Номинал конденсатора 104: Произошла ошибка 404 — Приднестровский портал радиолюбителей

Содержание

Обозначение на конденсаторе 104

Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

Год Код
1990 A
1991 B
1992 C
1993 D
1994 E
1995 F
1996 H
1997 I
1998 K
1999 L
2000 M
2001 N
2002 P
2003 R
2004 S
2005 T
2006 U
2007 V
2008 W
2009 X
2010 A
2011 B
2012 C
2013 D
2014 E
2015 F
2016 H
2017 I
2018 K
2019 L

Расположение маркировки на корпусе

Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.

По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.

Цветовая маркировка отечественных радиоэлементов

При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.

На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.

Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.

Маркировка smd компонентов

Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.

Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.

Заключение

Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.

Очень часто от начинающих радиолюбителей и от людей, далеких от радиоэлектроники, но по тем или иным причинам столкнувшихся с ремонтом электронных приборов, можно услышать такие вопросы: «Конденсатор 104 – что это значит? Как понять значение маркировки конденсаторов?» В этой статье мы попробуем популярно разобрать этот вопрос.

Подобная маркировка конденсаторов (104) может быть только у керамических изделий. Это связано с тем, что они, в отличие от электролитических, имеют довольно малые габаритные размеры, и, соответственно, на их корпусе просто нет места для полной и подробной записи всей необходимой информации, такой как емкость изделия, тип и прочее.

Керамический конденсатор (104) является естественной частью любой радиоэлектронной схемы. Эти изделия используют везде, где необходимо работать с сигналами, которые меняют свою полярность. Керамические конденсаторы имеют отличные частотные характеристики, малые токи утечки, незначительные потери, небольшие размеры и низкую стоимость. В тех схемах, где требуются описанные выше характеристики, керамические конденсаторы просто незаменимы, однако до недавнего времени проблемы, связанные с технологическим процессом их производства, отвели этим приборам нишу устройств с малой емкостью. Еще совсем недавно керамические конденсаторы с емкостью 10 мкФ воспринимались как экзотика, стоимость таких изделий была неоправданно высока. Развитие современных технологий позволило на сегодняшний день нескольким фирмам достичь емкости 100 мкФ в керамических конденсаторах и заявить о скором достижении еще больших значений. К тому же цены на все группы этих изделий постоянно снижаются.

Теперь перейдем к маркировке керамических конденсаторов. Она бывает двух типов: из трех и четырех знаков. У нас маркировка «104», конденсатор с такой формой записи имеет отношение к трехзнаковой кодировке. Расшифровка данного типа довольно простая: первые два знака означают величину емкости в пикофарадах, а последний – количество нулей. Давайте разберем, что же означает конденсатор «104». Получается, что первые две цифры (10) означают емкость, а последняя (4) – количество нулей. Значит, маркировка 104 подразумевает 100000 пФ (100 нФ, или 0,1 мкФ). Как видите, все очень просто. Такой формой записи можно закодировать минимальное значение 1,0 пФ, она будет иметь следующий вид: 010. Если необходимо записать величину емкости менее одного пикофарада, используют латинскую литеру R. Такая запись будет иметь следующий вид: 0R5, что означает 0.5 пФ. Если значение емкости меньше 1,0 пФ, тогда последней цифрой ставится 9, это не значит, что надо дописывать 9 нулей. Вот пример такой записи – 109 (1,0 пФ), 159 (1,5 пФ) и 689 (6,8 пФ).

Теперь рассмотрим четырехзнаковую маркировку керамических конденсаторов. В таком виде записи первые три цифры означают емкость в пикофарадах, а четвертая – количество нулей.

Вот мы и разобрали, что означает конденсатор «104». Теперь, если вам понадобятся керамические конденсаторы, вы с легкостью сможете разобраться, какое значение емкости записано на том или ином элементе. И вам не придется обращаться за помощью к специалистам.

В аппаратуре часто встречаются конденсаторы с кодовой маркировкой в виде цифр — 102, 103, 501, 772 и т.д. Как же распознать эти значения? Давайте подробнее рассмотрим кодировку в этой статье.

Первые две цифры кода указывают на значение ёмкости в пикофарадах (пф), последняя — количество нулей.

Вот например:

Если на конденсаторе написано «105» (нижняя строчка таблицы) значит у него ёмкость 1,0 мкф (микрофарада) или 1000нф (нанофарад) или 100 000пф (пикофарад).

Если на конденсаторе написано «104» (см. таблицу) значит у него ёмкость 0,1 мкф (микрофарада) или 100нф (нанофарад).

Если на конденсаторе написано «103» (см. таблицу) значит у него ёмкость 0,01 мкф (микрофарада) или 10нф (нанофарад) или 10 000пф (пикофарад).

Если на конденсаторе написано «102» (см. таблицу) значит у него ёмкость 0,001 мкф (микрофарада) или 1нф (нанофарада) или 1000пф (пикофарад).

Если на конденсаторе написано «101» (см. таблицу) значит у него ёмкость 0,0001 мкф (микрофарада) или 0,1нф (нанофарада) или 100пф (пикофарад).

Если конденсатор имеет ёмкость менее 10 пФ, то последняя цифра может быть «9».

Например, код «109» — ёмкость 1,0 пф или 0,001 нф (нанофарад) — смотрите верхняя строчка таблицы.

При ёмкостях меньше 1 пф первая цифра «0». Буква «R» используется в качестве запятой.

Например, код «010» равен 1,0 пф, а код «0R1» — 0,1 пФ.

Технические характеристики и свойства конденсатора 2A-104-J > Флэтора

Отопление электрическими конвекторами: энергосберегающие модели

Принцип работы электрического конвектора. Электрический конвектор: устройство и детали конструкции. Нагреватели игольчатые и трубчатого и монолитного типа: преимущества и недостатки. Выбор типа нагревателя (электроконвектора) и места для установки….

08 04 2021 2:47:13

Как отремонтировать стабилизатор напряжения своими руками

Диагностика повреждений и методика проверки стабилизатора. Ремонт электромеханических и релейных стабилизаторов напряжения. Ремонт платы управления стабилизатора своими руками. Степень сложности ремонта различных видов стабилизаторов….

30 03 2021 3:15:47

Как сделать внешнюю антенну для 4G модема Yota своими руками

В каких случаях необходимо усиление сигнала для LTE модемов Yota. Виды внешних антенн для роутеров Yota и преимущества их использования. Самодельная антенна для Yota: из банки из алюминия, антенна Харченко и спутниковая антенна….

13 03 2021 1:48:12

Выпаиваем микросхемы из плат: распайка деталей паяльником

Принципы безопасной работы с полупроводниковыми радиодеталями. Типы микросхем и общие правила выпаивания деталей. Перетягивание припоя с места припайки на медные провода, смоченные флюсом. Использование паяльника с отсосом….

08 03 2021 3:40:32

Как проверить аккумулятор прибором мультиметр (вольтметр)

Необходимые параметры для проверки А К Б мультиметром. Измерение напряжения и емкости аккумуляторной батареи. Последовательность действий для определения внутреннего сопротивления аккумулятора. Проверка тока утечки с помощью мультиметра….

26 02 2021 9:45:23

Технические характеристики и расшифровка ВВГ 2-кабелей

Маркировка установочных проводов и кабелей согласно Г О С Ту. Конструкция В В Г 2: требования предъявляемые к изоляции провода. Технические характеристики кабелей В В Г-2. Конструктивные характеристики проводов В В Г2….

29 01 2021 17:44:27

Зарядное устройство для аккумулятора 18650

Аккумуляторная батарея 18650: преимущества и недостатки, маркировка аккумулятора. Определение эффекта памяти аккумуляторных батарей. Порядок заряда А К Б-18650. Схемы зарядных устройств для аккумуляторов типа 18650….

26 01 2021 17:51:55

Нормы потребления электроэнергии

В зависимости от разных ситуаций (есть счетчик, нет счетчика, нет возможности снять показания и т.д.) существуют разные тарифы на электроэнергию….

11 01 2021 22:55:20

Какой формулой рассчитать мощность резисторов

Существующие разновидности резисторов и формулы расчета их мощности и сопротивления. Параметры резисторного элемента. Как подобрать резистор. Величина напряжения обеспеченная резисторным элементом….

03 01 2021 14:18:40

Душ с подсветкой: классификация, выбор

Данная подсветка душа рассматривается многими людьми как вещь совершенно ненужная, но помимо эстетичного вида она имеет ещё определённую полезность….

10 12 2020 17:49:53

Измерение тока прикосновения и напряжения

Что такое напряжение прикосновения и методы его измерения. Приборы предназначенные для измерения тока напряжения. Меры электробезопасности. Электротравмы: местные и общие (общее поражение электрическим током)….

05 12 2020 9:34:21

Как сделать гирлянду падающий дождь своими руками

Зачем нужны гирлянды метеоритный дождь. Как и где применять гирлянду падающий дождь. Устройство электрической гирлянды звездный дождь. Самостоятельное изготовление гирлянды занавес звезды….

02 12 2020 17:16:45

Характеристики аккумуляторной батареи 18650

Устройство и параметры А К Б-18650. Защитная электронная плата аккумуляторной батареи 18650. Аккумулятор А К Б18650: выбор производителей лучшей батарейки. Механическая защита, емкость и токоотдача аккумулятора….

23 11 2020 6:54:18

Диммер с пультом ду: принцип работы, видео

Диммер с пультом ду служит для дистанционного управления освещением и является популярным решением при освещении многих объектов, позволяющим создать уют.

19 11 2020 12:58:12

Маркировка конденсаторов 103. Маркировка конденсаторов – как разобраться

Название которых она получила благодаря основному цвету корпуса — красному и его оттенков (из-за чего их так же бывает называют «рыжими»). Конечно, встречаются и корпуса желтого цвета. Данный тип конденсаторов представляет собой «подушечки» компаунда, который нанесен на пластину конденсатора и окрашен в красный, оранжевый или желтый цвета. Емкости и размеры этих конденсаторов различны, вывода необходимо откусывать «по корешок», так, чтобы ничего не оставалось. Не смотря на высокую цену, подобный «микс» , «смесь» из конденсаторов различных типов, конечно, отличается от стоимости «зеленых» в меньшую сторону. Это обусловлено прежде всего значительной массой корпуса по сравнению с содержимым. Обратите внимание, что, как правило, «выход» по содержанию металлов таких, как , во многом зависит от многих факторов, однако принято считать, что чем меньше размер конденсатора, тем больше вес его корпуса и выводов внутри корпуса по сравнению с содержимым. Именно поэтому мелкие конденсаторы чаще дешевле, чем крупные. Обратите внимание, что далеко не все конденсаторы или радиодетали, которые принимают за конденсаторы «красные» таковыми являются. На фото изображены примеры непосредственно «красных» конденсаторов, которые принимаются.

Засор и единица измерения конденсаторов КМ

Очень часто в смеси присутствует так называемый «засор» — детали похожие на красные конденсаторы, но таковыми не являющиеся. Данная позиция – весовая, поэтому необходимо взвешивать общее количество конденсаторов, предназначенных к сдаче. Принято в качестве единицы веса использовать килограмм, за который и дается цена. Это очень просто: 100 граммов, например, будут считаться, как 0,1 кг., 20 граммов – как 0,02 кг., 7 граммов – 0,007 кг. Стоит отметить и тот факт, что зачастую эту позицию и доставляют именно килограммами, по 10-15 килограммов, именно поэтому единицей веса принято брать килограмм для расчета.

Где можно найти конденсаторы КМ

Такие конденсаторы можно найти в различных приборах советского и послесоветского производства. Как правило, это генераторы, осциллографы, различные . Эти элементы размещаются на печатных платах вышеуказанных (и не только) устройств и нередки случаи, когда с одного прибора вполне можно получить 300 граммов конденсаторов. Для демонтажа этих конденсаторов необходимо разобрать прибор и кусачками снимать (скусывать) конденсаторы в какую-нибудь емкость, стараясь действовать таким образом, чтобы проволочные выводы конденсаторов оставались на плате, а не на корпусе конденсатора (как я уже написал «под корешок»). Случается, что данные конденсаторы залиты на плате лаком, приклеены, вывода их бывает, имеют надетый на них кембрик. Это усложняет демонтаж и увеличивает засор. Бывает даже так, что в некоторых модулях конденсаторы залиты резиноподобной массой, часто прозрачной, сильно осложняющей демонтаж этих деталей. Непосредственно, обычно пластина конденсатора внутри его окрашенного корпуса имеет вид бескорпусного конденсатора и окрашена в бежевый или коричневый цвет. При раскусывании можно разглядеть так называемые «слои» из которых состоит сам элемент. Еще раз посмотрите на фото, я думаю, что однажды запомнив, как выглядят элементы этой позиции, Вы уже ни с чем их не спутаете, ведь конденсаторы КМ по праву (вернее, по содержанию драгметаллов) – одна из наиболее дорогих позиций, за которые можно выручить неплохие деньги.

Правильная подготовка конденсаторов КМ красных

Когда конденсаторов немного, то имеет смысл рассортировать их по позициям, начиная хотя бы с размера. С другой стороны, далеко не каждый в состоянии сделать это в соответствии с содержанием драгоценных металлов, которое конечно разное у разных конденсаторов. Когда уже килограммы, то обычно их не сортируют, а сдают «миксом» (смесью), кто-то находит для себя, что сортировать для него не выгодно, кто-то просто в силу того, что зрение подводит, не может обеспечить сортировку. Это не страшно, ведь наши специалисты помогут в любом случае, это наша работа. Итак, сняв конденсаторы с плат, необходимо их перевесить. Для этого берется любая емкость, устанавливается на весы, тарируются весы (это значит, что обнуляются с установленной пустой емкостью. В этом случае они будут показывать вес только содержимого емкости, а не прибавленный к этому вес банки или пакета). Я поясняю это, ибо далеко не все работали продавцами и умеют пользоваться весами, а для контроля это не будет лишним). После этого, счастливый обладатель «КМ красных» звонит нам по телефону, договаривается о прибытии, либо о самовывозе с нашей стороны, либо уточняет адрес для . В случае самостоятельного прибытия вы получаете деньги сразу, расчет незамедлительный, в случае с посылками – по факту получения и пересчета содержимого отправка на банковскую карту или согласно иных указанных Вами почтовых реквизитов.

Конденсатор — это простейший элемент с двумя металлическими обкладками, разделенными диэлектрическим веществом. Принцип работы этих приборов основан на способности сохранения электрического заряда: то есть заряжаться, а в нужный момент разряжаться. Существует множество способов записи номинальной емкости этого прибора на его корпусе. Так, маркировка конденсаторов может состоять только из цифр (три или четыре) или из буквенно-цифрового кода, а также из цветовых индикаторов. В этой статье мы рассмотрим основные виды записи электрических параметров емкостей.

Цифровая маркировка конденсаторов

При кодировке с помощью трех цифр первые две цифры обозначают емкость устройства, а последняя — показатель степени по основанию 10 для получения значения в пикофарадах. При такой записи последний символ «9» будет соответствовать «-1». Соответственно, если первая цифра ноль (010), то емкость составит 1 пФ. Маркировка конденсаторов, состоящая из четырех цифр, аналогична тройной, только здесь первые три цифры означают емкость, а последняя — степень. Например, если запись имеет вид 1722, то это означает, что емкость прибора составляет 17,2 нФ (172*102 пФ = 17200 пФ или 17,2 нФ).

Маркировка конденсаторов буквенно-цифровым методом

При таком способе записи литера обозначает десятичную запятую, а цифры — величину емкости. Такой способ кодировки может иметь вид: 16 п означает 16 пФ (25 р — 25 пФ), 3н2 соответствует 3,2 нФ (6n6 — 6,6 нФ), μ35 соответственно 0,35 мкФ. Иногда при обозначении десятичной точки применяют литеру R. Принято таким образом маркировать величину емкости в микрофарадах, однако, если перед литерой R расположен нуль, значит емкость в пикофарадах. Пример: 0R7 соответствует 0,7 пФ (R67 — 0,67 мкФ), 5R6 означает 5,6 мкФ. Таким образом осуществляется как маркировка импортных конденсаторов, так и конденсаторов отечественного производства. Отличаются по способу записи только планарные керамические приборы. Из-за их малого размера используют специальные цветовые коды, значение которых можно сравнивать с таблицами, которые приводятся в технических характеристиках каждого такого элемента. Приводить их в этой статье бесполезно, так как каждый производитель использует свои способы цветовой кодировки.

Маркировка керамических конденсаторов

На приборах такого типа обычно ставится цифровой вид записи величины емкости. Например, маркировка 214 будет соответствовать значению 210 000 пикофарад (210 нФ и 0,21 мкФ). При значении 211 — 210 пФ, при 210 — 21 пФ. Кроме величины емкости на керамических конденсаторах указывают значение допускаемого отклонения. Этот параметр маркируют либо в числовом виде в процентах (например, ±5%, 20%), либо литерой латинского алфавита. Как исключение попадаются конденсаторы, в которых допуск закодирован русской буквой. Например, если на приборе нанесена маркировка М75С, то это означает, что значение емкости будет 0,075 мкФ, а допуск составит ±10%. Чаще всего в аппаратуре бытового назначения применяют конденсаторы, допуск которых составляет H, M, J, K. Эти символы всегда наносятся после значения номинальной емкости прибора. Например, 25nK, 120nM, 450nJ. Таблицы расшифровки значений допускаемых отклонений приводятся в техническом описании каждого конденсатора.

КОДОВАЯ МАРКИРОВКА

Кодировка 3-мя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

* Иногда последний ноль не указывают.

Кодировка 4-мя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

Примеры:


Маркировка ёмкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

ЦВЕТОВАЯ МАРКИРОВКА

На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки


* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Вывод «+» может иметь больший диаметр

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:

Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

МАРКИРОВКА ДОПУСКОВ

В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:

МАРКИРОВКА ТКЕ

Конденсаторы с ненормируемым ТКЕ


* Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с линейной зависимостью от температуры


* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85″С.

** Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с нелинейной зависимостью от температуры


* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим.

Например, фирма PHILIPS для группы Y5P нормирует -55…+125 њС.

*** В соответствии с EIA. Некоторые фирмы, например Panasonic, пользуются другой кодировкой.

Кодовая и цветовая маркировка конденсаторов

Допуски

В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Таблица 1

Допуск [%] Буквенное обозначение Цвет
±0,1* В(Ж)
±0,25* С(У) оранжевый
±0,5* D(Д) желтый
±1,0* F(P) коричневый
±2,0 G(Л) красный
±5,0 J(И) зеленый
±10 К(С) белый
±20 М(В) черный
±30 N(Ф)
-10…+30 Q(0)
-10…+50 Т(Э]
-10. ..+100 Y(Ю)
-20…+50 S(Б) фиолетовый
-20,..+80 Z(A) серый

*-Для конденсаторов емкостью

Перерасчет допуска из % (δ) в фарады (Δ):

Δ=(δхС/100%)[Ф]

Пример:

Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)


Конденсаторы с ненормируемым ТКЕ

Таблица 2

* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с линейной зависимостью от температуры

Таблица 3

Обозначение
ГОСТ
Обозначение
международное
ТКЕ
*
Буквенный
код
Цвет**
П100 P100 100 (+130…-49) A красный+фиолетовый
П33 33 N серый
МПО NPO 0(+30..-75) С черный
М33 N030 -33(+30…-80] Н коричневый
М75 N080 -75(+30…-80) L красный
M150 N150 -150(+30…-105) Р оранжевый
М220 N220 -220(+30…-120) R желтый
М330 N330 -330(+60. ..-180) S зеленый
М470 N470 -470(+60…-210) Т голубой
М750 N750 -750(+120…-330) U фиолетовый
М1500 N1500 -500(-250…-670) V оранжевый+оранжевый
М2200 N2200 -2200 К желтый+оранжевый

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85 ° С.

** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с нелинейной зависимостью от температуры

Таблица 4

Группа ТКЕ* Допуск[%] Температура**[ ° C] Буквенный
код ***
Цвет***
Y5F ±7,5 -30…+85
Y5P ±10 -30…+85 серебряный
Y5R -30…+85 R серый
Y5S ±22 -30…+85 S коричневый
Y5U +22…-56 -30…+85 A
Y5V(2F) +22…-82 -30…+85
X5F ±7,5 -55…+85
Х5Р ±10 -55…+85
X5S ±22 -55. ..+85
X5U +22…-56 -55…+85 синий
X5V +22…-82 -55..+86
X7R(2R) ±15 -55…+125
Z5F ±7,5 -10…+85 В
Z5P ±10 -10…+85 С
Z5S ±22 -10…+85
Z5U(2E) +22…-56 -10…+85 E
Z5V +22…-82 -10…+85 F зеленый
SL0(GP) +150…-1500 -55…+150 Nil белый

* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.

*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.

Рис. 1

Таблица 5

Метки
полосы, кольца, точки
1 2 3 4 5 6
3 метки* 1-я цифра 2-я цифра Множитель
4 метки 1-я цифра 2-я цифра Множитель Допуск
4 метки 1-я цифра 2-я цифра Множитель Напряжение
4 метки 1 и 2-я цифры Множитель Допуск Напряжение
5 меток 1-я цифра 2-я цифра Множитель Допуск Напряжение
5 меток» 1-я цифра 2-я цифра Множитель Допуск ТКЕ
6 меток 1-я цифра 2-я цифра 3-я цифра Множитель Допуск ТКЕ

* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Рис. 2

Таблица 6

Цвет 1-я цифра
мкФ
2-я цифра
мкФ
Множи-
тель
Напряже-
ние
Черный 0 1 10
Коричневый 1 1 10
Красный 2 2 100
Оранжевый 3 3
Желтый 4 4 6,3
Зеленый 5 5 16
Голубой 6 6 20
Фиолетовый 7 7
Серый 8 8 0,01 25
Белый 9 9 0,1 3
Розовый 35

Рис. 3

Таблица 7

Цвет 1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
Множитель Допуск ТКЕ
Серебряный 0,01 10% Y5P
Золотой 0,1 5%
Черный 0 0 1 20%* NPO
Коричневый 1 1 1 10 1%** Y56/N33
Красный 2 2 2 100 2% N75
Оранжевый 3 3 3 10 3 N150
Желтый 4 4 4 10 4 N220
Зеленый 5 5 5 10 5 N330
Голубой 6 6 6 10 6 N470
Фиолетовый 7 7 7 10 7 N750
Серый 8 8 8 10 8 30% Y5R
Белый 9 9 9 +80/-20% SL

Рис. 4

Таблица 8

Цвет 1-я и
2-я цифра
пФ
Множитель Допуск Напряжение
Черный 10 1 20% 4
Коричневый 12 10 1% 6,3
Красный 15 100 2% 10
Оранжевый 18 10 3 0,25 пФ 16
Желтый 22 10 4 0,5 пФ 40
Зеленый 27 10 5 5% 20/25
Голубой 33 10 6 1% 30/32
Фиолетовый 39 10 7 -2О…+5О%
Серый 47 0,01 -20…+80% 3,2
Белый 56 0,1 10% 63
Серебряный 68 2,5
Золотой 82 5% 1,6

Рис. 5

Таблица 9

Номинальная емкость [мкФ] Допуск Напряжение
0,01 ±10% 250
0,015
0,02
0,03
0,04
0,06
0,10
0,15
0,22
0,33 ±20 400
0,47
0,68
1,0
1,5
2,2
3,3
4,7
6,8
1 полоса 2 полоса 3 полоса 4 полоса 5 полоса

Кодовая маркировка

А. Маркировка 3 цифрами

Таблица 10

Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

В. Маркировка 4 цифрами

Таблица 11

Код Емкость[пФ] Емкость[нФ] Емкость[мкФ]
1622 16200 16,2 0,0162
4753 475000 475 0,475

Рис. 3

Таблица 7

Цвет 1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
Множитель Допуск ТКЕ
Серебряный 0,01 10% Y5P
Золотой 0,1 5%
Черный 0 0 1 20%* NPO
Коричневый 1 1 1 10 1%** Y56/N33
Красный 2 2 2 100 2% N75
Оранжевый 3 3 3 10 3 N150
Желтый 4 4 4 10 4 N220
Зеленый 5 5 5 10 5 N330
Голубой 6 6 6 10 6 N470
Фиолетовый 7 7 7 10 7 N750
Серый 8 8 8 10 8 30% Y5R
Белый 9 9 9 +80/-20% SL

* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.

Рис. 4

Таблица 8

Цвет 1-я и
2-я цифра
пФ
Множитель Допуск Напряжение
Черный 10 1 20% 4
Коричневый 12 10 1% 6,3
Красный 15 100 2% 10
Оранжевый 18 10 3 0,25 пФ 16
Желтый 22 10 4 0,5 пФ 40
Зеленый 27 10 5 5% 20/25
Голубой 33 10 6 1% 30/32
Фиолетовый 39 10 7 -2О…+5О%
Серый 47 0,01 -20…+80% 3,2
Белый 56 0,1 10% 63
Серебряный 68 2,5
Золотой 82 5% 1,6

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Рис. 5

Таблица 9

Номинальная емкость [мкФ] Допуск Напряжение
0,01 ±10% 250
0,015
0,02
0,03
0,04
0,06
0,10
0,15
0,22
0,33 ±20 400
0,47
0,68
1,0
1,5
2,2
3,3
4,7
6,8
1 полоса 2 полоса 3 полоса 4 полоса 5 полоса

Кодовая маркировка

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Таблица 10

Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Таблица 11

Код Емкость[пФ] Емкость[нФ] Емкость[мкФ]
1622 16200 16,2 0,0162
4753 475000 475 0,475

Рис. 6

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Таблица 12

Код Емкость [мкФ]
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

Рис. 7

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Таблица 13

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33h3 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Рис. 8

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Рис. 9

Таблица 14

Код Емкость [мкФ] Напряжение [В]
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

Рис. 10

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Рис. 11

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Рис. 12

Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

Рис. 13

Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов .
Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать эти коды, можно узнать их ёмкость. Для чего это нужно — всем понятно.
Итак,
расшифровывать коды нужно так:
Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.

Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10 — 6х о С). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается «Н»).

Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф
Код
Ёмкость
Пикофарад
(пФ, pF)
Нанофарад (нФ, nF)
Микрофорад (мкФ, µF)
109
1.0
0.001
159
1.5
0.0015
229
2.2
0.0022
339
3.3
0.0033
479
4.7
0.0047
689
6.8
0.0068
100
10
0.01
150
15
0.015
220
22
0.022
330
33
0.033
470
47
0.047
680
68
0.068
101
100
0.1
151
150
0.15
221
220
0.22
331
330
0.33
471
470
0.47
681
680
0.68
102
1000
1.0
0.001
152
1500
1.5
0.0015
222
2200
2.2
0.0022
332
3300
3.3
0.0033
472
4700
4.7
0.0047
682
6800
6.8
0.0068
103
10000
10
0.01
153
15000
15
0.015
223
22000
22
0.022
333
33000
33
0.033
473
47000
47
0.047
683
68000
68
0.068
104
100000
100
0.1
154
150000
150
0.15
224
220000
220
0.22
334
330000
330
0.33
474
470000
470
0.47
684
680000
680
0.68
105
1000000
1000
1.0
1622
16200
16.2
0.0162

Конденсатор, значения. Конденсатор: Конденсатор, в электротехнике,

Пользователи также искали:

конденсатор 104 напряжение, маркировка импортных конденсаторов, маркировка конденсаторов (104), маркировка конденсаторов онлайн, маркировка конденсаторов по напряжению, маркировка конденсаторов программа, маркировка советских конденсаторов, таблица маркировки конденсаторов, конденсаторов, маркировка, Конденсатор, конденсатор, программа, маркировка конденсаторов по напряжению, конденсатор напряжение, таблица маркировки конденсаторов, маркировка импортных конденсаторов, импортных, советских, таблица, маркировки, маркировка советских конденсаторов, онлайн, напряжению, напряжение, маркировка конденсаторов онлайн, маркировка конденсаторов, значения, Конденсатор значения, маркировка конденсаторов программа, конденсатор 104 напряжение, маркировка конденсаторов 104, 104, конденсатор (значения), конденсаторы. конденсатор (значения),

Неполярный электролитический конденсатор маркировка — Морской флот

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)
напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 23. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Маркировка конденсаторов – как разобраться?

С каждым годом все чаще и чаще на отечественных рынках можно найти конденсаторы не только российского, но и импортного происхождения. И многие испытывают значительные трудности в расшифровке соответствующей маркировки. Как же в этом разобраться? Ведь в случае ошибки устройство может и не заработать.

Для начала отметим, что маркировка конденсаторов производится в таком порядке:

  1. Номинальная емкость, где могут использовать кодированное обозначение, состоящее из цифр (зачастую три-четыре) и букв, где буква показывает десятичную запятую, а также обозначение (мкФ, нФ, пФ).
  2. Допускаемое отклонение от номинальной емкости (используется и учитывается редко, в зависимости от особенностей и назначения устройства).
  3. Допустимое номинальное напряжение (иначе его еще называют допускаемое рабочее напряжение) – является неотъемлемым параметром, особенно при эксплуатации в высоковольтных цепях).

Маркировка керамических конденсаторов по номинальной емкости

Керамические или постоянные конденсаторы являются одними из самых популярных. Обычно обозначение емкости можно найти на корпусе без конкретного множителя.

1. Маркировка конденсаторов из трех цифр, где первые две показывают мантиссу, а последняя является значением степени по основанию 10, чтобы получить номинал в пикофарадах, т.е. указывает количество нулей для емкости конденсатора в пикафарарадах. Например: 472 будет означать 4700 pF (а не 472 pF).

2. Маркировка конденсаторов из четырех цифр — система аналогична предыдущей, только в данном случае первые три цифры показывают мантиссу, а последняя является значением степени по основанию 10, чтобы получить номинал в пикофарадах. Например: 2344 = 234 * 102 пФ = 23400 пФ = 23.4 нФ

3. Смешанная маркировка или маркировка с помощью цифр и букв. В данном случае буква показывает на обозначение (мкФ, нФ, пФ), а также на десятичную запятую, а цифры — на значение используемой емкости. Например: 28р = 28 пФ, 3н3 = 3.3 нФ. Бывают случаи, когда десятичную точку обозначают буквой R.

Маркировку по параметру допускаемого рабочего напряжения зачастую используют при сборке электроники, сделанной своими руками. То есть, ремонт люминесцентных ламп не обойдется без подборки соответствующего напряжения вышедших из строя конденсаторов. В таком случае, этот параметр будет указываться после отклонения и номинальной емкости.

Это основные параметры, используемые, когда проводится маркировка конденсаторов. Их необходимо знать при выборе соответствующего устройства. Маркировка импортных конденсаторов имеет свои отличия, но в большей степени соответствует изложенной нами в данной статье.

Правильно подобранный конденсатор поможет вам в создании ваших собственных устройств, а также поспособствует починке уже имеющихся. Главное помнить, что качественный продукт может быть только у производителей, которые доказали свою состоятельность на рынке электротехники. А для товара подобного рода качество — превыше всего. Ведь из-за неисправности конденсатора может сломаться более дорогая составляющая оборудования или устройства. Также от них может зависить ваша безопасность.

Типы конденсаторов

Конденсатор — один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.

Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Пленочные конденсаторы

Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

В качестве диэлектрика пленочных конденсаторов обычно используют тефлон, металлизированную бумагу, майлар, поликарбонат, полипропилен, полиэстер. Диапазон емкости этого типа конденсаторов составляет примерно от 5pF (пикофарад) до 100uF (микрофарад). Диапазон номинального напряжения пленочных конденсаторов достаточно широк . Некоторые высоковольтные конденсаторы этого типа достигают более 2000 вольт.

Различают два вида пленочных конденсаторов по способу размещения слоев диэлектрика и обкладок – радиальные и аксиальные.

Радиальный и аксиальный тип пленочных конденсаторов

Маркировка емкости пленочных конденсаторов происходит по тому же принципу что и керамических. Это трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%. Например 103J означает 10 000 пикоФарад +/- 5% или 10 наноФарад +/-5%.

Однако довольно часто разные производители кроме значения емкости и точности добавляют символы номинального напряжения, температуры, серии, класса, корпуса, и других особых характеристик. Данные символы могут отличатся и быть размещены в разном порядке, в зависимости от производителя. Поэтому для разшифровки маркировки пленочных конденсаторов желательно пользоваться документацией (Datasheets).

Электролитические конденсаторы

Электролитические конденсаторы обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Обратим внимание, что электролит хорошо проводит электрический ток! Это полностью противоречит принципу устройства конденсатора, где два проводника должны быть разделены диэлектриком.

Дело в том, что слой диэлектрика создается уже после изготовления конструкции компонента. Через конденсатор пропускают ток, и в результате электролитического окисления на одной из обкладок появляется тонкий слой оксида алюминия или оксида тантала (в зависимости из какого металла состоит обкладка). Этот слой представляет собой очень тонкий и эффективный диэлектрик, позволяющий электролитическим конденсаторам превосходить по емкости в сотни раз «обычные» пленочные конденсаторы.

Электролитические конденсаторы

Недостатком вышеописанного процесса окисления является полярность конденсатора. Оксидный слой обладает свойствами односторонней проводимости. При неправильном подключении напряжения оксидный слой разрушается, и через конденсатор может пойти большой ток. Это приведет к быстрому нагреву и разширению электролита, в результате чего может произойти взрыв конденсатора! Поэтому необходимо всегда соблюдать полярность при подключении электролитического конденсатора. В связи с этим на корпусе компонента производители указывают куда подключать минус.

По причине своей полярности электролитические конденсаторы не могут быть использованы в цепях с переменным током. Но иногда можно встретить компоненты состоящие из двух конденсаторов, соединенными минус-к-минусу и формирующие «не полярные» конденсаторы. Их можно использовать в цепях с переменным током малого напряжения.

Емкость алюминиевых электролитических конденсаторов в колеблется основном от 1 мкФ до 47000 мкФ. Номинальное напряжение — от 5В до 500В. Допуск обычно довольно большой — 20%.

Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия — у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.

Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Переменные конденсаторы

Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы — приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала (форму, частоту, амплитуду и т.д.).

Емкость может менятся механическим способом, электрическим напряжением (вариконды), и с помощью температуры (термоконденсаторы). В последнее время во многих областях вариконды вытесняются варикапами (диодами с переменной емкостью).

Под названием «переменные конденсаторы» обычно имеют ввиду компоненты с механическим изменением емкости. Управление емкостю здесь достигается путем изменения площади обкладок. Обкладки в переменных конденсаторах состоят из множества пластин с воздушным пространством между ними в качестве диэлектрика.

Часть пластин фиксированная, часть подвижная. Положение подвижных пластин по отношению к фиксированным определяет общую емкость конденсатора. Чем больше общая площадь пластин тем больше емкость.

Переменные конденсаторы

Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Способ монтажа конденсаторов

Конденсаторы разделяют по способу монтажа на компоненты для навесного монтажа и для печатного монтажа (SMD или чип-конденсаторы). У компонентов для навесного монтажа есть выводы в виде «ножек». У конденсаторов для печатного монтажа выводами служит часть их поверхности.

Назначение выводов керамического конденсатора

, описание, параметры и техническое описание

Контакт Конфигурация

Керамические конденсаторы не имеют полярности. То есть их можно соединить в любом направлении. Они совместимы с макетными платами и могут быть легко использованы на перфокартах. Обозначение керамического конденсатора представляет собой две простые линии, как показано выше, поскольку они не имеют полярности.

Примечание: Есть много типов конденсаторов; однако керамические конденсаторы являются наиболее широко используемыми, и этот документ применим только к ним.

Керамический конденсатор Характеристики
  • Тип конденсатора — керамический
  • Имеет широкий диапазон значений емкости от 10 пФ до 3,3 мкФ
  • Имеет широкий диапазон значений напряжения от 16 В до 450 В.
  • Выдерживает максимальную температуру 105 ° C

Другие типы конденсаторов

Керамический конденсатор, коробчатый конденсатор, переменный конденсатор, майларовые конденсаторы.

Идентификация керамических конденсаторов

Значение керамической емкости на конденсаторе не указывается напрямую. Всегда будет трехзначное число, за которым следует переменная; давайте узнаем, как определить значение с помощью этих чисел. Рассмотрим следующий конденсатор.

Как вы можете заметить, эти три цифры разделены на две цифры, а третья — множитель. В этом случае 68 — это цифра, а 3 — множитель.0 равно 0.

Номинальное напряжение конденсатора можно найти, используя строку под этим кодом. Если линия есть, то значение напряжения составляет 50/100 В, если линии нет, то это 500 В.

Ниже приведены наиболее часто используемые значения конденсаторов вместе с их преобразованием в Пико Фарад, Нано Фарад и микрофарады.

Код

Пикофарад (пФ)

нанофарад (нФ)

Микрофарад (мкФ)

100

10

0.01

0,00001

150

15

0,015

0,000015

220

22

0.022

0,000022

330

33

0,033

0,000033

470

47

0.047

0,000047

331

330

0,33

0,00033

821

820

0.82

0,00082

102

1000

1,0

0,001

152

1500

1.5

0,0015

202

2000

2,0

0,002

502

5000

5.0

0,005

103

10000

10

0,01

683

68000

68

0.068

104

100000

100

0,1

154

150000

150

0.15

334

330000

330

0,33

684

680000

680

0.68

105

1000000

1000

1,0

335

3300000

3300

3.3

Выбор параметров конденсатора

Вы когда-нибудь задумывались о типах керамических конденсаторов , доступных на рынке, и о том, как выбрать один для вашего проекта? Керамические конденсаторы можно классифицировать по двум основным параметрам. Один из них — их емкость (К-Фарад) , а другой — его номинальное напряжение (В-В) .

Конденсатор — это пассивный компонент, который может накапливать заряд (Q).Этот заряд (Q) будет произведением значения емкости (C) и приложенного к нему напряжения (V). Значение емкости и напряжения конденсатора будет указано на его этикетке.

Следовательно, количество заряда конденсатора можно определить, используя значение напряжения (В) и емкости (C) конденсатора.

C = Q × V

Конденсатор последовательно и параллельно

В большинстве схем значение емкости не обязательно должно быть точно таким же, как указано в схеме.Более высокое значение емкости обычно не влияет на работу схемы. Однако значение напряжения должно быть таким же или выше указанного значения, чтобы предотвратить риск, упомянутый выше в мерах предосторожности. В этом случае, если у вас нет точного значения, вы можете использовать конденсаторы, включенные последовательно или параллельно, для достижения желаемого значения.

Когда два конденсатора подключены последовательно , тогда значение емкости (C) складывается обратно пропорционально, а номинальное напряжение (В) складывается последовательно, как показано на рисунке ниже.

Когда два конденсатора подключены параллельно , тогда значение емкости (C) складывается напрямую, а номинальное напряжение (V) при параллельном подключении остается таким же, как показано на рисунке ниже.

Приложения
  • Фильтрующие контуры, такие как фильтр высоких / низких частот и т. Д.
  • Убрать шум из цепи
  • Сглаживание пульсаций в преобразователях
  • Светодиодные схемы с затухающим светом
  • Резонансные цепи.
  • Цепи развязки и байпаса

2D-представление (тип F)

* Значения указаны в таблице данных

Что значит керамический конденсатор 104?

На керамическом конденсаторе мы часто видим, что на конденсаторе есть отметки 101, 102 и 104. (- 12) метод).5 = 1000000 пФ = 1 мкФ

Как и обычное сопротивление, единицей сопротивления конденсаторов является «Ом».

Классификация керамических конденсаторов:

Конденсаторы с керамической микросхемой

можно разделить на два типа: высокочастотные керамические и низкочастотные керамические.

MLCC (класс 1) — миниатюризация, высокая частота, сверхмалые потери, низкое ESR, высокая стабильность, устойчивость к высокому напряжению, высокая изоляция, высокая надежность, неполярность, низкая емкость, низкая стоимость, устойчивость к высоким температурам, в основном используется в высокочастотные цепи.

MLCC (Категория 2) — миниатюризация, высокий удельный объем, среднее и высокое давление, отсутствие полярности, высокая надежность, устойчивость к высоким температурам, низкое СОЭ, низкая стоимость. Он в основном используется для конденсаторов, таких как изоляция, связь, байпас и фильтрация в цепях средней и низкой частоты.

Дискриминантный метод выдерживаемого напряжения керамического конденсатора и полиэфирного конденсатора:

1J означает 6.3X10 = 63V

2F означает 3,15X100 = 315V

3A обозначает 1.0X1000 = 1000 В

1K означает 8.0X10 = 80V

Максимальное число — 4. Например, 4Z означает 90 000 В.

Существует также два распространенных способа маркировки выдерживаемого напряжения керамического конденсатора: один — это напечатать значение выдерживаемого напряжения непосредственно на керамическом конденсаторе, другой — использовать комбинацию цифры и буквы. Цифры обозначают показатель степени 10, буквы обозначают значения, а единицы измерения — В (вольты).

Также арабская буква A / B / C / D / E / F / G / H / J / K / Z

Соответствующее выдерживаемое напряжение составляет 1,0 / 1,25 / 1,6 / 2,0 / 2,5 / 3,15 / 4,0 / 5,0 / 6,3 / 8,0 / 9,0.

Если вы хотите узнать больше о керамическом конденсаторе, нажмите на него или войдите в магазин! Керамические конденсаторы ждут вас!

КОНДЕНСАТОР: 6 ступеней

В некоторых проектах требуются промежуточные значения емкости, отличные от стандартных. Не волнуйтесь !!!

Вы можете легко установить любое необходимое значение емкости.

Последовательное или параллельное подключение емкости помогает создать любое требуемое значение емкости.

При параллельном подключении все значения емкости складываются, тогда как при последовательном соединении общее значение емкости уменьшается.

Конденсаторы, подключенные параллельно

При параллельном подключении конденсаторов эффективная емкость определяется как -> C = (C1 + C2 + C3 + ……)

Например —

We есть три конденсатора номиналом — 10 мкФ, 100 мкФ и 20 мкФ.

Итак, если мы соединим их параллельно, мы получим эффективную емкость как —

C = 10 + 100 + 20

C = 130 мкФ

Это показывает, что значение емкости увеличилось.

Примечание. Здесь, поскольку все конденсаторы включены параллельно, номинальное напряжение остается одинаковым для всех. Все конденсаторы, подключаемые параллельно, должны иметь одинаковое номинальное напряжение. Если это не так, то преобладает конденсатор с наименьшим номинальным напряжением, и этот номинал является максимальным номиналом конденсаторов, подключенных параллельно.

Таким образом, вы можете получить любое необходимое большое значение емкости.

Емкость в серии

Когда конденсаторы подключены последовательно, эффективная емкость определяется как -> C = 1 / [(1 / C1) + (1 / C2) + (1 / C3) +. ….]

Например —

У нас есть три конденсатора номиналов — 100 мкФ, 50 мкФ и 20 мкФ.

Итак, если мы соединим их последовательно, мы получим эффективную емкость как —

C = 1 / [(1/100) + (1/50) + (1/20)]

C = 1 / [(0 .01) + (0,02) + (0,05)]

C = 1 / [0,08]

C = 12,5 мкФ

Это показывает, что значение емкости уменьшилось.

Примечание. Здесь, поскольку все конденсаторы включены последовательно, номинальное напряжение суммируется. Все подключаемые последовательно конденсаторы могут иметь любое номинальное напряжение. Общая сумма номинальных напряжений каждого конденсатора обозначает максимальное номинальное напряжение конденсаторов в серии

Таким образом, вы можете получить любое требуемое малое значение емкости.

Характеристики конденсатора — CP 104

Характеристики конденсатора

Характеристики конденсатора определяют его температуру, номинальное напряжение и

Диапазон емкости

, а также его использование в конкретном приложении

Существует множество характеристик и спецификаций конденсаторов. связан с скромным конденсатором и считывает информацию, напечатанную на иногда бывает трудно понять корпус конденсатора, особенно когда используются цвета или числовые коды.

В каждом семействе или типе конденсаторов используется свой уникальный набор конденсаторов. характеристики и система идентификации, при этом некоторые системы легко понимают и другие, использующие вводящие в заблуждение буквы, цвета или символы.

Лучший способ определить характеристики конденсатора, указанные на этикетке. чтобы сначала выяснить, к какому типу семейства принадлежит конденсатор, является ли он керамические, пленочные, пластиковые или электролитические, поэтому их легче идентифицировать конкретные характеристики конденсатора.

Даже если два конденсатора могут иметь одинаковое значение емкости, они могут иметь разное номинальное напряжение. Если конденсатор меньшего номинального напряжения вместо конденсатора с более высоким номинальным напряжением повышенное напряжение может повредить меньший конденсатор.

Также мы помним из прошлого урока, что с поляризованным электролитическим конденсатора положительный вывод должен подключаться к положительному соединению, а отрицательный провод к отрицательному соединению, иначе он может снова стать поврежден.Так что всегда лучше заменить старый или поврежденный конденсатор. с тем же типом, что и указанный. Пример маркировки конденсатора: нижеприведенный.

Характеристики конденсатора

Конденсатор, как и любой другой электронный компонент, имеет ряд характеристик. Эти характеристики конденсатора всегда могут быть найдены в технических паспортах, которые производитель конденсаторов предоставляет нам, поэтому вот лишь несколько из наиболее важных.

1. Номинальная емкость (C)

Номинальное значение емкости конденсатора C является наиболее важным. всех характеристик конденсатора.Это значение измеряется в пикофарадах (пФ), нано-фарад (нФ) или микрофарад (мкФ) и нанесен на корпус конденсатор в виде цифр, букв или цветных полос.

Емкость конденсатора может меняться в зависимости от частоты цепи. (Гц) y в зависимости от температуры окружающей среды. Керамические конденсаторы меньшего размера могут иметь номинальное значение всего один пикофарад (1 пФ), в то время как электролитическая емкость большего размера имеют номинальное значение емкости до одного Фарада (1Ф).

Все конденсаторы имеют допуски от -20% до + 80% для алюминиевого электролита, что влияет на его фактическую или реальную стоимость.Выбор Емкость определяется конфигурацией схемы, но значение, указанное на сторона конденсатора не обязательно может соответствовать его фактическому значению.

2. Рабочее напряжение, (WV)

Рабочее напряжение — еще одна важная характеристика конденсатора, которая определяет максимальное продолжительное напряжение постоянного или переменного тока, которое может быть приложено к конденсатору без сбоев в течение всего срока его службы. Как правило, рабочий Напряжение, напечатанное на стороне корпуса конденсатора, относится к его работе по постоянному току. напряжение, (WVDC).

Значения напряжения постоянного и переменного тока обычно не совпадают для конденсатора и переменного тока. значение напряжения относится к среднеквадратичному значению. значение, а НЕ максимальное или пиковое значение что в 1,414 раза больше. Также действует указанное рабочее напряжение постоянного тока. в определенном диапазоне температур, обычно от -30 ° C до + 70 ° C.

Когда утечка очень мала, например, в конденсаторах пленочного или фольгового типа, она обычно называется «сопротивлением изоляции» (Rp) и может быть выражено как сопротивление высокого значения, подключенное параллельно конденсатору, как показано.Когда ток утечки велик, так как в электролитическом он называется «током утечки». поскольку электроны проходят прямо через электролит.

Ток утечки конденсатора — важный параметр в соединении усилителя. цепей или в цепях питания, с лучшим выбором для соединения и / или для хранения используются тефлон и другие типы пластиковых конденсаторов. (полипропилен, полистирол и т. д.), потому что чем ниже диэлектрическая проницаемость, тем выше сопротивление изоляции.

Конденсаторы электролитического типа (танталовые и алюминиевые), с другой стороны, могут имеют очень высокие емкости, но они также имеют очень высокие токи утечки (обычно порядка 5-20 мкА на мкФ) из-за их плохой изоляции сопротивления и поэтому не подходят для приложений хранения или соединения. Кроме того, ток утечки для алюминиевого электролита увеличивается с увеличением температура.

5. Рабочая температура, (T)

Изменения температуры вокруг конденсатора влияют на значение емкость из-за изменения диэлектрических свойств.Если воздух или температура окружающей среды становится слишком высокой или низкой, значение емкости конденсатор может измениться настолько, что повлияет на правильную работу схема. Нормальный рабочий диапазон для большинства конденсаторов составляет от -30 ° C до + 125 ° C с номинальное напряжение, указанное для рабочей температуры не более + 70oC, особенно для пластиковых конденсаторов.

Обычно для электролитических конденсаторов и особенно алюминиевых электролитических конденсатор, при высоких температурах (свыше + 85oC жидкости в электролите может быть потеряно из-за испарения, и корпус конденсатора (особенно небольшой размеры) могут деформироваться из-за внутреннего давления и сразу протечь.Также электролитические конденсаторы нельзя использовать при низких температурах, ниже примерно -10oC, так как желе электролита замерзает.

6. Температурный коэффициент, (TC)

Температурный коэффициент конденсатора — это максимальное изменение его емкость в указанном диапазоне температур. Температурный коэффициент конденсатора обычно выражается линейно в миллионных долях на градус по шкале Цельсия (PPM / oC), или как процентное изменение в определенном диапазоне температуры. Некоторые конденсаторы нелинейные (конденсаторы класса 2) и

увеличивают свою ценность, когда температура повышается, придавая им температуру коэффициент, который выражается положительным знаком «P».

Некоторые конденсаторы уменьшают свое значение при повышении температуры, вызывая температурный коэффициент, который выражается отрицательной буквой «N». Для Например, «P100» составляет +100 ppm / oC или «N200», что составляет -200 ppm / oC и т. д. Однако некоторые конденсаторы не меняют своего значения и остаются неизменными. в определенном температурном диапазоне такие конденсаторы имеют нулевую температуру коэффициент или «НПО». Эти типы конденсаторов, такие как слюдяные или полиэфирные, являются обычно называемые конденсаторами класса 1.

Большинство конденсаторов, особенно электролитических, теряют свою емкость при горячие, но температурно-компенсирующие конденсаторы доступны в диапазоне от от P1000 до N5000 (от +1000 ppm / oC до -5000 ppm / oC).это также возможно подключение конденсатора с положительным температурным коэффициентом в последовательно или параллельно с конденсатором, имеющим отрицательный температурный коэффициент в конечном итоге два противоположных эффекта нейтрализуют друг друга. в определенном диапазоне температур. Еще одно полезное приложение конденсаторы с температурным коэффициентом использовать их, чтобы нейтрализовать влияние температура на других компонентах в цепи, таких как индукторы или резисторы и др.

7. Поляризация

Поляризация конденсатора обычно относится к конденсаторам электролитического типа, но в основном алюминиевые электролитические, что касается их электрического соединения.Большинство электролитических конденсаторов поляризованного типа, то есть напряжение подключенные к клеммам конденсатора должны иметь правильную полярность, то есть положительное на положительное и отрицательное на отрицательное.

Неправильная поляризация может привести к разрыву оксидного слоя внутри конденсатора. вниз, что приводит к очень большим токам, протекающим через устройство, что приводит к разрушение, как мы упоминали ранее.

Емкость

начинает превышать 0,1 мкФ, прикосновение к выводам конденсатора может быть шокирующий опыт.

Конденсаторы обладают способностью накапливать электрический заряд в виде напряжение между собой, даже если в цепи не течет ток, давая им своего рода память с большими емкостными конденсаторами электролитического типа найдены в телевизорах, фото вспышках и батареях конденсаторов, потенциально хранящих смертельный заряд.

Как правило, никогда не прикасайтесь к выводам конденсаторов большой емкости. после отключения источника питания. Если вы не уверены в их состоянии или безопасного обращения с этими большими конденсаторами, обратитесь за помощью или советом специалиста перед обращаясь с ними.

Мы перечислили здесь лишь некоторые из множества доступных характеристик конденсаторов. чтобы идентифицировать и определять его рабочие условия, и в следующем учебном пособии в В нашем разделе о конденсаторах мы рассмотрим, как конденсаторы хранят электрическую зарядите их пластины и используйте его для расчета значения емкости.

Как читать значения конденсаторов?

У вас есть куча из конденсаторов , и вы не можете их использовать, потому что вы не знаете их номинала ? Наряду с резисторами , конденсаторами являются второй наиболее часто используемой частью практически в любой аудиосхеме, и возможность считывания их значения является обязательной для любого электронного любителя .Продолжайте читать и узнайте, как узнать номинал конденсатора по его маркировке !

КОНДЕНСАТОРЫ — КОЛ.

Возможность быстрого считывания значения конденсатора и способность переключаться между устройствами — важный навык, который поможет вам сэкономить много времени при создании ваших педалей эффектов или даже ваших собственных проектов DIY. Прежде всего, мы объясним, как устройства работают с конденсаторами. Базовый конденсаторный блок — Фарад . Проблема в том, что этот блок действительно огромен, и в большинстве проектов номиналы конденсаторов намного ниже, а работа с числами, такими как 0,0000000047 Фарад, довольно неудобна и подвержена ошибкам.Вот почему, если с резисторами мы используем килоОм (10 Ом) и Мега Ом (10 Ом), то с конденсаторами мы используем делителя основного блока . Вот они:

  • пикофарад ( пФ ) — это наименьший блок , используемый в аудиосхемах, и обычно ассоциируется с керамическими конденсаторами , поскольку они имеют очень низкое значение. 1 пФ = 10⁻¹² F = 0,000000000001 F
  • наноФарад ( нФ ) является наиболее распространенной единицей, и стандартные полиэфирные конденсаторы обычно попадают в этот диапазон. 1nF = 10⁻⁹ F = 0,000000001 F
  • мкФ ( мкФ ) в основном используется с электролитическими конденсаторами , поскольку они имеют более высокое значение емкости, чем другие. 1 мкФ = 10⁻⁶ F = 0,000001 F

Как это может показаться немного запутанным, вот справочная таблица конденсатора с соотношением между ними:

Таблица 1: Соотношение единиц емкости

КОНДЕНСАТОРЫ — ЧТЕНИЕ

Чтобы немного усложнить задачу, не все конденсаторы имеют одну и ту же систему маркировки , поэтому мы должны сделать разницы между тремя основными типами конденсаторов: электролитический, керамический и полиэфирный .Начнем с электролитов , так как они самые простые для чтения . Полиэстер и керамика имеют одинаковую систему маркировки, но с небольшими различиями . В следующих примерах мы будем использовать изображения некоторых конденсаторов, которые мы отправляем с нашими наборами педалей эффектов , сделанных своими руками, поэтому обязательно возьмите один, и примените свои знания на практике !


1 — Конденсаторы электролитические

Пример: значение электролитического конденсатора

Пример : электролитический конденсатор 100 мкФ, максимум 400 В.

Электролитические конденсаторы довольно просты для чтения : поскольку они довольно большие по сравнению с остальными, значение прямо записано в корпусе . Единица измерения также указана, но, поскольку они имеют большие значения емкости, выбранная единица — мкФ, ( мкФ, ) почти в 100% случаев, даже если единица меньше (например, электролитический конденсатор 220 нФ будет помечен как 0,22 мкФ , а не 220 нФ). Кроме того, максимальное напряжение конденсатора также может быть считано.Это значение напряжения, которое не должно превышать ни при каких обстоятельствах , поскольку конденсатор может быть необратимо поврежден и даже взорваться.


2 — Конденсаторы керамические

Керамические конденсаторы на меньше, чем на электролитические, поэтому на них нельзя записать полную стоимость плюс единицу. Вместо этого у них трехзначная система кодирования . Первые две цифры представляют собой значение конденсатора , а третья — , количество нулей , которые нужно добавить справа.Таким образом, мы получаем значение конденсатора в пикофарадах .


Пример 1: керамический конденсатор обозначен как 104

10 → базовое значение
4 → количество нулей для добавления

Значение : 100000 пФ = 100 нФ

Пример 1: показание номинала керамического конденсатора
Пример 2: показание номинала керамического конденсатора

Пример 2:

Этот конденсатор состоит только из двух цифр.Что делать в этом случае? Когда значение меньше, чем 100 пФ , только , две цифры используются для непосредственной маркировки значения конденсатора. В данном случае у нас конденсатор 22пФ . Обычные значения — 47 пФ (обозначено 47), 470 пФ (обозначено 471). Что касается максимального напряжения, керамические конденсаторы имеют больших значения (~ 50 В), поэтому маловероятно, что вы повредите их, превысив его!


3 — Конденсаторы полиэфирные

Если вы умеете правильно читать керамические конденсаторы, у вас не должно возникнуть проблем с полиэфирами! Маркировка конденсаторов из полиэстера работает так же, как и для керамики , но обычно на них написано больше информации.Они могут показаться немного более запутанный из-за этого, но вам нужно только сосредоточиться на трех последовательных цифрах . В отличие от керамики, которая может иметь две цифры для некоторых значений, полиэфиры всегда имеют три цифры , поэтому их будет легко идентифицировать. Дополнительная информация появляется только в некоторых случаях и показывает допуск , , который равен , насколько реальное значение может отличаться от обозначенного (буква рядом со значением) и максимального напряжения рейтинг, который нельзя превышать (цифра + буквенный код или цифра, в зависимости от конденсатора).В таблице ниже вы можете найти эквивалентов между кодами и значениями .

Пример 1: Показание значения конденсатора из зеленого полиэстера

Пример 1: зеленый полиэфирный конденсатор с маркировкой 2A104J

10 → базовое значение
4 → количество добавляемых нулей
— 2A → 100 В, обозначенные цифрой + буквенный код
— J → допуск 5%

Значение : 100000 пФ → 100 нФ ± 5%, 100 В максимум

— Насколько реальное значение может отличаться от обозначенного значения ? 100 нФ x 5% = 5 нФ → реальная емкость конденсатора будет в диапазоне 95 нФ — 105 нФ

В то время как резисторы имеют более жесткие допуски (обычно 1% -5%), для конденсаторов все, что ниже 10%, является хорошим допуском , и мы разрабатываем наши схемы педали эффектов так, чтобы эти допуски не влияли на конечный результат .

Таблица 2: Таблица допусков и кодов напряжения полиэфирного конденсатора
Пример 2: показание значения конденсатора коробки из полиэстера

Пример 2: полиэфирный конденсатор коробчатого типа, обозначенный как 474J63

47 → базовое значение
4 → количество добавляемых нулей
— 63 Максимум 63 В (обозначается непосредственно значением напряжения )
— J → допуск 5%

Значение : 470000 пФ → 470 нФ ± 5%, 63 В

— Насколько реальное значение может отличаться от обозначенного значения ? 470 нФ х 5% = 23.5 нФ → реальная емкость конденсатора будет в диапазоне 446,5 нФ — 493,5 нФ

Лучший способ проверить свои знания — применить их на практике, поэтому обязательно посетите наш раздел комплектов , где вы найдете комплекты педалей эффектов со всем необходимым для создания собственной педали эффектов.

Надеемся, этот пост был вам полезен! Если вам понравилось, поделитесь им и помогите другим людям улучшить свои навыки чтения конденсаторов 😉

104 конденсатор

104M ILLINOIS CAPACITOR конденсатор 0.Керамический диск 1 мкФ 2020000975. Тысячи электронных компонентов со скидкой на складе. Нет времени на поставку, отправляем прямо сейчас! Электронные компоненты, tedss.com ваш источник электронных компонентов. Этот высококачественный электролитический конденсатор с радиальными выводами на 1000 мкФ может помочь вам во многих ваших проектах в области электроники. Номинальное напряжение до 35 В постоянного тока. Обычно используется при ремонте мониторов и телевизоров высокой четкости. Примечание. Максимальное номинальное напряжение — 35 В постоянного тока. Пока конденсатор, который вы заменяете, меньше или равен 35 В постоянного тока, этот конденсатор будет работать.Значение 104 в конденсаторе. Полученное число — это емкость в пФ. На изображении выше показан конденсатор с майларовой пленкой. 104 k5k small значение 10e4 или 100000 pf 01 uf. Многие производители конденсаторов используют сокращенные обозначения для обозначения емкости на маленьких крышках. Прочтите это руководство, чтобы получить быстрые ответы на некоторые основные вопросы о товарах Hampton Bay в The Home Depot. Вы также можете найти здесь контактную информацию службы поддержки клиентов, чтобы получить прямую помощь от дружелюбного агента. Керамический конденсатор — это конденсатор, в котором в качестве диэлектрика используется керамический материал.Двумя наиболее распространенными типами являются многослойные керамические конденсаторы и керамические дисковые конденсаторы. Характеристики Точность и допуски. Сегодня доступны два класса керамических конденсаторов: класс 1 и класс 2. Конденсатор (первоначально известный как конденсатор) — это пассивный электрический компонент, используемый для электростатического накопления энергии в электрическом поле. Распространенными типами конденсаторов являются алюминиевые электролитические, керамические, пленочные, бумажные, слюдяные и танталовые. Конденсаторы выражаются в фарадах. • Когда на каком-либо конденсаторе напечатано 104 — он имеет множитель 4 (третье число кода).10 умножается на 10 × 104 = 10000. Тогда его значение будет 10 × 10000 = 100000PF. Последнее число является степенью 10 и умножается на первые два числа. Если конденсатор имеет код 682 — сначала проверьте последнее «нет», здесь последнее «нет» — 2.

Керамический конденсатор с маркировкой 104 имеет номинал (плюс допуск от + 80% до -20%) 100000 пФ или 100 нФ. , или 0,1 мкФ. Номинальное напряжение может быть 50 В, это может быть 100 В. Это может быть даже 250в. 104 (индикатор емкости) не имеет никакого отношения к рабочему напряжению.Следы. Библиотеки посадочных мест KiCad — это отдельные каталоги .pretty. Каждый каталог .pretty содержит несколько файлов посадочных мест .kicad_mod. Эти посадочные места лучше всего использовать в сочетании с библиотеками официальных символов и библиотеками трехмерных моделей. Этот высококачественный электролитический конденсатор с радиальными выводами на 1000 мкФ может помочь вам во многих ваших проектах в области электроники. Номинальное напряжение до 35 В постоянного тока. Обычно используется при ремонте мониторов и телевизоров высокой четкости. Примечание. Максимальное номинальное напряжение — 35 В постоянного тока. Пока конденсатор, который вы заменяете, меньше или равен 35 В постоянного тока, этот конденсатор будет работать.Трехзначный код конденсатора 105 означает 1 мкФ, словами: емкость одна микрофарада. Это простой онлайн-калькулятор для маркировки цветных полос резисторов, цветных полос индукторов, трехзначной маркировки керамических или танталовых конденсаторов и трехзначных, четырехзначных, 10%, 5%, 2% и EIA-96 (E96) резисторов SMD. Маркировка кода допуска 1%. Gikfun 0.1Uf 50V 104 Керамический конденсатор DIP для Arduino (100 шт. В упаковке) EK1460. 4.4 из 5 звезд 31. $ 6.68 $ 6. 68. Купи 5, сэкономь 3%. Получите его как можно скорее в понедельник, 4 января. Керамический конденсатор — это конденсатор, в котором в качестве диэлектрика используется керамический материал.Двумя наиболее распространенными типами являются многослойные керамические конденсаторы и керамические дисковые конденсаторы. Характеристики Точность и допуски. Сегодня доступны два класса керамических конденсаторов: класс 1 и класс 2. Добавить в заказ. Цитировать. Винтовой зажим: 450: 2400-10% + 50-40: 85: 0,038: 10.3: CGS242U100R4C: CGS242U100R4C: Cornell Dubilier / Illinois Конденсатор: алюминиевый электролитический … EOS / ESD Association, Inc. занимается продвижением теории и практики предотвращение электростатических разрядов, что помогает установить мировые стандарты контроля статического электричества.Получите лучшие предложения на 105k Capacitor, когда вы делаете покупки в самом большом онлайн-ассортименте на eBay.com. Бесплатная доставка для многих … 104 продано. 25Pcs — 1uF (105) @ 50 VOLTS (10% … Идентификаторы первого и второго значащих чисел конденсатора и являются первым и вторым значениями, за которыми следует числовой код множителя, за которым следует буквенный код процентного допуска. Обычно первые два цифры кода представляют собой значительную часть значения, а третья цифра, называемая множителем, соответствует числу…

Конденсатор 104 Гц 22 февраля 2017 г. Trade Pack 5 X Icar 6 мкФ, 450 В рабочий конденсатор Wb4060 Клеммы быстрого подключения. Kef 104 To Kef 104ab Mkii со специями Diyaudio. Конденсатор 104 Гц 22 февраля 2017 г. Trade Pack 5 X Icar 6 мкФ, 450 В рабочий конденсатор Wb4060 Клеммы быстрого подключения. Kef 104 To Kef 104ab Mkii со специями Diyaudio. Конвертер RF в Ir. Измерения переменного тока. Зарядка конденсатора. Генераторы переменного тока. Конденсатор параллельно и последовательно. Вольтметр переменного тока. Схема двигателя переменного тока. Преобразовать полярную в прямоугольную.Баро Ки’Тир, также известный как Торговец Бездной, — персонаж, известный своей любовью к экзотике и роскоши, особенно к тем, которые связаны с Бездной Орокин. Он связан с Тэнно, продавая различные редкие артефакты и ценные предметы, которых нет больше нигде. Баро Ки’Тир появляется в секции Зала Реле Тенно, хотя его присутствие непостоянно; он … В каком-то смысле конденсатор немного похож на батарею. Хотя они работают совершенно по-разному, конденсаторы и аккумуляторы хранят электрическую энергию.Если вы прочитали Как работают батареи, то вы знаете, что батарея имеет две клеммы. Внутри батареи химические реакции производят электроны на одной клемме и поглощают электроны на другой клемме. Высоковольтный керамический конденсатор 1 кВ 2 кВ 104 1000 В 0,1 мкФ 2000 В 104. 1,49–1,53 фунта стерлингов. Стоимость пересылки 1,00 фунта стерлингов. 16 продано. 0.1uF 100nF 50V Винтажные керамические конденсаторы 10шт. NOS. £ … Конденсатор (104) Конденсатор 100 нФ (154) Конденсатор 150 нФ (224) Конденсатор 220 нФ (334) Конденсатор 330 нФ (474) Конденсатор 470 нФ (684) Конденсатор 680 нФ (105) 1.0 … Конденсаторы Electrolitc имеют маркировку минуса (- соединение), в большинстве случаев на этой стороне есть цветная полоса. Следует позаботиться о правильной полярности электролитических конденсаторов, иначе вы можете повредить конденсатор (иногда даже с громким хлопком). Для получения дополнительной информации о самих конденсаторах посетите capsite: Co-Browse. Используя функцию совместного просмотра, вы разрешаете представителю службы поддержки Digi-Key удаленно просматривать ваш браузер. Когда откроется окно совместного просмотра, дайте представителю идентификатор сеанса, который находится на панели инструментов.

Конденсаторы могут влиять на производительность системы незаметным или очевидным образом; выбор может иметь решающее значение, и он выходит за рамки простого определения значения емкости, номинального напряжения и допуска. Parts Express — это ваш полный ресурс по электронике. Трехзначный код конденсатора 104 означает 100 нФ, словами: емкость в сто нанофарад. Это простой онлайн-калькулятор для маркировки цветных полос резисторов, цветных полос индукторов, трехзначной маркировки керамических или танталовых конденсаторов и трехзначных, четырехзначных, 10%, 5%, 2% и EIA-96 (E96) резисторов SMD. Маркировка кода допуска 1%.Auf welche Punkte Sie als Kunde vor dem Kauf Ihres 104 Capacitor Acht geben sollten. Unsere Redaktion beginrüßt Sie auf unserer Webpräsenz. Unsere Redakteure haben es zur Aufgabe gemacht, Produktvarianten verschiedenster Art zu checken, sodass Sie zu Hause problemlos den 104 Capacitor bestellen können, den Sie für geeignet halten. Con valores mas grandes como por ejemplo los usadisimos Capacitores de filter con el numero 104 es decir 10 4 ceros 100000 pf o tambien 10 … 104 конденсатор купить на Elcodis.com. Таблица данных ACh42C-104-T, спецификация EBM-Papst Industries Inc 2161-4-7320. 104 конденсатор. Давайте представим, что вместо двух зарядов у нас есть только один заряд, который сидит в вакууме, сидит в космосе. Итак, вот этот заряд, и предположим, что его заряд составляет Q. 470nf / 63V (0,47uf / 60V) Конденсатор коробки — Полиэстер Особенности Высокая точность, долговечность полиэфирного пленочного конденсатора Точность: ± 5% Широкий диапазон рабочих температур — от -55oC до + 125oC Низкая утечка Легкий монтаж Соответствие RoHS: 0.47uf или 470nf или 0.47mf * Представленное изображение является представителем. Баро Ки’Тир, также известный как Торговец Бездной, — персонаж, известный своей любовью к экзотике и роскоши, особенно к тем, что связаны с Бездной Орокин. Он связан с Тэнно, продавая различные редкие артефакты и ценные предметы, которых нет больше нигде. Баро Ки’Тир появляется в секции Зала Реле Тенно, хотя его присутствие непостоянно; он … AC Parts Distributors является торговым посредником по всему миру, где продаются качественные запасные части для оборудования отопления, вентиляции, кондиционирования воздуха и холодильного оборудования.Мы работаем с более чем 30 OEM-производителями HVACR и являемся ведущим дистрибьютором систем управления HVACR.

2a 104k Конденсаторы | Продукты и поставщики

  • PDF — ABB ACS550-U1-012A-4 5HP

    Пленка, металлизированный полипропилен, коробчатого типа, 1000 В переменного тока, 0,1 мкФ, 10% Logo MMKP82, 104 кОм, 1000 полевых МОП-транзисторов, 1 канал N, 1500 В, 2 А.

  • Ведомость материалов — ABB ACS550-U1-012A-4 5HP

    Логотип MMKP82, 104К, 1000 полевых МОП-транзисторов, 1 канал N, 1500 В, 2 А.

  • Journal of Cerebral Blood Flow & Metabolism — Электрокортикографические корреляты переменного тока периинфарктной деполяризации во время транзиторной фокальной ишемии и реперфузии …

    … К активности ЭКоГ во время бодрствования, десинхронизированным состояниям ЭКоГ перед MCAo (рисунки 1A и 2A), спонтанной ЭКоГ… Полный рисунок и легенда (104K… усиление, которое вызывает протекание тока только в ответ на изменения напряжения при зарядке конденсатора.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *