приборы и методы, как сделать самому, Ремонт и Строительство
Не так часто приходится узнавать именно частоту переменного тока, по сравнению с такими показателями, как напряжение и сила тока. Например, для того чтобы измерить силу тока можно воспользоваться измерительными клещами, для этого даже необязательно контактировать с токопроводящими частями, да и напряжение проверяет любой стрелочный или цифровой мультиметр. Однако, чтобы проверить частоту, с какой меняется полярность в цепях переменного тока, то есть количество его полных периодов, используется частотомер. В принципе, прибор с таким же названием может измерять и количество механических колебаний за определённый период времени, но в этой статье речь пойдёт исключительно об электрической величине. Далее мы расскажем, как проводится измерение частоты переменного тока мультиметром и частотомером.
Какие приборы можно использовать
Классификация частотомеров
Все данные приборы делятся на две основные группы по области их применения:
- Электроизмерительные. Применяются для бытового или же производственного измерения частоты в цепях переменного тока. Их используют при частотной регулировке оборотов асинхронных двигателей, так как вид частотного измерения оборотов, в этом случае, самый эффективный и распространённый.
- Радиоизмерительные. Нашли применение исключительно в радиотехнике и могут измерять широкий диапазон высокочастотного напряжения.
По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.
Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:
- Диапазон частот, которые прибор сможет измерить. При планировании работы именно со стандартной промышленной величиной 50 Гц, нужно внимательно ознакомиться с инструкцией, так как не все приборы её смогут увидеть.
- Рабочее напряжение в цепях, в которых будут проходить измерительные работы.
- Чувствительность, эта величина более важна для радиочастотных устройств.
- Погрешность, с которой он может производить замеры.
Мультиметр с функцией измерения частоты переменного тока
Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе — это мультиметр. Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи.
Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:
- Жидкокристаллического информативного индикатора для отображения результатов измерения, расположенного, чаще всего, в верхней части конструкции.
- Переключателя, в основном, он выполнен в виде механического элемента, позволяющего быстро перейти от измерения одних величин к другим. Нужно быть очень осторожным, так как, допустим, если измерять напряжение, а переключатель будет стоять на отметке «I», то есть сила тока, тогда следствием этого неминуемо будет короткое замыкание, которое приведёт не только к выходу со строя прибора, но может вызвать и термический ожог дугой рук и лица человека.
- Гнезд для щупов. С их помощью непосредственно происходит электрическая связь прибора с измеряемым токопроводящим объектом. Провода не должны иметь потрескиваний и изломов изоляции, особенно это касается их наконечников, которые будут находиться в руках измеряющего.
Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.
Как выполняется измерение частоты
Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:
- Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
- Установить переключатель на измерение частоты переменного тока.
- Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.
Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.
Другие альтернативные методы измерения
Самый эффективный и простой способ проверки частоты — это использование осциллографа. Именно осциллографом пользуются все профессиональные электронщики, так как на нём можно визуально увидеть не только цифры, но и саму диаграмму. При этом нужно обязательно отключить встроенный генератор. Новичку в электронике будет довольно проблематично выполнить данные измерения с помощью этого прибора. О том, как пользоваться осциллографом, мы рассказали в отдельной статье.
Второй вариант — это измерение с помощью конденсаторного частотомера, имеющего диапазон измерений 10 Гц-1 МГц и погрешность около 2%. Он определяет среднее значение тока разрядки и зарядки, которое будет пропорционально частоте и измеряется косвенно с помощью магнитоэлектрического амперметра, со специальной шкалой.
Ещё один метод называется резонансный и основан он на явлении резонанса, возникающего в электрическом контуре. Тоже имеет шкалу с механизмом точной подстройки. Однако промышленную величину в 50 Гц этим способом невозможно проверить, работает он от 50 000 Гц.
Также вы должны знать, что существует реле частоты. Обычно на предприятиях, подстанциях, электростанциях — это основное устройство, которым контролируют изменение частоты. Данное реле воздействует на другие устройства защиты и автоматики для поддержания частоты на необходимом уровне. Есть разные типы реле частоты с разным функционалом, об этом мы расскажем в других публикациях.
Все же мультиметры и электронные цифровые частотомеры работают на обычном счёте импульсов, которые являются неотъемлемой частью, как импульсного так и другого переменного напряжения, необязательно синусоидального за определенный промежуток времени, обеспечивая при этом максимальную точность, а также широчайший диапазон.
Напоследок рекомендуем просмотреть полезное видео по теме:
Теперь вы знаете, как выполнить измерение частоты тока в сети мультиметром и частотомером. Надеемся, предоставленная информация была для вас полезной!
Будет интересно прочитать:
www.remontostroitel.ru
Измерение частоты переменного тока в сети: приборы и методы
Не так часто приходится узнавать именно частоту переменного тока, по сравнению с такими показателями, как напряжение и сила тока. Например, для того чтобы измерить силу тока можно воспользоваться измерительными клещами, для этого даже необязательно контактировать с токопроводящими частями, да и напряжение проверяет любой стрелочный или цифровой мультиметр. Однако, чтобы проверить частоту, с какой меняется полярность в цепях переменного тока, то есть количество его полных периодов, используется частотомер. В принципе, прибор с таким же названием может измерять и количество механических колебаний за определённый период времени, но в этой статье речь пойдёт исключительно об электрической величине. Далее мы расскажем, как проводится измерение частоты переменного тока мультиметром и частотомером.
Какие приборы можно использовать
Классификация частотомеров
Все данные приборы делятся на две основные группы по области их применения:
- Электроизмерительные. Применяются для бытового или же производственного измерения частоты в цепях переменного тока. Их используют при частотной регулировке оборотов асинхронных двигателей, так как вид частотного измерения оборотов, в этом случае, самый эффективный и распространённый.
- Радиоизмерительные. Нашли применение исключительно в радиотехнике и могут измерять широкий диапазон высокочастотного напряжения.
По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.
Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:
- Диапазон частот, которые прибор сможет измерить. При планировании работы именно со стандартной промышленной величиной 50 Гц, нужно внимательно ознакомиться с инструкцией, так как не все приборы её смогут увидеть.
- Рабочее напряжение в цепях, в которых будут проходить измерительные работы.
- Чувствительность, эта величина более важна для радиочастотных устройств.
- Погрешность, с которой он может производить замеры.
Мультиметр с функцией измерения частоты переменного тока
Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе — это мультиметр. Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи.
Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:
- Жидкокристаллического информативного индикатора для отображения результатов измерения, расположенного, чаще всего, в верхней части конструкции.
- Переключателя, в основном, он выполнен в виде механического элемента, позволяющего быстро перейти от измерения одних величин к другим. Нужно быть очень осторожным, так как, допустим, если измерять напряжение, а переключатель будет стоять на отметке «I», то есть сила тока, тогда следствием этого неминуемо будет короткое замыкание, которое приведёт не только к выходу со строя прибора, но может вызвать и термический ожог дугой рук и лица человека.
- Гнезд для щупов. С их помощью непосредственно происходит электрическая связь прибора с измеряемым токопроводящим объектом. Провода не должны иметь потрескиваний и изломов изоляции, особенно это касается их наконечников, которые будут находиться в руках измеряющего.
Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.
Как выполняется измерение частоты
Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:
- Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
- Установить переключатель на измерение частоты переменного тока.
- Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.
Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.
Другие альтернативные методы измерения
Самый эффективный и простой способ проверки частоты — это использование осциллографа. Именно осциллографом пользуются все профессиональные электронщики, так как на нём можно визуально увидеть не только цифры, но и саму диаграмму. При этом нужно обязательно отключить встроенный генератор. Новичку в электронике будет довольно проблематично выполнить данные измерения с помощью этого прибора. О том, как пользоваться осциллографом, мы рассказали в отдельной статье.
Второй вариант — это измерение с помощью конденсаторного частотомера, имеющего диапазон измерений 10 Гц-1 МГц и погрешность около 2%. Он определяет среднее значение тока разрядки и зарядки, которое будет пропорционально частоте и измеряется косвенно с помощью магнитоэлектрического амперметра, со специальной шкалой.
Ещё один метод называется резонансный и основан он на явлении резонанса, возникающего в электрическом контуре. Тоже имеет шкалу с механизмом точной подстройки. Однако промышленную величину в 50 Гц этим способом невозможно проверить, работает он от 50 000 Гц.
Также вы должны знать, что существует реле частоты. Обычно на предприятиях, подстанциях, электростанциях — это основное устройство, которым контролируют изменение частоты. Данное реле воздействует на другие устройства защиты и автоматики для поддержания частоты на необходимом уровне. Есть разные типы реле частоты с разным функционалом, об этом мы расскажем в других публикациях.
Все же мультиметры и электронные цифровые частотомеры работают на обычном счёте импульсов, которые являются неотъемлемой частью, как импульсного так и другого переменного напряжения, необязательно синусоидального за определенный промежуток времени, обеспечивая при этом максимальную точность, а также широчайший диапазон.
Напоследок рекомендуем просмотреть полезное видео по теме:
Теперь вы знаете, как выполнить измерение частоты тока в сети мультиметром и частотомером. Надеемся, предоставленная информация была для вас полезной!
Будет интересно прочитать:
samelectrik.ru
Тестирование мультиметров, а также об ошибках измерения / Habr
Проведено исследование работы цифровых мультиметров в режиме вольтметра переменного тока, и стрелочного прибора. В штатных и нештатных режимах, на токах различной формы — как симметричной полярности, так и при наличии постоянной составляющей.
Содержание публикации:
- Описание используемых приборов, и их начальная калибровка
- Тест на синусоидальном токе различной частоты
- Тест током прямоугольной формы
- Тест на прямоугольном токе с постоянной составляющей
- Тест сигналами произвольной формы, в т.ч. импульсным
- Многозначительный вывод
- Голосовалка
Список подопытных приборов, все они подключены параллельно:
Fluke 87-V — качественный автоматический мультиметр, способный вычислять действующее (среднеквадратичное) значение «true rms» измеряемых токов и напряжений.
UT-70C — рабочая лошадка, таскаемая везде и повсюду. Выпущен популярной фирмой Uni-T, тоже автоматический, но уже не «true rms».
И главные герои исследования — недорогой прибор MAS-830L фирмы Mastech, и совсем безродный DT-832 которые обычно насыпают ведрами на сдачу. Их я арендовал из разных мест, чтобы избежать возможных глюков конкретного единичного экземпляра.
Переменное напряжение 0.1 мВ — 1000 В
Разрешающая способность 1 мВ
Частоты до 20 кГц
Заявленная точность 0.7 % или 2 ед. мл. разряда
UT-70C
Переменное напряжение до 1000 В
Разрешающая способность 1 мВ
Частоты 40 — 400 Гц
Заявленная точность 1.5 % или 4 ед. мл. разряда
Mastech M830L
Переменное напряжение 0,1 В — 600 В
Разрешающая способность 10 мВ
Частоты 40 — 400 Гц
Заявленная точность 0.5 % или 2 ед. мл. разряда
DT 832
Переменное напряжение 0,1 В — 750 В
Разрешающая способность 0.1 В
Частоты 40 — 400 Гц
Заявленная точность 1.2 % или 10 ед. мл. разряда
В опытах участвует и стрелочный вольтметр переменного тока В3-10А, советского производства, выпущенный в 1969 году. Это хороший качественный прибор. Данный экземпляр немного занижает показания на несколько процентов, но это будет со временем починено. В тестах он используется на пределе измерения «3v».
Подробнее о вольтметре В3-10А можно узнать тут
На принципиальной схеме цветом отмечено прохождение сигнала режиме измерения «3v».
Как видите это обычный вольтметр с диодным выпрямителем. Правда сделан очень надежно, с применением высококачественных компонентов.
И данный экземпляр действительно с военки:
Визуальное наблюдать за подаваемыми на приборы сигналами будем с помощью цифрового осциллографа Lecroy 9354TM. Он тоже лохматых годов, но до сих пор исправно работает.
Внешний вид осциллографа
Под осциллограммой сигнала находится статистика его параметров. Наиболее интересны для данного исследования те, что выделены яркостью на фото:
pkpk — полный амплитудный размах сигнала
RMS — среднеквадратичное значение
freq — частота исследуемого сигнала, или его импульсов
В колонке average наблюдаем среднее значение параметра, low и high — мин. и макс его значения в пределах выборки, sigma среднеквадратическое отклонение. Пользоваться будем только данными из колонки average.
Калибровка
Подаем на цифровые мультиметры 220 v из розетки. Стрелочный вольтметр пока отключим, т.к. ему еще не сделана профилактика после приобретения.
Также откалибруемся по постоянке, в том числе посмотрим что покажет стрелочный прибор. Подаем 2.5 v от блока питания. Осциллограф немного завышает — как оказалось по сравнению с флюком.
По этому шаблону организованы все фотографии в дальнейшем: сначала осциллограмма, под ней показания приборов.
Теперь убедившись в работоспособности приборов, начинаем тесты. Сигналы подаем от низковольтного ГСС типа Г3-36А. Конечно он не цифровик, но так даже лучше — ближе к реальным условиям.
Синусоидальный переменный ток различной частоты
Подаем напряжение 2.5 v на частотах 30Гц, 300 Гц, 3 кГц, 20 кГц, 50 кГц, и 150 кГц.
——————————————————————————
——————————————————————————
——————————————————————————
——————————————————————————
——————————————————————————
Первым как ни странно начал сливаться UT70C начиная с 3 кГц. В то время как недорогие мультиметры проскочили этот барьер — если конечно не считать что с самого начала их ошибка составляла целых 16% в сторону занижения. На 20 кГц их показания нельзя даже назвать оценочными, так что остались в адеквате только Флюк и стрелочный. Которые прошли 50 кГц еще около дела, но более высокие частоты ими измерять уже бессмысленно.
Тест током прямоугольной формы
Этот режим, как и все дальнейшие — являются нештатными для не «true rms» приборов, но всё же проведем исследование. Подаем примерно 2.5 v прямоугольного напряжения на частотах 30 Гц, 3 кГц, 30 кГц, и 100 кГц.
——————————————————————————
——————————————————————————
——————————————————————————
Показания дешевых мультиметров стали более адекватными на частотах до 3 кГц. А вот UT70C на герцах немного завысил, но выровнялся ближе к делу на 3 кГц. Более высокие частоты потянули только Флюк и стрелочный.
Прямоугольный сигнал с постоянной составляющей
Посмотрим как на них ведут себя приборы на частотах 300 Гц, 3 кГц, 50 кГц, и 200 кГц.
——————————————————————————
——————————————————————————
——————————————————————————
Очень эффектно показали себя недорогие мультиметры, для них частотный барьер кажется утратил актуальность. В то время как нормальные приборы до последнего пытаются работать
Подаем сигналы сложной формы
Которые получены путем искажения прямоугольного напряжения катушками и конденсаторами.
——————————————————————————
——————————————————————————
——————————————————————————
На первом сигнале с основной частотой 5 кГц — адекватные показания только у Флюка и стрелочного прибора.
Короткие биполярные импульсы нормально переваривает Флюк (ну и конечно осциллограф тоже). А вот дешевые приборы их практически не видят. UT-70C дает ошибку более половины действующего значения, да и стрелочный тоже немалую.
Третий эксперимент на частоте 30 кГц — результат получше предыдущего, но ошибка тем не менее заметна.
В четвертом опыте снова подан ток с постоянной составляющей. Дешевые мультиметры и в этот раз выдали амплитудное значение, да еще и с некоторым превышением.
По завершении любых исследований, полагается делать вывод.
Updated: Присоединю два комментария читателей,
проясняющие парадоксальность данной статьи
Всем критикующим «измеряли не тем, не так и не то»: статья, ИМХО, является продолжением цикла про строителей сверхъединичных генераторов и как раз и призвана показать, что все эти гении от физики и электротехники, пользуясь дешевыми мультиметрами, измеряют сферического коня в вакууме, а не реальную картину в своих генераторах.
Это не сравнительный обзор тестеров, это обзор тестеров применительно именно к вечнякам, когда подобными тестерами пытаются измерять что-то на мегагерцовых частотах (или постоянку со сложными высокочастотными выбросами).
Да, но это ясно только тем кто читал эти предыдущие статьи. Даже не столько сами статьи, сколько комментарии к ним.
Для тех кто не читал и открывает эту статью это выглядит именно как простой сравнительный тест мультиметров, и как вывод что «вот этим китайским г… пользоваться вообще нельзя», покупайте все Флюки а всему остальному место в мусорном ведре. Хотя вывод как раз из всех проведенных тестов можно совсем другой(противоположный) сделать — для своей области применения дешевые китайские тестеры даже на удивление адекватны — дают ровно то что заявлено производителями и сколько заплачено (с учетом цены даже пожалуй больше чем можно ожидать за такую цену)…
habr.com
Как выбрать мультиметр (2018) | Блог
Электричество давно уже стало неотъемлемой частью нашей повседневной жизни, и мультиметр – прибор для измерения параметров электрической цепи – может пригодиться каждому. Не станешь же вызывать электрика для решения таких бытовых вопросов как: цел ли кабель, «жива» ли батарейка, почему не горит лампочка, под напряжением ли провод и т.д.
Автолюбителям мультиметр поможет контролировать работу автоэлектрики и электроники.
А уж если вы сами следите за электрикой в своем доме, мультиметр вам просто необходим.
Области применения мультиметров
Мультиметры – общее название для целого класса электроизмерительных приборов. Они способны проверять целостность электрических цепей, изоляции и заземления; измерять параметры цепи без контакта с проводниками и определять характеристики радиоэлектронных компонентов.
Мультиметры применяются:
— электриками при обслуживании электрических линий и потребителей;
— электронщиками при сборке, настройке и ремонте радиоэлектронной аппаратуры;
— сервисными инженерами при установке, обслуживании и ремонте электротехники;
— монтажниками при прокладке и расключении линий связи и электропередач;
— автоэлектриками при диагностике и ремонте автомобильной электрики;
Какой именно мультиметр нужен вам – можно понять, определившись измеряемыми параметрами и необходимой точностью прибора.
Характеристики мультиметров
В основном в магазинах предлагаются три типа приборов: мультиметры, тестеры и токовые клещи.
Мультиметр предназначен для измерения параметров электрической цепи. Самые простые модели измеряют только базовые параметры — ток, напряжение и сопротивление.
Модели посложнее способны определить такие характеристики, как емкость конденсатора, частота переменного тока, коэффициент усиления транзистора и т.д. Чем больше параметров определяет мультиметр, чем больше наборов диапазонов их измерений и чем выше точность – тем дороже прибор.
В продаже встречаются мультиметры двух видов – аналоговые (со стрелочным индикатором) и цифровые (с дисплеем).
Цифровые мультиметры предоставляют намного больший функционал, обеспечивают удобство считывания параметров и высокую точность измерения.
На стрелочном индикаторе просто невозможно измерить какое-либо значение с точностью нескольких знаков после запятой. Считать показание на стрелочном индикаторе тоже сложнее. Несколько шкал, неравновесные деления, в некоторых случаях полученное значение еще нужно умножить на коэффициент – неподготовленного человека все это может запутать.
Зато стрелочный индикатор намного удобнее при наблюдении за меняющимися параметрами. Цифровой мультиметр меняет показания на экране от 1 до 4 раз в секунду. И, если частота обновления экрана мультиметра будет близка к частоте измеряемого сигнала, провести измерение не получится. Колебания стрелки аналогового прибора будут намного нагляднее.
Тестер также проводит измерение некоторых параметров цепи, но, в отличие от мультиметра, не выводит полученные значения на экран, а использует их для определения состояния тестируемого объекта и выдачи соответствующего сигнала или сообщения.
Мультиметр можно использовать и для тестирования кабелей и приборов, но тогда вывод о состоянии объекта придется делать самостоятельно
Мультиметр универсальнее, но, во многих случаях, тестером пользоваться проще и быстрее. Впрочем, мультиметры часто содержат в себе и тестеры некоторых параметров, чаще всего – целостности цепи.
Простейшие тестеры способны только определять обрыв цепи, тестеры посложнее могут определить короткое замыкание, наличие тока в цепи, переполюсовку линии постоянного тока.
Самые сложные и дорогие тестеры способны проверить на соответствие требованиям безопасности и нормативных документов множества параметров– сопротивления изоляции, сопротивления заземления, тока утечки срабатывания защиты и т.д.
Токовые клещи – это специализированный мультиметр, способный измерить силу тока в отдельном проводе без разрыва цепи и нарушения изоляции. Для этого используется способность электрического тока индуцировать (возбуждать) ток в проводниках, находящихся поблизости. Такие проводники и скрыты в клещах, которые – для измерения тока – следует наложить на провод. Токовые клещи незаменимы для определения нагрузки на линии электропередач, определения потребляемой мощности и т.д.
Даже недорогие клещи способны с приемлемой точностью измерять силу тока до 1000 А и напряжение до 1000 В. Дорогие клещи могут измерять силу тока до 2500 А и используют метод TrueRMS, повышающий точность измерения параметров переменных токов.
Виды измерений параметров электрической цепи. Для бытового использования достаточно, если прибор сможет измерять:
— один-два диапазона измерения переменного напряжения (0-200 В, 0-400 В) – для потребительских сетей;
— два-три диапазона измерения постоянного напряжения (0-200 мВ, 0-2 В, 0-20 В, 0-100 В) – для батареек и аккумуляторов;
— несколько диапазонов (0-20 мА, 0-2 А, 0-10 А, 0-100 А) силы тока в цепях постоянного и переменного тока – для определения нагрузки на кабель и потребляемой мощности электроприборов;
— несколько диапазонов измерения сопротивления – для определения целостности цепей и проверки кабелей и бытовой техники на короткое замыкание.
Очень полезно наличие функции проверки целостности цепи («прозвонки») со звуковым сигналом — с помощью этой функции легко и быстро проверяется как наличие контакта, так и отсутствие короткого замыкания.
Для проверки радиодеталей потребуется наличие дополнительных возможностей:
— измерение сопротивления резисторов и проводников;
— измерение индуктивности катушек и дросселей;
— измерение коэффициента усиления транзисторов;
— измерение емкости конденсаторов;
— проверка диодов.
Также некоторые мультиметры предлагают возможность измерения частоты переменного тока, потребляемой мощности электроприборов и температуры – последнее обычно реализуется с помощью измерения напряжения (термоЭДС) на концах термопары, входящей в комплект поставки.
Обратите внимание на максимальное рабочее напряжение. Это – то напряжение, которое может выдержать электроника прибора. Его превышение с высокой вероятностью приведет к поломке.
Важной характеристикой, во многом определяющей цену прибора, является погрешность измерений. Погрешность измерения каждого параметра различна и складывается из базовой погрешности АЦП и погрешности преобразования параметра в каждом конкретном диапазоне. Базовая погрешность дает только приблизительное представление о точности прибора. Всегда следует обращать внимание на погрешности измерения по каждому из параметров в конкретных диапазонах – они могут превышать базовую в разы.
Количество единиц счета мультиметра показывает, на сколько промежутков делится измерямый диапазон и определяет величину дискретизации. Так, для диапазона 0-100 мА у мультиметра с 6000 единицами счета величина дискретизации будет 100/6000 ≈ 0,017 мА. И значение 0,034 на экране этого мультиметра вовсе не означает, что сигнал измерен с точностью до 0,001 мА: значение 0,035 он просто не способен отобразить. Разумееся, при большой погрешности нет смысла в большом количестве единиц счета. Поэтому производители подбирают этот параметр в соответствии с погрешностью измерения.
При оценке точности прибора следует обращать внимание и на количество единиц счета, и на погрешность, и на диапазон измеряемого параметра. Рассмотрим для примера два прибора:
1. Погрешность измерения тока: 2% ± 1 единица счета. Минимальный диапазон измерения тока: 0-600 мА. Количество единиц счета: 6000.
2. Погрешность измерения тока: 2% ± 1 единица счета. Минимальный диапазон измерения тока: 0-50 мА. Количество единиц счета: 6000.
На первый взгляд приборы похожи. Для оценки точности вычислим абсолютную погрешность в диапазоне 0-5 мА каждого прибора:
1. 2% от 600 — это 12 мА. 1 единица счета — это 600/6000 = 0,1 мА. Итого абсолютная погрешность — 12.1 мА.
2. 2% от 5 — это 100 мкА. 1 единица счета — это 5/6000 = 0,8 мкА. Итого абсолютная погрешность — 100,8 мкА.
Таким образом, в этом диапазоне второй прибор в 100 раз точнее первого. Именно по этой причине два прибора с одинаковой базовой погрешностью могут отличаться по цене на порядок.
Частота обновления экрана показывает, сколько раз в секунду на экране будет обновляться измеренное значение. Высокая частота (более 1) полезна для выявления «дребезжащего» сигнала, с кратковременными всплесками или, наоборот, падениями. Только следует иметь в виду, что если в измеряемом диапазоне погрешность намного больше одной единицы счета, «дребезг» может быть вызван погрешностью самого прибора.
Для тех, кому важна точность измерений, следует обратить внимание на приборы класса True RMS – корректно измерять параметры переменного тока несинусоидальной формы могут только такие мультиметры.
Подсветка экрана будет весьма кстати при слабом освещении. Электрошкафы и шкафы автоматики часто располагаются в темных углах и плохо освещенных помещениях, лампы подсветки в них есть не всегда, да и те, что есть, при диагностике и ремонте часто бывают обесточены. Подсветкой экрана мультиметра в этом случае просто необходима.
Функция hold предназначена для фиксации показания на экране. Эта функция может быть удобна, когда по каким-то причинам в процессе измерения экран не попадает в поле зрения. Тогда при измерении нажимается кнопка hold, а показания можно будет просмотреть позже.
Очень полезна функция автоматического определения диапазона измеряемой величины. Ошибка в ручном задании диапазона (например, выбор диапазона 0-200 мВ при напряжении в 100 В) может привести к поломке прибора. Наличие функции автоматического определения диапазона предотвратит опасную ситуацию и подберет диапазон, в котором измерение будет производиться с наибольшей точностью.
Некоторые приборы можно подключать к персональному компьютеру и, с помощью соответствующего ПО, сохранять результаты на компьютере для последующей обработки и анализа.
Варианты выбора
Для домашнего применения будет вполне достаточно [url=»https://www.dns-shop.ru/catalog/17a9ce2c16404e77/multimetry/?p=1&mode=list&stock=2&order=1&f=260-1000&f=5rxv&f=5ryk-5ryj-5ryl-5ryh-5ryi&f=5ryq]недорогого мультиметра с возможностью «прозвонки» цепи и измерения напряжения, тока и сопротивления.
Для ремонта и настройки радиоэлектроники потребуется [url=»https://www.dns-shop.ru/catalog/17a9ce2c16404e77/multimetry/?p=1&mode=list&stock=2&order=1&f=5rxv&f=5rym-i1fb-5ryk-5ryj-5ryl-5ryh-5ryi&f=5ryp&f=5ryq&f=5rz2]мультиметр с низкой погрешностью и возможностью измерять параметры электронных компонентов.
Если измеряемые вами параметры могут случайным образом меняться в большом диапазоне, или если вы просто не хотите каждый раз подбирать диапазон, выбирайте среди [url=»https://www.dns-shop.ru/catalog/17a9ce2c16404e77/multimetry/?p=1&mode=list&stock=2&order=1&f=900-59799&f=5rxv&f=5s2t]моделей с автоматическим определением диапазона.
Если у вас нет желания вникать в цифры, а прибор нужен только для проверки цепей на замыкание/обрыв/наличие напряжения, выбирайте среди простых тестеров.
Если вам необходимо часто измерять силу тока в кабелях, находящихся под напряжением, наличие токовых клещей намного упростит эту задачу.
Если измеренные показания следует вносить в базу данных для последующего анализа и обработки, [url=»https://www.dns-shop.ru/catalog/17a9ce2c16404e77/multimetry/?p=1&mode=list&f=by3d]прибор с возможностью подключения к ПК сможет намного упростить вам работу.
club.dns-shop.ru
Обзор лучшего, мощного и бюджетного мультиметра HoldPeak HP-890CN, NCV Sensor
Небольшой обзор отличного мультиметра HoldPeak HP-890CN.Под катом фото, описание рабочих режимов и небольшой тест.
Внимание: много фотографий.
Приветствую всех посетителей сайта Mysku!
На повестке дня мультиметр HoldPeak HP-890CN.
Несколько структурирую обзор для удобства.
Содержание и быстрая навигация по тексту:
Общая информация про HP890CN
Характеристики HP890CN
Посылка, упаковка, комплект
Внешний вид HP890CN
Режим измерения тока
Режим измерения температуры
Режим неконтактного датчика напряжения
Режим измерения частоты
Режим измерения сопротивления/прозвонка/диодный тест
Режим измерения напряжения
Разборка
Твики
Заключение
Общая информация про HP-890CN
Наверх ▲
Обзор на мультиметр давно хотел написать, но только, как говорится, дошли руки. Обзор не первый на этом сайте, но, надеюсь, пригодится кому-либо.
Мультиметр HoldPeak HP-890CN — это эдакий комбайн, который помимо основных функций измерения, умеет измерять температуру, частоту, емкость, коэффициент передачи транзистора. Из особенностей — умеет работать с токовыми клещами, имеет бесконтактный датчик напряжения. Из приятного — продуманная эргономика с автоматической подсветкой, большим дисплеем, ручным переключением режимов, монтажный магнит и т.п. Выпускается в двух модификациях (с микросхемой-каплей и микросхемой в корпусе).
Несколько слов про компоновку и функции HP-890CN
Сразу даю ссылку на основную тему-хранилище опыта по HP890CN
В мультиметре используется чип-микросхема Dream Tech DTM0660 — достаточная мощная измерительная микросхема, которая устанавливается на многие дорогие мультиметры. Она «умеет» связываться с компьютером и измерять TRUE RMS сигнала. Отмечу питание мультиметра не от «кроны» или «мизинчиковых» батареек, а от двух АА («пальчиковых»).
В верхней части мультиметра присутствует красный и зеленый светодиод неконтактного датчика напряжения (NCV), а также сенсор освещенности, который автоматически включает подсветку в темноте. Яркость подсветки меняется в зависимости от внешнего освещения.
Далее идет сегментный дисплей, на котором присутствует очень много различной информации. Все сегменты используются, кроме индикации последовательного подключения (RS232). Данную функцию нужно активировать в прошивке+нужен адаптер.
Под дисплеем расположены функциональных 6 кнопок.
«SELECT» — выбор функции кнопка выбора дополнительной функции в комбинированном режиме, например:
— в режиме измерения силы тока и напряжения «SELECT» позволяет выбирать между измерением постоянного и переменного тока/напряжения.
— в режиме измерения сопротивления/диодный тест позволяет выбирать между измерением сопротивления, прозвонкой, диодным тестом и измерением ёмкости.
— в режиме измерения температуры позволяет выбирать между градусами ° С и ° F.
«RANGE» — выбор поддиапазона измерения
— для выбора нужного поддиапазона измерения в ручную нужно нажать кнопку «RANGE». Например, «RANGE» позволяет переключать Om > kOm > MOm > Om… и так по кругу.
— нажатие «RANGE» на 2 с возвращает обратно автоматический выбор поддиапазона измерения.
«REL» — выбор режима относительных измерений.
— при нажатии на кнопку «REL» текущий измеренный сигнал становится образцом для последующих измерений. Показания будут вычитаться. Например, если измерить батарейку 1.5В, затем нажать кнопку «REL», изменить батарейку на 9В, то на дисплее будет отображаться относительная разница показаний 7.5В. Особенно удобно при настройке аналоговых сигналов, делителей и т.п.
«Hz/Duty» — переключение частота/скважность
— «Duty» — это скважность. Переключение возможно в режимах измерения переменного тока/напряжения и в режиме измерения частоты.
«HOLD» — фиксации данных.
— для сохранения текущего измерения необходимо нажать кнопку «HOLD». Измеренное значение остается на дисплее до последующего нажатия кнопки «HOLD». Я пользуюсь для того, чтобы зафиксировать показания: записать или сфотографировать.
«MAX/MIN» — — отображение минимальных и максимальных измеренных значений.
— эта функция позволяет показывать минимальные и максимальные значения, запомненные в процессе измерения. Актуально при измерении чего-либо с переходным процессом. Можно использовать в режиме измерения сопротивления, температуры, напряжения и силы тока.
— для включения максимального значения измерения нужно нажать кнопку «MAX/MIN» 1 раз. Далее для включения минимального значения еще 1 раз.
— для деактивации режима нужно нажать кнопку «MAX/MIN» на 2 с.
В центре классически расположен селектор режимов измерения («Крутилка»), имеющий два равноценных положения выключения (крайнее влево и крайнее вправо). Присутствует автоматическое выключение мультиметра при неиспользовании. В указателе селектора присутствует прозрачная вставка с подсветкой — в темноте подсвечивается выбранный режим. Многие режимы — комбинированные, то есть можно выбирать вручную требуемый поддиапазон/подрежим
В самом низу расположены четыре гнезда для щупов/термощупа/токовых клещей. Присутствует подробная маркировка. Из необычного отмечу специальную шторку, которая закрывает неиспользующиеся гнезда от несанкционированного подключения
Характеристики HP-890CN
Наверх ▲
Бренд: HoldPeak
Модель: HP-890CN
Цвет: серый+зеленый
Материал: пластик, резиновая вставка
Разрядность шкалы: 6000 отсчетов
Автоматическим выбор диапазонов: да
Размер экрана: 60 х 35 мм
Постоянное напряжение: 60mV/600mV/6V/60V/600V/1000V
Переменное напряжение (True RMS): 60mV/600mV/6V/60V/600V/750V
Постоянный ток: 600μA/6000μA/60mA/600mA/6A/20A/600A
Переменный ток (True RMS): 600μA/6000μA/60mA/600mA/6A/20A/600A
Сопротивление: 600Ω/6KΩ/60KΩ/600KΩ/6MΩ/60MΩ
Емкость: 9.999nF/99.99nF/999.9nF/9.999μF/99.99μF/999.9μF/9.999mF/99.99mF
Частота: 9.999Hz/99.99Hz/999.9Hz/9.999KHz/99.99KHz/999.9KHz/9.999MHz
Скважность: 0.1% to 99.9%
Температура: -20~1000°C/ -4~1832°F
Диодный тест: Да
Прозвонка цепей: Да
Измерение hFE транзисторов: 0-1000
Беcконтактный детектор напряжения (NCV): 90V~1000V AC RMS
Питание: 2 x 1.5V AA батарейки (в комплект не входят)
Размеры прибора: 19 x 8.5 x 3.5 см
Вес прибора: 300 г
Размер упаковки: 21.7 x 13 x 5.5 см
Вес с упаковкой: 543 г
Комплект поставки:
1 * Прибор
1 * Чехол
1 * Щупы
1 * Термопара K-типа
1 * Руководство пользователя, (English)
Посылка, упаковка, комплект
Наверх ▲
Итак, мультиметр был куплен достаточно давно
Дополнительная информация — скрин ЛК
Да, каюсь, можно было бы найти и подешевле. Правда не сильно. На Али цены были $26-28. А мне важно было заплатить палкой. Конвертировать деньги, чтобы купить на Али было не выгодно, да и экономия — 1-2 бакса.Пришел упакованный в пакет с пупыркой (простой почтовый пакет), внутри — коробка с мультиметром.
Коробка фирменная, цветная, присутствует множество информации. Есть указание о конкретной модели внутри (890CN).
На обратной стороне — сравнительная таблица с параметрами ряда моделей HoldPeak 880/890.
Также присутствует информация о производителе и дистрибьютерах
Распаковываем. Я ожидал увидеть чехол отдельно, мультиметр отдельно. Но все идет уже «в боевой готовности». Мультиметр упакован в чехол.
Внутри упаковки находится достаточно большой чехол, содержащий весь комплект мультиметра.
Собственно говоря, на фотографии представлен весь комплект поставки: инструкция, измерительные щупы (Пара), щуп с температурным датчиком (термопара К-типа), мультиметр и чехол.
Мультиметр без батареек. Щупы запаяны в пакет.
Сразу хочу обратить внимание на чехол для хранения мультиметра
Это большой и просторный чехол, в котором мультиметр с комплектом (!) можно перевозить/переносить/хранить и использовать постоянно. Внутри есть кармашек, можно доложить что-либо свое.
Пришит хвостик для удобства
Присутствует простая пластиковая молния
А вот измерительные щупы из комплекта — очень даже неплохие. Изоляция силиконовая>>>(требует проверки).
Сами по себе — не из дешевых
Мультиметр в меру легкий для своих размеров. Масса около 300г. На фото мультиметр с парой простых батареек (320г)
Внешний вид HP890CN
Наверх ▲
Мультиметр большой, имеет форму с утончением в центре («фигуристый»), имеет большой «глазастый» дисплей.
На корпусе присутствует резиновая вставка, которая частично защищает корпус от внешних воздействий, а частично выполняет функции антискользящей накладки
Вид мультиметра сбоку. Прорезиненная вставка
Вид сзади — подставка и магнит.
Для того, чтобы откинуть подставку достаточно подцепить ее пальцем и вытолкнуть наружу. В открытом положении подставка фиксируется. Подставка не производит впечатление хлипкой.
Получается достаточно удобный способ работы на столе.
Показания на дисплее считывать удобнее. Хотя это все дело привычки.
На обратной стороне есть монтажный магнит.
Магнит достаточно сильный — он уверенно удерживает корпус прибора на металлической поверхности. На фото примагнитил отвертку.
Крайне полезная фича, особенно электрикам или монтажникам при работе с электрическими шкафами — повесил на дверцу шкафа и ковыряешься без проблем, если хватает длины щупов
Про экран я уже писал выше. Размер основных сегментов просто огромный, если сравнивать с карманными тестерами.
Гнезда для щупов имеют механическую защиту от ошибки подключения (отверстия перекрываются шторками и не позволяют испортить прибор неправильными действиями пользователя).
На фото закрыты два дополнительных силовых отверстия.
В таком режиме можно измерять силу тока до 800мА, температуру.
А в таком — ток до 20А. И при вставленных щупах уже не будет возможности переключить режим измерения. Только после отключения от цепи и щупа. Это правильный подход.
Фактически, это защита от дурака Poka Yoke в действии: невозможно установить режим при неправильно подключенных щупах, и обратное следствие: невозможно переключить режим, если щупы подключены неподобающим образом.
Про функцию «MAX/MIN»
Удобно просматривать диапазон измеренных значений.
Автоматическая работа подсветки
Пара фотографий для сравнения мультиметра с другими моделями.
HP890CN vs Richmeters 098
HP890CN vs DT-830B
Явно видно преобладание размеров. Мультиметр HP890CN точно не подходит под разряд «карманных».
Для оценки размеров корпуса приложил линейку
Сравнение моделей
Дополнительная информация — инструкция пользователя
ОтсюдаРежим измерения тока
Наверх ▲
Ну и традиционно провел несколько тестов, для оценки точности мультиметра.
Для начала — самый первый режим измерения — измерение тока. Собираю стенд с резистором и источником питания Б5-71/1м, мультиметром GW Instek GDM-8256, подключаю щупы. HP890CN автоматически выбирает диапазон измерения и режим — постоянный ток.
Выставляю 1А. Точность по сравнению с Instek GDM-8256 отличная — разница идет в четвертом разряде.
Режим измерения температуры
Наверх ▲
Следующий режим измерения — это измерение температуры.
Распаковываю и подключаю щуп.
Вот здесь как раз важно положение селектора — с установленным термощупом нельзя выбрать другой диапазон измерений.
Точность измерения относительно небольшая. Щуп имеет большую металлическую часть — для корректных показаний нужно, чтобы он хоть сколько прогрелся. На фото остывающая кружка с молоком. 83 ° С
Замер температуры рубашки кабеля
Режим неконтактного датчика напряжения
Наверх ▲
Это режим NCV. Вообще очень (слишком) чувствительный, ловит помехи вместо электромагнитных полей. Чуть чуть приходит в себя после корректировки порога срабатывания на 50мВ (информация про твики ниже).
Если нет в близи проводов под напряжением, мультиметр спокоен (EF)
При приближении начинают индицироваться сегменты — Чем ближе — тем больше, от 1 до 4. Дополнительно есть световая/звуковая индикация, частота которой зависит от силы электромагнитного поля
Подносим еще ближе
Подносим еще еще ближе
Очень «горячо»
Интересная, малополезная функция. Скрытую проводку без напряжения не видит, зато чувствует «погоду на Марсе». Видит не сильно заглубленную проводку под напряжением. Можно оценивать наличие напряжения на проводах/кабелях перед проведением работ. Рекомендую прочитать тему на казусе и корректировку уставок.
Режим измерения частоты
Наверх ▲
Следующий режим измерения — режим измерения частоты.
Подключаемся обычными щупами.
Проверил частоту в розетке — соответствует ))))
Режим измерения сопротивления/прозвонка/диодный тест
Наверх ▲
Один из основных режимов работы — это комбинированный режим измерения сопротивления (тут же в прозвонка, диодный тест, измерение емкости).
При замыкании щупы показывают практически 0.
Выбираю прозвонку — мультиметр пищит (на дисплее индикация звукового сигнала)
Собираю (опять) стенд с резистором и источником питания Б5-71/1м, мультиметром GW Instek GDM-8256, подключаю щупы. HP890CN автоматически выбирает диапазон измерения Омы.
Подключаю резистор на 3 Ома (примерно)
Показания Instek GDM-8256
И измерение сопротивления жилы провода — ну тут нужен миллиомметр, мультиметр честно показывает минимальное сопротивление
Режим измерения напряжения
Наверх ▲
Самый «классический» режим. Подключаем штатно щупы.
Измеряем напряжение в розетке. Мультиметр выбирает переменное напряжение и диапазон самостоятельно
Просто для оценки — у меня стоит «показометр» на РН111М, который явно занижает показания.
Кстати полезная штука, так как периодически напряжение скачет over 245V. А пару раз было срабатывание (защита от заниженного) с криком из соседней квартиры «@#@яя!!» и небольшим хлопком. Теперь буду знать, что занижает на 5В.
Собираю (опять) стенд с резистором и источником питания Б5-71/1м, мультиметром GW Instek GDM-8256, подключаю щупы. HP890CN автоматически выбирает диапазон измерения Вольты.
Опять отличия в четвертом регистре с GW Instek GDM-8256
Разборка
Наверх ▲
Установка батареек в отсек. Нужна небольшая крестовая отвертка
А для разборки нужно демонтировать резиновую вставку
Откручиваем корпусные винты
Открываем корпус. Перед нами основная плата мультиметра
Клеммы, шунт, предохранители (2 шт)
Очень удобно, что присутствует маркировка каждого предохранителя (800мА 250В и 20А 250В). Также присутствует маркировка каждой клеммы
Выпрямительный мост
В мультиметре используется ASIC DTM0660 от Dream Tech International Ltd. В моем случае — в виде капли-кляксы. На плате присутствуют посадочные площадки для монтажа микросхемы в корпусе — другие модели HP890CN идут как раз с такой микросхемой.
В верхней части платы установлена антенна в виде пластины (NCV)
Тип и ревизия платы
Внимание — гребенка S1 для подключения, а также P1,
Два провода — питание подсветки дисплея. Плюс видно кварц, пищалку
В центре светодиод подстветки селектора
Разбираем вторую половину корпуса
Световая панель плюс видно дисплей и токопроводящую резинку
Защитная шторка гнезд
Перемещается по пазу, в зависимости от положения селектора. Из-за специальной формы может поочередно закрывать некоторые отверстия
Панель подсветки дисплея, контакты дисплея.
Хорошо видно зеленый и красный светодиоды индикации, а также фоторезистор между ними. Данный фоторезистор отвечает за включение и интенсивность подсветки дисплея
Контакты селектора режимов на плате. Синий блок — гнезда для тестера транзисторов
В центре присутствует светодиод подсветки селектора
Если установить батарейки и селектор — можно проверить работу мультиметра без корпуса (только зачем ?)
За щелчки (фиксацию) селектора в нужном режиме отвечает вот такой шарик.
На корпусе присутствуют пружинки, а в ручке селектора есть насечка. Также на фото видно блок кнопок
На всякий случай — принципиальная схема мультиметра
Твики
Наверх ▲
Из уже существующей информации с форумов и других источников по твикам данного типа мультиметров, выделю основные на мой взгляд полезные моменты.
1) Активация RS-232
Во-первых, нужно UART/RS232 переходник для подключения к компьютеру, затем софт для связи.
Во-вторых, активация данного режима в прошивке.
Внимание, не у всех получается его активировать. На фото плата мультиметра с корпусной DTM0660 и подключенной линией связи к компьютеру.
2) Калибровка
Цитата с казуса.
Для входа в штатный режим калибровки нужно замкнуть S1 ( по схеме J8 ) и включить мультиметр.
Начнутся тесты чего-то там внутреннего, после завершения тестов должен включиться непосредственно режим калибровки. Для того, чтобы не было ошибок Err, лучше сразу переключить селектор либо на Ω, либо на Hz, тогда тесты пройдут без ошибок. Тесты можно пропустить и перейти сразу в режим калибровки. Для этого во время прохождения тестов нужно нажать кнопку SELECT.
Сама калибровка, на мой взгляд, довольно калечная. Для ее проведения нужно иметь образцы “эталонов” с нулевыми младшими разрядами, потому как кнопками “-“ (HOLD) и “+” (все остальные, кроме SELECT) изменяется только старший разряд, а все остальные разряды обнуляются. В принципе, для токов, напряжений и сопротивлений ничего сложного, а вот для емкостей возникают определенные трудности. Получить номинал конденсатора с нулевыми младшими разрядами не так-то просто.
Подробно расписывать процесс калибровки в штатном режиме не вижу смысла, ибо есть более понятный способ. Хотя, для его реализации нужно иметь программатор EEPROM и немножко попаять.
Все калибровочные константы находятся в EEPROM 24C02, поэтому и нужен программатор для чтения, модификации и записи обновленных данных. Для программирования нужно 3 провода (SCL, SDA и общий). Программатор PICKIT2. Для работы с EEPROM нужно включать питание мультиметра. Для разрешения записи в EEPROM нужно установить перемычку S1 ( по схеме J8 ).
Первым делом нужно считать данные с 24C02 и сохранить их. Назначения ячеек памяти можно посмотреть в ДШ на DTM0660 или в
EEPROM_HP-890CN.pdf
3) Корректировка чувствительности NCV. Входим в штатный режим калибровки. С помощью установочных констант можно изменить некоторые режимы, например, изменить чувствительность режима NCV.
Кнопками “-“ (HOLD) и “+” (все остальные, кроме SELECT) корректируется старший разряд, младшие разряды при этом обнуляются.
Установка 50мВ — позволяет снизить чувствительность NCV (ячейки 24H, 25H, 26H, 27H)
Заключение
Наверх ▲
Выводы: Достаточно неплохой бюджетный мультиметр с отличным соотношением цена/качество. В своей ценовой категории может заткнуть за пояс любого.
Подойдет для использования в качестве повседневного/рабочего инструмента.
Продуманная эргономика, защита от дурака, удобный комплект с чехлом — все это делает HoldPeak HP-890CN незаменимым помощником.
Ну и мультиметр уже успел засветиться в опубликованных обзорах, например, в обзоре кабеля Syncwire USB
Замер падения напряжения на проводах.
На мультиметр сейчас действует купон OCE0833, снижающий стоимость до $20.99. Обидно, брал дороже.
Ссылки и полезная информация:
Английский мануал HP890CN
Сравнение моделей
Прошивка и твики
Режимы HP-890CN.pdf
Обзоры мультиметра:
mikesmith c Kazus
fedor0804
и мега-обзор от AleksPoroshin
mysku.ru
Мультиметр — Википедия
Цифровой мультиметр с функциями измерения частоты, проверки биполярных транзисторов, измерения температуры и автоматическим выбором предела измерений. Комбинированный прибор Ц4324 Мультиметр высокой точности Gossen Metra Hit 23S. Базовая погрешность 0,05 % измеряемой величины + 3 младших разряда Карманный ампервольтметр 1920-х годовМультиме́тр (от англ. multimeter), те́стер (от англ. test — испытание), аво́метр (от ампервольтомметр) — комбинированный электроизмерительный прибор, объединяющий в себе несколько функций.
В минимальном наборе включает функции вольтметра, амперметра и омметра. Иногда выполняется мультиметр в виде токоизмерительных клещей. Существуют цифровые и аналоговые мультиметры.
Мультиметр может быть как лёгким переносным устройством, используемым для базовых измерений и поиска неисправностей, так и сложным стационарным прибором со множеством возможностей.
Название «мультиметр» впервые закрепилось именно за цифровыми измерителями, в то время как аналоговые приборы часто именуются «тестер», «авометр», а иногда и просто «Цешка» (отечественные).
Наиболее простые цифровые мультиметры имеют портативное исполнение. Их разрядность 2,5 цифровых разряда (погрешность обычно около 10 %). Наиболее распространены приборы с разрядностью 3,5 (погрешность обычно около 1,0 %). Выпускаются также чуть более дорогие приборы с разрядностью 4,5 (точность обычно около 0,1 %) и существенно более дорогие приборы с разрядностью 5 разрядов и выше (так, прецизионный мультиметр 3458A производства Keysight Technologies (до 3 ноября 2014 г. Agilent Technologies) имеет 8,5 разрядов). Среди таких мультиметров встречаются как портативные устройства, питающиеся от гальванических элементов, так и стационарные приборы, работающие от сети переменного тока. Точность мультиметров с разрядностью более 5 сильно зависит от диапазона измерения и вида измеряемой величины, поэтому оговаривается отдельно для каждого поддиапазона. В общем случае точность таких приборов может превышать 0,01 % (даже у портативных моделей).
Многие цифровые вольтметры (например В7-22А, В7-40, В7-78/1 и т. д.) по сути также являются мультиметрами, поскольку способны измерять кроме напряжения постоянного и переменного тока также сопротивление, силу постоянного и переменного тока, а у ряда моделей также предусмотрено измерение ёмкости, частоты, периода и т. д.). Также к разновидности мультиметров можно отнести скопметры (осциллографы-мультиметры), совмещающие в одном корпусе цифровой (обычно двухканальный) осциллограф и достаточно точный мультиметр. Типичные представители скопметров — АКИП-4113, АКИП-4125, ручные осциллографы серии U1600 фирмы Keysight Technologies и т. д.).
Разрядность цифрового измерительного прибора, например, «3,5» означает, что дисплей прибора показывает 3 полноценных разряда, с диапазоном от 0 до 9, и 1 разряд — с ограниченным диапазоном. Так, прибор типа «3,5 разряда» может, например, давать показания в пределах от 0,000 до 1,999, при выходе измеряемой величины за эти пределы требуется переключение на другой диапазон (ручное или автоматическое).
Индикаторы цифровых мультиметров (а также вольтметров и скопметров) изготавливаются на основе жидких кристаллов (как монохромных, так и цветных) — APPA-62, В7-78/2, АКИП-4113, U1600 и т. д., светодиодных индикаторов — В7-40, газоразрядных индикаторов — В7-22А, электролюминисцентных дисплеев (ELD) — 3458A, а также вакуумно-люминесцентных индикаторов (VFD) (в том числе и цветных) — В7-78/1.
Типичная погрешность цифровых мультиметров при измерении сопротивлений, постоянного напряжения и тока менее ±(0,2 % +1 единица младшего разряда). При измерении переменного напряжения и тока в диапазоне частот 20 Гц…5 кГц погрешность измерения ±(0,3 %+1 единица младшего разряда). В диапазоне высоких частот до 20 кГц при измерении в диапазоне от 0,1 предела измерения и выше погрешность намного возрастает, до 2,5 % от измеряемой величины, на частоте 50 кГц уже 10 %. С повышением частоты повышается погрешность измерения.
Входное сопротивление цифрового вольтметра порядка 10 МОм (не зависит от предела измерения, в отличие от аналоговых), ёмкость — 100 пФ, падение напряжения при измерении тока не более 0,2 В. Питание портативных мультиметров обычно осуществляется от батареи напряжением 9В. Потребляемый ток не превышает 2 мА при измерении постоянных напряжений и токов, и 7 мА при измерении сопротивлений и переменных напряжений и токов. Мультиметр обычно работоспособен при разряде батареи до напряжения 7,5 В[1].
Количество разрядов не определяет точность прибора. Точность измерений зависит от точности АЦП, от точности, термо- и временной стабильности применённых радиоэлементов, от качества защиты от внешних наводок, от качества проведённой калибровки.
Типичные диапазоны измерений, например для распространённого мультиметра M832:
- постоянное напряжение: 0..200 мВ, 2 В, 20 В, 200 В, 1000 В
- переменное напряжение: 0..200 В, 750 В
- постоянный ток: 0..2 мА, 20 мА, 200 мА, 10 А (обычно через отдельный вход)
- переменный ток: нет
- сопротивления: 0..200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОм.
Устройство[править | править код]
Аналоговый мультиметр состоит из стрелочного магнитоэлектрического измерительного прибора (микроамперметра), набора добавочных резисторов для измерения напряжения и набора шунтов для измерения тока. В режиме измерения переменных напряжений и токов микроамперметр подключается к резисторам через выпрямительные диоды[2]. Измерение сопротивления производится с использованием встроенного источника питания, а измерение сопротивлений более 1..10 МОм — от внешнего источника.
Особенности и недостатки[править | править код]
- Недостаточно высокое входное сопротивление в режиме вольтметра.
- Технические характеристики аналогового мультиметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем выше чувствительность (меньше ток полного отклонения) микроамперметра, тем более высокоомные добавочные резисторы и более низкоомные шунты можно применить. А значит, входное сопротивление прибора в режиме измерения напряжений будет более высоким, падение напряжения в режиме измерения токов будет более низким, что уменьшает влияние прибора на измеряемую электрическую цепь. Тем не менее, даже при использовании в мультиметре микроамперметра с током полного отклонения 50 мкА[3], входное сопротивление мультиметра в режиме вольтметра составляет всего . Это приводит к большим погрешностям измерения напряжения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
- В свою очередь, мультиметр с недостаточно низкоомными шунтами вносит большую погрешность измерения тока в низковольтных цепях.
- Нелинейная шкала в некоторых режимах.
- Аналоговые мультиметры имеют нелинейную шкалу в режиме измерения сопротивлений. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля специальным регулятором на передней панели при замкнутых входных клеммах прибора, так как точность измерения сопротивления зависит от напряжения внутреннего источника питания.
- Шкала на малых пределах измерения переменного напряжения и тока также может быть нелинейной.
- Требуется правильная полярность подключения.
- Аналоговые мультиметры, в отличие от цифровых, не имеют автоматического определения полярности напряжения, что ограничивает удобство их использования и область применения: они требуют в режиме измерения постоянных напряжений/токов, и практически непригодны для измерения .
- ACV (англ. alternating current voltage — напряжение переменного тока) — измерение переменного напряжения.
- DCV (англ. direct current voltage — напряжение постоянного тока) — измерение постоянного напряжения.
- DCA (англ. direct current amperage — сила постоянного тока) — измерение постоянного тока.
- Ω — измерение электрического сопротивления.
В некоторых мультиметрах доступны также функции:
- Измерение силы переменного тока.
- Прозво́нка — измерение электрического сопротивления со звуковой (иногда и световой) сигнализацией низкого сопротивления цепи (обычно менее 50 Ом).
- Генерация тестового сигнала простейшей формы (гармонической или импульсной) для оперативной проверки функционирования усилительных трактов и линий передачи (Ц4323 «Приз», 43104).
- Тест диодов — проверка целостности полупроводниковых диодов и определение их полярности.
- Тест транзисторов — проверка полупроводниковых транзисторов и, как правило, определение статического коэффициента передачи тока h21э (например, тестеры ТЛ-4М, Ц4341).
- Измерение электрической ёмкости (Ц4315, 43101 и др.).
- Измерение индуктивности (редко).
- Измерение температуры, с применением внешнего датчика (как правило, термопара градуировки К (ХА)).
- Измерение частоты напряжения.
- Измерение большого сопротивления (обычно до сотен МОм; требуется внешний источник питания).
- Измерение большой силы тока (с использованием подключаемых/встроенных токовых клещей).
Дополнительные возможности:
- Защита входных цепей тестера в режиме измерения сопротивления при случайной подаче на вход внешнего напряжения
- Защита тестера при неправильном выборе предела измерения (может вызвать повреждение измерительного механизма аналогового тестера), и при подключении к источнику напряжения в режиме измерения тока (приводит к протеканию токов короткого замыкания, и может вызвать возгорание токовых шунтов и всего мультиметра). Защита выполняется на основе плавких предохранителей и быстродействующих автоматических выключателей.
- Автоотключение питания
- Подсветка дисплея
- Фиксирование результатов измерений (отображаемое значение и/или максимальное)
- Автоматический выбор пределов измерения (auto-ranging)
- Индикация разряда батарейки
- Индикация перегрузки
- Режим относительных измерений
- Запись и хранение результатов измерений
- ↑ Теоретические основы электротехники и электроники
- ↑ Направление отклонения рамки магнитоэлектрического микроамперметра зависит от направления протекающего тока, поэтому непосредственное измерение переменного напряжения и тока невозможно: стрелка будет дрожать возле нулевого значения.
- ↑ Egon Penker. Unigor 4p Type 226224 Equipment Metrawatt, BBC Goerz (англ.). Radiomuseum.org. — Типичные значения в массовых отечественных приборах — 50..200 мкА. Высокоточные мультиметры марки Unigor производства Австрии имели в своем составе более чувствительный микроамперметр с током полного отклонения 40 мкА (Unigor 3s) и даже 10 мкА. Дата обращения 4 июня 2017.
- Бензарь В. К. Словарь-справочник по электротехнике, промышленной электронике и автоматике. — 2-е изд., пер. и доп. — Мн.: Вышэйшая школа, 1985. — С. 7. — 176 с.
ru.wikipedia.org
Правила измерения индуктивности с помощью мультиметра, подключение приставки
При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.
Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.
Аналоговый мультиметр
Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло.
Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.
Цифровой мультиметр
В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.
Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.
Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.
Измеритель индуктивности для мультиметра
Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.
Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.
Сборка платы приставки
Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.
В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.
Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.
Подойдет большинство высокочастотных транзисторов, с параметрами h31Э для одного не меньше 150, а для другого более 50.
Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.
Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%.
Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.
Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к мультиметру (частотомеру).
Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.
При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).
Корпус приставки к мультиметру
Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.
Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.
Настройка измерителя индуктивности
Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).
Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.
По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.
Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.
Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.
Проведение замеров индуктивности
После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:
- Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
- Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
- В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.
При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.
evosnab.ru