регулировка индуктивности может производиться латунью или стальной винт в центре катушки.

Рис. 3.4: Катушка индуктивности с сердечником

3.2 Трансформаторы

Для электронного Для работы устройств необходимо наличие источника постоянного тока.Батареи и аккумуляторы могут выполнять эту роль, но гораздо более эффективны. способ — использовать ИСТОЧНИК ПИТАНИЯ. Основным компонентом источника питания является трансформатор для преобразования «сети» 220 В на более низкое значение, скажем 12 В. Обычный тип трансформатора имеет одну первичную обмотку, которая подключается к 220В и одна (или несколько) вторичных обмоток для более низких напряжений. Чаще всего сердечники изготавливают из E и I, но некоторые из них сделаны из ферромагнитного материала.Также используются трансформаторы с железным сердечником. для более высоких частот. На картинке показаны различные типы трансформаторов. ниже.

Рис. 3.5: Различные типы трансформаторов

Символы для трансформатор показан на рисунке 3.6 Две вертикальные линии показывают, что первичная и вторичная обмотки использовать одно и то же ядро.

Рис. 3.6: Символы трансформатора

С трансформатор, производители обычно предоставляют схему, содержащую информацию о первичной и вторичной обмотках, напряжениях и максимальных токах.В случай, когда диаграмма отсутствует, существует простой метод определения того, какой обмотка является первичной, а вторичная обмотка: первичная обмотка состоит из провода тоньше и витков больше, чем у вторичной обмотки. Она имеет более высокое сопротивление — и может быть легко проверено омметром. На рисунке 3.6d показан символ для трансформатор с двумя независимыми вторичные обмотки, одна из них имеет три вывода, что в сумме дает 4 разные выходные напряжения. Вторичный 5в выполнен из более тонкой проволоки с максимальным током 0.3А, а другая обмотка выполнена из более толстого провода с максимальным током 1,5 А. Максимальное напряжение на большей вторичной обмотке составляет 48 В, как показано на фигура. Обратите внимание, что напряжения, отличные от указанных на диаграмма может быть произведена — например, напряжение между ответвлениями обозначено 27V 36 В равно 9 В, напряжение между выводами, обозначенными 27 В и 42 В, равно 15 В, пр.

3.2.1 Принцип работы и основные характеристики

Как уже говорилось, Трансформаторы состоят из двух обмоток, первичной и вторичной (рисунок 3.7). При напряжении Up подключен к первичной обмотке (в нашем случае «сеть» 220В), через нее протекает переменный ток IP . Этот ток создает магнитное поле, которое переходит к вторичная обмотка через сердечник трансформатора, индуцирующая напряжение Us (24 В в нашем примере). «Нагрузка» подключена ко вторичной обмотке, показанной на схеме как Rp (30 Ом в нашем примере). Типичной нагрузкой может быть электрическая лампочка, работающая на 24 В с расход 19.2Вт.

Рис. 3.7: Трансформатор: a. Принципы работы, б. Символ

Передача электрической энергии от первичный к вторичному осуществляется через магнитное поле (называемое «потоком») и магнитная цепь, называемая «сердечником трансформатора». К для предотвращения потерь необходимо убедиться, что весь магнитный поле, созданное первичным, переходит к вторичному. Это достигается за счет использования железного сердечника, который имеет гораздо более низкое магнитное сопротивление чем воздух.

Первичное напряжение — это «сетевое» напряжение. Это значение может быть 220 В или 110 В, в зависимости от страны. Вторичное напряжение обычно намного ниже, например 6 В, 9 В, 15 В, 24 В и т. Д., Но также может быть выше 220 В, в зависимости от назначения трансформатора. Соотношение первичного и вторичного напряжения указано с помощью следующая формула:

, где Ns и Np представляют количество витков на первичной и вторичной обмотке соответственно.Например, если Ns равно 80 и Np равно 743, вторичное напряжение будет быть:

Связь между первичным и вторичным током определяется по формуле:

Например, если Rp равно 30 Ом, то вторичный ток равен Ip = Up / Rp = 24 В / 30 Ом = 0,8 А. Если Ns равно 80 и Np равно 743, первичный ток будет:

Мощность трансформатора

можно рассчитать по формулам:

В нашем примере мощность равно:

Все до этого момента относится к идеальный трансформатор.Ясно, что идеального не бывает, поскольку потери неизбежный. Они присутствуют из-за того, что обмотки имеют определенное значение сопротивления, которое нагревает трансформатор во время операции, а также тот факт, что магнитное поле, создаваемое первичной обмоткой, не целиком переходят на вторичку. Вот почему выходная мощность меньше чем входная мощность. Их соотношение называется КПД:

.

Для поставки трансформаторов сотни ватт, КПД около = 0.85, что означает, что 85% электрическая энергия, взятая из сети, поступает к потребителю, в то время как 15% теряется из-за ранее упомянутых факторов в виде тепла. Для Например, если потребляемая мощность равна Up * Ip = 30 Вт, тогда мощность, которую трансформатор получает от сети равно:

Чтобы избежать путаница, имейте в виду, что производители уже приняли все меры по минимизации потерь трансформаторов и других электронных компонентов и что практически это максимально возможный КПД.Приобретая трансформатор, следует только беспокоюсь о требуемое напряжение и максимальный ток вторичной обмотки. Разделение мощность и вторичное напряжение дает вам максимальное значение тока для потребителя. Разделив мощность и первичное напряжение, вы получите ток что трансформатор питается от сети, что важно знать, когда покупка предохранителя. В любом случае, вы сможете рассчитать любое значение, которое вы может потребоваться использование соответствующих формул, указанных выше.

3.3 Практические примеры с катушками и трансформаторы

На рисунке Катушки 2.6b вместе с конденсатором образуют два фильтра для проведения токи к динамикам.
Катушка и конденсатор C на рисунке 2.6c образуют параллельный колебательный контур для «усиления» конкретного радиосигнала, отвергая все остальные частоты.

Рис. 2.6: а. Усилитель с наушниками, б.Переключатель диапазона, c. Детекторный радиоприемник

Самое очевидное заявка на трансформатор находится в блоке питания. Типичный трансформатор показан на рисунке 3.8 и используется для преобразования 220В. до 24В.

Рис. 3.8: Стабилизированный преобразователь со схемой LM317

Выходное напряжение постоянного тока может регулируется линейным потенциометром P в диапазоне 3 ~ 30 В.

Фиг.3.9: а. Стабилизированный преобразователь с регулятором 7806, б. автотрансформатор, c. трансформатор для устройств рабочая на 110В, д. разделительный трансформатор

Рисунок 3.9a показывает простой источник питания, использующий трансформатор с центральным отводом на вторичной обмотке. обмотка. Это дает возможность использовать два диода. вместо моста в рисунок 3.8.

Специальный типы трансформаторы, в основном используемые в лаборатории, автотрансформаторы.Схема автотрансформатора показано на рисунке 3.9b. Имеет только одну обмотку, намотанную на утюг. основной. Напряжение снимается с трансформатора через ползунок. Когда ползунок находится в крайнем нижнем положении, напряжение равно нулю. Перемещение ползунка вверх увеличивает напряжение U до 220 В. Дальнейшее движение ползунок увеличивает напряжение U выше 220В.

Трансформатор на рисунке 3.9c преобразует 220v в 110v и используется для питания устройств рассчитан на работу от 110В.

В качестве последнего примера, рисунок 3.9d представляет собой разделительный трансформатор. Этот трансформатор имеет одинаковое количество витков на первичной и вторичной обмотках. обмотки. Вторичное напряжение такое же, как первичное, 220 В, но полностью изолированы от «сети», сводя к минимуму риски поражения электрическим током. шок. В результате человек может стоять на мокром полу и трогать любая часть вторичного без риска, которая не является корпус с нормальной розеткой.

Federal Pacific Transformer University — Federal Pacific

Глава 2 — Принципы работы трансформаторов (трансформаторы напряжения)

Трансформатор не вырабатывает электроэнергию, он передает ее. Трансформатор — это преобразователь напряжения. Большинство трансформаторов предназначены для повышения или понижения напряжения, хотя некоторые используются только для изоляции одного напряжения от другого. Трансформатор работает по принципу, согласно которому энергия может эффективно передаваться посредством магнитной индукции от одной обмотки к другой обмотке с помощью переменного магнитного поля, создаваемого переменным током.Электрическое напряжение индуцируется при относительном движении между проводом и магнитным полем. Переменный ток (AC) обеспечивает движение, необходимое для изменения направления, которое создает схлопывающееся и расширяющееся магнитное поле. * ПРИМЕЧАНИЕ: * Постоянный ток (DC) не преобразуется, поскольку постоянный ток не изменяет свои магнитные поля. Трансформатор обычно состоит из двух изолированных обмоток на общем железном (стальном) сердечнике: две обмотки связаны вместе магнитной цепью, которая должна быть общей для обеих обмоток.Связующим звеном, соединяющим две обмотки в магнитной цепи, является железный сердечник, на который намотаны обе обмотки. Железо — очень хороший проводник для магнитных полей. Сердечник не представляет собой сплошной стальной стержень, а состоит из множества слоев тонкой стали, называемых ламинатами. Одна из обмоток обозначена как первичная, а другая как вторичная. Поскольку первичная и вторичная обмотки намотаны на один и тот же железный сердечник, когда первичная обмотка питается от источника переменного тока, в сердечнике трансформатора создается переменное магнитное поле, называемое магнитным потоком.Поток, создаваемый приложением напряжения к первичной обмотке, индуцирует напряжение на вторичной обмотке. Первичная обмотка получает энергию и называется входом. Вторичная обмотка отводит энергию и называется выходной. Первичная и вторичная обмотки состоят из алюминиевых или медных проводников, намотанных катушками вокруг железного сердечника, и количество «витков» в каждой катушке будет определять преобразование напряжения трансформатора. На каждый виток провода в первичной обмотке приходится равная доля первичного напряжения.То же самое происходит при каждом обороте вторичной обмотки. Следовательно, любая разница в количестве витков вторичной обмотки по сравнению с первичной приведет к изменению напряжения. Обмотки * Понижающие трансформаторы * Если во вторичной обмотке меньше витков, чем в первичной, вторичное напряжение будет ниже, чем первичное. * Повышающие трансформаторы * Если в первичной обмотке меньше витков, чем во вторичной обмотке, вторичное напряжение будет выше, чем во вторичной цепи.* Примечание: * Первичная обмотка — это обмотка, которая получает энергию; это не всегда обмотка высокого напряжения. * Обычные комбинации однофазных напряжений: * от 120 x 240 до 120/240; 480 до 120/240; От 4160 до 240/480 от 208 до 120/240; От 480 до 120/240; От 4160 до 240/480 от 277 до 120/240; От 2400 до 120/240 от 240 x 480 до 120/240; От 2400 до 240/480 Это соотношение между числом витков вторичной и первичной обмоток часто называют отношением витков (также называемым отношением напряжений). Принято указывать передаточное число, записывая вначале первичный (входной) номер.* Пример: * 30 к 1 — это понижающий трансформатор, а от 1 до 30 — повышающий трансформатор. * Примеры передаточных чисел * * Первичное напряжение * * Вторичное напряжение * * Передаточное число * * Первичное напряжение * * Вторичное напряжение * * Передаточное число * 480 480 1/1 600 120 5/1 480 120 4/1 600 208 2,88 / 1 480 24 20/1 208 120 1,73 / 1 Физическое расположение обмотки: В большинстве трансформаторов обмотка высокого напряжения намотана непосредственно на обмотку низкого напряжения для создания эффективного соединения двух обмоток. Примечание. В других конструкциях обмотка высокого напряжения может быть намотана внутри, бок о бок или зажата между слоями обмотки низкого напряжения в соответствии с особыми требованиями.Как указывалось ранее, преобразование напряжения является функцией отношения витков. Может быть желательно изменить соотношение, чтобы получить номинальное выходное напряжение, когда входное напряжение немного отличается от нормального напряжения. В качестве примера предположим, что у нас есть трансформатор с соотношением витков 4: 1. При входном напряжении 480 вольт на выходе будет 120 вольт. Допустим, напряжение в сети меньше нормального или 456 вольт. Это приведет к выходному напряжению 114 вольт, что нежелательно. Поместив ответвитель в первичную обмотку, мы могли изменить соотношение витков так, чтобы при входном напряжении 456 вольт мы могли получить выходное напряжение 120 вольт.Это называется отводом первичного выходного напряжения, и стандартные трансформаторы могут иметь от двух до шести отводов для настройки на фактическое линейное напряжение. Вышеупомянутый трансформатор имеет отвод (2) на 2 1/2% ниже нормального и один на 5% ниже, он, как говорят, имеет (2) 2 1/2% полной мощности ниже нормальных отводов (FCBN). Это даст диапазон напряжений 5%. Когда трансформатор имеет отводы выше нормы, как показано, они будут на полную мощность выше нормы (FCAN). В целях стандартизации эти отводы находятся с шагом 2 1/2% или 5%.Ответвления сконструированы таким образом, что выход на полную мощность может быть получен, когда трансформатор установлен на любом из этих ответвлений. Универсальное расположение ответвлений, используемое во многих наших трансформаторах ((2) 2 1/2% FCAN и (4) 2 1/2% FCBN), обеспечивает 15% диапазон регулировки напряжения ответвления. Примечание: ответвители должны использоваться только для изменений входной линии в установившемся режиме. Они не предназначены для обеспечения постоянного вторичного напряжения, когда входная линия постоянно колеблется. Последовательно-множественные обмотки (повторно соединяемые трансформаторы) Чтобы сделать базовый однофазный трансформатор универсальным, как первичная, так и вторичная обмотки могут быть выполнены из двух равных частей.Две части могут быть повторно соединены последовательно или параллельно. Это обеспечивает дополнительную гибкость, поскольку первичная обмотка может быть подключена либо для 480 вольт, либо для 240 вольт, а вторичная обмотка может быть также разделена на две равные части, обеспечивающие либо 120, либо 240 вольт. (примечание: на каждую обмотку выводится четыре вывода, а не два). Любая схема не повлияет на мощность трансформатора. Вторичные обмотки имеют наклон, например 120/240, и могут быть подключены последовательно на 240 В или параллельно на 120 или 240/120 В (для 3-проводной работы).Первичные обмотки с номиналом X, например 240X480, могут работать последовательно или параллельно, но не предназначены для 3-проводной работы. Трансформатор с номиналом 240X480 В первичной обмотки и вторичной обмотки 120/240 В может работать в 6 различных комбинациях напряжения. Трансформаторы спроектированы и каталогизированы по номинальным значениям кВА. Так же, как номинальная мощность в лошадиных силах обозначает мощность электродвигателя, номинальная мощность трансформатора в кВА указывает на его максимальную выходную мощность. Чем выше номинал трансформатора, кВА для определенного входного и выходного напряжения, тем больше трансформатор.Что означает кВА? K = сокращение от греческого слова kilo, означающее «× 1000 В = Вольты» A = Амперы или Ампер. Расчет кВА. Есть только две формулы, которые вам нужно знать, чтобы рассчитать кВА: * Например: * Трансформатор питает трехфазную нагрузку, которая потребляет 100 ампер и требует напряжения питания 208 вольт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *