Номинал smd резисторов: Калькулятор маркировки SMD резисторов

Содержание

Набор SMD резисторов 0805 170 номиналов, по 25 штук каждого

Набор ЧИП резисторов типоразмера 0805, точность +/-5%, ряд E24

SMD (ЧИП) резисторы, мощностью 0.125 Вт, допуск +/-5%. Набор резисторов состоит из 170-и номиналов по 25 резисторов (всего 4250 шт), Набор разделен на семь поднаборов: 0 Ом…9,1 Ом, 10 Ом….91 Ом, 100 Ом…910 Ом, 1 КОм…9,1 КОм, 10 Ком…91 КОм, 100 КОм…910 КОм, 1 МОм…10 МОм.

Перечень номиналов резисторов

№1 №2 №3 №4 
0 Ом= 25шт      
1 Ом= 25шт10 Ом= 25шт100 Ом= 25шт1 KОм= 25шт
1,1 Ом= 25шт11 Ом= 25шт110 Ом= 25шт1,1 KОм= 25шт
1,2 Ом= 25шт12 Ом= 25шт120 Ом= 25шт1,2 KОм= 25шт
1,3 Ом= 25шт13 Ом= 25шт130 Ом= 25шт1,3 KОм= 25шт
1,5 Ом= 25шт15 Ом= 25шт150 Ом= 25шт1,5 KОм= 25шт
1,6 Ом= 25шт16 Ом= 25шт160 Ом= 25шт1,6 KОм= 25шт
1,8 Ом= 25шт18 Ом= 25шт180 Ом= 25шт1,8 KОм= 25шт
2 Ом= 25шт20 Ом= 25шт200 Ом= 25шт2 KОм= 25шт
2,2 Ом= 25шт22 Ом= 25шт220 Ом= 25шт2,2 KОм= 25шт
2,4 Ом= 25шт24 Ом= 25шт240 Ом= 25шт2,4 KОм= 25шт
2,7 Ом= 25шт27 Ом= 25шт270 Ом= 25шт2,7 KОм= 25шт
3 Ом= 25шт30 Ом= 25шт300 Ом= 25шт3 KОм= 25шт
3,3 Ом= 25шт33 Ом= 25шт330 Ом= 25шт3,3 KОм= 25шт
3,6 Ом= 25шт36 Ом= 25шт360 Ом= 25шт3,6 KОм= 25шт
3,9 Ом= 25шт39 Ом= 25шт390 Ом= 25шт3,9 KОм= 25шт
4,3 Ом= 25шт43 Ом= 25шт430 Ом= 25шт4,3 KОм= 25шт
4,7 Ом= 25шт47 Ом= 25шт470 Ом= 25шт4,7 KОм= 25шт
5,1 Ом= 25шт51 Ом= 25шт510 Ом= 25шт5,1 KОм= 25шт
5,6 Ом= 25шт56 Ом= 25шт560 Ом= 25шт5,6 KОм= 25шт
6,2 Ом= 25шт62 Ом= 25шт620 Ом= 25шт6,2 KОм= 25шт
6,8 Ом= 25шт68 Ом= 25шт680 Ом= 25шт6,8 KОм= 25шт
7,5 Ом= 25шт75 Ом= 25шт750 Ом= 25шт7,5 KОм= 25шт
8,2 Ом= 25шт82 Ом= 25шт820 Ом= 25шт8,2 KОм= 25шт
9,1 Ом= 25шт91 Ом= 25шт910 Ом= 25шт9,1 KОм= 25шт
№5 №6 №7 
10 KОм= 25шт100 KОм= 25шт1 МОм= 25шт
11 KОм= 25шт110 KОм= 25шт1,1 МОм= 25шт
12 KОм= 25шт120 KОм= 25шт1,2 МОм= 25шт
13 KОм= 25шт130 KОм= 25шт1,3 МОм= 25шт
15 KОм= 25шт150 KОм= 25шт1,5 МОм= 25шт
16 KОм= 25шт160 KОм= 25шт1,6 МОм= 25шт
18 KОм= 25шт180 KОм= 25шт1,8 МОм= 25шт
20 KОм= 25шт200 KОм= 25шт2 МОм= 25шт
22 KОм= 25шт220 KОм= 25шт2,2 МОм= 25шт
24 KОм= 25шт240 KОм= 25шт2,4 МОм= 25шт
27 KОм= 25шт270 KОм= 25шт2,7 МОм= 25шт
30 KОм= 25шт300 KОм= 25шт3 МОм= 25шт
33 KОм= 25шт330 KОм= 25шт3,3 МОм= 25шт
36 KОм= 25шт360 KОм= 25шт3,6 МОм= 25шт
39 KОм= 25шт390 KОм= 25шт3,9 МОм= 25шт
43 KОм= 25шт430 KОм= 25шт4,3 МОм= 25шт
47 KОм= 25шт470 KОм= 25шт4,7 МОм= 25шт
51 KОм= 25шт510 KОм= 25шт5,1 МОм= 25шт
56 KОм= 25шт560 KОм= 25шт5,6 МОм= 25шт
62 KОм= 25шт620 KОм= 25шт6,2 МОм= 25шт
68 KОм= 25шт680 KОм= 25шт6,8 МОм= 25шт
75 KОм= 25шт750 KОм= 25шт7,5 МОм= 25шт
82 KОм= 25шт820 KОм= 25шт8,2 МОм= 25шт
91 KОм= 25шт910 KОм= 25шт9,1 МОм= 25шт
10 МОм= 25шт

Smd резистор r100 номинал

В современной электронике в большинстве случаев используются элементы поверхностного монтажа. Среди них SMD-резисторы, они нужны для уменьшения массогабаритных показателей за счет увеличения числа смонтированных компонентов на 1 квадратном сантиметре печатной платы. Трудностью является не только монтаж мелких компонентов, но и расчет их номинала. Распознать характеристики элемента можно, если расшифровать что на нем написано. Вообще для компонентов поверхностного монтажа используют кодовую кодировку, она бывает цифровой или буквенной.

Чаще всего встречаются SMD-резисторы, в которых используются цифровые обозначения, их легко можно рассчитать с помощью онлайн калькулятора. Причем зная сопротивление, вы узнаете какая должна быть маркировка SMD-резисторов. А также если у вас есть на руках элемент неизвестной величины, вы можете расшифровать значение его сопротивления.

Калькулятор маркировки SMD-резисторов предоставлен ниже:

Различают обозначение из 3 или 4 цифр. Чтобы узнать сопротивление, нужно понимать значение этих цифр. В первом случае первые 2 цифры – это числа, а третья – количество нулей. 1=4700 Ом = 4,7 кОм с допуском в 1%

Если у компонента дробная величина, то в его шифре роль точки играет буква R, тогда расчет имеет вид:

Последний вид маркировки EIA-96, к сожалению её наш онлайн калькулятор не поддерживает. Она относится к буквенно-цифровым обозначением. Но вы легко можете рассчитать величину по таблице:

Здесь первые две цифры – содержат информацию о числовой части номинала, а последняя буква – это множитель.

Чтобы безошибочно и быстро определить сопротивление SMD-резистора, используйте возможности нашего онлайн калькулятора. Он также пригодится для быстрого подбора нужного сопротивления из кучи неизвестных элементов.

В основу маркировки SMD резисторов положена буквено-цифровая кодировка.

SMD резисторы с типоразмером 0402 маркировки не имеют, остальные маркируются способом изложено ниже.

Если резисторы имеют допуск 2%, 5%,10% то их маркировка имеет 3 цифры, первые две это мантисса последующий это степень десятичного числа.

Таким образом происходит маркировка сопротивления в Омах.

Пример четырех значной маркировки smd резисторов:

Если на SMD-резисторе код 1006 или 106. Первые две цифры -мантисса 10, последующая 6-степень по основанию 10. В итоге получаем 10×10 6 =10000000 Ом или 10 МОм.

Если в обозначение встречается латинская буква «R» то это означает что имеется дробная часть.

SMD резисторы с типоразмером 0805 и более имеющие точность 1% используют 4-х цифровое обозначение, первые 3 цифры означают мантиссу, а 4-я это степень десятичного основания.

Пример обозначения с четырьмя цифрами

4501=450×10 1 =4500=4,5 кОм.

Если резисторы имеют типоразмер 0603 и допуск 1%, то первые две цифры это мантисса, а буква означает множитель с десятичным основанием.

Пример обозначения с 2-мя цифрами и буквой

05R – это мантисса равная 110, а R означает 10 1 05R=110x 10 1 =1100 Ом = 1,1 кОм.

Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты , чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа .

Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

Маркировка

Размеры и форма SMD резисторов регламентируются нормативным документом. (JEDEC), где приводятся рекомендуемые типоразмеры. Обычно на корпусе наносятся данные о габаритах элемента. К примеру, цифровой код 0804 предполагает длину, равную 0,080 дюймам, ширину — 0,040 дюйма.

Если перевести такую кодировку в систему СИ, то этот компонент будет обозначаться как 2010. Из этой надписи видно, что длина составляет 2,0 мм, а ширина 1,0 мм.

(1 дюйм равен 2,54 мм)

Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили все чипы по способу маркировки на три типа:

  • из трёх цифр;
  • из четырёх цифр;
  • из двух цифр и буквы;

Последний вариант применяется для SMD-сопротивлений повышенной точности с допуском 1% (прецизионных). Очень маленький размер не

позволяет размещать на них надписи с длинными кодами . Для них разработан стандарт EIA-96

Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква R Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.

Существуют номиналы повышенной точности (так называемые прецизионные)

Пример подбора нужного резистора: если указана цифра 232 то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 10 2 = 2300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.

Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, чтобы получить

номинал резистора .

Резистор 102 smd — расшифровывается так 10*100 = 1000 Ом или 1 кОм

Расшифровка обозначений чипов — специфичное занятие. Вычислить необходимую величину возможно используя старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и кто это можно выполнить при помощи различных сайтов.

Онлайн-калькулятор

Калькулятор smd резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчётов. Используя специальные программы можно найти информацию совершенно бесплатно.

Пример определения сопротивлений

240 = 24 х 100 равняется 24 Ом

273 = 27 х 103 равняется 27 кОм

Резисторы типоразмера 0603 точностью 1% маркируются кодом из двух цифр и одной латинской буквы, где цифры обозначают порядковый номер номинала в ряду е96, а буква множитель: A=x10, B=x100 и т. д., X=x1, Y=x0.1, Z=x0.01

Реверсивный калькулятор кодов

Калькулятор может работать со всеми кодами маркировки smd: из 3-х цифр, из 4-х цифр, или с кодом EIA-96. Для получения нужной величины сопротивления, нужно вписать код в центре рисунка резистора, и нажать на стрелку вниз. В текстовом поле появится искомое значение. В обратном направлении также можно определиться с необходимым типом. Выбрать тип кодировки (поставить точку в нужном поле напротив кода), затем, чтобы получить код сопротивления, написать в поле сопротивление, которое имеет резистор. (10 кОм). SMD калькулятор выдаст нужный код после нажатия стрелки вверх. Он появится в центре рисунка.

Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.

Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT – Surface Mount Technology).

Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ
На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные.
Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).

МАРКИРОВКА ЧИП-РЕЗИСТОРОВ
Для маркировки чип-резисторов применяется несколько способов.
Способ маркировки зависит от типоразмера резистора и допуска.

Резисторы типоразмера 0402 не маркируются.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя – показатель степени по основанию 10 для определения множителя.

При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.

Обозначение 220 означает, что номинал резистора равен 22 Ома.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.

Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм.
Литература — Журнал «Ремонт электронной техники» 2 1999.

Все SMD резисторы для поверхностного монтажа обычно маркируются. Кроме сопротивлений в 0402-ом корпусе, т.к они не имеют маркировки в связи с их миниатюрными размерами. Резисторы других типоразмеров маркируются двумя основными методами. Если у чип резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка состоит из 3-х цифр: две первые обозначают мантиссу, а третья является степенью для десятичного основания, т.е, получается значение сопротивления резистора в Омах. Например, код сопротивления 106 – первые две цифры 10 – это мантисса, 6 – степень, в итоге получаем 10х10 6 , то есть 10 Мом.

Иногда к цифровой маркировке прибавляется латинская буква R – она является дополнительным множителем и обозначает десятичную точку. SMD резисторы типоразмера 0805 и более, имеют точность 1% и обозначаются кодом из четырех цифр: первые три – мантисса, а последняя – степень для десятичного основания. К данной маркировке также может прибавляться латинский символ R. Например, код сопротивления 3303 – 330 – это мантисса, 3 – степень, в итоге получаем 330х10 3 , т.е 33 кОм. Кодовая маркировка SMD сопротивлений с допуском в 1% и типоразмером 0603 обозначается всего двумя цифрами и буквой с помощью таблицы.

Цифры обозначают код, по которому из нее выбирается значение мантиссы, а буква – множитель с десятичным основанием. Например, код 14R – первые две цифры 14 – это код. По таблице для кода 14 значение мантиссы 137, R – степень равная 10 -1 , в итоге получаем 137х10 -1 , то есть 13,7 Ом. Резисторы с нулевым сопротивлением (перемычки), маркируются просто цифрой 0.

Маркировка SMD резисторов – корпуса

Справочник по кодовой маркировке smd резисторов фирмы Philips

Фирма Philips кодирует номинал smd резисторов следующим образом первые две или три цифры указывают номинал в омах, а последние – количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде трех или четырех символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8 и 9 в последнем символе. Буква R выполняет роль десятичной запятой или, если она стоит в конце, то указывает на диапазон. Единичный символ «0» указывает на резистор с нулевым сопротивлением (Zero – Ohm).

SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска. Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах.

При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51×103 Ом = 51 КОм. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×101 Ом = 7.5 КОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах.

Например, маркировка 10C означает, что резистор имеет номинал 124×102 Ом = 12.4 КОм.

Справочник по маркировке SMD резисторов BOURNS

Smd резисторы bourns кодируются по трем стандартам:

Первые две цифры указывают значения в омах, последняя – количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206

Первые три цифры указывают значения в омах, последняя – количество нулей. Распространяется на резисторы из ряда Е96, допуском 1%, типоразмерами 0805 и 1206.

Первые два символа – цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы, последний символ – буква, указывающая значение множителя:S = 0. 01; R = 0.1; А = 1; В = 10; С = 100; D = 1000; Е = 10000;F = 100000. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603

Многие компании выпускают в роли плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и резисторы с «нулевым» сопротивлением. Они изготавливаются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в типовом корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких компонентов лежат в диапазоне единиц или десятков миллиом (

0.005. 0.05 Ом). В цилиндрических корпусах маркировку наносят черным кольцом посередине, в SMD корпусах для поверхностного монтажа (0603, 0805, 1206. ) маркировки либо нет, либо наносится цифры «000» (иногда просто «0»).

Подборка справочников по SMD компонентам

SMD – Абривиатура из английского языка, от Surface Mounted Device – Устройство монтируемое на поверхность, т. е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности.

Маркировка smd резисторов по цифрам

Калькулятор SMD-резисторов – это онлайн-программа, позволяющая определить маркировку постоянного резистора, использующегося в рамках поверхностного монтажа. Такие устройства отличаются мощностью и пределом погрешности, поэтому имеют различную маркировку, и при выборе необходимо знать, какая именно модель подойдет для конкретной цели.

Если раньше для определения маркировки использовали специальные таблицы, то теперь можно применять онлайн-программу, имеющую множество преимуществ: достаточно указать в соответствующем поле значение сопротивления, и калькулятор выведет значение цифровой маркировки резистора, данные, которые выдает программа, основаны на официально принятых таблицах.

Такие устройства имеют сравнительно небольшие габариты, поэтому почти все модели маркируются цифробуквенным сочетанием. Значение зависит от типоразмера и показателя допуска:

так, резисторы с погрешностью в пределах 2-10% имеют маркировку из 3 цифр, из которых две первые служат для обозначения мантиссы, а последний знак указывает на степень с десятичным основанием. Готовое значение указывается в Омах.

Для наглядности можно рассмотреть следующие примеры:
• Если резистор имеет код 473, первые цифры указывают на значение мантиссы, а 3 – это степень, в которую нужно возвести 10. Иными словами, резистор с маркировкой 473 = 47 * 103 = 47 кОм.
• Если устройство имеет 4-значную маркировку, например, 5102, это значит, что его значение составляет 510 * 102 = 51 кОм. Такие значения могут быть у моделей с малым показателем сопротивления, их типоразмер начинается от 0805, а допуск составляет 1%. В них первые три знака указывают на мантиссу.

Шпаргалка SMD резисторы.

Резисторы / Общие характеристики резисторов SMD

Резисторы постоянные
для поверхностного монтажа (SMD)

Резисторы постоянные металлооксидные. Малые размеры. Оптимизированы для автоматического монтажа. Заменяют собой Р1-12.

Упаковка:

Характеристики:

Диапазон номинальных значений: 1 Ом…30 МОм
Номинальная мощность: 0,05 – 1 Вт
Точность: ±5% (J), ±1% (F)
Температурный диапазон: -55°C

Характеристики резисторов в зависимости от типоразмера:

Кодовая маркировка чип резисторов:
    1. Маркировка 3-мя цифрами.
      Первые две цифры указывают значение в омах, последняя – количество нулей. Распространяется на резисторы из ряда Е-24, допуском 1 % и 5%, типоразмеров 0603, 0805 и1206.
      Пример: 103 = 10 000 = 10 кОм
      1. Маркировка 4-мя цифрами.
        Первые три цифры указывают значения в омах последняя – количество нулей. Распространяется на резисторы из ряда Е-96, допуском 1% , типоразмеров 0805 и 1206. Буква R играет роль децимальной запятой.
        Пример: 4402 = 440 00 = 44 кОм
        Маркировка 3-мя символами.
        Первые два символа – цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы последний символ – буква, указывающая значение множителя: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ; F=10 5 . Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603.
        Пример: 10C = 124 x 10² = 12. 4 кОм

      Если ещё жива ссылка, то здесь.
      Маркировка smd резисторов:

      01S = 1R
      02S = 1R02
      03S = 1R05
      04S = 1R07
      05S = 1R1
      06S = 1R13
      07S = 1R15
      08S = 1R18
      09S = 1R21

      10S = 1R24
      11S = 1R27
      12S = 1R3
      13S = 1R33
      14S = 1R37
      15S = 1R4
      16S = 1R43
      17S = 1R47
      18S = 1R5
      19S = 1R54

      20S = 1R58
      21S = 1R62
      22S = 1R65
      23S = 1R69
      24S = 1R74
      25S = 1R78
      26S = 1R82
      27S = 1R87
      28S = 1R91
      29S = 1R96

      30S = 2R0
      31S = 2R05
      32S = 2R10
      33S = 2R15
      34S = 2R21
      35S = 2R26
      36S = 2R32
      37S = 2R37
      38S = 2R43
      39S = 2R49

      40S = 2R55
      41S = 2R61
      42S = 2R67
      43S = 2R74
      44S = 2R80
      45S = 2R87
      46S = 2R94
      47S = 3R01
      48S = 3R09
      49S = 3R16

      50S = 3R24
      51S = 3R32
      52S = 3R4
      53S = 3R48
      54S = 3R57
      55S = 3R65
      56S = 3R74
      57S = 3R83
      58S = 3R92
      59S = 4R02

      60S = 4R12
      61S = 4R22
      62S = 4R32
      63S = 4R42
      64S = 4R53
      65S = 4R64
      66S = 4R75
      67S = 4R87
      68S = 4R99
      69S = 5R11

      70S = 5R23
      71S = 5R36
      72S = 5R49
      73S = 5R62
      74S = 5R76
      75S = 5R9
      76S = 6R04
      77S = 6R19
      78S = 6R34
      79S = 6R49

      80S = 6R65
      81S = 6R81
      82S = 6R98
      83S = 7R15
      84S = 7R32
      85S = 7R5
      86S = 7R68
      87S = 7R87
      88S = 8R06
      89S = 8R25

      90S = 8R45
      91S = 8R66
      92S = 8R87
      93S = 9R09
      94S = 9R31
      95S = 9R53
      96S = 9R76

      01R = 10R
      02R = 10R2
      03R = 10R5
      04R = 10R7
      05R = 11R
      06R = 11R3
      07R = 11R5
      08R = 11R8
      09R = 12R1

      10R = 12R4
      11R = 12R7
      12R = 13R
      13R = 13R3
      14R = 13R7
      15R = 14R
      16R = 14R3
      17R = 14R7
      18R = 15R
      19R = 15R4

      20R = 15R8
      21R = 16R2
      22R = 16R5
      23R = 16R9
      24R = 17R4
      25R = 17R8
      26R = 18R2
      27R = 18R7
      28R = 19R1
      29R = 19R6

      30R = 20R0
      31R = 20R5
      32R = 21R0
      33R = 21R5
      34R = 22R1
      35R = 22R6
      36R = 23R2
      37R = 23R7
      38R = 24R3
      39R = 24R9

      40R = 25R5
      41R = 26R1
      42R = 26R7
      43R = 27R4
      44R = 28R0
      45R = 28R7
      46R = 29R4
      47R = 30R1
      48R = 30R9
      49R = 31R6

      50R = 32R4
      51R = 33R2
      52R = 34R0
      53R = 34R8
      54R = 35R7
      55R = 36R5
      56R = 37R4
      57R = 38R3
      58R = 39R2
      59R = 40R2

      60R = 41R2
      61R = 42R2
      62R = 43R2
      63R = 44R2
      64R = 45R3
      65R = 46R4
      66R = 47R5
      67R = 48R7
      68R = 49R9
      69R = 51R1

      70R = 52R3
      71R = 53R6
      72R = 54R9
      73R = 56R2
      74R = 57R6
      75R = 59R0
      76R = 60R4
      77R = 61R9
      78R = 63R4
      79R = 64R9

      80R = 66R5
      81R = 68R1
      82R = 69R8
      83R = 71R5
      84R = 73R2
      85R = 75R0
      86R = 76R8
      87R = 78R7
      88R = 80R6
      89R = 82R5

      90R = 84R5
      91R = 86R6
      92R = 88R7
      93R = 90R9
      94R = 93R1
      95R = 95R3
      96R = 97R6

      01A = 100R
      02A = 102R
      03A = 105R
      04A = 107R
      05A = 110R
      06A = 113R
      07A = 115R
      08A = 118R
      09A = 121R

      10A = 124R
      11A = 127R
      12A = 130R
      13A = 133R
      14A = 137R
      15A = 140R
      16A = 143R
      17A = 147R
      18A = 15R
      19A = 154R

      20A = 158R
      21A = 162R
      22A = 165R
      23A = 169R
      24A = 174R
      25A = 178R
      26A = 182R
      27A = 187R
      28A = 191R
      29A = 196R

      30A = 200R
      31A = 205R
      32A = 210R
      33A = 215R
      34A = 221R
      35A = 226R
      36A = 232R
      37A = 237R
      38A = 243R
      39A = 249R

      40A = 255R
      41A = 261R
      42A = 267R
      43A = 274R
      44A = 280R
      45A = 287R
      46A = 294R
      47A = 301R
      48A = 309R
      49A = 316R

      50A = 324R
      51A = 332R
      52A = 340R
      53A = 348R
      54A = 357R
      55A = 365R
      56A = 374R
      57A = 383R
      58A = 392R
      59A = 402R

      60A = 412R
      61A = 422R
      62A = 432R
      63A = 442R
      64A = 453R
      65A = 464R
      66A = 475R
      67A = 487R
      68A = 499R
      69A = 511R

      70A = 523R
      71A = 536R
      72A = 549R
      73A = 562R
      74A = 576R
      75A = 590R
      76A = 604R
      77A = 619R
      78A = 634R
      79A = 649R

      80A = 665R
      81A = 681R
      82A = 698R
      83A = 715R
      84A = 732R
      85A = 750R
      86A = 768R
      87A = 787R
      88A = 806R
      89A = 825R

      90A = 845R
      91A = 866R
      92A = 887R
      93A = 909R
      94A = 931R
      95A = 953R
      96A = 976R

      01B = 1k
      02B = 1k02
      03B = 1k05
      04B = 1k07
      05B = 1k1
      06B = 1k13
      07B = 1k15
      08B = 1k18
      09B = 1k21

      10B = 1k24
      11B = 1k27
      12B = 1k3
      13B = 1k33
      14B = 1k37
      15B = 1k4
      16B = 1k43
      17B = 1k47
      18B = 1k5
      19B = 1k54

      20B = 1k58
      21B = 1k62
      22B = 1k65
      23B = 1k69
      24B = 1k74
      25B = 1k78
      26B = 1k82
      27B = 1k87
      28B = 1k91
      29B = 1k96

      30B = 2k0
      31B = 2k05
      32B = 2k10
      33B = 2k15
      34B = 2k21
      35B = 2k26
      36B = 2k32
      37B = 2k37
      38B = 2k43
      39B = 2k49

      40B = 2k55
      41B = 2k61
      42B = 2k67
      43B = 2k74
      44B = 2k80
      45B = 2k87
      46B = 2k94
      47B = 3k01
      48B = 3k09
      49B = 3k16

      50B = 3k24
      51B = 3k32
      52B = 3k4
      53B = 3k48
      54B = 3k57
      55B = 3k65
      56B = 3k74
      57B = 3k83
      58B = 3k92
      59B = 4k02

      60B = 4k12
      61B = 4k22
      62B = 4k32
      63B = 4k42
      64B = 4k53
      65B = 4k64
      66B = 4k75
      67B = 4k87
      68B = 4k99
      69B = 5k11

      70B = 5k23
      71B = 5k36
      72B = 5k49
      73B = 5k62
      74B = 5k76
      75B = 5k9
      76B = 6k04
      77B = 6k19
      78B = 6k34
      79B = 6k49

      80B = 6k65
      81B = 6k81
      82B = 6k98
      83B = 7k15
      84B = 7k32
      85B = 7k5
      86B = 7k68
      87B = 7k87
      88B = 8k06
      89B = 8k25

      90B = 8k45
      91B = 8k66
      92B = 8k87
      93B = 9k09
      94B = 9k31
      95B = 9k53
      96B = 9k7

      01C = 10k
      02C = 10k2
      03C = 10k5
      04C = 10k7
      05C = 11k
      06C = 11k3
      07C = 11k5
      08C = 11k8
      09C = 12k1

      10C = 12k4
      11C = 12k7
      12C = 13k
      13C = 13k3
      14C = 13k7
      15C = 14k
      16C = 14k3
      17C = 14k7
      18C = 15k
      19C = 15k4

      20C = 15k8
      21C = 16k2
      22C = 16k5
      23C = 16k9
      24C = 17k4
      25C = 17k8
      26C = 18k2
      27C = 18k7
      28C = 19k1
      29C = 19k6

      30C = 20k0
      31C = 20k5
      32C = 21k0
      33C = 21k5
      34C = 22k1
      35C = 22k6
      36C = 23k2
      37C = 23k7
      38C = 24k3
      39C = 24k9

      40C = 25k5
      41C = 26k1
      42C = 26k7
      43C = 27k4
      44C = 28k0
      45C = 28k7
      46C = 29k4
      47C = 30k1
      48C = 30k9
      49C = 31k6

      50C = 32k4
      51C = 33k2
      52C = 34k0
      53C = 34k8
      54C = 35k7
      55C = 36k5
      56C = 37k4
      57C = 38k3
      58C = 39k2
      59C = 40k2

      60C = 41k2
      61C = 42k2
      62C = 43k2
      63C = 44k2
      64C = 45k3
      65C = 46k4
      66C = 47k5
      67C = 48k7
      68C = 49k9
      69C = 51k1

      70C = 52k3
      71C = 53k6
      72C = 54k9
      73C = 56k2
      74C = 57k6
      75C = 59k0
      76C = 60k4
      77C = 61k9
      78C = 63k4
      79C = 64k9

      80C = 66k5
      81C = 68k1
      82C = 69k8
      83C = 71k5
      84C = 73k2
      85C = 75k0
      86C = 76k8
      87C = 78k7
      88C = 80k6
      89C = 82k5

      90C = 84k5
      91C = 86k6
      92C = 88k7
      93C = 90k9
      94C = 93k1
      95C = 95k3
      96C = 97k

      01D = 100k
      02D = 102k
      03D = 105k
      04D = 107k
      05D = 110k
      06D = 113k
      07D = 115k
      08D = 118k
      09D = 121k

      10D = 124k
      11D = 127k
      12D = 130k
      13D = 133k
      14D = 137k
      15D = 140k
      16D = 143k
      17D = 147k
      18D = 15k
      19D = 154k

      20D = 158k
      21D = 162k
      22D = 165k
      23D = 169k
      24D = 174k
      25D = 178k
      26D = 182k
      27D = 187k
      28D = 191k
      29D = 196k

      30D = 200k
      31D = 205k
      32D = 210k
      33D = 215k
      34D = 221k
      35D = 226k
      36D = 232k
      37D = 237k
      38D = 243k
      39D = 249k

      40D = 255k
      41D = 261k
      42D = 267k
      43D = 274k
      44D = 280k
      45D = 287k
      46D = 294k
      47D = 301k
      48D = 309k
      49D = 316k

      50D = 324k
      51D = 332k
      52D = 340k
      53D = 348k
      54D = 357k
      55D = 365k
      56D = 374k
      57D = 383k
      58D = 392k
      59D = 402k

      60D = 412k
      61D = 422k
      62D = 432k
      63D = 442k
      64D = 453k
      65D = 464k
      66D = 475k
      67D = 487k
      68D = 499k
      69D = 511k

      70D = 523k
      71D = 536k
      72D = 549k
      73D = 562k
      74D = 576k
      75D = 590k
      76D = 604k
      77D = 619k
      78D = 634k
      79D = 649k

      80D = 665k
      81D = 681k
      82D = 698k
      83D = 715k
      84D = 732k
      85D = 750k
      86D = 768k
      87D = 787k
      88D = 806k
      89D = 825k

      90D = 845k
      91D = 866k
      92D = 887k
      93D = 909k
      94D = 931k
      95D = 953k
      96D = 976

      01E = 1M
      02E = 1M02
      03E = 1M05
      04E = 1M07
      05E = 1M1
      06E = 1M13
      07E = 1M15
      08E = 1M18
      09E = 1M21

      10E = 1M24
      11E = 1M27
      12E = 1M3
      13E = 1M33
      14E = 1M37
      15E = 1M4
      16E = 1M43
      17E = 1M47
      18E = 1M5
      19E = 1M54

      20E = 1M58
      21E = 1M62
      22E = 1M65
      23E = 1M69
      24E = 1M74
      25E = 1M78
      26E = 1M82
      27E = 1M87
      28E = 1M91
      29E = 1M96

      30E = 2M0
      31E = 2M05
      32E = 2M10
      33E = 2M15
      34E = 2M21
      35E = 2M26
      36E = 2M32
      37E = 2M37
      38E = 2M43
      39E = 2M49

      40E = 2M55
      41E = 2M61
      42E = 2M67
      43E = 2M74
      44E = 2M80
      45E = 2M87
      46E = 2M94
      47E = 3M01
      48E = 3M09
      49E = 3M16

      50E = 3M24
      51E = 3M32
      52E = 3M4
      53E = 3M48
      54E = 3M57
      55E = 3M65
      56E = 3M74
      57E = 3M83
      58E = 3M92
      59E = 4M02

      60E = 4M12
      61E = 4M22
      62E = 4M32
      63E = 4M42
      64E = 4M53
      65E = 4M64
      66E = 4M75
      67E = 4M87
      68E = 4M99
      69E = 5M11

      70E = 5M23
      71E = 5M36
      72E = 5M49
      73E = 5M62
      74E = 5M76
      75E = 5M9
      76E = 6M04
      77E = 6M19
      78E = 6M34
      79E = 6M49

      80E = 6M65
      81E = 6M81
      82E = 6M98
      83E = 7M15
      84E = 7M32
      85E = 7M5
      86E = 7M68
      87E = 7M87
      88E = 8M06
      89E = 8M25

      90E = 8M45
      91E = 8M66
      92E = 8M87
      93E = 9M09
      94E = 9M31
      95E = 9M53
      96E = 9M76

      Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

      Все SMD резисторы для поверхностного монтажа обычно маркируются. Кроме сопротивлений в 0402-ом корпусе, т.к они не имеют маркировки в связи с их миниатюрными размерами. Резисторы других типоразмеров маркируются двумя основными методами. Если у чип резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка состоит из 3-х цифр: две первые обозначают мантиссу, а третья является степенью для десятичного основания, т.е, получается значение сопротивления резистора в Омах. Например, код сопротивления 106 — первые две цифры 10 — это мантисса, 6 — степень, в итоге получаем 10х10 6 , то есть 10 Мом.

      Иногда к цифровой маркировке прибавляется латинская буква R — она является дополнительным множителем и обозначает десятичную точку. SMD резисторы типоразмера 0805 и более, имеют точность 1% и обозначаются кодом из четырех цифр: первые три — мантисса, а последняя — степень для десятичного основания. К данной маркировке также может прибавляться латинский символ R. Например, код сопротивления 3303 — 330 — это мантисса, 3 — степень, в итоге получаем 330х10 3 , т. е 33 кОм. Кодовая маркировка SMD сопротивлений с допуском в 1% и типоразмером 0603 обозначается всего двумя цифрами и буквой с помощью таблицы.

      Цифры обозначают код, по которому из нее выбирается значение мантиссы, а буква — множитель с десятичным основанием. Например, код 14R — первые две цифры 14 — это код. По таблице для кода 14 значение мантиссы 137, R — степень равная 10 -1 , в итоге получаем 137х10 -1 , то есть 13,7 Ом. Резисторы с нулевым сопротивлением (перемычки), маркируются просто цифрой 0.

      Маркировка SMD резисторов — корпуса

      Справочник по кодовой маркировке smd резисторов фирмы Philips

      Фирма Philips кодирует номинал smd резисторов следующим образом первые две или три цифры указывают номинал в омах, а последние — количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде трех или четырех символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8 и 9 в последнем символе. Буква R выполняет роль десятичной запятой или, если она стоит в конце, то указывает на диапазон. Единичный символ «0» указывает на резистор с нулевым сопротивлением (Zero — Ohm).

      SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска. Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для определения номинала резистора в Омах.

      При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51×103 Ом = 51 КОм. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.

      Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×101 Ом = 7.5 КОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах.

      Например, маркировка 10C означает, что резистор имеет номинал 124×102 Ом = 12.4 КОм.

      Справочник по маркировке SMD резисторов BOURNS

      Smd резисторы bourns кодируются по трем стандартам:

      Первые две цифры указывают значения в омах, последняя — количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206

      Первые три цифры указывают значения в омах, последняя — количество нулей. Распространяется на резисторы из ряда Е96, допуском 1%, типоразмерами 0805 и 1206.

      Первые два символа — цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы, последний символ — буква, указывающая значение множителя:S = 0.01; R = 0.1; А = 1; В = 10; С = 100; D = 1000; Е = 10000;F = 100000. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603

      Многие компании выпускают в роли плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0. 6 мм, 0.8 мм) и резисторы с «нулевым» сопротивлением. Они изготавливаются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в типовом корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких компонентов лежат в диапазоне единиц или десятков миллиом (

      0.005. 0.05 Ом). В цилиндрических корпусах маркировку наносят черным кольцом посередине, в SMD корпусах для поверхностного монтажа (0603, 0805, 1206. ) маркировки либо нет, либо наносится цифры «000» (иногда просто «0»).

      Подборка справочников по SMD компонентам

      SMD — Абривиатура из английского языка, от Surface Mounted Device — Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности.

      Были схемы на дискретных электронных элементах — резисторах, транзисторах, конденсаторах, диодах, индуктивностях, и они при работе нагревались. И их еще приходилось охлаждать — целая система вентиляции и охлаждения строилась. Нигде не было кондиционеров, люди жару терпели, а все машинные залы продувались и охлаждались централизованно и непрерывно, днями и ночами. И расход энергии шел на мегаватты. Блок питания компьютера занимал отдельный шкаф. 380 вольт, три фазы, подводка снизу, из-под фальшпола. Другой шкаф занимал процессор. Еще один — оперативная память на магнитных сердечниках. А все вместе занимало зал площадью около 100 квадратных метров. И машина имела оперативную память, страшно сказать, 512 КБ.

      А надо было делать компьютеры все мощнее и мощнее.

      Потом изобрели БИС — большие интегральные схемы. Это когда вся схема прорисована в одной твердотельной форме. Многослойный параллелепипед, в котором слои микроскопической толщины содержат нариcованные, напыленные или наплавленные в вакууме те же самые электронные элементы, только микроскопические, и «раздавленные» в плоскость. Обычно целая БИС герметизируется в одном корпусе, и тогда уж ничего не боится — железяка железякой, хоть молотком бей (шутка).

      Только БИС (или СБИС — сверхбольшие интегральные схемы) содержат функциональные блоки или отдельные электронные устройства — процессоры, регистры, блоки полупроводниковой памяти, контроллеры, операционные усилители. И стоит задача их собрать уже в конкретное изделие: мобильный телефон, флешку, компьютер, навигатор и пр. Но они же такие маленькие, эти БОЛЬШИЕ интегральные схемы, как их собрать?

      И тогда придумали технологию поверхностного монтажа.

      Метод сборки комплексных электронных схем SMT/ТМП

      Собирать на плату вперемешку микросхемы, БИСы, сопротивления, конденсаторы по старинке очень скоро стало неудобно и нетехнологично. И монтаж по традиционной «сквозной» технологии стал громоздким и трудно автоматизируемым, и результаты получались не в согласии с реалиями времени. Миниатюрные гаджеты требуют и миниатюрных, и, самое главное, удобных в компоновке плат. Промышленность уже может выпускать сопротивления, транзисторы и пр. совсем маленькими и совсем плоскими. Дело оставалось за малым — сделать плоскими, прижатыми к поверхность их контакты. И разработать технологию трассировки и изготовления плат как основы для поверхностного монтажа, а также методы пайки элементов к поверхности. Кроме прочих плюсов, пайку научились делать целиком — всю плату сразу, что ускоряет работу и дает однородность ее качества. Этот метод получил название «т ехнология м онтажа на п оверхность (ТМП)», или surface mount technology (SMT). Так как монтируемые элементы стали уж совсем плоскими, в обиходе они получили название «чипы», или «чип-компоненты» (или еще SMD — surface mounted device, например, SMD-резисторы).

      Шаги изготовления платы по ТМП

      Изготовление ТМП-платы затрагивает как процесс ее проектирования, изготовления, подбор определенных материалов, так и специфические технические средства для припаивания чипов на плату.

      1. Проектирование и изготовление платы — основа для монтажа. Вместо отверстий для сквозного монтажа делаются контактные площадки для припаивания плоских контактов элементов.
      2. Нанесение паяльной пасты на площадки. Это можно делать шприцем вручную или с помощью трафаретной печати при массовом изготовлении.
      3. Точная установка компонентов на плату поверх нанесенной паяльной пасты.
      4. Помещение платы со всеми компонентами в печь для пайки. Паста оплавляется и очень компактно (благодаря присадкам, увеличивающим поверхностное натяжение припоя) припаивает контакты с одинаковым качеством по всей поверхности платы. Однако критичны требования как ко времени операции, температуре, так и к точности химического состава материалов.
      5. Окончательная обработка: остывание, мойка, нанесение защитного слоя.

      Различаются варианты технологии для серийного и для ручного производства. Массовое производство при условии широкой автоматизации и последующем контроле качества дает и гарантировано высокие результаты.

      Однако SMT-технология может вполне уживаться и с традиционным монтажом на одной плате. В этом случае как раз и может быть востребован монтаж SMT вручную.

      Резисторы SMD

      Резистор — самый распространенный компонент электронных схем. Существует даже специально разработанная схемотехника, которая строится только из транзисторов и резисторов (T-R-логика). Это значит, без остальных элементов построить процессор можно, а вот без этих двух — никак. (Пардон, есть еще ТТ-логика, где вообще одни транзисторы, но некоторым из них приходится играть роль резисторов). Это в производстве больших интегральных схем доходят до таких крайностей, а для поверхностного монтажа все-таки выпускается весь набор необходимых элементов.

      Для столь компактной сборки они должны обладать строго определенными размерами. Каждый SMD-прибор — это маленький параллелепипед с выступающими из него контактами — ножками, или пластинками, или металлическими наконечниками с двух сторон. Важно то, что контакты на монтажной стороне должны лежать строго в плоскости, и на этой плоскости иметь необходимую для пайки площадь — тоже прямоугольную.

      Размеры резистора: l — длина, w — ширина, h — высота. За типоразмеры берутся важные для монтажа длина и ширина.

      Они могут быть кодированы в одной из двух систем: дюймовой (JEDEC) или метрической (мм). Коэффициент пересчета из одной системы в другую — это длина дюйма с мм = 2,54.

      Типоразмеры кодируются четырехзначным цифровым кодом, где первые две цифры — длина, вторые — ширина девайса. Причем размеры берутся или в сотых долях дюйма, или в десятых долях миллиметра, в зависимости от стандарта.

      А код 1608 в метрической системе означает 1,6 мм длины и 0,8 мм ширины. Применив коэффициент пересчета, легко убедиться, что это один и тот же типоразмер. Однако существуют и другие измерения, которые определяются типоразмером.

      Маркировка чип-резисторов, номиналы

      Ввиду малой площади прибора для нанесения обычного для резисторов номинала пришлось изобретать специальную маркировку. Их бывает две чисто цифровые — трехцифровая и четырехцифровая) и две буквенно-цифровых (EIA-96), в которой две цифры и буква и кодировка для значений сопротивления меньше 0, в которой используется буква R для указания положения десятичной точки.

      И есть еще одна особая маркировка. «Резистор» без всякого сопротивления, то есть просто перемычка из металла, имеет маркировку 0, или 000.

      Цифровые маркировки

      Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три — мантисса сопротивления.

      Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.

      Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.

      ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ
      На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные.
      Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).

      МАРКИРОВКА ЧИП-РЕЗИСТОРОВ
      Для маркировки чип-резисторов применяется несколько способов.
      Способ маркировки зависит от типоразмера резистора и допуска.

      Резисторы типоразмера 0402 не маркируются.

      Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя.

      При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.

      Обозначение 220 означает, что номинал резистора равен 22 Ома.

      Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.

      Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.

      Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм.
      Литература — Журнал «Ремонт электронной техники» 2 1999.

      Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

      Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

      Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты , чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

      На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа .

      Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

      Маркировка

      Размеры и форма SMD резисторов регламентируются нормативным документом. (JEDEC), где приводятся рекомендуемые типоразмеры. Обычно на корпусе наносятся данные о габаритах элемента. К примеру, цифровой код 0804 предполагает длину, равную 0,080 дюймам, ширину — 0,040 дюйма.

      Если перевести такую кодировку в систему СИ, то этот компонент будет обозначаться как 2010. Из этой надписи видно, что длина составляет 2,0 мм, а ширина 1,0 мм. (1 дюйм равен 2,54 мм)

      Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили все чипы по способу маркировки на три типа:

      • из трёх цифр;
      • из четырёх цифр;
      • из двух цифр и буквы;

      Последний вариант применяется для SMD-сопротивлений повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них надписи с длинными кодами . Для них разработан стандарт EIA-96

      Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква R Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.

      Существуют номиналы повышенной точности (так называемые прецизионные)

      Пример подбора нужного резистора: если указана цифра 232 то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 10 2 = 2300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.

      Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, чтобы получить номинал резистора .

      Резистор 102 smd — расшифровывается так 10*100 = 1000 Ом или 1 кОм

      Расшифровка обозначений чипов — специфичное занятие. Вычислить необходимую величину возможно используя старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и кто это можно выполнить при помощи различных сайтов.

      Онлайн-калькулятор

      Калькулятор smd резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчётов. Используя специальные программы можно найти информацию совершенно бесплатно.

      Пример определения сопротивлений

      240 = 24 х 100 равняется 24 Ом

      273 = 27 х 103 равняется 27 кОм

      Резисторы типоразмера 0603 точностью 1% маркируются кодом из двух цифр и одной латинской буквы, где цифры обозначают порядковый номер номинала в ряду е96, а буква множитель: A=x10, B=x100 и т. д., X=x1, Y=x0.1, Z=x0.01

      Реверсивный калькулятор кодов

      Калькулятор может работать со всеми кодами маркировки smd: из 3-х цифр, из 4-х цифр, или с кодом EIA-96. Для получения нужной величины сопротивления, нужно вписать код в центре рисунка резистора, и нажать на стрелку вниз. В текстовом поле появится искомое значение. В обратном направлении также можно определиться с необходимым типом. Выбрать тип кодировки (поставить точку в нужном поле напротив кода), затем, чтобы получить код сопротивления, написать в поле сопротивление, которое имеет резистор. (10 кОм). SMD калькулятор выдаст нужный код после нажатия стрелки вверх. Он появится в центре рисунка.

      Сухой паек разработчика – наборы SMD резисторов и конденсаторов

      Пожалуй, сегодня трудно найти электронные компоненты, для работы которых достаточно только подать на них напряжение от источника питания. Обычно, необходимо задать режимы работы с помощью внешних компонентов: резисторов, конденсаторов, дросселей и т. д. Многим разработчикам электронной аппаратуры хорошо знакома такая ситуация, когда среди огромного количества имеющихся под рукой радиодеталей невозможно найти тот единственный компонент, который нужен здесь и сейчас. В результате тратится время на поиски, которые, обычно, заканчиваются поездкой в магазин, торгующий электронными компонентами…

      Наша компания делает все, чтобы помочь разработчикам в кратчайшие сроки выпустить готовое изделие на высоко конкурентный рынок электроники. И это не только поставки средств разработки и отладки, уникальных электронных компонентов и т. д., но и так необходимые на этапе макетирования, отладки, ремонта, ставшие столь популярными сегодня наборы чип резисторов и конденсаторов, без которых, увы, не обойтись.

      Теперь у каждого разработчика, радиолюбителя, монтажника и ремонтника появилась возможность иметь на рабочем столе свой магазин пассивных компонентов. Ведь он сэкономит столько времени, денег и нервов! А в условиях полевых испытаний электронной аппаратуры, в командировках и т. д. такие наборы просто становятся незаменимыми.

      Все наборы, представленные в наших офисах, выполнены в в форм-факторе книги формата A5. Любой из них позволяет в кратчайшее время найти нужный номинал резистора или конденсатора.

      Отличительные особенности:

      • Набор резисторов R0402/Waveshare/: 170 номиналов резисторов Yageo типоразмера 0402, нарезанных в полоски по 48 штук каждого номинала, т.е. всего 8160 резисторов. Точность резисторов 5%, а максимальное рабочее напряжение 50 В.
      • Набор резисторов R0603/Waveshare/: 177 номиналов резисторов, нарезанных в полоски по 50 штук каждого номинала, т.е. всего 8850 резисторов. Точность резисторов 5%, максимальное рабочее напряжение 50 В.
      • Набор резисторов и конденсаторов RC0603/Waveshare/: набор SMD резисторов и конденсаторов с нарезанными в полоски по 25 штук резисторами YAGEO (типоразмер 0603, точность 5%) и конденсаторами muRata (типоразмер 0603, точность 5% и 10% в зависимости от номинала).
      • Набор резисторов и конденсаторов RC0805/Waveshare/: набор SMD резисторов и конденсаторов. Нарезанные в полоски 63 номинала резисторов Yageo типоразмера 0805 точностью 5% и 17 номиналов конденсаторов 0805 точностью 5% и 10%.
      • Набор резисторов TE-R0805/Россия/: 177 номиналов SMD резисторов типоразмера 0805 точностью 5%, нарезанных в полоски по 50 штук каждого номинала, всего 8850 резисторов.

      Состав набора

      R0402 (Ω)

      x1

      x10

      x100

      x1K

      x10K

      x100K

      x1M

      x10M

      0

      1

      10

      100

      1K

      10K

      100K

      1M

      10M

      1. 1

      11

      110

      1.1K

      11K

      110K

      1.1M

      1.2

      12

      120

      1.2K

      12K

      120K

      1.2M

      1. 3

      13

      130

      1.3K

      13K

      130K

      1.3M

      1.5

      15

      150

      1.5K

      15K

      150K

      1.5M

      1. 6

      16

      160

      1.6K

      16K

      160K

      1.6M

      1.8

      18

      180

      1.8K

      18K

      180K

      1.8M

      2

      20

      200

      2K

      20K

      200K

      2M

      2. 2

      22

      220

      2.2K

      22K

      220K

      2.2M

      2.4

      24

      240

      2.4K

      24K

      240K

      2.4M

      2. 7

      27

      270

      2.7K

      27K

      270K

      2.7M

      3

      30

      300

      3K

      30K

      300K

      3M

      3. 3

      33

      330

      3.3K

      33K

      330K

      3.3M

      3.6

      36

      360

      3.6K

      36K

      360K

      3.6M

      3. 9

      39

      390

      3.9K

      39K

      390K

      3.9M

      4.3

      43

      430

      4.3K

      43K

      430K

      4.3M

      4. 7

      47

      470

      4.7K

      47K

      470K

      4.7M

      5.1

      51

      510

      5.1K

      51K

      510K

      5.1M

      5. 6

      56

      560

      5.6K

      56K

      560K

      5.6M

      6.2

      62

      620

      6.2K

      62K

      620K

      6.2M

      6. 8

      68

      680

      6.8K

      68K

      680K

      6.8M

      7.5

      75

      750

      7.5K

      75K

      750K

      7.5M

      8. 2

      82

      820

      8.2K

      82K

      820K

      8.2M

      9.1

      91

      910

      9.1K

      91K

      910K

      9.1M

      Более подробную информацию об этих и других наборах можно найти на нашем сайте.

      Мы уверены, что использование всего потенциала нашей компании существенно повысит вашу конкурентоспособность на фоне все возрастающих требований современного рынка.

      Цветовая ? маркировка резисторов. Маркировка ? SMD резисторов цветными полосками

      Автор Даниил Леонидович На чтение 6 мин. Просмотров 6k. Опубликовано Обновлено

      Цветовая маркировка резисторов является неотъемлемой частью описания характеристик элементов. Любители и профессионалы прекрасно понимают, что назначение деталей сопротивления может быть различной. Сюда входит ограничение по току, рассеивание тепла и мощности, увеличение или сокращение времени заряда или полного разряда конденсаторов, разделение напряжений. Вышеописанные функции достигаются путем применения активного применения активного применения, которое является его основным свойством.

      Так как определить номинал резистора на глаз невозможно, даже имея колоссальный опыт работы с электронным оборудованием, поэтому используют кодовую систему по цветам. Она помогает определить по таблице. Каждому инженеру еще на первых курсах института объясняют в каких справочниках нужно искать необходимую информацию. Для микроэлектроники существуют специальные классификаторы с описанием всех важных характеристик, которые может использовать в своей работе.

      Что такое резистор

      Резистор, как элемент микросхем и силовых сетей, получил свое название от английского слова «resistor». Оно же, в свою очередь, имеет латинские корни «resisto», что дословно переводят на русский как «сопротивляюсь». Из названия следует его назначение — сопротивляться потоку заряженных электронов.

      Деталь относят к категории пассивных компонентов электрической цепи, где он понижает напряжение до расчетного уровня. В отличие от активных элементов, резистор не может самостоятельно усиливать сигналы. Согласно закону Ома и закону Киргофа напряжение понижается до величин, равным значениям напряжения, умноженного на существующее сопротивление.

      В соответствии с ГОСТ на чертежах его изображают как прямоугольник. Для обозначения мощности резисторов на схеме используют специальную маркировку в виде линий и арабских цифр. Она помогает кратко указать тип и характеристику требуемого элемента.

      Разновидности резисторов

      Резисторы классифицируют по нескольким признакам.

      Для дискретных элементов деление происходит по месту установки:

      • вводные. На монтажной плате их монтируют сквозь нее. Контакты таких узлов располагаются по аксиальному или радиальному принципу. На языке инженеров-электронщиков их называют ножками. Этот тип резисторов применяют уже очень давно. Их можно найти как на старом оборудовании, так и на современном. Они заменяют SMD-элементы, если их применение затруднено или абсолютно невозможно.
      • SMD. Представляют из себя компоненты электрической цепи без ножек. Выводы находятся на корпусе. Хотя назвать их таковым очень сложно, так как выступают они на поверхность незначительно. К преимуществам таких компонентов относят дешевизну, простоту сборки и экономию места на схеме.

      Маркировка SMD резисторов ничем не отличается от вводных элементов. Она также определяется по полоскам и по цвету.

      Классификация по изготовлению

      Кроме типологии элементов по внешнему виду и месту установки, существует классификация по критериям производства.

      Вводные компоненты сопротивления изготавливают:

      • проволочными. В качестве резистивного компонента выступает проволока, наматываемую на сердечник. С целью уменьшить паразитную индуктивность, применяют бифилярный тип намотки. Проволоку подбирают из материалов, имеющих низкий резистивный температурный коэффициент, в том числе с невысоким удельным сопротивлением;
      • металлопленочными. В качестве основного элемента сопротивления выступает металлическая пленка;
      • композитными. В состав таких элементов входят сплавы.

      Внимание!

      Для изготовления SMD-резисторов используют металлическую пленку. Соответственно, деление идет на тонко и толстопленночные.

      Элементы также деля на постоянные и переменные. По названию можно догадаться, что нагрузка первого остается неизменным на протяжении всего времени эксплуатации. У переменных компонентов показатель сопротивления меняют с помощью специального бегунка.

      Температурный коэффициент (ТКС)

      Вышеописанная классификация может считаться вспомогательной, так как она лишь указывает лишь на установку и производство. Основной и полезной для инженера считают цветовая маркировку резисторов. Она как раз указывает на номинал и технические характеристики элемента. В первую очередь их делят по способности рассеивать мощность.

      Ниже представлены часто используемые компоненты цепи, мощность показана в Ваттах:

      • 0,062;
      • 0,125;
      • 0,25;
      • 0,5;
      • 1;
      • 2;
      • 3;
      • 4;
      • 5;
      • 7;
      • 10;
      • 15;
      • 20;
      • 25;
      • 50;
      • 100.

      Существуют также резисторы, способные рассеивать до 1 кВт мощности. Но такие элементы используются крайне редко и только в специализированном оборудовании.

      Этот показатель очень важен при проектировании электронных систем. В зависимости от назначения от на схеме и условий эксплуатации способность к рассеиванию не должна стать причиной разрушения как самого элемента, так и соседних с ним узлов. Во время работы резистор должен не только разогреться, но также отдать излишки тепла во внешнюю среду.

      Размеры SMD резисторов и их мощность

      SMD-резисторы устанавливаются на поверхности печатной платы и обладают номиналом рассеиваемой мощности от 0,062 до 1 Вт. По своим характеристикам они уступают вводным, но и применяются они в менее агрессивных условиях. Устанавливаются они только на платы микросхем и работают с минимальными значениями вольтажа и силы тока.

      Маркировка по номиналам

      Резисторы производят под разные номинальные значения. Существует шесть стандартизированных рядов:

      • Е6;
      • Е12;
      • Е24;
      • Е48;
      • Е96;
      • Е192.

      Цифры после литеры «Е» в названии ее ряда указывает на количество номиналов в десятичном интервале. То есть показатель умножается на десять со степенью n. Это целое число с отрицательным или положительным значением. Каждый ряд имеет свои характеристики допустимых отклонений, выраженных в процентах.

      Резисторы с тремя полосками

      Две первых полоски указывают на расчетное значение сопротивления. Третья полоска показывает множитель числа десять, на которое умножается первый показатель. Точность таких элементов не превышает 20%.

      Резисторы с четырьмя полосками

      Аналогично предыдущему элементу первые полосы означают число сопротивления, третья — множитель, четвертая — точность. Показатели, которым соответствуют цвета находятся в справочной таблице.

      Резисторы с пятью полосками

      В отличие от предыдущих двух изделий, на число сопротивления указывают три полоски, четвертая означает степень для множителя 10 и шестая процентную точность.

      Резисторы с шестью полосками

      Резисторы с шестью полосками обладают повышенной точностью: первые три полоски указывают на номинал сопротивления, четвертая представляет степень для множителя, пятая — погрешность в процентах, и шестая на тепловую мощность.

      Погрешность

      Маркировка с четырьмя-пятью полосами для выводных резисторов стала уже традиционной. Она указывает на точность. Чем больше полос, тем выше этот показатель. SMD-резисторы для поверхностного монтажа на плате с допусками на 2, 5 и 10 процентов обозначаются цифрами. Первый порядок цифр необходимо умножить на десять в третьей степени.

      Буква «R» указывает на точку десятичной дроби. Например, маркировка R473 показывает, что 0,47 необходимо умножить на десять в третьей степени, что в сумме составит 470 Ом. Остальные две цифры и букву применяют для обозначения типоразмеров. Буква указывает на показатель степени десятки.

      Резисторы являются одним из важных компонентов печатной платы. Они не только понижают напряжение и ток, а также рассеивают тепло. Каждый компонент имеет цветные полоски, соответствующие их номинальным характеристикам.

      Как проверить резистор мультиметром не выпаивая

      Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

      Основные этапы тестирования

      Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

      1. внешний осмотр;
      2. радиодеталь тестируется на обрыв;
      3. осуществляется проверка соответствия номиналу.

      Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

      Виды маркировок

      На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

      Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

      Цветовое обозначение

      Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

      Рис. 2. Пример цветовой маркировки

      Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

      Маркировка SMD элементов

      Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т. д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

      Рис. 3. Пример расшифровки номинала SMD резистора

      Внешний осмотр

      Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

      Рисунок 4. Яркий пример того, как может сгореть резистор

      Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

      Проверка на обрыв

      Действия производятся в следующем порядке:

      1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
      2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

      Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

      1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

      Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

      Проверка на номинал

      Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

      Алгоритм наших действий следующий:

      1. Подключаем щупы, так как на предыдущем тестировании.
      2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К». Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
      3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

      Что такое допуск, и насколько он важен?

      Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

      Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

      1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

      Как тестировать переменный резистор?

      Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

      Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

      Алгоритм следующий:

      1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
      2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
      3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

      Как проверить резистор мультиметром, не выпаивая на плате?

      Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

      Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

      Основные этапы тестирования

      Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

      1. внешний осмотр;
      2. радиодеталь тестируется на обрыв;
      3. осуществляется проверка соответствия номиналу.

      Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

      Виды маркировок

      На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

      Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

      Цветовое обозначение

      Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

      Рис. 2. Пример цветовой маркировки

      Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

      Маркировка SMD элементов

      Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

      Рис. 3. Пример расшифровки номинала SMD резистора

      Внешний осмотр

      Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

      Рисунок 4. Яркий пример того, как может сгореть резистор

      Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

      Проверка на обрыв

      Действия производятся в следующем порядке:

      1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
      2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

      Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

      1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

      Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

      Проверка на номинал

      Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

      Алгоритм наших действий следующий:

      1. Подключаем щупы, так как на предыдущем тестировании.
      2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К». Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
      3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

      Что такое допуск, и насколько он важен?

      Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

      Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

      1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

      Как тестировать переменный резистор?

      Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

      Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

      Алгоритм следующий:

      1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
      2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
      3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

      Как проверить резистор мультиметром, не выпаивая на плате?

      Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

      При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

      Содержание статьи

      Особенности измерения сопротивления резистора мультиметром

      Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

      Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

      Цифровой тестер для проверки резисторов

      Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

      Как проверить резистор не выпаивая: визуальная проверка

      Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

      О неисправностях свидетельствуют:

      • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
      • Появление характерного запаха.
      • Стирание маркировки.
      • Наличие на плате сгоревших дорожек

      Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

      Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

      Подготовка мультиметра к проведению измерений: какие установить настройки

      Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

      Подготовка прибора к проверке

      При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

      Как прозвонить резистор

      Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

      Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

      Как определить номинал резистора по маркировке

      Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

      Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

      В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

      Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

      Таблица кодов для прецизионных резисторов

      КодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначение
      011001714733215493166546481681
      021021815034221503246647582698
      031051915435226513326748783715
      041072015836232523406849984732
      051102116237237533486951185750
      061132216538243543577052386768
      071152316939249553657153687787
      081182417440255563747254988806
      091212517841261573837356289825
      101242618242267583927457690845
      111272718743274594027559091866
      121302819144280604127660492887
      131332919645287614227761993909
      141373020046294624327863494931
      151403120547301634437964995953
      161433221048309644538066596976

      Проверка сопротивления постоянного резистора

      После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

      Как проверяют сопротивление резистора

      При обрыве цепи на экране горит «1».

      Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

      Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

      СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

      Проверка переменного резистора

      Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

      Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

      Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

      • Мультиметр включают в режим измерения.
      • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
      • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

      Видео: как проверить резистор мультиметром

      описание, маркировка. Размеры SMD резисторов и их мощность

      Все SMD резисторы для поверхностного монтажа обычно маркируются. Кроме сопротивлений в 0402-ом корпусе, т.к они не имеют маркировки в связи с их миниатюрными размерами. Резисторы других типоразмеров маркируются двумя основными методами. Если у чип резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка состоит из 3-х цифр: две первые обозначают мантиссу, а третья является степенью для десятичного основания, т.е, получается значение сопротивления резистора в Омах. Например, код сопротивления 106 — первые две цифры 10 — это мантисса, 6 — степень, в итоге получаем 10х10 6 , то есть 10 Мом.

      Иногда к цифровой маркировке прибавляется латинская буква R — она является дополнительным множителем и обозначает десятичную точку. SMD резисторы типоразмера 0805 и более, имеют точность 1% и обозначаются кодом из четырех цифр: первые три — мантисса, а последняя — степень для десятичного основания. К данной маркировке также может прибавляться латинский символ R. Например, код сопротивления 3303 — 330 — это мантисса, 3 — степень, в итоге получаем 330х10 3 , т.е 33 кОм. Кодовая маркировка SMD сопротивлений с допуском в 1% и типоразмером 0603 обозначается всего двумя цифрами и буквой с помощью таблицы.

      Цифры обозначают код, по которому из нее выбирается значение мантиссы, а буква — множитель с десятичным основанием. Например, код 14R — первые две цифры 14 — это код. По таблице для кода 14 значение мантиссы 137, R — степень равная 10 -1 , в итоге получаем 137х10 -1 , то есть 13,7 Ом. Резисторы с нулевым сопротивлением (перемычки), маркируются просто цифрой 0.

      Маркировка SMD резисторов — корпуса

      Справочник по кодовой маркировке smd резисторов фирмы Philips

      Фирма Philips кодирует номинал smd резисторов следующим образом первые две или три цифры указывают номинал в омах, а последние — количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде трех или четырех символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8 и 9 в последнем символе. Буква R выполняет роль десятичной запятой или, если она стоит в конце, то указывает на диапазон. Единичный символ «0» указывает на резистор с нулевым сопротивлением (Zero — Ohm).

      SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска. Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для определения номинала резистора в Омах.

      При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51×103 Ом = 51 КОм. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.

      Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×101 Ом = 7.5 КОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах.

      Например, маркировка 10C означает, что резистор имеет номинал 124×102 Ом = 12.4 КОм.

      Справочник по маркировке SMD резисторов BOURNS

      Smd резисторы bourns кодируются по трем стандартам:

      Первые две цифры указывают значения в омах, последняя — количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206

      Первые три цифры указывают значения в омах, последняя — количество нулей. Распространяется на резисторы из ряда Е96, допуском 1%, типоразмерами 0805 и 1206.

      Первые два символа — цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы, последний символ — буква, указывающая значение множителя:S = 0.01; R = 0.1; А = 1; В = 10; С = 100; D = 1000; Е = 10000;F = 100000. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603

      Многие компании выпускают в роли плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и резисторы с «нулевым» сопротивлением. Они изготавливаются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в типовом корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких компонентов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических корпусах маркировку наносят черным кольцом посередине, в SMD корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировки либо нет, либо наносится цифры «000» (иногда просто «0»).


      Подборка справочников по SMD компонентам

      SMD — Абривиатура из английского языка, от Surface Mounted Device — Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности.

      Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.

      На фото ниже представлены SMD-резисторы, размещенные на печатной плате.

      Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.

      В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.

      Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.

      SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм.

      Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:

      Первые две цифры указывают значение в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.

      Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя — количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.

      Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.

      SMD резисторы для поверхностного монтажа имеют три основные характеристики: размер элемента (типоразмер), сопротивление в Омах, допуск сопротивления в процентах. Типоразмер обозначается четырехзначной цифрой. Ниже приведена таблица распространенных типоразмеров и их геометрических размеров.

      Обозначение типоразмера EIA Размеры, мм
      LWHa
      04021.000.500.200.25
      06031.600.850.300.30
      08052.101.300.400.40
      12063.101.600.500.50
      12103.102.600.500.40
      20105.002.500.600.40
      25126.353.200.600.40

      Трехзначная нумерация резисторов с допуском 2%, 5% и 10%

      Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами. Первые две цифры обозначают мантиссу, третья — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 512 означает, что резистор имеет номинал 51×100 Ом = 5.1 КОм, маркировка 104 означает номинал 10×10000 = 100кОм.

      Существуют также SMD резисторы с нулевым сопротивлением или так называемые перемычки. Они маркируются символом 0 или 000.

      Ниже приведена таблица, используя которую вы сможете быстро определить номинал SMD резистора.

      Изображение Номинал Изображение Номинал
      10 Ом51 Ом
      100 Ом510 Ом
      1 кОм5.1 кОм
      10 кОм51 кОм
      100 кОм510 кОм
      1 МОм5.1 МОм

      Четырехзначная нумерация резисторов с допуском 1%

      Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами. Первые три из них обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 3401 означает, что резистор имеет номинал 340×10 Ом = 3.4 КОм.


      КодЗначениеКодЗначениеКодЗначениеКодЗначение
      01100251784931673562
      02102261825032674576
      03105271875133275590
      04107281915234076604
      05110291965334877619
      06113302005435778634
      07115312055536579649
      08118322105637480665
      09121332155738381681
      10124342215839282698
      11127352265940283715
      12130362326041284732
      13133372376142285750
      14137382436243286768
      15140392496344287787
      16143402556445388806
      17147412616546489825
      18150422676647590845
      19154432746748791866
      20158442806849992887
      21162452876951193909
      22165462947052394931
      23169473017153695953
      24174483097254996976

      Радиолюбителю при сборке электрических схем часто приходится сталкиваться с определением номинала неизвестных компонентов. Резистор используется чаще всего. С его обозначениями возникают и частые вопросы. В переводе с английского это название звучит как «Сопротивление». Они различаются как по номинальному сопротивлению, так и по допустимой мощности. Для того, чтобы мастер мог выбрать элемент с нужным номиналом на их корпусах наносят обозначение. В зависимости от типа резисторов кодировка может различаться, она бывает: буквенно-цифровая, цифровая либо цветовыми полосами. В этой статье мы расскажем подробнее, какая бывает маркировка резисторов отечественного и импортного производства, а также как расшифровать обозначения, указанные производителем.

      Обозначение номинала буквами и цифрами

      На сопротивлениях советского производства применяется буквенно-цифровая маркировка резисторов и обозначение цветовыми полосами (кольцами). Примером можно рассмотреть резисторы типа МЛТ, на них величина сопротивления указана цифро-буквенным способом. Резисторы до сотни Ом содержат в своей маркировке букву «R», или «Е», или «Ω». Тысячи Ом маркируются буквой «К», миллионы букву М, т.е. по буквам определяют порядок величины. При этом целые единицы от дробных отделяются этими же буквами. Давайте рассмотрим несколько примеров.

      На фото сверху вниз:

      • 2К4 = 2,4 кОм или 2400 Ом;
      • 270R = 270 Ом;
      • К27 = 0,27 кОм или 270 Ом.

      Маркировка третьего непонятна, возможно он развернут не той стороной. Кроме этого на резисторах от 1 Вт может присутствовать маркировка по мощности. Маркировка довольно удобна и наглядна. Она может незначительно отличаться в зависимости от типа резисторов и года их производства. Также может присутствовать дополнительная буква, которая указывает класс точности.

      Импортные сопротивления, в том числе китайские, тоже могут маркироваться буквами. Яркий пример – это керамические резисторы.

      В первой части обозначения указано 5W – это мощность резистора равная 5 Вт. 100R – значит, что его сопротивление в 100 Ом. Буква J говорит о допуске отклонений от номинального значения равном 5% в обе стороны. Полная таблица допусков изображена ниже. Класс точности или допустимое отклонение от номинала не всегда существенно влияет на работу схемы, хотя это зависит от их назначения.

      Как определить номинал по цветовым кольцам

      В последнее время выводные сопротивления чаще обозначаются с помощью цветовых полос и это относится как к отечественным, так и к зарубежным элементам. В зависимости от количества цветовых полос меняется способ их расшифровки. В общем виде он собран в ГОСТ 175-72.

      Цветовая маркировка резисторов может выглядеть в виде 3, 4, 5 и 6 цветовых колец. При этом кольца могут быть смещены к одному из выводов. Тогда кольцо, которое ближе всех к проволочному выводу, считают первым и расшифровку цветного кода начинают с него. Или одно из колец может отсутствовать, обычно предпоследнее. Тогда первое это то, возле которого есть пара.

      Другой вариант, когда маркировочные кольца расположены равномерно, т.е. заполняют поверхность равномерно. Тогда первое кольца определяют по цветам. Допустим, одно из крайних колец (первое) не может быть золотого цвета, тогда можно определить с какой стороны идет отчет.

      Обратите внимание при таком способе маркировки из 4-х колец третье кольцо – это множитель. Как разобраться в этой таблице? Возьмем верхний резистор первое кольцо красного цвета, это 2, второе фиолетового – это 7, третье, множитель красное – это 100, а допуск у нас коричневый – это 1%. Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны.

      Второй резистор имеет цветовую маркировку из 5 полос. У нас: 2, 7, 2, 100, 1%, тогда: 272*100=27200 Ом или 27,2 кОм с допуском в 1%.

      У резисторов из 3 полос цветовая маркировка производится по такой логике:

      • 1 полоса – единицы;
      • 2 полоса – сотни;
      • 3 полоса – множитель.

      Точность таких компонентов равна 20%.

      Расшифровать цветовое обозначение вам поможет программа ElectroDroid, она доступна для Android в Play Market, в её бесплатной версии есть данная функция.

      Другой способ расшифровки цветового кода от компании Philips предполагает использование 4, 5 и 6 полос. Тогда последняя полоса несет информацию о температурном коэффициенте сопротивления (насколько изменяется сопротивление при изменении температуры).

      Чтобы определить номинал воспользуйтесь таблицей. Обратите внимание на последнюю колонку – это ТКС.

      На корпусе цветные кольца распределяются, так как показано на этой схеме:

      Более подробно узнать о том, как расшифровать маркировку резисторов, вы можете из данных видео:

      Маркировка SMD резисторов

      В современной электронике один из ключевых факторов при разработке устройства – его миниатюризация. Этим вызвано создание безвыводных элементов. SMD-компоненты отличаются малыми размерами, за счет их безвыводной конструкции. Пусть вас не смущает такой способ монтажа, он используется в большей части современной электроники и отличается хорошей надежностью. К тому же это упрощает конструкцию многослойной печатной платы. Дословная расшифровка с переводом обозначает «устройство для поверхностного монтажа», они и монтируются на поверхность печатной платы. Из-за миниатюрных размеров возникают трудности с обозначением их номинала и характеристик на корпусе, поэтому идут на компромисс и используют методы маркировки по цифрам, с буквами или используя кодовую систему. Давайте разберемся, как маркируются SMD резисторы.

      Если на SMD-резисторе нанесено 3 цифры тогда расшифровка производится следующим образом: XYZ, где X и Y – это первые две цифры номинала, а Z количество нолей. Рассмотрим на примере.

      Возможно обозначение 4-мя цифрами, тогда всё таким же образом, только первые три цифры, это сотни, десятки и единицы, а последняя – нули.

      Если в маркировку введены буквы, то расшифровка подобна отечественным резисторам МЛТ.

      Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

      • 5 %-ный ряд;
      • 10 %-ный;
      • 20 %- ный.

      Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой , может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

      Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты , чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

      На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа .

      Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

      Маркировка

      Размеры и форма SMD резисторов регламентируются нормативным документом. (JEDEC), где приводятся рекомендуемые типоразмеры. Обычно на корпусе наносятся данные о габаритах элемента. К примеру, цифровой код 0804 предполагает длину, равную 0,080 дюймам, ширину — 0,040 дюйма.

      Если перевести такую кодировку в систему СИ, то этот компонент будет обозначаться как 2010. Из этой надписи видно, что длина составляет 2,0 мм, а ширина 1,0 мм. (1 дюйм равен 2,54 мм)

      Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили все чипы по способу маркировки на три типа:

      • из трёх цифр;
      • из четырёх цифр;
      • из двух цифр и буквы;

      Последний вариант применяется для SMD-сопротивлений повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них надписи с длинными кодами . Для них разработан стандарт EIA-96

      Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква R Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.

      Существуют номиналы повышенной точности (так называемые прецизионные)

      Пример подбора нужного резистора: если указана цифра 232 то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 10 2 = 2300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.

      Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, чтобы получить номинал резистора .

      Резистор 102 smd — расшифровывается так 10*100 = 1000 Ом или 1 кОм

      Расшифровка обозначений чипов — специфичное занятие. Вычислить необходимую величину возможно используя старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и кто это можно выполнить при помощи различных сайтов.

      Онлайн-калькулятор

      Калькулятор smd резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчётов. Используя специальные программы можно найти информацию совершенно бесплатно.

      Пример определения сопротивлений

      240 = 24 х 100 равняется 24 Ом

      273 = 27 х 103 равняется 27 кОм

      Резисторы типоразмера 0603 точностью 1% маркируются кодом из двух цифр и одной латинской буквы, где цифры обозначают порядковый номер номинала в ряду е96, а буква множитель: A=x10, B=x100 и т.д., X=x1, Y=x0.1, Z=x0.01

      Реверсивный калькулятор кодов

      Калькулятор может работать со всеми кодами маркировки smd: из 3-х цифр, из 4-х цифр, или с кодом EIA-96. Для получения нужной величины сопротивления, нужно вписать код в центре рисунка резистора, и нажать на стрелку вниз. В текстовом поле появится искомое значение. В обратном направлении также можно определиться с необходимым типом. Выбрать тип кодировки (поставить точку в нужном поле напротив кода), затем, чтобы получить код сопротивления, написать в поле сопротивление, которое имеет резистор. (10 кОм). SMD калькулятор выдаст нужный код после нажатия стрелки вверх. Он появится в центре рисунка.

      Руководство по выбору резистора для поверхностного монтажа

      — Блог о пассивных компонентах

      Доктор Майк Рэндалл, Venkel LTd. выпустила технический документ «Полное руководство по выбору резистора для поверхностного монтажа», который помогает с руководством по выбору резисторов для поверхностного монтажа.

      Чип-резисторы для поверхностного монтажа распространены повсеместно. Сотни миллиардов этих устройств продаются каждый год в бесчисленных приложениях, от портативных устройств до высокоточного лабораторного испытательного оборудования, аэрокосмической электроники и т. Д.Чип-резисторы и связанные с ними технологии обсуждаются с точки зрения типов, функциональности, конструкции устройства и приложений, а также соображений проектирования схем и номинальной мощности. Тщательное рассмотрение этих важных факторов должно помочь вам выбрать правильный компонент чип-резистора для вашей конструкции.

      Глава 1: Предыстория

      Резисторы препятствуют прохождению тока, вызывая падение напряжения при включении в электрическую цепь. И переменному, и постоянному току препятствуют идеальные резисторы.Единица измерения сопротивления — Ом (Ом), названная в честь немецкого физика Георга Ома. Ом определяется как величина сопротивления, необходимая для создания падения напряжения на 1 вольт (В), когда ток составляет 1 ампер (А). С точки зрения размеров, Ом определяется как:

      где:

      • м — метр
      • Кг — килограмм второй
      • C — кулон
      • J — джоуль
      • S — Siemens
      • F — Фарад
      • W — ватт

      Из вышесказанного очевидно, что Ом можно описать множеством различных терминов, включая время, расстояние, массу, заряд, энергию, емкость, а также мощность и проводимость.Как показано на рисунке 1, сопротивление току между двумя плоскостями (то есть плоскостью 1 и плоскостью 2 на рисунке 1) площади поперечного сечения внутри проводника определяется соотношением:

      Где:

      • ρ — удельное сопротивление материала, через который проходит ток (единицы, Ом · м)
      • L — длина, которую ток проходит между плоскостями 1 и 2 (единицы, м)
      • A — площадь поперечного сечения проводника, через который проходит ток (площадь плоскости 1 или плоскости 2 (единицы, м2)

      Это объемное сопротивление, и указанное выше соотношение может быть дополнительно упрощено, если проводник разделен на квадратные сегменты (т.е.е., если W = L), как показано ниже. В этом случае сопротивление упрощается до:

      T — толщина проводника, по которому проходит ток (ед., М)

      В приведенном выше случае сопротивление упрощается до значения, имеющего единицы Ом на квадрат (Ом / ч), которое обычно называют «сопротивлением листа». Сопротивление листа — это упрощение сопротивления, которое полезно разработчикам микросхем, поскольку оно значительно упрощает процесс проектирования резистора.

      Рисунок 1.Сопротивление в зависимости от геометрии устройства и удельного сопротивления

      Устройство с микросхемой резистора обычно имеет по крайней мере один резисторный элемент. Элемент обычно имеет постоянную толщину (T) с геометрией, состоящей из квадратов. Ширина и толщина дорожки помогают установить номинальную мощность, а количество квадратов используется для определения сопротивления устройства. Таким образом, важно максимизировать количество квадратов в конструкции, когда желательно максимизировать сопротивление в устройстве небольшого размера.Более толстые и широкие квадраты обычно дают возможность пропускать больший ток и обрабатывать большую мощность, но количество квадратов (и результирующее сопротивление на единицу длины) уменьшается, ограничивая максимальное сопротивление, возможное в устройстве данного размера корпуса.

      В процессе проектирования чип-резистора разработчик выбирает материал, имеющий определенное значение Ω / квадрат, чтобы обеспечить заданное номинальное сопротивление в пределах данного размера корпуса. Дизайнер также будет использовать змеевидный узор из взаимосвязанных квадратов, чтобы при необходимости максимизировать сопротивление в пределах размера корпуса, поскольку змеевидный узор из квадратов обеспечивает большее сопротивление (т.е., квадраты), чтобы их можно было упаковать на меньшую площадь, что позволит максимально использовать возможности печатной платы. Пример этого показан на Рисунке 2. Использование змеевидного узора из квадратов, в этом случае, позволяет почти вдвое увеличить сопротивление на том же линейном расстоянии.

      Рисунок резистора наносится на подложку, которая обычно состоит из керамики на основе оксида алюминия (обычно Al2O3 с добавлением от 1 до 10 мас.% Стекла в качестве спекающей добавки). Однако другие материалы, такие как карбид кремния (SiC) и т. Д., может использоваться для приложений с высоким энергопотреблением или других приложений. Образцы резисторов обычно наносятся по несколько раз на большую подложку, которая разделяется на отдельные устройства на более поздних этапах производственного процесса, чтобы обеспечить экономичное массовое производство.

      Рисунок резистора подключается к двум выводам, которые также нанесены на подложку, а также по краям подложки для формирования выводов для поверхностного монтажа, обычно по одному на каждом конце устройства, или в виде нескольких полос вдоль длинных сторон. устройства в случае резисторной сети.Эти внешние клеммы или заделки позволяют подключать устройство чип-резистора к печатной плате. Дорожка резистора обрезается для соответствия номинальному сопротивлению в пределах диапазона технических характеристик устройства по мере необходимости, а дорожка резистора покрывается электроизоляционным материалом. После отверждения на материал верхнего покрытия наносится маркировка, и каждое устройство испытывается для создания готового чип-резистора, который затем упаковывается (обычно в виде ленты и катушки) для хранения, транспортировки, доставки и размещения или монтажа с правильной ориентацией. .

      В процессе сборки схемы резистор снимается с ленты и размещается на печатной плате (PCB) с помощью приспособления для захвата и установки. Затем каждый чип-резистор физически подключается к цепи внутри печатной платы на сборочном предприятии с использованием термической термообработки, при которой припой оплавляется для физического, термического и электрического соединения резисторной микросхемы и печатной платы. Припой обычно наносится на печатную плату перед операцией установки микросхемы путем нанесения специальной паяльной пасты на трафаретный принтер, а процесс оплавления припоя обычно выполняется в тщательно контролируемой печи оплавления.

      Рисунок резистора обычно создается одним из двух методов: нанесением толстой пленки или нанесением тонкой пленки. Другие, гораздо менее известные методы производства также используются для определенных устройств. В результате чип-резисторы обычно подразделяются на толстопленочные чип-резисторы или тонкопленочные чип-резисторы в зависимости от метода осаждения, используемого при их производстве.

      Процессы производства толстой пленки обычно включают прецизионное осаждение жидкостей, содержащих частицы (например,грамм. чернил или паст) на подложку с использованием некоторого типа процесса печати (например, трафаретной печати, трафаретной печати, тампонной печати и т.п.). Печатные краски или пасты затем сушатся и обжигаются до образования плотного, проводящего, узорчатого следа резистора. Поскольку формирование рисунка резистора выполняется во время нанесения толстопленочной краски или пасты, это называется аддитивным процессом. Технология толстопленочного резистора выигрывает от относительно простой модификации состава, поскольку модификация толстопленочного резистора «чернила» (например,g., химический состав, содержание стекла, легирующие примеси для TCR и т. д. для трассы резистора) выполнить относительно легко. Материалы толстопленочных резисторов обычно основаны на оксиде рутения (RuO2) или платине (Pt), смешанных со специальными составами стекла и другими легирующими добавками для достижения желаемых свойств во время обжига.

      Процессы изготовления тонкопленочных чип-резисторов обычно включают прецизионное нанесение пленки или материала без рисунка на подложку. Осажденный материал обычно наносят либо термическим осаждением в относительно «жестком» вакууме, либо физическим осаждением из паровой фазы с использованием процесса распыления в «более мягком» вакууме (например.(например, вакуум, заполненный аргоном или другим газом для увеличения давления) для создания плазмы. Методы осаждения тонких пленок обычно приводят к очень тонким однородным пленкам. Хотя на тонких пленках может быть нанесен рисунок в процессе осаждения, обычно этого не происходит при производстве чип-резисторов. После прецизионного осаждения пленки на пленку обычно наносят узор после осаждения с использованием фотолитографии. Из-за этого узоры формируются путем удаления материала, и этот процесс называется вычитающим процессом.

      Композиции тонкопленочных резисторов обычно основаны на осажденных из паровой фазы никель-хромовых металлах, называемых «нихром». Обычно это делается с помощью физического осаждения из паровой фазы методом распыления. Результирующие резистивные элементы обычно не нужно запускать для достижения желаемых свойств с помощью этого метода. С помощью тонкопленочной технологии изменить состав резистивного элемента относительно сложно. Однако тонкопленочная технология обычно выигрывает от лучшей однородности осаждения и более точного формирования рисунка, чем толстопленочная технология, поэтому оба метода производства чип-резисторов имеют свои преимущества и недостатки.

      Общий процесс производства резисторов включает в себя проектирование устройства для достижения указанного диапазона около номинального сопротивления при сохранении номинальной мощности в интересующем размере корпуса. Затем на подложку наносится материал резистора, который выбирается по механической прочности, а также по электрическим и тепловым свойствам. На резисторный элемент наносится рисунок либо во время осаждения (добавка, толстая пленка), либо после осаждения (вычитающая, тонкая пленка), затем настраивается номинальное сопротивление по мере необходимости, затем наносится покрытие, и отдельные чипы резистора разделяются, затем терминируются, тестируются и упаковываются .В случае толстопленочных резисторов химический состав резистора тщательно выбирается для установки Ω / квадрат, а также для регулировки температурного коэффициента сопротивления (TCR) и других ключевых свойств, а материал наносится и формируется за один этап с использованием экрана или трафаретная печать (аддитивная). Затем толстопленочный резистор подвергается термической обработке для достижения желаемых электрических свойств. В случае тонкопленочных резисторов сначала наносится материал резистора, чтобы получить очень однородную тонкую пленку, а затем наносится рисунок с использованием фотолитографической техники.

      В случае обеих технологий толщина покрытия тщательно контролируется для достижения желаемого значения Ω / квадрат, а рисунок дополнительно корректируется, обычно с помощью ЛАЗЕРНОЙ абляции, для достижения желаемого сопротивления (номинального). Шаблон резистора также можно отрегулировать для приложений высокого напряжения или других специализированных приложений. Толщина и однородность рисунка толстопленочных резисторных элементов обычно намного толще и менее однородна для толстопленочных резисторов по сравнению с тонкопленочными резисторами, что делает тонкопленочные резисторы более желательными для определенных приложений (например.g., связанные с допусками на точность, высокими частотами и т. д.).

      Глава 2: Типы

      Чип-резисторы бывают разных размеров, форм и конфигураций. Таким образом, важно понимать, как каждый чип-резистор будет использоваться в вашей конструкции. Прежде чем выбрать устройство с чип-резистором, целесообразно ответить на вопросы, касающиеся ваших требований к конструкции, например:

      • Какова предполагаемая цель и среда применения?
      • Какие требуются значения, допуски, температурная стабильность и другие особенности?
      • Какой размер вы можете разместить и какую мощность должен выдерживать указанный резистор в своей среде?
      • Какие еще факторы окружающей среды (напр.g., RoHS, атмосфера с высоким содержанием серы и т.п.) важны для вашего приложения?
      • Другие вопросы в зависимости от вашего приложения и конструктивных ограничений.

      Существует множество типов микросхем резисторов для удовлетворения требований к конструкции и применению, таких как:

      • Микропроцессорные резисторы общего назначения
      • Высокоточные микрочип-резисторы
      • Микросхемы измерения тока
      • Высоковольтные микропроцессорные резисторы
      • Микросхемы высокой мощности
      • Микросхемы высокого сопротивления
      • Подстроечные микропроцессорные резисторы
      • Экологически безопасные и химически стабильные чип-резисторы

      Общего назначения

      Микросхемы

      общего назначения используются в схемах поверхностного монтажа везде, где требуется стандартный или общий резистор, например, для понижения напряжения (делители напряжения), управления током (ограничители тока) и т.п.Обычно это толстопленочные резисторы, которые доступны в корпусах размером от 01005 (EIA). Чип-резисторы общего назначения демонстрируют значения температурного коэффициента сопротивления (TCR) от +/- 100 ppm / o C в диапазоне рабочих температур от -55 ° C до 150 ° C + и имеют номинальные значения от 0 Ом до 20 МОм. +, с номинальной мощностью от ~ 0,01 Вт до 2 Вт +.

      Высокая точность

      Прецизионные чип-резисторы доступны в толстопленочной или тонкопленочной конфигурации.Как правило, они демонстрируют очень низкое изменение сопротивления при изменении температуры. Соответствующие значения температурного коэффициента сопротивления (TCR) для высокоточных чип-резисторов могут составлять всего +/- 5 ppm / o C. Допуски на сопротивление также очень «жесткие» по сравнению со стандартными чип-резисторами. Например, чип-резисторы сверхвысокой точности могут иметь допуск на номинал резистора до +/- 0,01%. Они полезны, когда сложно или невозможно подрезать или откалибровать узел опоры цепи, или в других обстоятельствах, когда требуются жесткие допуски и высокие уровни стабильности сопротивления резистора при изменении температуры.

      Чувствительность по току

      Датчики тока — это схемы, которые обнаруживают и преобразуют ток в напряжение, пропорциональное величине тока, протекающего по цепи. Для этой цели обычно используются резисторы, считывающие ток. Они создают падение напряжения при измерении напряжения на резисторе. Это падение напряжения напрямую связано с током по закону Ома (V = IR). Сопротивление тщательно выбирается, чтобы вызвать падение напряжения, подходящее для схемы, при прохождении токов в диапазоне, предусмотренном конструкцией.Токоизмерительные резисторы обычно имеют низкое сопротивление (<1 Ом), чтобы избежать чрезмерного потребления энергии. Дополнительную информацию о резисторах считывания тока можно найти в Шпаргалке по резисторам считывания тока Venkel.

      Высокое напряжение

      Цепи высокого напряжения обычно используются в системах освещения, высоковольтных измерительных приборов, промышленных и других высоковольтных систем. Для этих приложений, вероятно, потребуются микросхемные резисторы высокого напряжения. Эти устройства предназначены для предотвращения дугового разряда или отказа из-за напряжения в цепях с номинальным напряжением до 3 кВ.

      Высокая мощность

      Приложения, требующие повышенной надежности или требующие высокой плотности мощности, могут выиграть от использования резисторов большой мощности в вашей конструкции. В резисторах большой мощности используются специальные материалы и конструкции, улучшающие тепловые свойства и обеспечивающие лучшую рассеиваемую мощность. Резисторы высокой мощности могут использоваться вместо резисторов общего назначения, где требуется высокая удельная мощность, поскольку они обеспечивают более высокие номинальные мощности (обычно коэффициент не менее 2 или более) по сравнению с аналогами микросхемных резисторов общего назначения.Они хорошо подходят для приложений, подверженных сильному току, или там, где требуется большой запас по снижению номинальных характеристик, например, в условиях высоких температур или приложений с высокой удельной мощностью и т.п.

      Высокое сопротивление

      Резисторы с высоким сопротивлением

      обычно используются в приборах с высоким импедансом, схемах испытательного оборудования, схемах измерения температуры, делителях напряжения, схемах настройки усиления или других схемах усилителей с высоким импедансом и т.п.Чип-резисторы с высоким сопротивлением обычно представляют собой толстопленочные резисторы в корпусе размером от 0402 (EIA) до 2512 (EIA) или больше. Значения сопротивления для этих приложений обычно находятся в диапазоне от 1 МОм до 100 ГОм +.

      Подстроечные резисторы

      Для некоторых схемных решений требуется по крайней мере один перестраиваемый или подстроечный резистор, так как очень трудно «спроектировать» оптимальное значение, пока не будут учтены все другие вариации в схеме. Устройства, использующие схемы, требующие калибровки, такие как определенные операционные усилители, генераторы, делители напряжения, схемы настроенных датчиков и т.п., могут выиграть от использования подстроечных резисторов.Подстроечные резисторы могут быть обрезаны ЛАЗЕРОМ, после монтажа на опоре, до более высокого сопротивления, чем номинальное, поскольку используемый резисторный элемент и стеклянная пассивация специально разработаны для обеспечения возможности подстройки ЛАЗЕРОМ на месте после установки резистора в схему. Это позволяет настраивать схему на месте. В некоторых случаях подстраиваемые резисторы могут даже заменить более дорогие и неуклюжие потенциометры.

      Экологически чистые и химически стабильные чип-резисторы

      Правила

      RoHS (ограничение вредных веществ) привели к сокращению или исключению свинца, ртути, шестивалентного хрома кадмия, бромированных дифенилов и дифениловых эфиров из электронных компонентов и оборудования, включая чип-резисторы.В некоторых случаях Pb все еще разрешен в качестве компонента (например, RoHS 5 или 5/6), но во многих случаях требуется RoHS 6 или 6/6. Спрос на последние, вероятно, возрастет в будущем по мере того, как будут совершенствоваться экологические нормы и требования. Наличие чип-резисторов для применения в средах с высоким содержанием серы может быть весьма полезным для надежности устройства, поскольку некоторые материалы, такие как серебро или медь, имеют тенденцию вступать в реакцию с атмосферной серой, вызывая коррозию, которая может стать серьезной проблемой надежности.Избежать этой проблемы можно с осторожностью при выборе материалов и конструкции резистора.

      Антисульфурационные резисторы повышают надежность микросхем резисторов в сернистых или других загрязненных средах, например, в определенных промышленных средах, в электронике в шинах и т.п., где реакция с серой на границе раздела резистивный элемент-заделка может привести к увеличению сопротивление из-за образования сульфида серебра на этой границе раздела.

      Это может произойти при концентрации серы в окружающей среде всего 1-3 частей на миллион (ppm).Доказано, что резисторы, предотвращающие образование серы, предотвращают подобные отказы.

      Таким образом, как и в случае с другими типами электронных компонентов, очень важно понимать температурный диапазон и другие факторы окружающей среды вашего приложения, а также напряжения, рассеиваемую мощность, значения сопротивления, допуски и другие ключевые требования компонентов, которые вы выбираете для ваше приложение

      Глава 3: Применение и особенности проектирования

      Требования к питанию

      Суть резисторов — превращать поток электричества в тепло.Они могут рассеивать значительную мощность в виде тепла в зависимости от конструкции, в которой они используются. Резисторы снижают напряжение в цепи, превращая указанное снижение напряжения в тепло за счет джоулева нагрева в соответствии с соотношением:

      Где:

      • P = мощность (единицы, Вт)
      • I = ток (единицы, А)
      • В = напряжение (единицы, В)
      • R = сопротивление (единицы, Ом)

      Это создание тепла за счет резистивного или джоулева нагрева происходит внутри резистивного элемента устройства, заставляя его нагреваться при прохождении тока.Часть выделяемого тепла уходит от резистивного элемента во внешнюю среду через компоненты чип-резистора. Однако рассеивание тепла может происходить только так быстро, и количество тепла, которое удерживается внутри устройства, нагревает его до более высокой температуры. Величина повышения температуры обычно упрощается до линейного значения, указанного для устройства. Это значение обычно указывается в oC / Вт (единицы, градусы Цельсия на ватт мощности, рассеиваемой резистивным элементом), и номинальная мощность чип-резистора определяется на основе этого значения, среди прочего.Номинальная мощность чип-резистора указывается в ваттах. Значение определяется расчетом на основе экспериментов и обычно проверяется путем тестирования надежности нескольких партий квалификационных устройств.

      Кроме того, номинальная мощность чип-резистора уменьшается, когда рабочая температура устройства превышает заданную температуру (обычно 70 ° C). В этом случае номинальная мощность чип-резистора снижается со скоростью ~ -1,2% / o C по мере того, как температура устройства превышает 70o C, как показано на рисунке ниже, а номинал чип-резистора полностью снижается на 155o. C (максимальная температура использования).Также можно увеличить номинал выбранного чип-резистора, если рабочая температура чип-резистора всегда поддерживается ниже 70 ° C, используя экстраполяцию линии снижения номинальных характеристик на Рисунке 3 на температуры ниже 70 ° C (например, ~ + 1,2 % / o C ниже 70o C), но не забудьте получить «благословение» вашего поставщика, прежде чем делать это, поскольку такая практика может привести к проблемам с гарантией, независимо от того, подходит она или нет.

      Неправильный выбор резистора для микросхемы с учетом номинальной мощности может привести к старению (охрупчиванию) или даже плавлению паяных соединений, что приведет к снижению надежности паяных соединений микросхемы.Это также может привести к снижению производительности печатной платы (PCB) или даже к выходу из строя PCB. Неправильный выбор компонентов или конструкция схемы также могут привести к плохим характеристикам резистора на микросхеме, например, к высокому дрейфу значения сопротивления и т.п. Эти эффекты нельзя отменить без доработки или даже замены компонента.

      Для правильного проектирования разработчику схемы необходимо тщательно продумать баланс между выбором компонентов и соображениями управления тепловым режимом, чтобы достичь состояния теплового равновесия в устройстве, которое не превышает значительно рабочую температуру схемы.Тепло, выделяемое во время работы, необходимо эффективно отводить от устройства. Тепло может отводиться через один или несколько механизмов теплопроводности, конвекции или излучения. Однако в этом случае излучение и конвекция обычно вносят лишь незначительный вклад в тепловой поток, поскольку температура слишком низкая, чтобы испускать значительное излучение, а окружающая среда вокруг устройства чип-резистора обычно является плохой конвективной средой. Таким образом, мы должны полагаться на теплопроводность для отвода большей части тепла, выделяемого чипом резистора в связанной с ним цепи.

      Первичный путь для отвода выделяемого тепла — это путь отвода тепла через металлические выводы резистора микросхемы к проводящим дорожкам печатной платы и наружу в тепловую массу печатной платы. Этот тепловой поток можно максимизировать в конструкции чип-резистора за счет максимального увеличения размера выводов (т. Е. За счет использования резистора микросхемы большого размера), или за счет использования паяных соединений большего размера, или за счет использования двусторонней металлизации и / или или более толстая металлизация на печатной плате, или использование разумно размещенных тепловых переходных отверстий в непосредственной близости от монтажных площадок.Каждый из этих методов, особенно при использовании в комбинации, приводит к улучшенному пути теплопроводности для тепла от резистора микросхемы.

      Кроме того, важен выбор материала. Например, теплопроводность (обозначение, KTh, единицы, Вт на метр, градус Кельвина, Вт / мК) оксида алюминия, материала, обычно используемого для подложек микросхем резисторов, составляет ~ 24-30 Вт / мК. Использование более экзотических электроизоляционных материалов для подложки чип-резистора, таких как карбид кремния (SiC, KTh ~ 350-500 Вт / мК) или даже алмаз (C, KTh ~ 900-3000 Вт / мК), помогает увеличить мощность. номинальных характеристик устройства за счет обеспечения большего пути рассеивания тепла, выделяемого в резистивном элементе.Однако использование этих материалов может быть очень дорогостоящим, и важно сбалансировать улучшение тепловых характеристик со стоимостью использования экзотических материалов. В случае с алмазом, например, рост стоимости обычно непомерно высок. Вышеприведенное обсуждение также применимо к материалу внешнего покрытия и материалам клемм.

      Кроме того, теплопроводящие, но электрически изолирующие материалы, такие как теплопроводящие эпоксидные смолы и т.п., могут использоваться для недостаточного заполнения чип-резистора, чтобы улучшить теплопроводность от нижней части чип-резистора к печатной плате.Тепловые переходные отверстия под указанной недостаточной заливкой также могут дополнительно улучшить передачу тепла от резистора микросхемы к печатной плате.

      Приложения

      Резисторы

      используются во многих приложениях, таких как измерение тока, настройка схемы, деление напряжения, настройка усиления, высокочастотные согласования и множество приложений высокого напряжения и большой мощности. Многие из этих применений также могут быть экологически опасными, например, при высоких температурах, в атмосфере с высоким содержанием серы или высокой влажности и т.п.Таким образом, важно понимать потенциальные эффекты точности / согласования, частоты, температуры и тока в вашей конструкции, поскольку каждый из них может быть важным фактором в вашем приложении.

      В некоторых приложениях очень важно использовать согласованные резисторы. Например, в схеме неинвертирующего усилителя (на основе операционного усилителя), показанной на рисунке 4, коэффициент усиления (G) устанавливается соотношением значений резисторов, показанных через соотношение G = 1 + (R2 / R1). Если требуется минимальная точность усилителя 1%, то номинальные значения сопротивления резисторов R1 и R2 могут дать ~ 0.Максимальная ошибка 5%. Кроме того, важно, чтобы резисторы, используемые в этом приложении, имели хорошо подобранный температурный коэффициент сопротивления (TCR).

      Например, использование резисторов с TCR 200 ppm / o C приведет к 1% изменению усиления (G), если Δ температура (ΔT) между ними составляет 50 ° C. Это может произойти, например, в результате самонагрева R2. или если один из резисторов расположен слишком близко к источнику тепла (например, активным элементам большой мощности и т.п.). Для высокоточных систем (скажем, 10 бит, требуется 0.1% G или лучше), согласование R1 и R2 в сочетании с использованием материалов резисторов с низким TCR (и аналогичных TCR) становится важным. Кроме того, важна конструкция, которая минимизирует ΔT между R1 и R2. В этих случаях обычным решением является использование резисторов высокой точности или согласованных резисторных цепей. Подстроечные резисторы также могут быть полезны в этих приложениях.

      Температурные эффекты важны не только для резисторов, которые должны быть согласованы, но также важны для других приложений, требующих стабильного сопротивления.Обычно предпочтительным является низкий TCR, но он должен быть сбалансирован с экономическими факторами вашей конструкции, поскольку резисторы с низким TCR, как правило, дороже. Влияние TCR на сопротивление рассчитывается по формуле:

      Где:

      • RT — сопротивление при интересующей температуре (Ом)
      • R0 — номинальное сопротивление (Ом)
      • TCR — температурный коэффициент сопротивления (PPM / oC)
      • ΔT — изменение температура от номинальной (oC)

      Указывает, что использование материалов с низким TCR в резисторах, которые используются в вашей конструкции, является предпочтительным, и что ΔT в рабочей среде вашей схемы должно быть сведено к минимуму, чтобы избежать изменений сопротивления в вашей конструкции.

      Дополнительное изменение сопротивления может быть результатом термоэлектрических эффектов. Чип-резисторы обычно изготавливаются как минимум из двух различных материалов проводников; резистивный элемент, как правило, представляет собой один материал, а материал внешнего вывода или клеммы обычно представляет собой, по меньшей мере, один другой материал проводника. При соединении разнородных металлов может образоваться термопара из-за эффекта Зеебека. Этот эффект приводит к образованию небольшого напряжения между выводами резистора, которое основано на разнице температур (T) между выводами.Это похоже на явление, которое приводит к выходному напряжению термопары, которое делает термопары полезными для измерения температуры. Этот эффект может быть значительным в прецизионных схемах, поэтому важно разработать схему так, чтобы ΔT между каждым выводом резистора микросхемы было минимальным (например, конструкция, при которой охлаждающий воздушный поток проходит через каждый вывод резистора в равной степени, или конструкция, исключающая размещение одной клеммы вблизи источник тепла или подобное).

      Случайное тепловое движение носителей заряда в резистивном элементе также создает шум, который пропорционален рабочей температуре, а также ширине полосы частот использования, току и сопротивлению устройства при половинной мощности.Это может стать значительным при увеличении одного или нескольких из следующих параметров: рабочая температура, ток, ширина полосы пропускания или сопротивление.

      Частотные характеристики

      Хотя резистор концептуально прост, каждый из них имеет неидеальные характеристики, так как ни одно устройство не является идеальным. В случае чип-резистора это устройство будет иметь емкостную и индуктивную паразитные свойства. Влияние емкости можно смоделировать как конденсатор, подключенный параллельно резистору, а влияние индуктивности — как индуктор, подключенный последовательно с резистором.Паразитная емкость микросхем резисторов, как правило, довольно мала (например, <10 пФ), что приводит к низкочастотному (близкому к постоянному току) импедансу, который обычно составляет> 100 ГОм, что будет иметь минимальное влияние на значение сопротивления всех резисторов, кроме резисторов с самым высоким значением сопротивления. Этот эффект обычно компенсируется в процессе проектирования, но следует понимать, что компенсация, вероятно, изменяется с частотой. С увеличением частоты сопротивление, связанное с паразитной емкостью, уменьшается. Этот эффект может быть значительным, когда емкостное сопротивление равно или меньше номинального значения сопротивления.Например, в случае паразитной емкости 1,6 пФ соответствующее емкостное сопротивление на частоте 100 ГГц будет около 100 Ом. Эти паразиты могут повлиять на фактический импеданс на 33% в случае согласующего резистора 50 Ом на частоте 100 ГГц.

      Опять же, это обычно компенсируется конструкцией, но важно понимать, как эффект изменяется в зависимости от частоты и значения сопротивления. Индуктивные паразиты также могут быть важны на высоких частотах. Например, паразитная индуктивность всего 10 нГн на частоте 100 МГц будет вносить вклад примерно в 50 Ом в полное сопротивление резистора.Опять же, это компенсируется в процессе проектирования для достижения надлежащих характеристик в диапазоне частот, и, таким образом, важно для понимания частотного диапазона, соответствующего устройству, выбранному для вашей схемы и вашей ситуации, как комбинированный эффект паразиты по общему сопротивлению изменяются с изменением частоты.

      Кроме того, по мере увеличения частоты в цепи переменного тока ток течет все больше и больше к периферии проводника, по которому он течет.Это называется скин-эффектом и может привести к увеличению импеданса при увеличении частоты. Плотность тока в проводнике (или резистивном элементе) уменьшается снаружи внутрь проводника в соответствии с соотношением:

      Где:

      • Jd — плотность тока на глубине d в проводнике (единицы, А / м2)
      • JS — плотность тока на поверхности (ах) проводника (единицы, А / м2)
      • d — глубина в проводник (единицы, м)
      • δ — толщина поверхностного слоя материала, составляющего проводник (единицы, м), как определено соотношением:

      , где:

      • ρ — удельное сопротивление материала проводника или резистора (ед., Ом-м)
      • f — частота (ед., Гц)
      • µ0 — магнитная проницаемость свободного пространства (ед., 1.257 × 10-6 Гн / м)
      • мкм — магнитная проницаемость материала проводника или резистора (единицы, Гн / м)

      Глубина скин-слоя — это глубина в проводнике, при которой эффективная проводимость материала снижается до 1 / е (~ 37%) от его полного значения на внешней обшивке. По мере увеличения частоты и / или магнитной проницаемости глубина скин-слоя δ уменьшается на половину мощности, а при увеличении удельного сопротивления δ увеличивается на половину мощности (квадратный корень). Это важно в основном в толстопленочных резисторах, где толщина резистивного элемента (ов) обычно значительно больше, чем у тонкопленочных аналогов, что делает толстопленочные резисторы, как правило, более восприимчивыми к увеличению импеданса на высокой частоте по сравнению с тонкопленочными резисторами. за счет скин-эффекта.Кроме того, геометрия периметра отпечатанных дорожек толстопленочного резистора имеет тенденцию быть менее согласованной по сравнению с дорожками тонкопленочного резистора, и по мере того, как ток направляется к внешней части проводника, путь тока становится более извилистым, что еще больше увеличивает кажущийся импеданс на повышенных частотах. в толстопленочных резисторах. Магнитная проницаемость и удельное сопротивление материалов резисторов также являются важными факторами. Чтобы минимизировать скин-эффект (то есть максимизировать δ), обычно предпочтительно использовать материалы с высоким удельным сопротивлением и низкой магнитной проницаемостью и понимать эти значения в частотах и ​​полях вашего приложения, поскольку они могут сильно меняться при изменении поля или частоты. .

      Глава 4: Резюме
      Резисторы

      находят множество применений в электронных схемах. При выборе резистора для микросхемы важно понимать рабочие параметры, необходимые для вашей конструкции. Например, при выборе чип-резистора важно учитывать номинальную мощность, и, хотя может возникнуть соблазн использовать минимально возможный чип-резистор, это может быть нецелесообразно, поскольку может привести к перегреву и связанным с этим проблемам с надежностью. Поскольку баланс между тепловыделением и рассеиванием тепла имеет первостепенное значение, важно выбрать соответствующий резистор для микросхемы, а также правильно спроектировать печатную плату, убедившись, что используется соответствующее количество металла в дорожках и контактах, а также в тепловых переходных отверстиях. , так далее.где предусмотрительно. Баланс между рассеиваемой мощностью и стоимостью также является важным соображением, поскольку использование материалов с высокой теплопроводностью и специальных конструкций, схем охлаждения и т. Д. Может быстро стать чрезмерно дорогостоящим.

      Для приложений с настройкой усиления важно убедиться, что точность и TCR соответствуют требованиям. Наиболее подходящим может быть использование резисторной сети, прецизионных резисторов или подстроечных резисторов. Чтобы избежать изменения сопротивления, связанного с температурой, а также других эффектов, связанных с шумом сигнала, важно обеспечить минимальное значение ΔT как между выводами резистора, так и между отдельными резисторами в вашей цепи, а также поддерживать общую температуру резисторов на низком уровне. насколько это возможно.Также важно понимать, как паразиты влияют на характеристики резистора при изменении частоты, и минимизировать паразиты таким образом, чтобы это было рентабельно для вашего приложения, как за счет выбора устройства, так и за счет проектирования схемы. Для высокочастотных приложений может стать важным скин-эффект, и следует тщательно учитывать потенциальные геометрические преимущества тонкопленочных резисторов по сравнению с толстопленочными резисторами, а также свойства материалов резисторов, используемых в выбранном устройстве.

      Резисторы высокой мощности

      спроектированы с использованием материалов с высокой теплопроводностью в сочетании с схемами резисторов, обладающих лучшими тепловыми свойствами, и с использованием модифицированной конструкции и технологий обработки, причем все это экономически выгодно. Резисторы на микросхемах высокой мощности могут иметь удвоенную номинальную мощность или даже лучше по сравнению со стандартным резистором микросхемы такого же размера. Из-за этого они обычно являются экономичным вариантом для разработчика, когда важно максимизировать удельную мощность, а также плотность компонентов в конструкции схемы.Кроме того, если в расчетной схеме поддерживается температура ниже 70 ° C, можно увеличить номинальную мощность чип-резистора, используя наклон, подобный или меньший, чем наклон линии снижения номинальных характеристик, экстраполированный на рабочую температуру ниже 70 ° C. Обязательно поговорите с поставщиком микросхем резисторов, прежде чем применять эту практику, чтобы убедиться, что такая практика не отменяет никаких гарантий.

      оригинал статьи и скачать pdf можно по ссылке ниже

      Резисторы для поверхностного монтажа с тонкой пленкой

      Формирование однородного тонкопленочного слоя с использованием оригинальной технологии нанесения тонких пленок.Эта очень сложная технология обеспечивает стабильные электрические характеристики, меньший дрейф с течением времени и высокую точность за счет идеального электронного потока без турбулентности. Все продукты серии RG защищены от высокой влажности и суровых условий окружающей среды с помощью технологии неорганической пассивации, что обеспечивает их долгосрочную стабильность и высокую надежность.

      Модельный ряд тонкопленочных резисторов для поверхностного монтажа

      • ※ Пожалуйста, свяжитесь с нами для получения дополнительной информации или если вы не можете найти то, что ищете, например, эквивалентные продукты для старого номера детали

      Характеристики серии Номинальная мощность
      (Вт)
      Значение сопротивления
      (Ом)
      Температурный коэффициент
      ± (ppm / ℃)
      Допуск сопротивления
      ± (%)
      Самый жесткий допуск сопротивления и наименьшее значение TCR URG 1/16 ~ 3/4 100 ~ 200 000 1 ~ 2 0.01 ~ 0,5
      Высокоточный допуск сопротивления и TCR RG (LL) 1/32 ~ 1/8 240 ~ 68 тыс. 2 ~ 5 0,01 ~ 0,02
      Прецизионные резисторы для автомобильного и промышленного применения. RG 1/32 ~ 1/4 10 5,1 млн 5 ~ 100 0,02 ~ 0,5
      test Широкий диапазон температур высокоточные резисторы RGT 1/32 ~ 1/10 10 ~ 2.7М 10 ~ 25 0,1 ~ 0,5
      Работа при высоком напряжении и высокая точность RGV 1/4 ~ 1/3 120 ~ 4,3 МОм 25 ~ 50 0,1 ~ 0,5
      Используемые немагнитные материалы. NRG 1/10 ~ 1/4 47 ~ 1 млн 5 ~ 50 0,05 ~ 0,5
      Специализируется на аудио-приложениях высокого разрешения RS 1/32 ~ 1/16 47 ~ 100 тыс. 25 0.1 ~ 0,5
      Мощный с выводом длинной стороны PRG 0,5 ~ 3 2,5 ~ 250 тыс. 25 ~ 50 0,1 ~ 0,5
      Высокомощный с клеммой короткой стороны HRG 1 10 ~ 100 тыс. 25 ~ 50 0,1 ~ 0,5
      Значительно улучшена защита от помпажа MRG 1/10 ~ 1/2 100 ~ 2M 10 ~ 25 0.1 ~ 0,5
      Работа при высоких температурах. (До 230 градусов Цельсия) RGA 1/32 ~ 1/10 10 ~ 1 млн 10 ~ 25 0,1 ~ 0,5
      Высокоточные стандартные изделия. RR 1/20 ~ 1/4 10 ~ 1 млн 5 ~ 100 0,1 ~ 1
      Обрезаемый продукт с использованием оригинального метода обрезки РТ 1/20 ~ 1/10 100 ~ 220 тыс. 25 ~ 100 20
      Сетевые резисторы с низким относительным допуском и TCR RM 0.1 ~ 0,4 * 1 100 ~ 1 млн 1 ~ 5 * 2 0,01 ~ 0,5 * 2
      Работа при высоких температурах Сетевые резисторы. (До 230 градусов Цельсия) RMA 0,1 ~ 0,2 * 1 100 ~ 68 тыс. 1 ~ 2 * 2 0,01 ~ 0,5 * 2
      Резисторы большой мощности
      (до 16 Вт)
      CPA 16 120 ~ 4.3 МОм 25 ~ 50 1

      * 1 : Номинальная мощность на единицу
      * 2 : Допуск и температурный коэффициент являются относительными величинами.

      • Тонкопленочные резисторы для поверхностного монтажа Резисторы с радиальными выводами Токочувствительные резисторы для поверхностного монтажа Катушки силового дросселя Компоненты для поверхностного монтажа с высокой частотой Наборы образцов

      Коды и обозначения SMD резистора

      Трехзначный код

      Резисторы SMD со стандартным допуском маркируются простым трехзначным кодом.Первые два числа будут указывать значащие цифры, а третье будет множителем, сообщающим вам степень десяти, к которой должны быть умножены две значащие цифры (или сколько нулей нужно добавить). Для сопротивлений менее 10 Ом множитель отсутствует, вместо него используется буква «R» для обозначения положения десятичной точки.

      Примеры трехзначного кода:

      220 = 22 × 100 (1) = 22 Ом (не 220 Ом!)
      471 = 47 × 101 (10) = 470 Ом
      102 = 10 × 102 (100) = 1000 Ом или 1 кОм
      3R3 = 3.3 Ом

      EIA-96

      Недавно появилась новая система кодирования (EIA-96) на 1% резисторах SMD. Он состоит из трехзначного кода: первые 2 цифры сообщают нам 3 значащих цифры номинала резистора (см. Справочную таблицу ниже), а третья отметка (буква) указывает множитель.

      01Y = 100 × 0,01 = 1 Ом
      68X = 499 × 0,1 = 49,9 Ом
      76X = 604 × 0,1 = 60,4 Ом
      01A = 100 × 1 = 100 Ом
      29B = 196 × 10 = 1,96 кОм
      01C = 100 × 100 = 10 кОм

      Таблицы декодирования:

      Код Значение Код Значение Код Значение Код Значение
      01 100 25 178 49 316 73 562
      02 102 26 182 50 324 74 576
      03 105 27 187 51 332 75 590
      04 107 28 191 52 340 76 604
      05 110 29 196 53 348 77 619
      06 113 30 200 54 357 78 634
      07 115 31 205 55 365 79 649
      08 118 32 210 56 374 80 665
      09 121 33 215 57 383 81 681
      10 124 34 221 58 392 82 698
      11 127 35 226 59 402 83 715
      12 130 36 232 60 412 84 732
      13 133 37 237 61 422 85 750
      14 137 38 243 62 432 86 768
      15 140 39 249 63 442 87 787
      16 143 40 255 64 453 88 806
      17 147 41 261 65 464 89 825
      18 150 42 267 66 475 90 845
      19 154 43 274 67 487 91 866
      20 158 44 280 68 499 92 887
      21 162 45 287 69 511 93 909
      22 165 46 294 70 523 94 931
      23 169 47 301 71 536 95 953
      24 174 48 309 72 549 96 976
      Код Множитель
      Z 0.001
      Y или R 0,01
      X или S 0,1
      А 1
      B или H 10
      С 100
      D 1000
      E 10000
      Факс 100000

      Номинальная мощность

      Чтобы узнать приблизительную номинальную мощность вашего резистора SMD, измерьте его длину и ширину.В таблице ниже представлены несколько часто используемых размеров корпуса с соответствующими типичными номинальными мощностями. Используйте эту таблицу только в качестве руководства и всегда сверяйтесь с таблицей данных компонента для получения точного значения.

      Упаковка Размер в дюймах (Д × Ш) Размер в мм (Д × Ш) Номинальная мощность
      0201 0,024 дюйма × 0,012 дюйма 0,6 мм × 0,3 мм 1/20 Вт
      0402 0.04 ”× 0,02” 1,0 мм × 0,5 мм 1/16 Вт
      0603 0,063 дюйма × 0,031 дюйма 1,6 мм × 0,8 мм 1/16 Вт
      0805 0,08 дюйма × 0,05 дюйма 2,0 мм × 1,25 мм 1/10 Вт
      1206 0,126 дюйма × 0,063 дюйма 3,2 мм × 1,6 мм 1/8 Вт
      1210 0.126 дюймов × 0,10 дюйма 3,2 мм × 2,5 мм 1/4 Вт
      1812 0,18 дюйма × 0,12 дюйма 4,5 мм x 3,2 мм 1/3 Вт
      2010 0,20 дюйма × 0,10 дюйма 5,0 мм × 2,5 мм 1/2 Вт
      2512 0,25 дюйма × 0,12 дюйма 6,35 мм × 3,2 мм 1 Вт

      Температурный коэффициент
      ГЛОБАЛЬНЫЙ КОД TC ИСТОРИЧЕСКИЙ КОД ТК КОЭФФИЦИЕНТ ТЕМПЕРАТУРЫ
      Z Т-16 5 частей на миллион / ° C
      Y Т-13 10 частей на миллион / ° C
      х Т-10 15 частей на миллион / ° C
      E Т-9 25 частей на миллион / ° C
      H Т-2 50 частей на миллион / ° C
      К Т-1100 частей на миллион / ° C
      л Т-0 150 частей на миллион / ° C
      N Т-00 200 частей на миллион / ° C

      Автор: xDevs.com Команда
      Опубликовано: 31 марта 2015 г. 9:21
      Изменено: 23 января 2017 г. 2:59 AM


      Резистор

      SMD — Руководство по резисторам для поверхностного монтажа

      SMD Resistor — Руководство по резисторам для поверхностного монтажа. Резистор SMD выглядит черным сверху с некоторым синим цветом. Цвет внизу белый. Узнать больше

      SMD Resistor — Руководство по резисторам для поверхностного монтажа. Резистор SMD выглядит черным сверху с некоторым синим цветом.Цвет внизу белый. Узнайте все о резисторе SMD.

      SMD резистор

      Что такое резистор SMD?

      Резистор

      SMD или чип-резистор для поверхностного монтажа — это электронный компонент, обладающий как препятствием, так и сопротивлением. Свойство этого компонента называется сопротивлением.

      Что такое сопротивление?

      Препятствие или сопротивление, создаваемое любым веществом в потоке тока, называется сопротивлением.

      Что такое графический символ резистора?

      Графический символ резистора:

      Символ сопротивления

      Какой буквенный знак обозначает резистор?

      Резистор обозначается знаком: R

      Какова функция резистора?

      Назначение резистора — уменьшить ток.

      Что такое единица сопротивления?

      Единица сопротивления: Ом

      Какова номинальная мощность резистора?

      Номинальная мощность резистора Вт .

      Как выглядит резистор SMD?

      Резистор SMD выглядит черным сверху с некоторым синим цветом. Цвет внизу белый.

      Факты о SMD резисторе


      • Резистор никогда не замыкается.
      • Резистор может быть открыт.
      • Значение резистора может быть высоким.
      • Резистор
      • доступен с кодом или без него. Чаще всего в мобильных телефонах используются резисторы без кода.
      • Буквы
      • R и E в резисторе обозначают Ом.

      Различные типы резисторов SMD

      1. Сетевой резистор : Комбинация более чем одной группы резисторов называется сетевым резистором. Они производятся в единой упаковке.
      2. Резистор типа перемычки микросхемы (нулевого сопротивления) : Этот тип резистора микросхемы используется в качестве перемычки в мобильных телефонах.
      3. Резистор термисторного типа : номинал резистора этого типа зависит от температуры. Он черный со всех сторон. Эти резисторы бывают двух типов — термистор с отрицательным температурным коэффициентом (термистор с отрицательным температурным коэффициентом) и термистор с положительным температурным коэффициентом (термистор с отрицательным температурным коэффициентом).
      4. LDR (Светозависимый резистор) : Это сопротивление зависит от света. Сопротивление LDR может составлять несколько мегаом в темноте, но снижается до нескольких ом на свету.

      Кодировка резистора SMD

      Обычно на резисторе пишется число, эквивалентное трехполосному цветовому коду. Как и резисторы на обычных клеммах, для обозначения допуска предоставляется четырехзначный код. Первые 2 или 3 цифры обозначают первые две или три цифры номинала резистора, а третья или последняя цифра представляет собой ноль. R пишется до или после значения, чтобы обозначить положение точки в децибелах резистора ниже значения 10 Ом. Прочтите следующие примеры:

      • Код: 330 = 33 Ом
      • Код: 221 = 220 Ом
      • Код: 683 = 68000 Ом или 68 кОм
      • Код: 105 = 10,00000 Ом или 1 МОм
      • Код: 8R2 = 8.2 Ом
      • Код: 1000 = 100 Ом
      • Код: 4992 = 49900 Ом или 49,9 кОм
      • Код: 16234 = 162000 или 162 кОм

      Допуск резистора SMD

      При изготовлении резисторов его стоимость может иметь некоторый недостаток или превышение. Допуск резисторов, используемых в мобильных телефонах, практически равен нулю.

      Как проверить резистор SMD с помощью мультиметра

      Если сопротивление проверяемого резистора составляет 100 Ом, поместите щупы мультиметра на оба паяльника резистора и установите ручку мультиметра на 200 Ом.Значение резистора отображается на экране мультиметра. Если на экране отображается только 1, это означает, что резистор ОТКРЫТ, а если показание слишком высокое, это означает, что резистор вышел из строя или неисправен. Резисторы не закорачиваются. Значение резистора считается нормальным в пределах допуска.

      резисторы для микросхем SMD | Купить онлайн

      Марка


      • [Неважно] (34)
      • Аллен Брэдли (1)
      • Bourns (1)
      • Электром (2)
      • Индустрия Ever Ohms (1)
      • Я (1)
      • IRC (5)
      • Камая (69)
      • KCK (1)
      • KOA (3)
      • KYOCERA (11)
      • Мацусита (1)
      • NIC Components Corp.(6)
      • Panasonic (3)
      • PHICOMP (2)
      • Philips (49)
      • Piher (1)
      • ROHM (7)
      • РОЯЛОХМ (2)
      • Samsung (7)
      • Т-ОМ (1)
      • Тама Электрик (9)
      • Vishay (1)
      • Vishay Dale (2)
      • Вишай Дралорич (7)
      • Вишай Родерштайн (3)
      • Vitrohm (3)
      • Велвин (12)
      • YEC (1)

      Условия


      • N (новый) (246)

      Сопротивление


      • 0 Ом (3)
      • 0.015 Ом (1)
      • 0,025 Ом (1)
      • 0,05 Ом (1)
      • 0,15 Ом (2)
      • 1 Ом (3)
      • 1,5 Ом (2)
      • 2.2 Ом (2)
      • 2.7 Ом (1)
      • 3 Ом (1)
      • 3.3 Ом (2)
      • 3,6 Ом (1)
      • 3.9 Ом (1)
      • 4,7 Ом (2)
      • 5,1 Ом (1)
      • 5.6 Ом (1)
      • 6,8 Ом (1)
      • 7,5 Ом (1)
      • 8,2 Ом (2)
      • 9.1 Ом (1)
      • 10 Ом (3)
      • 11 Ом (1)
      • 12 Ом (3)
      • 13 Ом (1)
      • 15 Ом (3)
      • 18 Ом (4)
      • 20 Ом (1)
      • 22 Ом (3)
      • 24.9 Ом (1)
      • 26,1 Ом (1)
      • 27 Ом (2)
      • 33 Ом (4)
      • 36,5 Ом (1)
      • 39 Ом (3)
      • 43 Ом (1)
      • 47 Ом (3)
      • 51 Ом (3)
      • 56 Ом (3)
      • 61.9 Ом (1)
      • 68 Ом (4)
      • 75 Ом (2)
      • 82 Ом (2)
      • 90.9 Ом (1)
      • 100 Ом (3)
      • 110 Ом (1)
      • 120 Ом (3)
      • 130 Ом (1)
      • 150 Ом (2)
      • 180 Ом (5)
      • 200 Ом (2)
      • 220 Ом (4)
      • 270 Ом (3)
      • 300 Ом (1)
      • 330 Ом (2)
      • 332 Ом (1)
      • 390 Ом (3)
      • 470 Ом (2)
      • 560 Ом (3)
      • 680 Ом (3)
      • 820 Ом (3)
      • 1 кОм (3)
      • 1.2 кОм (3)
      • 1,5 кОм (4)
      • 1,78 кОм (1)
      • 1,8 кОм (2)
      • 2.2 кОм (3)
      • 2,7 кОм (3)
      • 3,3 кОм (3)
      • 3.9 кОм (2)
      • 4,7 кОм (3)
      • 5,6 кОм (3)
      • 6,8 кОм (3)
      • 8,2 кОм (3)
      • 10 кОм (4)
      • 12 кОм (2)
      • 15 кОм (2)
      • 18 кОм (3)
      • 20 кОм (1)
      • 22 кОм (1)
      • 22.1 кОм (1)
      • 27 кОм (3)
      • 33 кОм (4)
      • 39 кОм (2)
      • 39,2 кОм (1)
      • 47 кОм (3)
      • 56 кОм (2)
      • 68 кОм (3)
      • 82 кОм (3)
      • 100 кОм (3)
      • 120 кОм (3)
      • 150 кОм (3)
      • 180 кОм (2)
      • 200 кОм (1)
      • 220 кОм (2)
      • 221 кОм (1)
      • 270 кОм (3)
      • 330 кОм (3)
      • 390 кОм (1)
      • 470 кОм (3)
      • 560 кОм (3)
      • 680 кОм (2)
      • 820 кОм (2)
      • 1 МОм (4)
      • 1.2 МОм (1)
      • 1,5 МОм (2)
      • 1,8 МОм (1)
      • 2,2 МОм (2)
      • 2,7 МОм (1)
      • 3,3 МОм (1)
      • 3,9 МОм (1)
      • 4.7 МОм (2)
      • 5,6 МОм (1)
      • 6,8 МОм (1)
      • 10 МОм (3)

      Допуск (±)


      • 1% (38)
      • 2% (23)
      • 5% (180)
      • 10% (1)

      Номинальная мощность


      • 63 мВт (30)
      • 100 мВт (59)
      • 125 мВт (52)
      • 150 мВт (1)
      • 250 мВт (88)
      • 330 мВт (1)
      • 500 мВт (6)
      • 750 мВт (1)
      • 1 Вт (8)

      Упаковка (метрическая)


      • 1608 (71)
      • 2012 г. (68)
      • 3216 (91)
      • 3225 (3)
      • 3245 (2)
      • 5025 (4)
      • 5038 (1)
      • 6432 (5)

      Упаковка (дюймы)


      • 0603 (71)
      • 0805 (68)
      • 1206 (91)
      • 1210 (3)
      • 1218 (2)
      • 2010 г. (4)
      • 2015 г. (1)
      • 2512 (5)

      Резисторы — узнать.sparkfun.com

      Добавлено в избранное Любимый 48

      Типы резисторов

      Резисторы

      бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.

      Прерывание и монтаж

      Резисторы

      будут иметь один из двух типов оконечной нагрузки: сквозное отверстие или поверхностный монтаж. Эти типы резисторов обычно обозначаются аббревиатурой PTH (сквозное отверстие с металлическим покрытием) или SMD / SMT (технология или устройство для поверхностного монтажа).

      Резисторы со сквозным отверстием поставляются с длинными гибкими выводами, которые можно вставить в макетную плату или вручную припаять к макетной плате или печатной плате (PCB). Эти резисторы обычно более полезны при макетировании, прототипировании или в любом другом случае, когда вы предпочитаете не паять крошечные, маленькие резисторы SMD длиной 0,6 мм. Длинные выводы обычно требуют обрезки, и эти резисторы неизбежно занимают гораздо больше места, чем их аналоги для поверхностного монтажа.

      Наиболее распространенные сквозные резисторы поставляются в аксиальной упаковке.Размер осевого резистора зависит от его номинальной мощности. Обычный резистор ½ Вт имеет диаметр около 9,2 мм, тогда как резистор меньшей Вт имеет длину около 6,3 мм.

      Резистор мощностью полуватта (½Вт) (вверху) мощностью до четверти ватта (Вт).

      Резисторы для поверхностного монтажа обычно представляют собой крошечные черные прямоугольники, оканчивающиеся с обеих сторон еще меньшими, блестящими, серебряными проводящими краями. Эти резисторы предназначены для установки на печатных платах, где они припаяны к ответным посадочным площадкам.Поскольку эти резисторы настолько малы, их обычно устанавливает робот и отправляет через печь, где припой плавится и удерживает их на месте.

      Крошечный 0603 330 & Ом; резистор, парящий над блестящим носом Джорджа Вашингтона на вершине [США квартал] (http://en.wikipedia.org/wiki/Quarter_ (United_States_coin).

      Резисторы SMD

      бывают стандартных размеров; обычно 0805 (длина 0,08 дюйма на ширину 0,05 дюйма), 0603 или 0402. Они отлично подходят для массового производства печатных плат или в конструкциях, где пространство является драгоценным товаром.Однако для ручной пайки им нужна твердая и точная рука!

      Состав резистора

      Резисторы

      могут быть изготовлены из различных материалов. Чаще всего современные резисторы изготавливаются из углеродной, металлической или металлооксидной пленки . В этих резисторах тонкая пленка проводящего (хотя и резистивного) материала намотана спиралью вокруг и покрыта изоляционным материалом. Большинство стандартных простых сквозных резисторов имеют углеродную или металлическую пленку.

      Загляните внутрь нескольких резисторов из углеродной пленки. Значения сопротивления сверху вниз: 27 Ом, 330 Ом; и 3,3 МОм. Внутри резистора углеродная пленка обернута вокруг изолятора. Чем больше обертываний, тем выше сопротивление. Довольно аккуратно!

      Другие сквозные резисторы могут быть намотаны проволокой или изготовлены из сверхтонкой металлической фольги. Эти резисторы обычно более дорогие, более дорогие компоненты, специально выбранные из-за их уникальных характеристик, таких как более высокая номинальная мощность или максимальный температурный диапазон.

      Резисторы для поверхностного монтажа обычно бывают толстыми или тонкопленочными . Толстая пленка обычно дешевле, но менее точна, чем тонкая. В обоих типах резисторов небольшая пленка из резистивного металлического сплава помещается между керамической основой и стеклом / эпоксидным покрытием, а затем соединяется с концевыми токопроводящими краями.

      Пакеты специальных резисторов

      Существует множество других резисторов специального назначения. Резисторы могут поставляться в предварительно смонтированных пакетах из пяти или около того резисторных матриц.Резисторы в этих массивах могут иметь общий вывод или быть настроены как делители напряжения.

      Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце.

      Переменные резисторы (например, потенциометры)

      Резисторы тоже не обязательно должны быть статичными. Переменные резисторы, известные как реостаты , представляют собой резисторы, значения которых можно регулировать в определенном диапазоне значений. Аналогичен реостату потенциометр . Горшки соединяют два резистора внутри последовательно, и регулируют центральный отвод между ними, создавая регулируемый делитель напряжения.Эти переменные резисторы часто используются для входов, например регуляторов громкости, которые необходимо регулировать.



      ← Предыдущая страница
      Основы резистора

      Чип-резисторы с высоким сопротивлением (серия SM)

      Версия технического описания

      для печати в формате PDF

      Преимущества

      Наша запатентованная технология точной печати Micropen® обеспечивает сверхточные толстопленочные резисторы для поверхностного монтажа с высоким сопротивлением.Резисторы Ohmcraft с микроперфорацией и змеевидным рисунком обеспечивают превосходные электрические характеристики:

      • Номинальное напряжение до 600 В
      • Значения сопротивления до 50 ГОм

      Электрические характеристики

      Непрерывное максимальное приложенное напряжение не может превышать максимальную номинальную мощность и зависит от величины сопротивления.
      Диапазон значений зависит от размера корпуса.
      Стандартные размеры корпуса: 0402, 0403, 0502, 0504, 0603, 0805, 1004, 1005, 1206, 1210, 1505, 2010, 2208, 2510, 2512, 3512, 4020, 5020.
      По вопросам нестандартных размеров и конфигураций обращайтесь на завод .

      Как заказать

      SM

      +

      +

      +

      +

      +

      Тип

      Размер корпуса

      TCR

      Значение

      Допуск

      Прекращение действия

      Поверхностный монтаж, микросхемы с высоким сопротивлением

      См. Таблицу размеров.

      Возможны нестандартные размеры ящиков.
      Проконсультируйтесь с заводом-изготовителем.

      E

      ± 25 частей на миллион / ° C

      H

      ± 50 частей на миллион / ° C

      К

      ± 100 частей на миллион / ° C

      л

      ± 200 частей на миллион / ° C

      Значение сопротивления выражается четырехзначным числом, где первые три числа являются значащим значением, а четвертое число — количеством нулей.

      Б

      ± 0,1%

      К

      ± 0,25%

      Д

      ± 0,5%

      Факс

      ± 1.0%

      г

      ± 2,0%

      Дж

      ± 5,0%

      К

      ± 10%

      л

      ± 20%

      т

      Паяемая матовая олово Sn99.9 на никелевом барьере, RoHS

      Б

      Паяемый припой Sn63Pb37 поверх никелевого барьера

      Z

      Паяемое олово с одной поверхностью Sn99.9 на никелевом барьере, RoHS

      S

      Паяемая одинарная поверхность Sn63Pb37, флип-чип

      г

      Золотая проволока для скрепления, Au, RoHS

      Варианты упаковки: навалом, лентой и катушкой или плоской упаковкой

      Размеры микросхемы

      Круглый
      Концевые заделки B и T

      Связываемые
      Концевые заделки G, Z и S

      Другие доступные размеры ящиков: 0403, 0502, 0503, 0504, 1004, 1005, 1210, 1505, 2208, 2510, 4020, 5020.Проконсультируйтесь с заводом-изготовителем.

      Типовые рабочие характеристики

      Тест

      Максимум ΔR

      Кратковременная перегрузка

      0,1%

      Срок службы

      0.1%

      Температурный цикл

      0,1%

      Влагостойкость

      0,1%

      Удар

      0,05%

      Вибрация

      0.05%

      Выдерживаемое напряжение диэлектрика

      0,05%

      Устойчивость к нагреву при пайке

      0,05%

      Параметр

      Типичный

      Рабочая температура

      от -55 ° C до 150 ° C

      TCR

      измеряется от 25 ° C до 75 ° C

      Значение сопротивления

      Значения> 10M измерены при 100 В постоянного тока
      По поводу нестандартных испытательных напряжений обращайтесь на завод

      Материальная конструкция

      Характеристики ленты и катушки

      Резистивный элемент

      Толстая пленка

      Подложка

      96% глинозем

      Инкапсуляция

      Эпоксидная

      Прекращение действия

      Олово поверх никелевой перегородки, свинцовый припой над никелевой перегородкой или золото

      Пользовательские конфигурации доступны по запросу

      Пожалуйста, проконсультируйтесь с нашими квалифицированными специалистами по продажам, чтобы подобрать детали, соответствующие вашим потребностям.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *

      Весь товар подлежит гарантии и сертифицирован!Все права защищены .RU