Мощность через количество теплоты: Количество теплоты и тепловая мощность. Расчет в Excel.

Содержание

Единицы теплоты

 

“…- Сколько попугаев в тебе поместится, такой у тебя рост.
– Очень надо! Я не стану глотать столько попугаев!…”

Из м/ф “38 попугаев”

В соответствии с международными правилами СИ (международная система единиц измерения) количество тепловой энергии или количество тепла измеряется в Джоулях [Дж], также существуют кратные единицы килоДжоуль [кДж] = 1000 Дж., МегаДжоуль [МДж] = 1 000 000 Дж, ГигаДжоуль [ГДж] = 1 000 000 000 Дж. и пр. Эта единица измерения тепловой энергии является основной международной единицей и наиболее часто используется при проведении научных и научно-технических расчётов.

Однако, все из нас знают или хотя бы раз слышали и другую единицу измерения количества теплоты (или просто тепла) это калория, а также килокалория, Мегакалория и Гигакалория, что означают приставки кило, Гига и Мега, смотреть пример с Джоулями выше. В нашей стране исторически сложилось так, что при расчёте тарифов за отопление,  будь то отопление электроэнергией, газовыми или пеллетными котлами принято считать стоимость именно одной Гигакалории тепловой энергии.

Так что же такое Гигакалория, килоВатт, килоВатт*час или килоВатт/час и Джоули и как они связаны между собой?, вы узнаете в этой статье.

Итак, основная единица тепловой энергии это, как уже было сказано, Джоуль. Но прежде чем говорить об единицах измерения необходимо в принципе на бытовом уровне разъяснить что такое тепловая энергия и как и для чего её измерять.

Всем нам с детства известно, чтобы согреться (получить тепловую энергию) нужно что-то поджечь, поэтому все мы жгли костры, традиционное топливо для костра – это дрова.  Таким образом, очевидно, при горении топлива (любого: дрова, уголь, пеллеты, природный газ, солярка) выделяется тепловая энергия (тепло).  Но, чтобы нагреть, к примеру, различные объёмы воды требуется разное количество дров (или иного топлива). Ясно, что для нагрева двух литров воды достаточно нескольких пален в костре, а чтобы приготовить полведра супа на весь лагерь, нужно запастись несколькими вязанками дров. Чтобы не измерять такие строгие технические величины, как количество теплоты и теплота сгорания топлива вязанками дров и вёдрами с супом, теплотехники решили внести ясность и порядок и договорились выдумать единицу количества теплоты. Чтобы эта единица была везде одинаковая её определили так: для нагрева одного килограмма воды на один градус при нормальных условиях (атмосферном давлении) требуется 4 190 калорий, или 4,19 килокалории, следовательно, чтобы нагреть один грамм воды будет достаточно в тысячу раз меньше теплоты – 4,19 калории.

Калория связана с международной единицей тепловой энергии – Джоулем следующим соотношением:

1 калория = 4,19 Джоуля.

Таким образом, для нагрева 1 грамма воды на один градус потребуется 4,19 Джоуля тепловой энергии, а для нагрева одного килограмма воды 4 190 Джоулей тепла.

В технике, наряду с единицей измерения тепловой (и всякой другой) энергии существует единица мощности и, в соответствии с международной системой (СИ) это Ватт. Понятие мощности также применимо и к нагревательным приборам. Если нагревательный прибор способен отдать за 1 секунду 1 Джоуль тепловой энергии, то его мощность равна 1 Ватт.  Мощность, это способность прибора производить (создавать) определённое количество энергии (в нашем случае тепловой энергии) в единицу времени. Вернёмся к нашему примеру с водой, чтобы нагреть один килограмм (или один литр, в случае с водой килограмм равен литру) воды на один градус Цельсия (или Кельвина, без разницы) нам потребуется мощность  1 килокалория или 4 190 Дж. тепловой энергии. Чтобы нагреть один килограмм воды за 1 секунду времени на 1 грдус нам нужен прибор следующей мощности:

4190 Дж./1 с. = 4 190 Вт. или 4,19 кВт.

Если мы хотим нагреть наш килограмм воды на 25 градусов за ту же секунду, то нам потребуется мощность в двадцать пять раз больше т.е.

4,19*25 =104,75 кВт.

Таким образом, можно сделать вывод, что пеллетный котёл мощностью 104,75 кВт. нагревает 1 литр воды на 25 градусов за одну секунду.

Раз мы добрались до Ватт и килоВатт, следует и о них словечко замолвить. Как уже было сказано Ватт – это единица мощности, в том числе и тепловой мощности котла, но ведь кроме пеллетных котлов и газовых котлов человечеству знакомы и электрокотлы, мощность которых измеряется, разумеется, в тех же килоВаттах и потребляют они не пеллеты и не газ, а электроэнергию,  количество которой измеряется в килоВатт часах. Правильное написание единицы энергии килоВатт*час (именно, килоВатт умножить на час, а не разделить), запись кВт/час – является ошибкой!

В электрокотлах электрическая энергия преобразуется в тепловую (так называемое, Джоулево тепло), и , если котёл потребил 1 кВт*час электроэнергии, то сколько же он выработал тепла? Чтобы ответить на это простой вопрос, нужно выполнить простой расчёт.

Преобразуем килоВатты  в  килоДжоули/секунды (килоДжоуль в секунду), а часы в секунды: в одном часе 3 600 секунд, получим:

1 кВт*час =[ 1 кДж/с]*3600 c.=1 000 Дж *3600 с = 3 600 000 Джоулей или 3,6 МДж.

Итак,

1 кВт*час = 3,6 МДж.

В свою очередь, 3,6 МДж/4,19 = 0,859 Мкал = 859 ккал = 859 000 кал. Энергии (тепловой).

Теперь перейдём к Гигакалории, цену которой на различных видах топлива любят считать теплотехники.

1 Гкал = 1 000 000 000 кал.

1 000 000 000 кал. = 4,19*1 000 000 000 = 4 190 000 000 Дж.= 4 190 МДж. = 4,19 ГДж.

Или зная, что 1 кВт*час = 3,6 МДж пересчитаем 1 Гигакалорию на килоВатт*часы:

1 Гкал =  4190 МДж/3,6 МДж = 1 163 кВт*часов!

 

Если прочитав данную статью вы решили, проконсультироваться со специалистом нашей компании по любому вопросу, связанному с теплоснабжением, то вам Сюда!

 

 

 

 

4.5. Мощность тока. Закон Джоуля

Рассмотрим произвольный участок цепи постоянного тока, к концам которого приложено напряжение U. За время t через каждое сечение проводника проходит заряд . Это равносильно тому, что заряд q переносится за время t из одного конца проводника в другой.

При этом силы электростатического поля и сторонние силы, действующие на данном участке, совершают работу . Разделив работу на время t, за которое она совершается, получим мощность, развиваемую током на рассматриваемом участке .

Эта мощность может расходоваться на совершение работы над внешними телами; на протекание химических реакций; на нагревание данного участка цепи и др.

В случае, когда проводник неподвижен и химических превращений в нем не совершается, работа тока затрачивается на увеличение внутренней энергии проводника, в результате чего проводник нагревается. Принято говорить, что при протекании тока в проводнике выделяется тепло

                                          (4.1)      

Это соотношение называется законом Джоуля — Ленца. Оно было экспериментально установлено английским физиком Д. П. Джоулем и подтверждено точными опытами Э. Х. Ленца.

Если сила тока изменяется со временем, то количество теплоты, выделяющееся в проводнике за время t, вычисляется по формуле

.

От формулы (4.1), можно перейти к выражению, характеризующему выделение тепла в различных точках проводника. Выделим в проводнике элементарный объем в виде цилиндра. Согласно закону Джоуля — Ленца, за время d
t
, в этом объеме выделится количество теплоты

,

где — dV элементарный объем. Разделив это выражение на dV и dt, найдем количество теплоты, выделяющееся в единице объема в единицу времени:

.

Величину называют удельной тепловой мощностью тока. Эта формула представляет собой дифференциальную форму закона Джоуля — Ленца.

Вопросы

1) В чем заключается физический смысл удельной тепловой мощности тока
2) Напишите закон Джоуля-Ленца в интегральной и дифференциальной формах

Коэффициент полезного действия (кпд) — формулы, обозначение, расчет

КПД: понятие коэффициента полезного действия

Представьте, что вы пришли на работу в офис, выпили кофе, поболтали с коллегами, посмотрели в окно, пообедали, еще посмотрели в окно — вот и день прошел. Если вы не сделали ни одного дела по работе, то можно считать, что ваш коэффициент полезного действия равен нулю.

В обратной ситуации, когда вы сделали все запланированное — КПД равен 100%.

По сути, КПД — это процент полезной работы от работы затраченной.

Вычисляется по формуле:

Формула КПД

η = (Aполезная/Aзатраченная) * 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Есть такое философское эссе Альбера Камю «Миф о Сизифе». Оно основано на легенде о неком Сизифе, который был наказан за обман. Его приговорили после смерти вечно таскать огромный булыжник вверх на гору, откуда этот булыжник скатывался, после чего Сизиф тащил его обратно в гору. То есть он делал совершенно бесполезное дело с нулевым КПД. Есть даже выражение «Сизифов труд», которое описывает какое-либо бесполезное действие.

Давайте пофантазируем и представим, что Сизифа помиловали и камень с горы не скатился.2

Затраченная работа здесь — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

И как же достоверно определить, какая работа полезная, а какая затраченная?

Все очень просто! Задаем два вопроса:


  1. За счет чего происходит процесс?

  2. Ради какого результата?

В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы). Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

КПД в механике

Главный секрет заключается в том, что эта формула подойдет для всех видов КПД.

Запоминаем!

КПД не может быть больше 100%. В реальной жизни и 100 не встречается, но больше сотни даже в задачах нет. Это значит, что если в задаче получается значение больше 100%, то мы в ответ пишем 100. И никак иначе.

КПД

η = (Aполезная/Aзатраченная) * 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.2

За счет чего процесс происходит?

За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:

η = Eп/A * 100% = mgh/FS * 100%

Подставим значения:

η = 4*9,8*2/15*12 * 100% = 78,4/180 * 100% ≃ 43,6 %

Ответ: КПД процесса приблизительно равен 43,6 %

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

  • Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:


У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

  • Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) * 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа (механическая) [Дж]

Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η — коэффициент полезного действия [%]

Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

Qхолодильника — количество теплоты, отданное холодильнику [Дж]

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

Подставим значения:

η = 20 — 10/20 *100% = 50%

Ответ: КПД тепловой машины равен 50%

Идеальная тепловая машина: цикл Карно

Давайте еще чуть-чуть пофантазируем: какая она — идеальная тепловая машина. Кажется, что это та, у которой КПД равен 100%.

На самом деле понятие «идеальная тепловая машина» уже существует. Это тепловая машина, у которой в качестве рабочего тела взят идеальный газ. Такая тепловая машина работает по циклу Карно. Зависимость давления от объема в этом цикле выглядит следующим образом


А КПД для цикла Карно можно найти через температуры нагревателя и холодильника.

КПД цикла Карно

η = Tнагревателя — Tхолодильника /Tнагревателя *100%

η — коэффициент полезного действия [%]

Tнагревателя — температура нагревателя[Дж]

Tхолодильника — температура холодильника [Дж]

КПД в электродинамике

Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.

Вспомним формулу:

КПД

η = Aполезная/Aзатраченная *100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.

Задачка, чтобы разобраться

Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.

Решение:

Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно 😉

Количество теплоты, затраченное на нагревание

Q = cm(tконечная-tначальная)

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

m — масса [кг]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Работает чайник, потому что в розетку подключен.2)/R *t = UIt

A — работа электрического тока [Дж]

I — сила тока [А]

U — напряжение [В]

R — сопротивление [Ом]

t — время [c]

То есть в данном случае формула КПД будет иметь вид:

η = Q/A *100% = Q/UIt *100%

Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь намм известны все значения, поэтому подставим их:

η = 22176/220*1,4*120 *100% = 60%

Ответ: КПД чайника равен 60%.

Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:

Работа электрического тока

A = Pt

A — работа электрического тока [Дж]

P — мощность [Вт]

t — время [c]

Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.

КПД

η = Pполезная/Pзатраченная *100%

η — коэффициент полезного действия [%]

Pполезная — полезная мощность [Дж]

Pзатраченная — затраченная мощность [Дж]



 

Работа мощность закон джоуля ленца. Работа и мощность тока. Закон Джоуля-Ленца. По закону сохранения энергии

Способность тела производить работу называется энергией тела . Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.

Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.

Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.

Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах :

1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.

Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.

Кратными единицами измерения мощности являются киловатт или мегаватт:

1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В табл. 1 приведена мощность ряда устройств.

Таблица 1

Название устройства

Мощность устройства, кВт

Лампа карманного фонаря

Холодильник домашний

Лампы осветительные (бытовые)

Электрический утюг

Стиральная машина

Электрическая плита

0,6; 0,8; 1; 1,25

Электропылесос

Лампы в звездах башен Кремля

Двигатель электровоза ВЛ10

Электродвигатель прокатного стана

Гидрогенератор Братской ГЭС

Турбогенератор

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

P U

I R

R·I

Рис. 1

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника :

где W и – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника :

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей .

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

где Р 1 или Р ист – мощность, отдаваемая источником энергии во внешнюю цепь;

Р 2 – мощность, получаемая извне или потребляемая мощность;

P или Р 0 вн ) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца : при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q – количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).

>>Физика: Работа и мощность постоянного тока

Электрический ток получил такое широкое применение потому, что он несет с собой энергию . Эта энергия может быть превращена в любую форму.
При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу . Ее принято называть работой тока . Сейчас мы напомним сведения о работе и мощности тока .
Работа тока. Рассмотрим произвольный участок цепи. Это может быть однородный проводник, например нить лампы накаливания, обмотка электродвигателя и др. Пусть за время через поперечное сечение проводника проходит заряд . Электрическое поле совершит при этом работу (U — напряжение между концами участка проводника).
Так как сила тока , то эта работа равна:

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шел ток.
Согласно закону сохранения энергии эта работа должна быть равна изменению энергии рассматриваемого участка цепи. Поэтому энергия, выделяемая на данном участке цепи за время , равна работе тока (см. формулу (15.12)).
Если на участке цепи не совершается механическая работа и ток не производит химических действий, то происходит только нагревание проводника. Нагретый проводник отдает тепло окружающим телам.
Нагревание проводника происходит следующим образом. Электрическое поле ускоряет электроны. После столкновения с ионами кристаллической решетки они передают ионам свою энергию. В результате энергия беспорядочного движения ионов около положений равновесия возрастает. Это и означает увеличение внутренней энергии. Температура проводника при этом повышается, и он начинает передавать тепло окружающим телам. Спустя некоторое время после замыкания цепи процесс устанавливается, и температура перестает изменяться со временем. К проводнику за счет работы электрического поля непрерывно поступает энергия. Но его внутренняя энергия остается неизменной, так как проводник передает окружающим телам количество теплоты, равное работе тока. Таким образом, формула (15.12) для работы тока определяет количество теплоты, передаваемое проводником другим телам.
Если в формуле (15.12) выразить либо напряжение через силу тока, либо силу тока через напряжение с помощью закона Ома для участка цепи, то получим три эквивалентные формулы:

Формулой удобно пользоваться в случае последовательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При параллельном соединении удобна формула так как напряжение на всех проводниках одинаково.
Закон Джоуля — Ленца. Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818-1889) и русским ученым Э. X. Ленцем (1804-1865). Закон Джоуля — Ленца формулируется следующим образом: количество теплоты, выделяемой проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

Мы получили этот закон с помощью рассуждений, основанных на законе сохранения энергии. Формула (15.14) позволяет вычислить количество теплоты, выделяемое на любом участке цепи, содержащем какие угодно проводники.
Мощность тока. Любой электрический прибор (лампа, электродвигатель и т. д.) рассчитан на потребление определенной энергии в единицу времени. Поэтому, наряду с работой тока, очень важное значение имеет понятие мощность тока . Мощность тока равна отношению работы тока ко времени прохождения тока.
Согласно этому определению мощность тока

Из этой формулы очевидно, что мощность тока выражается в ваттах (Вт).
Это выражение для мощности тока можно переписать в нескольких эквивалентных формах, используя закон Ома для участка цепи:

На большинстве приборов указана потребляемая ими мощность.
Прохождение по проводнику электрического тока сопровождается выделением в нем энергии. Эта энергия определяется работой тока — произведением перенесенного заряда и напряжения на концах проводника.

???
1. Что называют работой тока?
2. Что такое мощность тока?
3. В каких единицах выражается мощность тока?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский,Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Работа тока — это работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Отношение работы тока за время t к этому интервалу времени.

В системе СИ:

Электростатика и законы постоянного тока — Класс!ная физика


Любознательным

Следы на песке

Если вам приходилось, гулять по пляжу во время отлива, то, вероятно, вы заметили, что, как только нога ступает на мокрый твердый песок, он немедленно подсыхает и белеет вокруг вашего следа. Обычно это объясняют тем, что под тяжестью тела вода «выжимается» из песка. Однако это не так, потому что песок не ведет себя подобно мочалке. Почему же белеет песок? Будет ли песок оставаться белым все время, пока вы стоите на месте?

Оказывается…
Побеление песка на пляже впервые объяснил Рейнольде в 1885 г. Он показал, что объем песка увеличивается, когда на него наступают. До этого песчинки были «упакованы» самым плотным образом. Под действием деформации сдвига, которая возникает под подошвой ботинка, объем, занимаемый песчинками, может лишь увеличиться. В то время как уровень песка поднимается резко, уровень воды может подняться лишь в результате капиллярных явлений, а на это требуется время. Поэтому на дне следа ноги песок некоторое время оказывается выше уровня воды — он сухой и белый.

Джеймс Прескотт Джоуль (слева) и Эмилий Христианович Ленц (справа)

Электрические нагреватели всевозможных типов используются человечеством уже столетия, благодаря свойству электрического тока выделять тепло при прохождении через проводник. У этого явления есть и негативный фактор – перегретая электропроводка из-за слишком большого тока часто становилась причиной короткого замыкания и возникновения пожаров. Выделение тепла от работы электрического тока изучалось в школьном курсе физики, но многие позабыли эти знания.

Впервые зависимость выделения теплоты от силы электрического тока была сформулирована и математически определена Джеймсом Джоулем в 1841 году, и чуть позже, в 1842 г., независимо от него, Эмилем Ленцем. В честь этих физиков и был назван закон Джоуля-Ленца, по которому рассчитывают мощность электронагревателей и потери на тепловыделение в линиях электропередач.

Определение закона Джоуля – Ленца

В словесном определении, согласно исследований Джоуля и Ленца закон звучит так:

Количество теплоты, выделяемой в определенном объеме проводника при протекании электрического тока прямо пропорционально умножению плотности электрического тока и величины напряженности электрического поля

В виде формулы данный закон выглядит следующим образом:


Выражение закона Джоуля — Ленца

Поскольку описанные выше параметры редко применяются в обыденной жизни, и, учитывая, что почти все бытовые расчеты выделения теплоты от работы электрического тока касаются тонких проводников (кабели, провода, нити накаливания, шнуры питания, токопроводящие дорожки на плате и т. п.), используют закон Джоуля Ленца с формулой, представленной в интегральном виде:


Интегральная форма закона

В словесном определении закон Джоуля Ленца звучит так:


Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:


Эквивалентные выражения теплоты согласно закона Ома

Применение и практическое значение закона Джоуля – Ленца

Исследования Джоуля и Ленца в области тепловыделения от работы электрического тока существенно продвинули научное понимание физических процессов, а выведенные основные формулы не претерпели изменений и используются по сей день в различных отраслях науки и техники. В сфере электротехники можно выделить несколько технических задач, где количество выделяемой при протекании тока теплоты имеет критически важное значение при расчете таких параметров:

  • теплопотери в линиях электропередач;
  • характеристики проводов сетей электропроводки;
  • тепловая мощность (количество теплоты) электронагревателей;
  • температура срабатывания автоматических выключателей;
  • температура плавления плавких предохранителей;
  • тепловыделение различных электротехнических аппаратов и элементов радиотехники.

Электроприборы, в которых используется тепловая работа тока

Тепловое действие электрического тока в проводах линий электропередач (ЛЭП) является нежелательным из-за существенных потерь электроэнергии на тепловыделение.

По различным данным в линиях электропередач теряется до 40% всей производимой электрической энергии в мире. Для уменьшения потерь при передаче электроэнергии на большие расстояния, поднимают напряжение в ЛЭП, производя расчеты по производным формулам закона Джоуля – Ленца.


Диаграмма всевозможных потерь электроэнергии, среди которых теплопотери на воздушных линиях составляют львиную долю (64%)

Очень упрощенно тепловую работу тока можно описать следующим образом: двигаются электроны между молекулами, и время от времени сталкиваются с ними, отчего их тепловые колебания становятся более интенсивными. Наглядная демонстрация тепловой работы тока и ассоциативные пояснения процессов показаны на видео ниже:

Расчеты потерь электроэнергии в линиях электропередач

В качестве примера можно взять гипотетический участок линии электропередач от электростанции до трансформаторной подстанции. Поскольку провода ЛЭП и потребитель электроэнергии (трансформаторная подстанция) соединены последовательно , то через них течет один и тот же ток I. Согласно рассматриваемому тут закону Джоуля – Ленца количество выделяемой на проводах теплоты Q w (теплопотерь) рассчитывается по формуле:

Производимая электрическим током мощность (Q c) в нагрузке рассчитывается согласно закону Ома:

Таким образом, при равенстве токов, в первую формулу можно вставить вместо I выражение Q c /U c , поскольку I = Q c /U c:

Если проигнорировать зависимость сопротивления проводников от изменения температуры, то можно считать R w неизменным (константой). Таким образом, при стабильном энергопотреблении потребителя (трансформаторной подстанции), тепловыделение в проводах ЛЭП будет обратно пропорционально квадрату напряжения в конечной точке линии. Другими словами, чем больше напряжение электропередачи, тем меньше потери электроэнергии.


Для передачи электроэнергии высокого напряжения требуются большие опоры ЛЭП

Работа закона Джоуля – Ленца в быту

Данные расчеты справедливы также и в быту при передаче электроэнергии на малые расстояния – например, от ветрогенератора до инвертора. При автономном энергоснабжении ценится каждый Ватт выработанной низковольтным ветряком энергии, и возможно, будет выгодней поднять напряжение трансформатором прямо у ветрогенератора, чем тратиться на большое сечение кабеля, чтобы уменьшить потери электроэнергии при передаче.


При значительном удалении низковольтного ветрогенератора переменного тока для уменьшения потерь электроэнергии будет выгодней подключение через повышающий трансформатор

В бытовых сетях электропроводки расстояния крайне малы, чтобы уменьшения тепловых потерь поднимать напряжение, поэтому при расчете проводки учитывается тепловая работа тока, согласно закону Джоуля – Ленца при выборе поперечного сечения проводов, чтобы их тепловой нагрев не привел к оплавлению и возгоранию изоляции и окружающих материалов. Выбор кабеля по мощности и электропроводки проводятся согласно таблиц и нормативных документов ПУЭ, и подробно описаны на других страницах данного ресурса.


Соотношения силы тока и поперечного сечения проводников

При расчете температуры нагрева радиотехнических элементов, биметаллической пластины автоматического выключателя или плавкого предохранителя используется закон Джоуля – Ленца в интегральной форме, так как при росте температуры изменяется сопротивление данных материалов. При данных сложных расчетах также учитываются теплоотдача, нагрев от других источников тепла, собственная теплоемкость и множество других факторов.


Программное моделирование тепловыделения полупроводникового прибора

Полезная тепловая работа электрического тока

Тепловыделяющая работа электрического тока широко применяется в электронагревателях, в которых используется последовательное соединение проводников с различным сопротивлением. Данный принцип работает следующим образом: в соединенных последовательно проводниках течет одинаковый ток, значит, согласно закону Джоуля – Ленца, тепла выделится больше у материала проводника с большим сопротивлением.


Спираль с повышенным сопротивлением накаляется, но питающие провода остаются холодными

Таким образом, шнур питания и подводящие провода электроплитки остаются относительно холодными, в то время как нагревательный элемент нагревается до температуры красного свечения. В качестве материала для проводников нагревательных элементов используются сплавы с повышенным (относительно меди и алюминия электропроводки) удельным сопротивлением — нихром, константан, вольфрам и другие.


Нить лампы накаливания изготовляют из тугоплавких вольфрамовых сплавов

При параллельном соединении проводников тепловыделение будет больше на нагревательном элементе с меньшим сопротивлением, так как при его уменьшении возрастает ток относительного соседнего компонента цепи. В качестве примера можно привести очевидный пример свечения двух лампочек накаливания различной мощности – у более мощной лампы тепловыделение и световой поток больше.

Если прозвонить омметром лампочки, то окажется, что у более мощной лампы сопротивление меньше. На видео ниже автор демонстрирует последовательное и параллельное подключение, но к сожалению, он ошибся в комментарии — будет ярче светить лампа с большим сопротивлением, а не наоборот.

Содержание:

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I — , R — сопротивление проводника, t — период времени. Величина «к» представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока — , сопротивление — в Омах, а время — в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина «к», применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах — одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля — Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Поделись статьей:

Похожие статьи

Задачи на количество теплоты, работа тока и мощность

Задачи на количество теплоты, работа тока и мощность

Вопрос 1. Какое количество теплоты (кДж) выделяет электрический кипятильник мощностью 0,5 кВт за 90 с?

Вопрос 2. Лампочка, рассчитанная на напряжение 110 В, имеет мощность 40 Вт. Определите сопротивление лампочки.

Вопрос 3. К сети напряжением 120 В параллельно подключены три лампы мощностью 40 Вт каждая и холодильник, потребляющий ток 2 А. Определите силу тока в цепи.

Вопрос 4. Электронагреватель имеет две одинаковые секции нагревательного элемента. Если эти секции соединить последовательно и включить в сеть, то на них выделится мощность 300 Вт. Какая мощность выделится, если эти секции соединить параллельно и уменьшить сетевое напряжение в 2 раза?

Вопрос 5. Три лампочки мощностью P1=50 Вт, P2=25 Вт и P3=50 Вт, рассчитанные на напряжение 110 В каждая, соединены, как показано на схеме, и включены в сеть напряжением 220 В. Определите мощность на лампочке 1.

Вопрос 6. На участке пути электровоз развивает силу тяги, модуль которой 20 кН. Сила тока в двигателе электровоза 400 А, напряжение 800 В. КПД двигателя 0,75. Определите модуль скорости движения электровоза.

Вопрос 7. Электронагреватель имеет две секции нагревательного элемента, сопротивления которых различны. При включении одной из них вода закипает за 15 мин, вторая нагревает эту же воду до кипения за 30 мин. За какое время (мин) закипит вода, если включить эти секции параллельно?

Вопрос 8. Резистор сопротивлением R1 при напряжении 220 В потребляет мощность 484 Вт, а резистор сопротивлением R2 — мощность 121 Вт. Если сопротивления R1 и R2 поочередно включить последовательно с неизвестным сопротивлением R, то потребляемая ими мощность в обоих случаях оказывается одинаковой. Определите величину сопротивления R.

Вопрос 9. Троллейбус массой 11 т движется равномерно со скоростью 36 км/ч. Напряжение, подведенное к обмотке двигателя, — 650 В, КПД равен 80%. Коэффициент сопротивления движению троллейбуса 0,02. Определите силу тока в обмотке двигателя.

Вопрос 10. Найдите КПД электропечи, которая за промежуток времени 10 мин испаряет воду массой 1 кг, взятую при температуре 200С, если в качестве нагревателя используется нихромовая проволока сечением 0,5 мм2 и длиной 1,5 м. Номинальное напряжение печи 220 В.

Вопрос 11. Подъемный кран поднимает алюминиевую плитку квадратной формы со стороной 2 м и толщиной 20 см без начальной скорости в течение 2 мин с ускорением 0,001 м/с2. Считая, что потерями энергии можно пренебречь, найдите мощность (кВт) мотора крана.

Вопрос 12. Электропоезд идет по горизонтальному пути со скоростью, модуль которой v1, а затем со скоростью, равной по модулю v2, преодолевая подъем с уклоном 0,04. Потребляемая сила тока на горизонтальном участке 240 А, а на подъеме 450 А. Если коэффициент сопротивления движению 0,02, то на сколько процентов v1 больше v2?

Устройство для прямых измерений тепловой мощности и количества теплоты в независимых системах отопления

Область техники, к которой относится изобретение

Изобретение относится к области теплотехнических измерений, осуществляемых при учете тепловой энергии в системах теплоснабжения.

Уровень техники

Предлагаемое устройство относится к средствам измерений тепловой мощности (теплового потока) и тепловой энергии (количества теплоты), выделяемых нагретыми жидкими, газообразными и многофазными теплоносителями в независимых трубопроводных системах теплоснабжения. Традиционно значения этих величин получают с помощью теплосчетчиков, реализующих косвенные методы определения по результатам измерений расхода и температуры теплоносителя расходомерами и термометрами, встраиваемыми в трубопроводы систем отопления, по формуле

Q = G (T1 — T2) КХ (T, р), W = QΔτ, (1)

где Q — тепловая мощность (тепловой поток) [Вт];

G — массовый расход теплоносителя [кг/сек];

T1 и Т2 — значения его температуры на входе и выходе объекта теплопотребления [°С];

КХ (T, р) — коэффициент, учитывающий калорические свойства теплоносителя в зависимости от температуры и давления [Дж/кг⋅°С];

W — тепловая энергия (количество теплоты) [Дж];

Δτ — интервал времени измерений [сек].

Кроме измерений расхода и температуры для получения искомых значений тепловой мощности и количества теплоты привлекают справочные данные по удельной энтальпии или теплоемкости (коэффициент КХ (Т, р) используемого теплоносителя. Достоверность результатов измерений, полученных такими устройствами, зависит от соответствия справочных данных фактическим свойствам используемого теплоносителя.

Аналог устройства

Свободным от указанных недостатков является выбранный в качестве аналога теплосчётчик, реализующий прямой теплометрический метод, использующий для измерений тепловой мощности датчики теплового потока (Патент №2124188 Российская Федерация / Баталов С.С., Черепанов В.Я. // Бюллетень изобретений № 36. — 1998. — 2 с.). В устройстве-аналоге используют встраиваемый в трубопровод системы отопления специальный теплообменник, на боковых поверхностях которого устанавливают пластины с размещёнными на них накладными датчиками теплового потока (тепломерами) и радиаторами, охлаждаемыми внешней средой или термобатареями Пельтье. На входе и выходе теплообменника устанавливают дополнительный малогабаритный датчик теплового потока, который выполняет функцию высокочувствительного дифференциального датчика малых значений разности температуры между входом и выходом теплообменника.

Принцип действия такого устройства заключается в том, что нагретый теплоноситель, проходя по такому теплообменнику охлаждается, создавая на его поверхности тепловой поток. При этом температура теплоносителя понижается. В соответствии с (1) этот тепловой поток равен:

Q0 = GΔt КХ (T, р), (2)

где Q0 — тепловой поток на поверхности теплообменника [Вт];

G — массовый расход теплоносителя [кг/сек];

Δt — понижение температуры теплоносителя [°С];

КХ (T, р) — коэффициент, учитывающий свойства теплоносителя [Дж/кг⋅°С].

При этом датчики теплового потока выдают электрический сигнал

E=Q0/KF, (3)

где Е — электрический сигнал [мВ];

Q0 — тепловой поток на поверхности теплообменника [Вт];

К — коэффициент преобразования датчиков [Вт/ (м2⋅мВ)];

F — суммарная площадь теплоотдающей поверхности датчиков [м2].

Это позволяет определить, входящее в классическую формулу (1), фактическое значение произведения

G КХ (T, р) = Q0/Δt =KEF/Δt, (4)

С учётом этого, из (1) и (2) следует уравнение измерений тепловой мощности, выделяемой системой отопления объекту теплопотребления:

QХ = Q0 (T1 — T2) /Δt = KEF (T1 — T2) /Δt, (5)

В эту формулу не входят значения расхода теплоносителя, а также коэффициент, учитывающий его свойства в зависимости от температуры и давления. Это является главным достоинством предложенного устройства. Недостатком устройства-аналога является необходимость измерений малой разности температуры с высокой точностью, которая трудно достигается несмотря даже на высокую чувствительность используемого для этой цели специального датчика. Поэтому такое устройство может быть успешно реализовано только для измерений на трубопроводах малого диаметра, на которых можно получить достаточные для точных измерений значения перепада температуры на его входе и выходе.

Прототип устройства

Дальнейшее развитие идеи использования прямых измерений тепловой мощности и количества теплоты, с помощью измерительного теплообменника, содержится в устройстве для поверки теплосчетчиков, предлагаемом в качестве прототипа к заявляемому изобретению (Патент RU № 2152008 / Баталов С.С, Черепанов В.Я. Устройство для поверки теплосчетчиков // Бюллетень изобретений №18. — 2000. — 3 с.). Устройство содержит замкнутый контур трубопроводов с нагретым теплоносителем и участком испытаний поверяемых теплосчётчиков, а также дополнительный замкнутый контур трубопроводов с охлаждённым теплоносителем. Теплообмен между контурами осуществляет теплообменник, между рабочими поверхностями пластин которого, установлен датчик теплового потока, связанный с измерительно-вычислительным устройством.

Изобретение — прототип предлагает оригинальную схему (способ) поверки теплосчётчиков, основанную на использовании измерительного теплообменника. Однако устройство и конструкция измерительного теплообменника, как и входящих в его состав специальных датчиков теплового потока, в описании изобретения не рассмотрены. Это является существенным недостатком устройства-прототипа, не позволяющим реализовать его в качестве высокоточного измерителя тепловой мощности и энергии.

Описание изобретения

Задачей предлагаемого изобретения является создание устройства-теплосчётчика на основе измерительного теплообменника, свободного от недостатков аналога и прототипа и обеспечивающего прямые измерения тепловой мощности и энергии в независимых системах теплоснабжения без привлечения данных по расходу, температуре и свойствам теплоносителя.

Решение поставленной задачи достигается тем, что для измерений тепловой мощности и количества теплоты, выделяемых независимой системой отопления, устройство (фиг. 1) содержит разборный пластинчатый теплообменник с теплоизоляцией, установленный между контуром подачи тепла и контуром его потребления. Теплообменник состоит из набора чередующихся друг с другом камер 3 с “горячим” теплоносителем 5, поступающим в них из распределителя потока 4 из контура подачи тепла, и камер 10 с “холодным” теплоносителем 11, который через распределитель потока 12 поступает в контур потребления тепла. Камеры снабжены штуцерами для подачи и отвода теплоносителя и закрыты снаружи слоем теплоизоляции 9, а их полости разделены друг от друга датчиками теплового потока 1, которые контактируют с теплоносителем и отделены от каркаса камер эластичными уплотнителями 2. Герметичность теплообменника обеспечивает прижимное устройство 14, содержащее стойки 6, опоры 7 основание 8 и прижимные пластины 13. Каркас камеры (фиг. 2) теплообменника 15 имеет форму прямоугольной рамки с расположенными по её внутреннему периметру канавками для уплотнителя 16, обеспечивающего герметичность камер. Внутри каркас снабжён выступами 18, формирующими зигзагообразную траекторию потока теплоносителя 17 и одновременно являющимися упорами, предотвращающими прогиб поверхности датчиков теплового потока 1, обусловленный разностью давлений теплоносителя в соседних камерах.

Датчики выполнены в виде сэндвича (фиг. 3), состоящего из двух, скреплённых между собой винтами 20 и снабженных термоэлектрическими датчиками температуры (термопарами) 24, плоских металлических пластин 19 и 23, снабжённых канавками 22 для укладки термоэлектродов термопар, и разделенных тепловым сопротивлением 21 в виде прокладки из материала с низкой теплопроводностью.

Предложенная конструкция датчиков теплового потока с одной стороны, обеспечивает эффективную тепловую связь между камерами теплообменника, а с другой стороны — формирует достаточный для уверенных измерений электрический сигнал, пропорциональный плотности теплового потока. Конструкция датчиков позволяет гарантировать их взаимозаменяемость и идентичность метрологических характеристик. Соотношение сигнала датчиков с плотностью теплового потока предварительно устанавливают и периодически подтверждают с помощью эталонных теплометрических установок, прослеживаемых к первичному эталону поверхностной плотности теплового потока, путем нахождения коэффициента преобразования датчиков:

К = q/Е, (6)

где q — плотность теплового потока [Вт/м2];

Е — сигнал датчиков теплового потока [мВ].

Количество теплоты, проходящих через датчики теплообменника в контур теплопотребления, определяют по формуле

(7)

где W — тепловая энергия (количество теплоты) [Дж];

F — суммарная площадь теплоотдающей поверхности датчиков [м2];

1, τ2] — интервал времени измерений количества теплоты [сек];

Е — сигнал датчиков в этом интервале времени [мВ].

Достигаемый технический результат

Предлагаемое устройство для прямых измерений количества теплоты в системах теплоснабжения на основе измерительных теплообменников позволяет повысить точность учета тепла в независимых системах теплоснабжения без привлечения данных по расходу, температуре и свойствам теплоносителя. Это способствует дальнейшему совершенствованию обеспечения единства измерений тепловой мощности и количества теплоты в системах теплоснабжения. Устройство может быть также широко использовано для коммерческого учета тепла в системах теплоснабжения зданий и сооружений с любыми типами теплоносителей, в том числе, используемых на объектах атомной энергетики.

Краткое описание чертежей

Фиг. 1. Устройство с теплообменником: 1 — датчики теплового потока, 2 — эластичные уплотнители, 3 — камеры для «горячего» теплоносителя, 4 — распределитель «горячего» потока, 5 — «горячий» теплоноситель, 6 — стойки, 7 — опоры, 8 — основание, 9 — теплоизоляция, 10 — камеры для «холодного» теплоносителя, 11 — «холодный» теплоноситель, 12 — распределитель «холодного» потока, 13 — прижимная пластина, 14 — прижимное устройство.

Фиг. 2. Каркас камеры теплообменника: а) 1 — датчики теплового потока (верхний, нижний), 15 — каркас камеры с выступом, 16 — уплотнитель, 17 — теплоноситель; б) вид сверху без верхнего датчика теплового потока, 18 — выступы для формирования траектории теплоносителя.

Фиг. 3. Датчик теплового потока: 19 — верхняя контактная пластина, 20 — крепёж, 21 — тепловое сопротивление, 22 — канавки, 23 — нижняя контактная пластина, 24 — термопары.

Устройство для измерений тепловой мощности и количества теплоты, выделяемых жидкими, газообразными и многофазными теплоносителями в системах отопления, содержащее разборный пластинчатый теплообменник с теплоизоляцией, состоящий из чередующихся и находящихся в тепловом контакте друг с другом теплообменных камер, установленных соответственно в контур подачи тепла и в контур его потребления, герметичность которых обеспечивает прижимное устройство, содержащее стойки, опоры, основание и прижимные пластины, отличающееся тем, что подключенные с помощью штуцеров к распределителям потоков теплоносителя теплообменные камеры представляют собой металлические каркасы, выполненные в форме прямоугольных рамок с внутренними выступами, формирующими зигзагообразную траекторию потока теплоносителя и одновременно являющимися упорами, предотвращающими обусловленный разностью давлений теплоносителя в соседних камерах прогиб съемных датчиков теплового потока, которые с помощью эластичных уплотнителей герметично отделяют теплообменные камеры друг от друга и выполнены в виде сэндвича, состоящего из двух скрепленных между собой винтами плоских металлических пластин с высокой теплопроводностью, разделенных слоем материала с высоким тепловым сопротивлением и снабженных термоэлектрическими датчиками температуры, размещенными в канавках и подключенными к измерителю их сигналов.


Термодинамика — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Теплоемкость вещества

К оглавлению…

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. Тогда количество теплоты (энергии) необходимое для изменения температуры некоторого тела массой m можно рассчитать по формуле:

При этом в этой формуле абсолютно не важно в каких единицах подставлена температура, так как нам важно не ее абсолютное значение, а изменение. Единица измерения удельной теплоемкости вещества: Дж/(кг∙К).

  • Если t2 > t1, то Q > 0 – тело нагревается (получает тепло).
  • Если t2 < t1, то Q < 0 – тело охлаждается (отдает тепло).

Произведение массы тела на удельную теплоемкость вещества, из которого оно изготовлено называется теплоемкостью тела (т.е. просто теплоемкостью без слова «удельная»):

Если в условии задачи сказано про теплоемкость тела, то количество теплоты, отданное или полученное этим телом, можно рассчитать по формуле:

Итак, запомните:

  • Удельная теплоемкость обозначается маленькой буквой с, и является характеристикой вещества.
  • (Просто) Теплоемкость обозначается большой буквой С, и является характеристикой данного тела.

Напомним, что количество теплоты Q отданное каким–либо источником (нагревателем) рассчитывается по формуле: Q = Pt, где: P – мощность источника, t – время, в течение которого источник отдавал тепло. При решении задач не путайте время работы источника и температуру.

 

Фазовые превращения

К оглавлению…

Фазой вещества называется однородная система, например, твердое тело, физические свойства которой во всех точках одинаковые. Между различными фазами вещества при обычных условиях существует четко выраженная граница (поверхность) раздела. При изменении внешних условий (температуры, давления, электрических и магнитных полей) вещество может переходить из одной фазы в другую. Такие процессы называются фазовыми превращениями (переходами).

Процесс фазового перехода из жидкого состояния в газообразное (парообразование) или из твердого в жидкое (плавление) может происходить только при сообщении веществу некоторого количества теплоты. Обратные фазовые переходы (конденсация и кристаллизация, или отвердевание) сопровождаются выделением такого же количества теплоты.

Количество теплоты, поступающее в систему или выделяющееся из нее, изменяет ее внутреннюю энергию. Это означает, что внутренняя энергия пара при 100°С больше, чем жидкости при той же температуре. Указанные фазовые переходы идут при постоянных температурах, которые называются соответственно температурой кипения и температурой плавления. Количество теплоты, необходимое для превращения жидкости в пар или выделяемое паром при конденсации, называется теплотой парообразования:

где: rудельная теплота парообразования. Единица измерения [r] = 1 Дж/кг. Физический смысл удельной теплоты парообразования: она равна количеству теплоты, необходимому для превращения в пар 1 кг жидкости, находящейся при температуре кипения. Превращение жидкости в пар не требует доведение жидкости до кипения. Вода может превратиться в пар и при комнатной температуре. Такой процесс называется испарением.

Количество теплоты, необходимое для плавления тела или выделяемое при кристаллизации (отвердевании), называется теплотой плавления:

где: λ – удельная теплота плавления. Единица измерения [λ] = 1 Дж/кг. Физический смысл удельной теплоты плавления: теплота, необходимая для плавления 1 кг вещества, находящегося при температуре плавления. Удельные теплоты парообразования и плавления называются также скрытыми теплотами, поскольку при фазовых переходах температура системы не меняется, несмотря на то, что теплота к ней подводится.

Обратите внимание: что во время фазовых переходов температура системы не изменяется. А также на то, что сами фазовые переходы начинаются только после достижения необходимой температуры.

Наиболее распространенным источником энергии для нужд человека является топливо – вещество, при сгорании которого выделяется некоторое количество теплоты. Количество теплоты, выделяемое при сгорании топлива массой m, называется теплотой сгорания топлива:

где: qудельная теплота сгорания (теплотворная способность, калорийность) топлива. Единица измерения [q] = 1 Дж/кг. Физический смысл удельной теплоты сгорания топлива: величина, показывающая, какое количество теплоты выделяется при полном сгорании 1 кг топлива.

 

Уравнение теплового баланса

К оглавлению…

В соответствии с законом сохранения энергии для замкнутой системы тел, в которой не происходит никаких превращений энергии, кроме теплообмена, количество теплоты, отдаваемое более нагретыми телами, равно количеству теплоты, получаемому более холодными. Теплообмен прекращается в состоянии термодинамического равновесия, т.е. когда температура всех тел системы становится одинаковой. Сформулируем уравнение теплового баланса: в замкнутой системе тел алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующими в теплообмене, равна нулю:

При использовании такой формы записи уравнения теплового баланса, чтобы не сделать ошибку, запомните: когда Вы будете считать теплоту при нагревании или охлаждении тела, нужно из большей температуры вычитать меньшую, чтобы теплота всегда была положительной. Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то уравнение теплового баланса можно записать в виде:

При использовании такой формы записи, нужно всегда от конечной температуры отнимать начальную. При таком подходе знак их разности сам «покажет» отдаёт тело теплоту или получает.

Запомните, что тело поглощает теплоту если происходит:

  • Нагревание,
  • Плавление,
  • Парообразование.

Тело отдает теплоту если происходит:

  • Охлаждение,
  • Кристаллизация,
  • Конденсация,
  • Сгорание топлива.

Именно в этой теме, имеет смысл не решать задачи в общем виде, а сразу подставлять числа.

Взаимные превращения механической и внутренней энергии

При неупругих ударах механическая энергия частично или полностью переходит во внутреннюю энергию тел, то есть тела могут нагреваться и плавится. В общем случае изменение механической энергии равно выделяющемуся количеству теплоты.

 

Работа идеального газа

К оглавлению…

Термодинамика – это наука о тепловых явлениях. В противоположность молекулярно–кинетической теории, которая делает выводы на основе представлений о молекулярном строении вещества, термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем. Выводы термодинамики опираются на совокупность опытных фактов и не зависят от наших знаний о внутреннем устройстве вещества, хотя в целом ряде случаев термодинамика использует молекулярно–кинетические модели для иллюстрации своих выводов.

Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом. Если процесс протекает достаточно медленно (в пределе бесконечно медленно), то система в каждый момент времени оказывается близкой к равновесному состоянию. Процессы, состоящие из последовательности равновесных состояний, называются квазистатическими (или квазистационарными, еще одно название таких процессов — равновесные).

В изобарном процессе работу идеального газа можно рассчитывать по формулам:

Подчеркнем еще раз: работу газа по расширению можно считать по этим формулам только если давление постоянно. Согласно данной формуле, при расширении газ совершает положительную работу, а при сжатии – отрицательную (т.е. газ сопротивляется сжатию и над ним нужно совершать работу чтобы оно состоялось).

Если давление нельзя считать постоянным, то работу газа находят, как площадь фигуры под графиком в координатах (p, V). Очевидно, что в изохорном процессе работа газа равна нулю.

Ввиду того, что работа газа численно равна площади под графиком, становится понятно, что величина работы зависит от того, какой именно процесс происходил, ведь у каждого процесса свой график, а под ним своя площадь. Таким образом, работа зависит не только и не столько от начального и конечного состояний газа, сколько от процесса, с помощью которого конечное состояние было достигнуто.

 

Внутренняя энергия

К оглавлению…

Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно–кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом. В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема. Внутренняя энергия одноатомного идеального газа рассчитывается по формулам:

Таким образом, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела. Она не зависит от того, каким путем было реализовано данное состояние. Принято говорить, что внутренняя энергия является функцией состояния. Это значит, что изменение внутренней энергии не зависит от того, как система была переведена из одного состояния в другое (а зависит лишь от характеристик первоначального и конечного состояний) и всегда, в любых процессах для одноатомного идеального газа определяется выражением:

Обратите внимание: эта формула верна только для одноатомного газа, зато она применима ко всем процессам (а не только к изобарному, как формула для работы). Как видно из формулы, если температура не изменялась, то внутренняя энергия остаётся постоянной.

 

Первый закон термодинамики

К оглавлению…

Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, то есть изменяются ее макроскопические параметры (температура, давление, объем). Так как внутренняя энергия U однозначно определяется макроскопическими параметрами, характеризующими состояние системы, то отсюда следует, что процессы теплообмена и совершения работы сопровождаются изменением ΔU внутренней энергии системы.

Первый закон (начало) термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом: Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами. Однако, соотношение, выражающее первый закон термодинамики, чаще записывают в немного другой форме:

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами (такая формулировка более удобна и понятна, в таком виде совсем очевидно, что это просто закон сохранения энергии).

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких–либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии.

Адиабатным (адиабатическим) называют процесс, в ходе которого система не обменивается теплотой с окружающей средой. При адиабатном процессе Q = 0. Поэтому: ΔU + A = 0, то есть: A = – ΔU. Газ совершает работу за счет уменьшения собственной внутренней энергии.

 

Первое начало термодинамики и изопроцессы

К оглавлению…

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

Если в задаче явно не сказано, что газ одноатомный (или не назван один из инертных газов, например, гелий), то применять формулы из этого раздела нельзя.

 

Циклы. Тепловые машины

К оглавлению…

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.

Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т.д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние.

Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 > 0 и отдает холодильнику количество теплоты Q2 < 0.

КПД тепловой машины может быть рассчитан по формуле:

где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1).

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Цикл Карно состоит из двух изотерм и двух адиабат. КПД цикла Карно равен:

 

Второе начало (второй закон) термодинамики

К оглавлению…

Первый закон термодинамики не устанавливает направление протекания тепловых процессов. Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми. Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой. Следовательно, процесс теплообмена при конечной разности температур является необратимым.

Обратимыми процессами называют процессы перехода системы из одного равновесного состояния в другое, которые можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний. При этом сама система и окружающие тела возвращаются к исходному состоянию.

Необратимыми являются процессы превращения механической работы во внутреннюю энергию тела из–за наличия трения, процессы диффузии в газах и жидкостях, процессы перемешивания газа при наличии начальной разности давлений и т.д. Все реальные процессы необратимы, но они могут сколь угодно близко приближаться к обратимым процессам. Обратимые процессы являются идеализацией реальных процессов.

Первый закон термодинамики не может отличить обратимые процессы от необратимых. Он просто требует от термодинамического процесса определенного энергетического баланса и ничего не говорит о том, возможен такой процесс или нет. Направление самопроизвольно протекающих процессов устанавливает второй закон термодинамики. Он может быть сформулирован в виде запрета на определенные виды термодинамических процессов.

Английский физик У.Кельвин дал в 1851 году следующую формулировку второго закона: В циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Гипотетическую тепловую машину, в которой мог бы происходить такой процесс, называют «вечным двигателем второго рода». Как уже должно было стать понятно, второе начало термодинамики запрещает существование такого двигателя.

Немецкий физик Р.Клаузиус дал другую формулировку второго закона термодинамики: Невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой. Следует отметить, что обе формулировки второго закона термодинамики эквивалентны.

 

Сложные задачи по термодинамике

К оглавлению…

При решении различных нестандартных задач по термодинамике необходимо учитывать следующие замечания:

  • Для нахождения работы идеального газа надо построить график процесса в координатах p(V) и найти площадь фигуры под графиком. Если дан график процесса в координатах p(T) или V(T), то его сначала перестраивают в координаты p(V). Если же в условии задаётся математическая зависимость между параметрами газа, то сначала находят зависимость между давлением и объёмом, а затем строят график p(V).
  • Для нахождения работы смеси газов используют закон Дальтона.
  • При объединении теплоизолированных сосудов не должна изменяться внутренняя энергия всей системы, т.е. на сколько джоулей увеличится внутренняя энергия газа в одном сосуде, на столько уменьшится в другом.
  • Вообще говоря, давление и температуру газа можно измерять только в состоянии термодинамического равновесия, когда давление и температура во всех точках сосуда одинаковы. Но бывают ситуации, когда давление одинаково во всех точках, а температура нет. Это может быть следствием разной концентрации молекул в разных частях сосуда (проанализируйте формулу: p = nkT).
  • Иногда приходится в задачах по термодинамике использовать знания из механики.

 

Расчет КПД циклов по графику

К оглавлению…

Задачи данной темы по праву считаются одними из самых сложных задач в термодинамике. Итак, для решения Вам придется, во-первых, перевести график процесса в p(V) – координаты. Во-вторых, надо рассчитать работу газа за цикл. Полезная работа равна площади фигуры внутри графика циклического процесса в координатах p(V). В-третьих, необходимо разобраться, где газ получает, а где отдает теплоту. Для этого вспомните первое начало термодинамики. Внутренняя энергия идеального газа зависит только от его температуры, а работа – от объема. Поэтому, газ получает теплоту, если:

  • Увеличиваются и его температура, и объем;
  • Увеличивается объем, а температура постоянна;
  • Увеличивается температура, а объем постоянен.

Газ отдает теплоту, если:

  • Уменьшаются и его температура, и объем;
  • Уменьшается объем, а температура постоянна;
  • Уменьшается температура, а объем постоянен.

Если один из параметров увеличивается, а другой уменьшается, для того, чтобы понять, отдает газ теплоту или получает ее, необходимо «в лоб» по первому началу термодинамики рассчитать теплоту и посмотреть на ее знак. Положительная теплота – газ ее получает. Отрицательная – отдает.

Первый тип задач. В p(V) – координатах график цикла представляет собой фигуру с легко вычисляемой площадью, и газ получает теплоту в изохорных и изобарных процессах. Применяйте формулу:

Обратите внимание, что в знаменателе стоит только теплота, полученная газом за один цикл, то есть теплота только в тех процессах, в которых газ получал ее.

Второй тип задач. В p(V) – координатах график цикла представляет собой фигуру с легко вычисляемой площадью, и газ отдает теплоту в изохорных и изобарных процессах. Применяйте формулу:

Обратите внимание, что в знаменателе стоит только теплота, отданная газом за один цикл, то есть теплота только в тех процессах, в которых газ отдавал ее.

Третий тип задач. Газ получает теплоту не в удобных для расчета изохорных или изобарных процессах, в цикле есть изотермы или адиабаты, или вообще «никакие» процессы. Применяйте формулу:

 

Свойства паров. Влажность

К оглавлению…

Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом, жидком и газообразном. Переход из одного состояния в другое называется фазовым переходом. Испарение и конденсация являются примерами фазовых переходов.

Испарением называется фазовый переход из жидкого состояния в газообразное. С точки зрения молекулярно–кинетической теории, испарение – это процесс, при котором с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, то есть к охлаждению жидкости (если нет подвода энергии от окружающих тел).

Конденсация – это процесс, обратный процессу испарения. При конденсации молекулы пара возвращаются в жидкость.

В закрытом сосуде жидкость и ее пар могут находиться в состоянии динамического равновесия, т.е. число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, это значит, что скорости процессов испарения и конденсации одинаковы. Такую систему называют двухфазной. Пар, находящийся в равновесии со своей жидкостью, называют насыщенным.

Насыщенный пар имеет максимальные: давление, концентрацию, плотность при данной температуре. Они зависят только от температуры насыщенного пара, но не от его объема.

Это означает, что если бы мы сосуд закрыли не крышкой, а поршнем, и после того, как пар стал насыщенным, стали бы его сжимать, то давление, плотность и концентрация пара не изменились бы. Если быть более точным, то давление, плотность и концентрация на небольшое время увеличились бы, и пар стал бы перенасыщенным. Но сразу же часть пара превратилась бы в воду, и параметры пара стали бы прежними. Если поднять поршень, то пар перестанет быть насыщенным. Однако за счёт испарения через некоторое время снова станет насыщенным. Здесь следует учесть, что если воды на дне сосуда нет или её немного, то это испарение может оказаться недостаточным, чтобы пар снова стал насыщенным.

  • Фраза: «В закрытом сосуде с водой…» – означает, что над водой насыщенный пар.
  • Выпадение росы означает, что пар становится насыщенным.

Абсолютной влажностью ρ называют количество водяного пара, содержащегося в 1 м3 воздуха (т.е. просто плотность водяных паров; из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

где: р – парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура. Единица измерения абсолютной влажности в СИ [ρ] = 1 кг/м3, хотя обычно используют 1 г/м3.

Относительной влажностью φ называется отношение абсолютной влажности ρ к тому количеству водяного пара ρ0, которое необходимо для насыщения 1 м3 воздуха при данной температуре:

Относительную влажность можно также определить как отношение давления водяного пара р к давлению насыщенного пара р0 при данной температуре:

Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (то есть давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением. Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.

В частности, при нормальном атмосферном давлении вода кипит при температуре 100°С. Это значит, что при такой температуре давление насыщенных паров воды равно 1 атм. Важно знать, что температура кипения жидкости зависит от давления. В герметически закрытом сосуде жидкость кипеть не может, т.к. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром.

 

Поверхностное натяжение

К оглавлению…

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может скачком переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

Вследствие плотной упаковки молекул сжимаемость жидкостей, то есть изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (то есть увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔAвнеш, пропорциональную изменению ΔS площади поверхности.

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади:

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости на единицу при постоянной температуре. В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м2) или в ньютонах на метр (1 Н/м = 1 Дж/м2).

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии (любое тело всегда стремится скатиться с горы, а не забраться на нее). Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку. Сила поверхностного натяжения, действующая на участок границы жидкости длиной L вычисляется по формуле:

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. При этом высота столба жидкости в капилляре:

где: r – радиус капиляра (т.е. тонкой трубки). При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Тепло, работа и энергия

Тепло (энергия)

Единица измерения тепла (или энергии) в системе СИ составляет джоуль (Дж) .

С разницей температур

Другими единицами измерения тепла являются британская тепловая единица — Btu (количество тепла, необходимое для подъема 1 фунта воды на 1 o F ) и Калорийность (количество тепла, чтобы поднять 1 грамм воды на 1 o C ( или 1 K )).

калорий определяется как количество тепла, необходимое для изменения температуры одного грамма жидкой воды на один градус Цельсия (или один градус Кельвина).

1 кал = 4,184 Дж

1 Дж = 1 Втс

= (1 Втс) (1/3600 ч / с)

= 2,78 10 -4 Втч

= 2,78 10 -7 кВтч

Тепловой поток (мощность)

Теплопередача только в результате разницы температур называется тепловым потоком . Единицы СИ для теплового потока: Дж / с или ватт (Вт) — то же, что и мощность. Один ватт определяется как 1 Дж / с .

Удельная энтальпия

Удельная энтальпия — это мера полной энергии в единице массы. Обычно используются единицы СИ: Дж / кг или кДж / кг .

Термин относится к общей энергии, обусловленной давлением и температурой текучей среды (например, воды или пара) в любой данный момент времени и при любых условиях.В частности, энтальпия — это сумма внутренней энергии и работы, совершаемой под действием приложенного давления.

Тепловая мощность

Тепловая мощность системы составляет

  • количество тепла, необходимое для изменения температуры всей системы на один градус .

Удельная теплоемкость

Удельная теплоемкость (= удельная теплоемкость) — это количество тепла, необходимое для изменения температуры на одну единица массы вещества на на один градус .

Удельная теплоемкость может быть измерена в Дж / г K, Дж / кг K , кДж / кг K, кал / гK или БТЕ / фунт o F и более .

Никогда не используйте табличные значения теплоемкости без проверки единиц фактических значений!

Удельную теплоемкость для обычных продуктов и материалов можно найти в разделе «Свойства материала».

Удельная теплоемкость — постоянное давление

Энтальпия — или внутренняя энергия — вещества зависит от его температуры и давления.

Изменение внутренней энергии относительно изменения температуры при фиксированном давлении — это удельная теплоемкость при постоянном давлении — c p .

Удельная теплоемкость — постоянный объем

Изменение внутренней энергии относительно изменения температуры при фиксированном объеме — это удельная теплоемкость при постоянном объеме — c v .

Если давление не является чрезвычайно высоким, работой, выполняемой приложением давления к твердым телам и жидкостям, можно пренебречь, а энтальпия может быть представлена ​​только компонентом внутренней энергии.Можно сказать, что теплота постоянного объема и теплоты постоянного давления равны.

Для твердых и жидких веществ

c p = c v (1)

Удельная теплоемкость представляет собой количество энергии, необходимое для подъема 1 кг вещества на 1 o C (или 1 K) , и ее можно рассматривать как способность поглощать тепло. Единицы измерения удельной теплоемкости в системе СИ: Дж / кг · К (кДж / кг o C) .Вода имеет большую удельную теплоемкость 4,19 кДж / кг o C по сравнению со многими другими жидкостями и материалами.

  • Вода — хороший теплоноситель!

Количество тепла, необходимое для повышения температуры

Количество тепла, необходимое для нагрева объекта от одного температурного уровня до другого, может быть выражено как:

Q = c p m dT ( 2)

, где

Q = количество тепла (кДж)

c p = удельная теплоемкость (кДж / кг · K)

м = масса (кг )

dT = разница температур между горячей и холодной стороной (K)

Пример воды для отопления

Учитывайте энергию, необходимую для нагрева 1.0 кг воды от 0 o C до 100 o C при удельной теплоемкости воды 4,19 кДж / кг o C :

Q = (4,19 кДж / кг o C ) (1,0 кг) ((100 o C) — (0 o C))

= 419 (кДж)

Работа

С технической точки зрения работа и энергия — одно и то же, но работа — это результат, когда направленная сила (вектор) перемещает объект в одном направлении.

Объем выполненной механической работы можно определить с помощью уравнения, полученного из ньютоновской механики

Работа = Приложенная сила x Расстояние, перемещенное в направлении силы

или

W = F l (3)

, где

W = работа (Нм, Дж)

F = приложенная сила (Н)

l = длина или пройденное расстояние (м)

Рабочий стол также можно описать как произведение приложенного давления и вытесненного объема:

Работа = Приложенное давление x Вытесненный объем

или

W = p A l (3b)

, где

p = приложенное давление (Н / м 2 , Па)

A = под давлением площадь (м 2 )

l = длина или расстояние, на которое зона давления перемещается под действием приложенной силы (м)

Пример — Работа, выполняемая силой

Работа, выполняемая силой 100 Н перемещение тела 50 м можно рассчитать как

W = (100 Н) (50 м)

= 5000 (Нм, Дж)

Единица измерения — джоуль, J, который определяется как количество работы, выполненной, когда сила 1 ньютон действует на расстоянии 1 м в направлении силы.

1 Дж = 1 Нм

Пример — Работа под действием силы тяжести

Работа, выполненная при подъеме массы 100 кг на высоте 10 м может быть рассчитана как

W = F г ч

= mgh

= (100 кг) (9,81 м / с 2 ) (10 м)

= 9810 (Нм, Дж)

, где

F г = сила тяжести — или вес (Н)

г = ускорение свободного падения 9.81 (м / с 2 )

h = высота (м)

В британских единицах измерения единичная работа выполняется при весе 1 фунт f (фунт-сила) является поднимается вертикально против силы тяжести на расстояние 1 фут . Единица называется фунт-фут .

Поднят объект массой 10 снарядов 10 футов . Проделанная работа может быть рассчитана как

W = F g h

= m g h

= (10 пробок) (32.17405 фут / с 2 ) (10 футов)

= 3217 фунтов f футов

Пример — Работа из-за изменения скорости

Работа, выполненная при массе 100 кг ускоряется от от скорости 10 м / с до скорости 20 м / с можно рассчитать как

W = (v 2 2 — v 1 2 ) м / 2

= ((20 м / с) 2 — (10 м / с) 2 ) (100 кг) / 2

= 15000 (Нм, Дж)

где

v 2 = конечная скорость (м / с)

v 1 = начальная скорость (м / с)

Energy

Energy — это способность делать работа (перевод с греческого — «работа внутри»).Единицей измерения работы и энергии в системе СИ является джоуль, определяемый как 1 Нм .

Движущиеся объекты могут выполнять работу, потому что обладают кинетической энергией. («кинетический» означает «движение» по-гречески).

Количество кинетической энергии, которой обладает объект, можно рассчитать как

E k = 1/2 мВ 2 (4)

, где

m = масса объекта (кг)

v = скорость (м / с)

Энергия положения уровня (запасенная энергия) называется потенциальной энергией.Это энергия, связанная с силами притяжения и отталкивания между объектами (гравитация).

Полная энергия системы складывается из внутренней, потенциальной и кинетической энергии. Температура вещества напрямую связана с его внутренней энергией. Внутренняя энергия связана с движением, взаимодействием и связыванием молекул внутри вещества. Внешняя энергия вещества связана с его скоростью и местоположением и является суммой его потенциальной и кинетической энергии.

Удельная теплоемкость | Безграничная физика

Тепловая мощность

Теплоемкость измеряет количество тепла, необходимое для повышения температуры объекта или системы на один градус Цельсия.

Цели обучения

Объясните энтальпию в системе с постоянным объемом и давлением

Ключевые выводы

Ключевые моменты
  • Теплоемкость — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры вещества на заданную величину.Он измеряется в джоулях на Кельвин и выражается в.
  • Теплоемкость — это обширное свойство, которое зависит от размера системы.
  • Теплоемкость большинства систем непостоянна (хотя ее часто можно рассматривать как таковую). Это зависит от температуры, давления и объема рассматриваемой системы.
Ключевые термины
  • теплоемкость : количество тепловой энергии, необходимое для повышения температуры объекта или единицы вещества на один градус Цельсия; в джоулях на кельвин (Дж / К).
  • энтальпия : общее количество энергии в системе, включая внутреннюю энергию и энергию, необходимую для вытеснения окружающей среды

Тепловая мощность

Теплоемкость (обычно обозначается заглавной буквой C, часто с индексами) или теплоемкость — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры вещества на заданную величину. В единицах СИ теплоемкость выражается в джоулях на кельвин (Дж / К).

Теплоемкость объекта (обозначение C ) определяется как отношение количества тепловой энергии, переданной объекту, к результирующему увеличению температуры объекта.

[латекс] \ displaystyle {\ text {C} = \ frac {\ text {Q}} {\ Delta \ text {T}}.} [/ Latex]

Теплоемкость — это обширное свойство, поэтому она масштабируется в зависимости от размера системы. Образец, содержащий в два раза больше вещества, чем другой образец, требует передачи вдвое большего количества тепла (Q) для достижения такого же изменения температуры (ΔT).Например, если для нагрева блока железа требуется 1000 Дж, то для нагрева второго блока железа, масса которого в два раза больше массы первого, потребуется 2000 Дж.

Измерение теплоемкости

Тепловая мощность большинства систем непостоянна. Скорее, это зависит от переменных состояния исследуемой термодинамической системы. В частности, это зависит от самой температуры, а также от давления и объема системы, а также от способов изменения давлений и объемов при переходе системы от одной температуры к другой.Причина этого заключается в том, что работа давления и объема, выполняемая в системе, повышает ее температуру с помощью механизма, отличного от нагрева, в то время как работа объема давления, выполняемая системой, поглощает тепло, не повышая температуру системы. (Из-за температурной зависимости калорийность формально определяется как энергия, необходимая для нагрева 1 г воды с 14,5 до 15,5 ° C вместо обычно на 1 ° C.)

Таким образом, можно выполнять различные измерения теплоемкости, чаще всего при постоянном давлении и постоянном объеме.Измеренные таким образом значения обычно имеют нижний индекс (соответственно p и V) для обозначения определения. Газы и жидкости обычно также измеряются при постоянном объеме. Измерения при постоянном давлении дают большие значения, чем при постоянном объеме, потому что значения постоянного давления также включают тепловую энергию, которая используется для выполнения работы по расширению вещества против постоянного давления при повышении его температуры. Эта разница особенно заметна для газов, где значения при постоянном давлении обычно составляют от 30% до 66.На 7% больше, чем при постоянной громкости.

Термодинамические соотношения и определение теплоемкости

Внутренняя энергия замкнутой системы изменяется либо за счет добавления тепла в систему, либо из-за того, что система выполняет работу. Вспоминая первый закон термодинамики,

[латекс] \ text {dU} = \ delta \ text {Q} — \ delta \ text {W} [/ latex].

За работу в результате увеличения объема системы можем написать:

[латекс] \ text {dU} = \ delta \ text {Q} — \ text {PdV} [/ latex].

Если тепло добавляется при постоянном объеме, то второй член этого соотношения исчезает и легко получается

[латекс] \ displaystyle {\ left (\ frac {\ partial \ text {U}} {\ partial \ text {T}} \ right) _ {\ text {V}} = \ left (\ frac {\ partial \ text {Q}} {\ partial \ text {T}} \ right) _ {\ text {V}} = \ text {C} _ {\ text {V}}} [/ latex].

Это определяет тепловую мощность при постоянном объеме , C V . Еще одна полезная величина — теплоемкость при постоянном давлении , C P .При энтальпии системы, заданной

[латекс] \ text {H} = \ text {U} + \ text {PV} [/ latex],

наше уравнение для d U меняется на

[латекс] \ text {dH} = \ delta \ text {Q} + \ text {VdP} [/ latex],

и, следовательно, при постоянном давлении имеем

[латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {P}} = (\ frac {\ partial \ text {Q}} {\ partial \ text {T}}) _ {\ text {P}} = \ text {C} _ {\ text {P}} [/ latex].

Удельная теплоемкость

Удельная теплоемкость — это интенсивное свойство, которое описывает, сколько тепла необходимо добавить к определенному веществу, чтобы повысить его температуру.

Цели обучения

Обобщите количественную взаимосвязь между теплопередачей и изменением температуры

Ключевые выводы

Ключевые моменты
  • В отличие от общей теплоемкости, удельная теплоемкость не зависит от массы или объема. Он описывает, сколько тепла необходимо добавить к единице массы данного вещества, чтобы повысить его температуру на один градус Цельсия. Единицы измерения удельной теплоемкости — Дж / (кг ° C) или эквивалентно Дж / (кг · K).
  • Теплоемкость и удельная теплоемкость связаны соотношением C = см или c = C / м.
  • Масса m, удельная теплоемкость c, изменение температуры ΔT и добавленное (или вычитаемое) тепло Q связаны уравнением: Q = mcΔT.
  • Значения удельной теплоемкости зависят от свойств и фазы данного вещества. Поскольку их нелегко рассчитать, они измеряются эмпирическим путем и доступны для справки в таблицах.
Ключевые термины
  • удельная теплоемкость : Количество тепла, которое должно быть добавлено (или удалено) из единицы массы вещества, чтобы изменить его температуру на один градус Цельсия.Это интенсивное свойство.

Удельная теплоемкость

Теплоемкость — это обширное свойство, которое описывает, сколько тепловой энергии требуется для повышения температуры данной системы. Однако было бы довольно неудобно измерять теплоемкость каждой единицы вещества. Нам нужно интенсивное свойство, которое зависит только от типа и фазы вещества и может быть применено к системам произвольного размера. Эта величина известна как удельная теплоемкость (или просто удельная теплоемкость), которая представляет собой теплоемкость на единицу массы материала.Эксперименты показывают, что передаваемое тепло зависит от трех факторов: (1) изменения температуры, (2) массы системы и (3) вещества и фазы вещества. Последние два фактора заключены в значении удельной теплоемкости.

Теплопередача и удельная теплоемкость : Тепло Q, передаваемое для изменения температуры, зависит от величины изменения температуры, массы системы, а также от вещества и фазы. (а) Количество переданного тепла прямо пропорционально изменению температуры.Чтобы удвоить изменение температуры массы m, вам нужно добавить в два раза больше тепла. (б) Количество передаваемого тепла также прямо пропорционально массе. Чтобы вызвать эквивалентное изменение температуры в удвоенной массе, вам нужно добавить в два раза больше тепла. (c) Количество передаваемого тепла зависит от вещества и его фазы. Если требуется количество тепла Q, чтобы вызвать изменение температуры ΔT в данной массе меди, потребуется в 10,8 раз больше тепла, чтобы вызвать эквивалентное изменение температуры в той же массе воды, при условии отсутствия фазовых изменений ни в одном из веществ.

Удельная теплоемкость : В этом уроке тепло связано с изменением температуры. Мы обсуждаем, как количество тепла, необходимое для изменения температуры, зависит от массы и вещества, и это соотношение представлено удельной теплоемкостью вещества C.

Зависимость от изменения температуры и массы легко понять. Поскольку (средняя) кинетическая энергия атома или молекулы пропорциональна абсолютной температуре, внутренняя энергия системы пропорциональна абсолютной температуре и количеству атомов или молекул.Поскольку переданное тепло равно изменению внутренней энергии, тепло пропорционально массе вещества и изменению температуры. Передаваемое тепло также зависит от вещества, так что, например, количество тепла, необходимое для повышения температуры, меньше для спирта, чем для воды. Для одного и того же вещества передаваемое тепло также зависит от фазы (газ, жидкость или твердое тело).

Количественная связь между теплопередачей и изменением температуры включает все три фактора:

[латекс] \ text {Q} = \ text {mc} \ Delta \ text {T} [/ latex],

где Q — символ теплопередачи, m — масса вещества, а ΔT — изменение температуры.Символ c обозначает удельную теплоемкость и зависит от материала и фазы.

Удельная теплоемкость — это количество тепла, необходимое для изменения температуры 1,00 кг массы на 1,00 ° C. Удельная теплоемкость c — это свойство вещества; его единица СИ — Дж / (кг⋅К) или Дж / (кг⋅К). Напомним, что изменение температуры (ΔT) одинаково в единицах кельвина и градусов Цельсия. Обратите внимание, что общая теплоемкость C — это просто произведение удельной теплоемкости c и массы вещества m, i.е.,

[латекс] \ text {C} = \ text {mc} [/ latex] или [латекс] \ text {c} = \ frac {\ text {C}} {\ text {m}} = \ frac {\ текст {C}} {\ rho \ text {V}} [/ latex],

где ϱ — плотность вещества, V — его объем.

Значения удельной теплоемкости обычно нужно искать в таблицах, потому что нет простого способа их вычислить. Вместо этого они измеряются эмпирически. Как правило, удельная теплоемкость также зависит от температуры. В таблице ниже приведены типичные значения теплоемкости для различных веществ.За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая. Удельная теплоемкость воды в пять раз больше, чем у стекла, и в десять раз больше, чем у железа, что означает, что для повышения температуры воды на такое же количество тепла требуется в пять раз больше тепла, чем у стекла, и в десять раз больше тепла для повышения температуры. воды как для железа. Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.

Удельная теплоемкость : Указана удельная теплоемкость различных веществ.Эти значения идентичны в единицах кал / (г⋅C) .3. cv при постоянном объеме и 20,0 ° C, если не указано иное, и среднем давлении 1,00 атм. В скобках указаны значения cp при постоянном давлении 1,00 атм.

Калориметрия

Калориметрия — это измерение теплоты химических реакций или физических изменений.

Цели обучения

Проанализируйте соотношение между газовой постоянной для получения идеального выхода газа и объемом

Ключевые выводы

Ключевые моменты
  • Калориметр используется для измерения тепла, выделяемого (или поглощаемого) в результате физических изменений или химической реакции.Наука об измерении этих изменений известна как калориметрия.
  • Для проведения калориметрии очень важно знать удельную теплоемкость измеряемых веществ.
  • Калориметрию можно проводить при постоянном объеме или постоянном давлении. Тип выполняемого расчета зависит от условий эксперимента.
Ключевые термины
  • калориметр постоянного давления : прибор, используемый для измерения тепла, выделяемого во время изменений, не связанных с изменениями давления.
  • калориметр : Устройство для измерения тепла, выделяемого или поглощаемого в результате химической реакции, изменения фазы или какого-либо другого физического изменения.
  • калориметр постоянного объема : прибор, используемый для измерения тепла, выделяемого во время изменений, не связанных с изменением объема.

Калориметрия

Обзор

Калориметрия — это наука об измерении теплоты химических реакций или физических изменений. Калориметрия выполняется калориметром.Простой калориметр состоит из термометра, прикрепленного к металлическому контейнеру с водой, подвешенному над камерой сгорания. Слово калориметрия происходит от латинского слова calor , что означает тепло. Шотландский врач и ученый Джозеф Блэк, который первым осознал разницу между теплом и температурой, считается основоположником калориметрии.

Калориметрия требует, чтобы нагреваемый материал имел известные тепловые свойства, то есть удельную теплоемкость.Классическое правило, признанное Клаузиусом и Кельвином, состоит в том, что давление, оказываемое калориметрическим материалом, полностью и быстро определяется исключительно его температурой и объемом; это правило применяется для изменений, не связанных с фазовым переходом, таких как таяние льда. Есть много материалов, которые не соответствуют этому правилу, и для них требуются более сложные уравнения, чем приведенные ниже.

Ледяной калориметр : первый в мире ледяной калориметр, использованный зимой 1782-83 гг. Антуаном Лавуазье и Пьером-Симоном Лапласом для определения тепла, выделяющегося при различных химических изменениях; расчеты, основанные на предыдущем открытии скрытой теплоты Джозефом Блэком.Эти эксперименты составляют основу термохимии.

Базовая калориметрия при постоянном значении

Калориметрия постоянного объема — это калориметрия, выполняемая при постоянном объеме. Это предполагает использование калориметра постоянного объема (один из типов называется калориметром бомбы). Для калориметрии постоянного объема:

[латекс] \ delta \ text {Q} = \ text {C} _ {\ text {V}} \ Delta \ text {T} = \ text {mc} _ {\ text {V}} \ Delta \ text {T} [/ латекс]

, где δQ — приращение тепла, полученного образцом, C V — теплоемкость при постоянном объеме, c v — удельная теплоемкость при постоянном объеме, а ΔT — изменение температуры.

Измерение изменения энтальпии

Чтобы найти изменение энтальпии на массу (или на моль) вещества A в реакции между двумя веществами A и B, эти вещества добавляют в калориметр и определяют начальную и конечную температуры (до начала реакции и после ее завершения. ) отмечены. Умножение изменения температуры на массу и удельную теплоемкость веществ дает значение энергии, выделяемой или поглощаемой во время реакции:

[латекс] \ delta \ text {Q} = \ Delta \ text {T} (\ text {m} _ {\ text {A}} \ text {c} _ {\ text {A}} + \ text { m} _ {\ text {B}} \ text {c} _ {\ text {B}}) [/ latex]

Разделение изменения энергии на количество присутствующих граммов (или молей) A дает изменение энтальпии реакции.Этот метод используется в основном в академическом обучении, поскольку он описывает теорию калориметрии. Он не учитывает потери тепла через контейнер или теплоемкость термометра и самого контейнера. Кроме того, объект, помещенный внутри калориметра, показывает, что объекты передают свое тепло калориметру и жидкости, а тепло, поглощаемое калориметром и жидкостью, равно теплу, отдаваемому металлами.

Калориметрия постоянного давления

Калориметр постоянного давления измеряет изменение энтальпии реакции, протекающей в растворе, в течение которой атмосферное давление остается постоянным.Примером может служить калориметр кофейной чашки, который состоит из двух вложенных друг в друга чашек из пенополистирола и крышки с двумя отверстиями, в которую можно вставить термометр и стержень для перемешивания. Внутренняя чашка содержит известное количество растворенного вещества, обычно воды, которое поглощает тепло от реакции. Когда происходит реакция, внешняя чашка обеспечивает изоляцию. Тогда

[латекс] \ text {C} _ {\ text {P}} = \ frac {\ text {W} \ Delta \ text {H}} {\ text {M} \ Delta \ text {T}} [/ латекс]

, где C p — удельная теплоемкость при постоянном давлении, ΔH — энтальпия раствора, ΔT — изменение температуры, W — масса растворенного вещества, а M — молекулярная масса растворенного вещества.Измерение тепла с помощью простого калориметра, такого как калориметр для кофейной чашки, является примером калориметрии постоянного давления, поскольку давление (атмосферное давление) остается постоянным во время процесса. Калориметрия постоянного давления используется для определения изменений энтальпии, происходящих в растворе. В этих условиях изменение энтальпии равно теплоте (Q = ΔH).

Удельная теплоемкость идеального газа при постоянном давлении и объеме

Идеальный газ имеет различную удельную теплоемкость при постоянном объеме или постоянном давлении.

Цели обучения

Объясните, как рассчитать индекс адиабаты

Ключевые выводы

Ключевые моменты
  • Удельная теплоемкость газа при постоянном объеме задается как [латекс] (\ frac {\ partial \ text {U}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {v}} [/ latex].
  • Удельная теплоемкость при постоянном давлении для идеального газа определяется как [latex] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {p}} = \ text {c} _ {\ text {v}} + \ text {R} [/ latex].
  • Коэффициент теплоемкости (или индекс адиабаты) — это отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.
Ключевые термины
  • Фундаментальное термодинамическое соотношение : В термодинамике фундаментальное термодинамическое соотношение выражает бесконечно малое изменение внутренней энергии в терминах бесконечно малых изменений энтропии и объема для замкнутой системы, находящейся в тепловом равновесии, следующим образом: dU = TdS-PdV. Здесь U — внутренняя энергия, T — абсолютная температура, S — энтропия, P — давление, V — объем.
  • индекс адиабаты : отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.
  • удельная теплоемкость : отношение количества тепла, необходимого для повышения температуры единицы массы вещества на единицу градуса, к количеству тепла, необходимому для повышения температуры той же массы воды на такое же количество.

Удельная теплоемкость идеального газа при постоянном давлении и объеме

Теплоемкость при постоянном объеме nR = 1 Дж · К −1 любого газа, включая идеальный газ, составляет:

[латекс] (\ frac {\ partial \ text {U}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {v}} [/ латекс]

Это безразмерная теплоемкость при постоянном объеме; обычно это функция температуры из-за межмолекулярных сил.Для умеренных температур константа одноатомного газа c v = 3/2, а для двухатомного газа c v = 5/2 (см.). Макроскопические измерения теплоемкости дают информацию о микроскопической структуре молекул.

Молекулярные внутренние колебания : Когда газ нагревается, поступательная киентная энергия молекул в газе увеличивается. Кроме того, молекулы газа могут улавливать множество характерных внутренних колебаний. Потенциальная энергия, накопленная в этих внутренних степенях свободы, вносит вклад в удельную теплоемкость газа.

Теплоемкость при постоянном давлении 1 Дж · К −1 идеального газа составляет:

[латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {p}} = \ текст {c} _ {\ text {v}} + \ text {R} [/ latex]

где H = U + pV — энтальпия газа.

Измерение теплоемкости при постоянном объеме может быть чрезвычайно трудным для жидкостей и твердых тел. То есть небольшие изменения температуры обычно требуют большого давления для поддержания постоянного объема жидкости или твердого вещества (это означает, что содержащий сосуд должен быть почти жестким или, по крайней мере, очень прочным).Легче измерить теплоемкость при постоянном давлении (позволяющем материалу свободно расширяться или сжиматься) и определить теплоемкость при постоянном объеме, используя математические соотношения, выведенные из основных законов термодинамики.

Используя фундаментальную термодинамическую связь, мы можем показать:

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = \ text {T} (\ frac {\ partial \ text {P}} { \ partial \ text {T}}) _ {\ text {V}, \ text {N}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text { p}, \ text {N}} [/ latex]

, где частные производные взяты при постоянном объеме и постоянном количестве частиц, а также при постоянном давлении и постоянном количестве частиц, соответственно.

Коэффициент теплоемкости или показатель адиабаты — это отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме. Иногда его также называют коэффициентом изоэнтропического расширения:

.

[латекс] \ gamma = \ frac {\ text {C} _ {\ text {P}}} {\ text {C} _ {\ text {V}}} = \ frac {\ text {c} _ { \ text {p}}} {\ text {c} _ {\ text {v}}} [/ latex]

Для идеального газа оценка приведенных выше частных производных в соответствии с уравнением состояния, где R — газовая постоянная для идеального газа, дает:

[латекс] \ text {pV} = \ text {RT} [/ латекс]

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = \ text {T} (\ frac {\ partial \ text {P}} { \ partial \ text {T}}) _ {\ text {V}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text {p}} [/ latex ]

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = — \ text {T} (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {V}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text {p}} ^ { 2} [/ латекс]

[латекс] \ text {P} = \ frac {\ text {RT}} {\ text {V}} \ text {n} \ to (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {T}} = \ frac {- \ text {RT}} {\ text {V} ^ {2}} = \ frac {- \ text {P}} {\ text { V}} [/ latex]

[латекс] \ text {V} = \ frac {\ text {RT}} {\ text {P}} \ text {n} \ to (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) ^ {2} _ {\ text {p}} = \ frac {\ text {R} ^ {2}} {\ text {P} ^ {2}} [/ latex]

заменяющий:

[латекс] — \ text {T} (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {V}} (\ frac {\ partial \ text {V }} {\ partial \ text {T}}) _ {\ text {p}} ^ {2} = — \ text {T} \ frac {- \ text {P}} {\ text {V}} \ frac {\ text {R} ^ {2}} {\ text {P} ^ {2}} = \ text {R} [/ latex]

Это уравнение сводится просто к тому, что известно как соотношение Майера:

Юлиус Роберт Майер : Юлиус Роберт фон Майер (25 ноября 1814 — 20 марта 1878), немецкий врач и физик, был одним из основоположников термодинамики.Он известен прежде всего тем, что в 1841 году сформулировал одно из первоначальных утверждений о сохранении энергии (или то, что сейчас известно как одна из первых версий первого закона термодинамики): «Энергия не может быть ни создана, ни уничтожена. В 1842 году Майер описал жизненно важный химический процесс, который теперь называют окислением, как основной источник энергии для любого живого существа. Его достижения не были замечены, и заслуга в открытии механического эквивалента тепла была приписана Джеймсу Джоулю в следующем году.фон Майер также предположил, что растения превращают свет в химическую энергию.

[латекс] \ text {C} _ {\ text {P}} — \ text {C} _ {\ text {V}} = \ text {R} [/ latex].

Это простое уравнение, связывающее теплоемкость при постоянной температуре и при постоянном давлении.

Решение проблем калориметрии

Калориметрия используется для измерения количества тепла, выделяемого или потребляемого в химической реакции.

Цели обучения

Объясните, что калориметр бомбы используется для измерения тепла, выделяемого в реакции горения

Ключевые выводы

Ключевые моменты
  • Калориметрия используется для измерения количества тепла, передаваемого веществу или от него.
  • Калориметр — это устройство, используемое для измерения количества тепла, участвующего в химическом или физическом процессе.
  • Это означает, что количество тепла, производимого или потребляемого в реакции, равно количеству тепла, поглощаемого или теряемого раствором.
Ключевые термины
  • теплота реакции : изменение энтальпии в химической реакции; количество тепла, которое система отдает своему окружению, чтобы она могла вернуться к исходной температуре.
  • сжигание : процесс, в котором два химических вещества объединяются для получения тепла.
Калориметры

предназначены для минимизации обмена энергией между исследуемой системой и ее окружением. Они варьируются от простых калориметров для кофейных чашек, используемых студентами начального курса химии, до сложных калориметров-бомб, используемых для определения энергетической ценности пищи.

Калориметрия используется для измерения количества тепла, передаваемого веществу или от него. Для этого происходит обмен тепла с калиброванным объектом (калориметром).Изменение температуры измерительной части калориметра преобразуется в количество тепла (поскольку предыдущая калибровка использовалась для определения его теплоемкости). Измерение теплопередачи с использованием этого подхода требует определения системы (вещества или веществ, подвергающихся химическому или физическому изменению) и ее окружения (других компонентов измерительного устройства, которые служат для обеспечения теплом системы или поглощения тепла от система). Знание теплоемкости окружающей среды и тщательные измерения масс системы и окружающей среды, а также их температуры до и после процесса позволяют рассчитать передаваемое тепло, как описано в этом разделе.

Калориметр — это устройство, используемое для измерения количества тепла, участвующего в химическом или физическом процессе. Например, когда в растворе в калориметре происходит экзотермическая реакция, тепло, выделяемое в результате реакции, поглощается раствором, что увеличивает его температуру. Когда происходит эндотермическая реакция, необходимое тепло поглощается тепловой энергией раствора, что снижает его температуру. Затем изменение температуры, а также удельная теплоемкость и масса раствора можно использовать для расчета количества тепла, задействованного в любом случае.

Калориметры для кофейных чашек

Студенты-общехимики часто используют простые калориметры, изготовленные из полистирольных стаканчиков. Эти простые в использовании калориметры типа «кофейная чашка» обеспечивают больший теплообмен с окружающей средой и, следовательно, дают менее точные значения энергии.

Устройство калориметра постоянного объема (или «бомбы»)

Калориметр бомбы : Это изображение типичной установки калориметра бомбы.

Калориметр другого типа, который работает с постоянным объемом, в просторечии известный как калориметр бомбы, используется для измерения энергии, производимой реакциями, которые дают большое количество тепла и газообразных продуктов, таких как реакции горения.(Термин «бомба» исходит из наблюдения, что эти реакции могут быть достаточно интенсивными, чтобы напоминать взрывы, которые могут повредить другие калориметры.) Этот тип калориметра состоит из прочного стального контейнера («бомба»), который содержит реагенты и сам является погружен в воду. Образец помещается в бомбу, которая затем заполняется кислородом под высоким давлением. Для воспламенения образца используется небольшая электрическая искра. Энергия, произведенная в результате реакции, улавливается стальной бомбой и окружающей водой.Повышение температуры измеряется и, наряду с известной теплоемкостью калориметра, используется для расчета энергии, производимой в результате реакции. Калориметры бомбы требуют калибровки для определения теплоемкости калориметра и обеспечения точных результатов. Калибровка выполняется с использованием реакции с известным q, например измеренного количества бензойной кислоты, воспламененного искрой от никелевой плавкой проволоки, которая взвешивается до и после реакции. Изменение температуры, вызванное известной реакцией, используется для определения теплоемкости калориметра.Калибровка обычно выполняется каждый раз перед использованием калориметра для сбора данных исследования.

Пример: идентификация металла путем измерения удельной теплоемкости

Кусок металла весом 59,7 г, который был погружен в кипящую воду, был быстро перенесен в 60,0 мл воды при начальной температуре 22,0 ° C. Конечная температура составляет 28,5 ° C. Используйте эти данные, чтобы определить удельную теплоемкость металла. Используйте этот результат, чтобы идентифицировать металл.

Решение

Предполагая идеальную теплопередачу, тепло, выделяемое металлом, является отрицательной величиной тепла, поглощаемого водой, или:

[латекс] \ text {q} _ {\ text {metal}} = — \ text {q} _ {\ text {water}} [/ latex]

В развернутом виде это:

[латекс] \ text {c} _ {\ text {metal}} \ times \ text {m} _ {\ text {metal}} \ times \ left (\ text {T} _ {\ text {f, металл }} — \ text {T} _ {\ text {i, metal}} \ right) = \ text {c} _ {\ text {water}} \ times \ text {m} _ {\ text {water}} \ times \ left (\ text {T} _ {\ text {f, water}} — \ text {T} _ {\ text {i, water}} \ right) [/ latex]

Отметив, что, поскольку металл был погружен в кипящую воду, его начальная температура была 100.{\ text {o}} \ text {C} [/ latex]

Наша экспериментальная удельная теплоемкость наиболее близка к значению для меди (0,39 Дж / г ° C), поэтому мы идентифицируем металл как медь.

Теплоемкость и удельная теплоемкость

  • Определите теплоемкость.
  • Определите удельную теплоемкость.
  • Выполните расчеты с учетом удельной теплоемкости.

Какой бассейн прогреется быстрее?

Если бы плавательный бассейн и болот, наполненные водой с одинаковой температурой, подвергались одинаковому подаче тепловой энергии, то в детском бассейне температура, несомненно, повышалась бы быстрее, чем в плавательном бассейне.Теплоемкость объекта зависит как от его массы, так и от его химического состава. Из-за своей гораздо большей массы плавательный бассейн с водой имеет большую теплоемкость, чем ведро с водой.

Теплоемкость и удельная теплоемкость

Различные вещества по-разному реагируют на тепло. Если металлический стул стоит на ярком солнце в жаркий день, он может стать довольно горячим на ощупь. Одинаковая масса воды на одном и том же солнце не станет почти такой же горячей. Мы бы сказали, что вода имеет высокую теплоемкость (количество тепла, необходимое для повышения температуры объекта на 1 ° C.) Вода очень устойчива к перепадам температуры, а металлы — нет. Удельная теплоемкость вещества — это количество энергии, необходимое для повышения температуры 1 грамма вещества на 1 ° C. В таблице ниже приведены значения удельной теплоты некоторых распространенных веществ. Символ удельной теплоемкости: c p , с индексом p, указывающим на то, что удельная теплоемкость измеряется при постоянном давлении. Единицами измерения удельной теплоемкости могут быть джоули на грамм на градус (Дж / г ° C) или калории на грамм на градус (кал / г ° C).В этом тексте для удельной теплоемкости будет использоваться Дж / г ° C.

Удельная теплоемкость некоторых распространенных веществ
Вещество Удельная теплоемкость (Дж / г ° C)
Вода (л) 4,18
Вода (и) 2,06
Вода (г) 1,87
Аммиак (г) 2,09
Этанол (л) 2,44
Алюминий (и) 0.897
Углерод, графит (-ы) 0,709
Медь (и) 0,385
Золото 0,129
Утюг (и) 0,449
Вывод (ы) 0,129
Ртуть (л) 0,140
Серебро 0,233

Обратите внимание на то, что вода имеет очень высокую удельную теплоемкость по сравнению с большинством других веществ.Вода обычно используется в качестве охлаждающей жидкости для оборудования, поскольку она способна поглощать большое количество тепла (см. , Таблицу выше). Прибрежный климат намного более умеренный, чем внутренний климат из-за наличия океана. Вода в озерах или океанах поглощает тепло из воздуха в жаркие дни и отдает его обратно в воздух в прохладные дни.

Рисунок 17.5

Эта электростанция в Западной Вирджинии, как и многие другие, расположена рядом с большим озером, поэтому воду из озера можно использовать в качестве охлаждающей жидкости.Прохладная вода из озера закачивается в растение, а более теплая вода выкачивается из растения и возвращается в озеро.

Резюме
  • Определены теплоемкость и удельная теплоемкость.
Практика

Вопросы

Посмотрите видео и ответьте на вопросы ниже

  1. Что было на первом воздушном шаре?
  2. Что было в аэростате отправки?
  3. Почему не лопнул первый воздушный шар?
  4. Почему лопнул второй воздушный шар?
Обзор

Вопросы

  1. Что такое теплоемкость?
  2. Что такое удельная теплоемкость?
  3. У вас есть 10-граммовый кусок алюминия и 10-граммовый кусок золота, лежащие на солнце.Какой металл сначала нагреется на десять градусов?
  4. У вас есть 20-граммовый кусок алюминия и 40-граммовый кусок алюминия, лежащие на солнце. Какая часть первой встанет на десять градусов?
  • heat capacity: Количество тепла, необходимое для повышения температуры объекта на 1 ° C.
  • удельная теплоемкость: Количество энергии, необходимое для повышения температуры 1 грамма вещества на 1 ° C.

Список литературы

  1. Бассейн: Пользователь: Mhsb / Wikimedia Commons; Детский бассейн: Пользователь: Aarchiba / Википедия.Бассейн: http://commons.wikimedia.org/wiki/File:Freshwater_swimming_pool.jpg; Детский бассейн: http://commons.wikimedia.org/wiki/File:Wading-pool.jpg.
  2. Пользователь: Raeky / Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Mount_Storm_Power_Plant,_Areial.jpg.

[/ hidden-answer

3.12: Расчет энергоемкости и теплоемкости

Цели обучения

  • Связать теплопередачу с изменением температуры.

Тепло — знакомое проявление передачи энергии.Когда мы прикасаемся к горячему объекту, энергия перетекает от горячего объекта к нашим пальцам, и мы воспринимаем эту поступающую энергию как «горячий» объект. И наоборот, когда мы держим кубик льда в ладонях, энергия перетекает из руки в кубик льда, и мы воспринимаем эту потерю энергии как «холод». В обоих случаях температура объекта отличается от температуры нашей руки, поэтому мы можем сделать вывод, что разница температур является основной причиной теплопередачи.

Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении.Уравнение, связывающее тепло \ (\ left (q \ right) \) с удельной теплоемкостью \ (\ left (c_p \ right) \), массой \ (\ left (m \ right) \) и изменением температуры \ (\ left (\ Delta T \ right) \) показан ниже.

\ [q = c_p \ times m \ times \ Delta T \]

Поглощаемое или выделяемое тепло измеряется в джоулях. Масса измеряется в граммах. Изменение температуры определяется выражением \ (\ Delta T = T_f — T_i \), где \ (T_f \) — конечная температура, а \ (T_i \) — начальная температура.

Каждое вещество имеет характерную удельную теплоемкость, которая выражается в единицах кал / г • ° C или кал / г • К, в зависимости от единиц, используемых для выражения Δ T .\text{o} \text{C} \right)\)»> 0.233

Направление теплового потока не отображается в heat = mc Δ T . Если энергия поступает в объект, общая энергия объекта увеличивается, и значения тепла Δ T положительны. Если энергия исходит из объекта, общая энергия объекта уменьшается, а значения тепла и Δ T являются отрицательными.

Пример \ (\ PageIndex {1} \)

A \ (15.0 \: \ text {g} \) кусок металлического кадмия поглощает \ (134 \: \ text {J} \) тепла, поднимаясь из \ (24.\ text {o} \ text {C} \]

Пример \ (\ PageIndex {2} \)

Какое количество тепла передается при нагревании блока металлического железа весом 150,0 г с 25,0 ° C до 73,3 ° C? Какое направление теплового потока?

Решение

Мы можем использовать heat = mc Δ T , чтобы определить количество тепла, но сначала нам нужно определить Δ T . Поскольку конечная температура утюга составляет 73,3 ° C, а начальная температура составляет 25,0 ° C, Δ T составляет:

Δ T = T конечный T начальный = 73.\ circ C) = 782 \: cal} \]

Обратите внимание, как единицы измерения грамм и ° C отменяются алгебраически, оставляя только единицу калорий, которая является единицей тепла. Поскольку температура железа увеличивается, энергия (в виде тепла) должна переходить в металл .

Упражнение \ (\ PageIndex {1} \)

Какое количество тепла передается при охлаждении блока металлического алюминия массой 295,5 г с 128,0 ° C до 22,5 ° C? Какое направление теплового потока?

Ответ
Тепло уходит из алюминиевого блока.

Пример \ (\ PageIndex {2} \)

Образец красновато-коричневого металла массой 10,3 г выделил 71,7 кал тепла при снижении его температуры с 97,5 ° C до 22,0 ° C. Какова удельная теплоемкость металла? Можете ли вы идентифицировать металл по данным в Таблице \ (\ PageIndex {1} \)?

Решение

Вопрос дает нам тепло, конечную и начальную температуры и массу образца. Значение Δ T составляет:

Δ T = T конечный T начальный = 22.\ circ C)}} \)

c = 0,0923 кал / г • ° C

Это значение удельной теплоемкости очень близко к значению, приведенному для меди в таблице 7.3.

Упражнение \ (\ PageIndex {2} \)

10,7 г кристалла хлорида натрия (NaCl) имеет начальную температуру 37,0 ° C. Какова конечная температура кристалла, если на него было подано 147 кал тепла?

Ответ

Сводка

Проиллюстрированы расчеты удельной теплоемкости.

Материалы и авторство

Эта страница была создана на основе содержимого следующими участниками и отредактирована (тематически или широко) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:

Удельная теплоемкость и вода

• Школа наук о воде ГЛАВНАЯ • Темы о свойствах воды •

Удельная теплоемкость воды частично отвечает за мягкий климат вдоль юго-западного побережья Англии.Есть пляжи, как на пляже Порткресса в Силли, где растут тропические растения.

Кредит: Викимедиа

Удельная теплоемкость определяется количеством тепла, которое необходимо для повышения температуры 1 грамма вещества на 1 градус Цельсия (° C). Вода имеет высокую удельную теплоемкость, а это означает, что для повышения температуры воды требуется больше энергии по сравнению с другими веществами. Вот почему вода важна для промышленности и в радиаторе вашего автомобиля в качестве охлаждающей жидкости. Высокая удельная теплоемкость воды также помогает регулировать скорость изменения температуры воздуха, поэтому изменение температуры между сезонами происходит постепенно, а не внезапно, особенно вблизи океанов.

Эта же концепция может быть расширена до мирового масштаба. Океаны и озера помогают регулировать диапазоны температур, с которыми сталкиваются миллиарды людей в своих городах. Вода, окружающая города или близлежащие к ним, нагревается и остывает дольше, чем суша, поэтому в городах около океанов, как правило, будут меньше изменений и менее экстремальные температуры, чем в городах внутри страны. Это свойство воды — одна из причин, по которой штаты на побережье и в центре Соединенных Штатов могут так сильно различаться в температурных режимах.В штате Среднего Запада, таком как Небраска, будут более холодные зимы и более жаркое лето, чем в Орегоне, который находится на более высоких широтах, но расположен рядом с Тихим океаном.

Если вы оставите ведро с водой на улице летом на солнце, оно наверняка станет теплым, но недостаточно горячим, чтобы сварить яйцо. Но если в августе вы пройдете босиком по черному асфальту улицы в южной части Соединенных Штатов, вы обожжете себе ноги. Если в августовский день уронить яйцо на металл капота моей машины, получится яичница.Металлы имеют гораздо более низкую удельную теплоемкость, чем вода. Если вы когда-либо держались за иглу и вставляли другой конец в огонь, вы знаете, как быстро игла нагревается и как быстро тепло передается по длине иглы к вашему пальцу. Не так с водой.

Почему важна теплоемкость

Кредит: LENA15 | pixabay.com

Высокая удельная теплоемкость воды во многом определяет экстремальные условия окружающей среды. Например, рыбы в этом пруду счастливы, потому что удельная теплоемкость воды в пруду означает, что температура воды будет оставаться примерно одинаковой днем ​​и ночью.Им не нужно беспокоиться о том, чтобы включить кондиционер или надеть шерстяные перчатки. (Также, для счастливых рыбок, посетите нашу страницу Растворенный кислород .)

К счастью для меня, тебя и рыб в пруду справа, вода имеет более высокую удельную теплоемкость, чем многие другие вещества. Одно из самых важных свойств воды — это то, что для ее нагрева требуется много энергии. Точнее, вода должна поглотить 4 184 джоулей тепла (1 калория), чтобы температура одного килограмма воды повысилась на 1 ° C.Для сравнения: чтобы поднять 1 килограмм меди на 1 ° C, требуется всего 385 джоулей тепла.

Если вы хотите узнать больше об удельной теплоемкости воды на молекулярном уровне, посмотрите это видео об удельной теплоемкости воды от Khan Academy.

Геотермальная энергия | Национальное географическое общество

Геотермальная энергия — это тепло, которое генерируется внутри Земли. ( Geo означает «земля», а термический означает «тепло» по-гречески.) Это возобновляемый ресурс, который можно добывать для использования человеком.

Примерно на 2 900 километров (1800 миль) под земной корой или поверхностью находится самая горячая часть нашей планеты: ее ядро. Небольшая часть тепла ядра исходит от трения и гравитационного притяжения, образовавшихся при создании Земли более 4 миллиардов лет назад. Однако подавляющая часть тепла Земли постоянно генерируется за счет распада радиоактивных изотопов, таких как калий-40 и торий-232.

Изотопы — это формы элемента, которые имеют другое количество нейтронов, чем обычные версии атома элемента.

Калий, например, имеет в своем ядре 20 нейтронов. Однако калий-40 имеет 21 нейтрон. Когда калий-40 распадается, его ядро ​​изменяется, выделяя огромное количество энергии (излучение). Калий-40 чаще всего распадается на изотопы кальция (кальций-40) и аргона (аргон-40).

Радиоактивный распад — это непрерывный процесс в активной зоне. Температура здесь повышается до более чем 5000 ° по Цельсию (около 9000 ° по Фаренгейту). Тепло от ядра постоянно излучается наружу и нагревает горные породы, воду, газ и другой геологический материал.

Температура Земли повышается с глубиной от поверхности до ядра. Это постепенное изменение температуры известно как геотермический градиент. В большинстве частей света геотермический градиент составляет около 25 ° C на 1 километр глубины (1 ° F на 77 футов глубины).

Если подземные горные образования нагреться примерно до 700–1300 ° C (1300–2400 ° F), они могут превратиться в магму. Магма — это расплавленная (частично расплавленная) порода, пронизанная газом и пузырьками газа. Магма существует в мантии и нижней коре и иногда всплывает на поверхность в виде лавы.

Магма нагревает близлежащие породы и подземные водоносные горизонты. Горячая вода может выходить через гейзеры, горячие источники, паровые каналы, подводные гидротермальные источники и грязевые котлы.


Это все источники геотермальной энергии. Их тепло можно улавливать и использовать непосредственно для получения тепла, либо их пар можно использовать для выработки электроэнергии. Геотермальная энергия может использоваться для обогрева таких конструкций, как здания, автостоянки и тротуары.

Большая часть геотермальной энергии Земли не выделяется в виде магмы, воды или пара.Он остается в мантии, медленно истекая наружу и накапливаясь в виде очагов высокой температуры. Это сухое геотермальное тепло может быть получено путем бурения и дополнено закачиваемой водой для создания пара.

Многие страны разработали методы использования геотермальной энергии. В разных частях света доступны разные виды геотермальной энергии. В Исландии обильные источники горячей и легкодоступной подземной воды позволяют большинству людей полагаться на геотермальные источники как на безопасный, надежный и недорогой источник энергии.Другие страны, такие как США, должны бурить геотермальную энергию по более высокой цене.

Получение геотермальной энергии: нагрев и охлаждение

Низкотемпературная геотермальная энергия
Геотермальное тепло можно получить практически в любой точке мира и сразу же использовать в качестве источника тепла. Эта тепловая энергия называется низкотемпературной геотермальной энергией. Низкотемпературная геотермальная энергия получается из очагов тепла около 150 ° C (302 ° F). Большинство очагов низкотемпературной геотермальной энергии находится всего в нескольких метрах под землей.

Низкотемпературная геотермальная энергия может использоваться для обогрева теплиц, домов, рыболовства и промышленных процессов. Низкотемпературная энергия наиболее эффективна при использовании для отопления, хотя иногда ее можно использовать для выработки электроэнергии.

Люди давно использовали этот вид геотермальной энергии для инженерии, комфорта, лечения и приготовления пищи. Археологические данные показывают, что 10 000 лет назад группы коренных американцев собирались вокруг природных горячих источников, чтобы восстановить силы или укрыться от конфликта.В третьем веке до нашей эры ученые и лидеры грелись в горячем источнике, питаемом каменным прудом недалеко от горы Лишань в центральном Китае. Один из самых известных курортов с горячими источниками находится в городе Бат, Англия, с соответствующим названием. Начав строительство примерно в 60 г. н.э., римские завоеватели построили сложную систему парных и бассейнов, используя тепло из мелких очагов низкотемпературной геотермальной энергии.

Горячие источники Chaudes Aigues, Франция, были источником дохода и энергии для города с 1300-х годов.Туристы стекаются в город за его элитными курортами. Низкотемпературная геотермальная энергия также обеспечивает теплом дома и предприятия.

Соединенные Штаты открыли свою первую геотермальную систему централизованного теплоснабжения в 1892 году в Бойсе, штат Айдахо. Эта система по-прежнему обеспечивает теплом около 450 домов.

Совместно производимая геотермальная энергия
Совместно производимая геотермальная энергия основана на других источниках энергии. Этот вид геотермальной энергии использует воду, которая нагревается в качестве побочного продукта в нефтяных и газовых скважинах.

В Соединенных Штатах в качестве побочного продукта ежегодно производится около 25 миллиардов баррелей горячей воды. Раньше эту горячую воду просто выбрасывали. Недавно он был признан потенциальным источником еще большего количества энергии: его пар можно использовать для выработки электричества, которое будет немедленно использовано или продано в сеть.

Один из первых проектов в области геотермальной энергии был инициирован в Центре испытаний месторождения нефти Роки-Маунтин в американском штате Вайоминг.

Новые технологии позволили переносить совместно производимые объекты геотермальной энергии.Хотя мобильные электростанции все еще находятся на экспериментальной стадии, они обладают огромным потенциалом для изолированных или бедных общин.

Геотермальные тепловые насосы
Геотермальные тепловые насосы (GHP) используют тепло Земли и могут использоваться практически в любой точке мира. GHP пробурены на глубину от 3 до 90 метров (от 10 до 300 футов), что намного меньше, чем у большинства нефтяных и газовых скважин. GHP не требуют трещин в коренных породах, чтобы достичь своего источника энергии.

Труба, подключенная к GHP, расположена в виде непрерывной петли, называемой «узкой петлей», которая проходит под землей и над землей, обычно по всему зданию.Петля также может быть размещена полностью под землей для обогрева парковки или ландшафтной зоны.

В этой системе вода или другие жидкости (например, глицерин, похожий на автомобильный антифриз) перемещаются по трубе. В холодное время года жидкость поглощает подземное геотермальное тепло. Он переносит тепло вверх по зданию и отдает тепло через систему воздуховодов. Эти обогреваемые трубы также могут проходить через резервуары с горячей водой и компенсировать расходы на отопление.

Летом система GHP работает противоположным образом: жидкость в трубах нагревается от тепла в здании или на парковке и переносит тепло для охлаждения под землей.

Агентство по охране окружающей среды США назвало геотермальное отопление самой энергоэффективной и экологически безопасной системой отопления и охлаждения. Самая крупная система GHP была завершена в 2012 году в Государственном университете Болла в Индиане. Система заменила угольную котельную, и, по оценкам экспертов, университет сэкономит около 2 миллионов долларов в год на расходах на отопление.

Сбор геотермальной энергии: электричество

Чтобы получить достаточно энергии для выработки электроэнергии, геотермальные электростанции полагаются на тепло, которое существует в нескольких километрах от поверхности Земли.В некоторых районах тепло может естественным образом существовать под землей в виде пара или горячей воды. Однако большинство участков необходимо «улучшить» закачиваемой водой для создания пара.

Электростанции с сухим паром
Электростанции с сухим паром используют естественные подземные источники пара. Пар подается прямо на электростанцию, где он используется для топлива турбин и выработки электроэнергии.

Сухой пар — это старейший тип электростанции, вырабатывающий электричество с использованием геотермальной энергии.Первая электростанция с сухим паром была построена в Лардерелло, Италия, в 1911 году. Сегодня электростанции с сухим паром в Лардерелло продолжают обеспечивать электроэнергией более миллиона жителей этого района.

В Соединенных Штатах есть только два известных источника подземного пара: Йеллоустонский национальный парк в Вайоминге и Гейзеры в Калифорнии. Поскольку Йеллоустон является охраняемой территорией, Гейзеры — единственное место, где используется электростанция с сухим паром. Это один из крупнейших геотермальных энергетических комплексов в мире, который обеспечивает около пятой части всей возобновляемой энергии в Калифорнии.

Паровозовая электростанция мгновенного действия

Паровые электростанции мгновенного действия используют природные источники подземной горячей воды и пара. Вода с температурой выше 182 ° C (360 ° F) перекачивается в зону низкого давления. Некоторая часть воды «вспыхивает» или быстро испаряется, превращаясь в пар, и направляется в турбину и вырабатывает электроэнергию. Оставшуюся воду можно слить в отдельный резервуар, чтобы извлечь больше энергии.

Паровые электростанции мгновенного действия — наиболее распространенный тип геотермальных электростанций.Вулканически активное островное государство Исландия обеспечивает почти все свои потребности в электроэнергии с помощью серии геотермальных электростанций, работающих на мгновенном испарении пара. Пар и избыточная теплая вода, образующиеся в результате процесса мгновенного пара, нагревают обледеневшие тротуары и парковки холодной арктической зимой.

Острова Филиппин также расположены над тектонически активной зоной, «Огненным кольцом», окаймляющим Тихий океан. Правительство и промышленность Филиппин инвестировали в электростанции мгновенного испарения, и сегодня страна уступает только США по использованию геотермальной энергии.Фактически, самая большая геотермальная электростанция — это установка мгновенного пара в Малитбоге, Филиппины.

Электростанции с двойным циклом
Электростанции с двойным циклом используют уникальный процесс для экономии воды и выработки тепла. Вода под землей нагревается примерно до 107–182 ° C (225–360 ° F). Горячая вода находится в трубе, которая циркулирует над землей. Горячая вода нагревает жидкое органическое соединение, температура кипения которого ниже, чем у воды. Органическая жидкость создает пар, который проходит через турбину и приводит в действие генератор, вырабатывающий электричество.Единственный выброс в этом процессе — пар. Вода в трубе возвращается обратно в землю, чтобы снова нагреться Землей и снова обеспечить теплом органическое соединение.

Геотермальный комплекс Беоваве в американском штате Невада использует бинарный цикл для выработки электроэнергии. Органическое соединение, используемое на объекте, представляет собой промышленный хладагент (тетрафторэтан, парниковый газ). Этот хладагент имеет гораздо более низкую температуру кипения, чем вода, что означает, что он превращается в газ при низких температурах.Газ питает турбины, которые подключены к электрическим генераторам.

Усовершенствованные геотермальные системы
Земля имеет практически бесконечное количество энергии и тепла под своей поверхностью. Однако его невозможно использовать в качестве энергии, если подземные области не являются «гидротермальными». Это означает, что подземные помещения не только горячие, но также содержат жидкость и проницаемы. Во многих областях нет всех трех этих компонентов. Усовершенствованная геотермальная система (EGS) использует бурение, гидроразрыв и закачку для обеспечения жидкости и проницаемости в областях с горячими, но сухими подземными породами.

Для разработки EGS «нагнетательная скважина» пробурена вертикально в земле. В зависимости от типа скалы это может быть от 1 километра (0,6 мили) до 4,5 километров (2,8 мили). Холодная вода под высоким давлением закачивается в пробуренное пространство, что заставляет породу создавать новые трещины, расширять существующие трещины или растворяться. Это создает резервуар подземной жидкости.

Вода закачивается через нагнетательную скважину и поглощает тепло горных пород при прохождении через пласт.Эта горячая вода, называемая рассолом, затем возвращается на поверхность Земли через «производственную скважину». Нагретый рассол находится в трубе. Он нагревает вторичную жидкость с низкой температурой кипения, которая испаряется в пар и приводит в действие турбину. Рассол охлаждается и снова проходит через нагнетательную скважину, чтобы снова поглотить подземное тепло. Кроме водяного пара испарившейся жидкости, газообразных выбросов нет.

Закачка воды в землю для EGS может вызвать сейсмическую активность или небольшие землетрясения.В Базеле, Швейцария, процесс закачки вызвал сотни крошечных землетрясений, которые переросли в более значительную сейсмическую активность даже после того, как закачка воды была остановлена. Это привело к отмене геотермального проекта в 2009 году.

Геотермальная энергия и окружающая среда

Геотермальная энергия является возобновляемым ресурсом. Земля излучает тепло примерно 4,5 миллиарда лет и будет продолжать излучать тепло в течение миллиардов лет в будущем из-за продолжающегося радиоактивного распада в ядре Земли.

Однако большинство скважин, которые отводят тепло, со временем остынут, особенно если тепло отводится быстрее, чем дается время для его пополнения. В Лардерелло, Италия, где находится первая в мире электростанция, работающая на геотермальной энергии, с 1950-х годов давление пара упало более чем на 25%.

Повторная закачка воды иногда может помочь охлаждающемуся геотермальному участку прослужить дольше. Однако этот процесс может вызвать «микроземлетрясения». Хотя большинство из них слишком малы, чтобы их могли почувствовать люди или зарегистрировать в масштабах, иногда земля может сотрясаться до более угрожающих уровней и вызывать закрытие геотермального проекта, как это произошло в Базеле, Швейцария.

Геотермальные системы не требуют большого количества пресной воды. В бинарных системах вода используется только как теплоноситель, она не подвергается воздействию и не испаряется. Его можно перерабатывать, использовать для других целей или выпускать в атмосферу в виде нетоксичного пара. Однако, если геотермальный флюид не содержится в трубе и не используется повторно, он может поглотить вредные вещества, такие как мышьяк, бор и фторид. Эти токсичные вещества могут выноситься на поверхность и высвобождаться при испарении воды.Кроме того, если жидкость просочится в другие подземные водные системы, она может загрязнить чистые источники питьевой воды и водные среды обитания.

Преимущества
Прямое или косвенное использование геотермальной энергии дает множество преимуществ:

  • Геотермальная энергия возобновляемая; это не ископаемое топливо, которое в конечном итоге будет израсходовано. Земля непрерывно излучает тепло из своего ядра, и это будет продолжаться миллиарды лет.
  • Некоторая форма геотермальной энергии может быть доступна и собрана в любой точке мира.
  • Использование геотермальной энергии относительно чисто. Большинство систем выделяют только водяной пар, хотя некоторые выделяют очень небольшие количества диоксида серы, оксидов азота и твердых частиц.
  • Геотермальные электростанции могут прослужить десятилетия, а возможно, и столетия. Если резервуар управляется должным образом, количество извлеченной энергии может быть уравновешено скоростью возобновления тепла горными породами.
  • В отличие от других возобновляемых источников энергии, геотермальные системы являются «базовой нагрузкой». Это означает, что они могут работать летом или зимой и не зависят от меняющихся факторов, таких как присутствие ветра или солнца. Геотермальные электростанции производят электроэнергию или тепло 24 часа в сутки, 7 дней в неделю.
  • Площадь, необходимая для строительства геотермального объекта, намного компактнее, чем у других электростанций. Для производства ГВт-ч (гигаватт-час или один миллион киловатт энергии в час, огромное количество энергии) геотермальная установка использует эквивалент примерно 1046 квадратных километров (404 квадратных миль) земли.Для производства того же ГВт-ч энергии ветра требуется 3 458 квадратных километров (1335 квадратных миль), солнечному фотоэлектрическому центру требуется 8 384 квадратных километра (3237 квадратных миль), а угольные электростанции используют около 9 433 квадратных километров (3642 квадратных миль).
  • Геотермальные энергетические системы можно адаптировать ко многим различным условиям.

Их можно использовать для обогрева, охлаждения или электроснабжения отдельных домов, целых районов или производственных процессов.

Недостатки
Получение геотермальной энергии по-прежнему сопряжено с множеством проблем:

  • Процесс нагнетания потоков воды под высоким давлением в Землю может привести к незначительной сейсмической активности или небольшим землетрясениям.
  • Геотермальные растения связаны с проседанием или медленным опусканием земли. Это происходит, когда подземные трещины обрушиваются сами на себя. Это может привести к повреждению трубопроводов, дорог, зданий и естественных дренажных систем.
  • Геотермальные станции могут выделять небольшие количества парниковых газов, таких как сероводород и углекислый газ.
  • Вода, протекающая через подземные резервуары, может собирать следовые количества токсичных элементов, таких как мышьяк, ртуть и селен.Эти вредные вещества могут попасть в водные источники, если геотермальная система не будет должным образом изолирована.
  • Хотя процесс почти не требует топлива для работы, первоначальная стоимость установки геотермальной технологии высока. Развивающиеся страны могут не иметь сложной инфраструктуры или начальных затрат для инвестирования в геотермальную электростанцию. Некоторые объекты на Филиппинах, например, стали возможны благодаря инвестициям американской промышленности и правительственных агентств.Сегодня заводы принадлежат Филиппинам.

Геотермальная энергия и люди

Геотермальная энергия существует в различных формах по всей Земле (в виде паровых каналов, лавы, гейзеров или просто сухого тепла), и существуют разные возможности для извлечения и использования этого тепла.

В Новой Зеландии природные гейзеры и паровые вентили обогревают бассейны, дома, теплицы и креветочные фермы. Новозеландцы также используют сухое геотермальное тепло для сушки древесины и сырья.

Другие страны, такие как Исландия, воспользовались ресурсами расплавленных горных пород и магмы в результате вулканической активности, чтобы обеспечить теплом дома и здания. В Исландии почти 90% населения страны используют геотермальные источники тепла. Исландия также полагается на свои природные гейзеры для таяния снега, подогрева рыбных запасов и обогрева теплиц.

Соединенные Штаты производят больше всего геотермальной энергии по сравнению с любой другой страной. Ежегодно в США производится не менее 15 миллиардов киловатт-часов, что эквивалентно сжиганию около 25 миллионов баррелей нефти.Промышленные геотермальные технологии были сконцентрированы на западе США. В 2012 году в Неваде было 59 геотермальных проектов, работающих или разрабатываемых, за ними следуют Калифорния с 31 проектом и Орегон с 16 проектами.

Стоимость технологий геотермальной энергии снизилась за последнее десятилетие и становится более экономически возможной для частных лиц и компаний.

Что такое тепловая энергия и как мы ее используем?

Возможно, вы не особо задумывались о тепловой энергии со времен школьных занятий, но эта сила природы окружает нас каждый день.От вашей утренней чашки кофе до методов, которыми вы питаете свои бытовые приборы, тепловая энергия является частью вашей жизни, понимаете вы это или нет.

Давайте подробнее рассмотрим тепловую энергию, то, как она работает, как мы ее используем, а также плюсы и минусы ее использования в повседневной жизни.

Что такое тепловая энергия?

Концепция тепловой энергии принята уже более века. Тем не менее, наука, лежащая в основе этого, была встречена с сомнением и скептицизмом, когда впервые была предложена английским физиком Джеймсом Прескоттом Джоулзом в 1850-х годах.

Джоуль предложил радикальную теорию, согласно которой энергия может принимать разные формы, включая тепло, и эти формы энергии взаимосвязаны. Он поддержал свою идею, доказав, что у тепла есть механический эквивалент, и они могут быть преобразованы из одного в другое.

Работа

Джоуля привела к установлению закона термодинамики, известного как закон сохранения энергии, который гласит, что энергия никогда не разрушается. Есть две основные категории энергии: потенциальная энергия и кинетическая энергия.Потенциальная энергия — это запасенная энергия, зависящая от положения или состава объекта. Тепловая энергия — это тип кинетической энергии или энергии движения.

Что такое первый закон термодинамики?

Первый закон термодинамики относится к движению энергии, а также к тому, как эта энергия создает движение.

Первый закон термодинамики рассматривает влияние давления, объема и температуры на такие системы, как паровые двигатели. Используя математические соотношения, мы можем понять, как в этих системах происходит обмен энергией в виде тепла или способности выполнять работу.

Эта взаимосвязь между различными видами энергии, включая механическую, стала заметной в индустриальную эпоху, когда инженеры пытались повысить эффективность паровых двигателей.

Паровая машина также известна как тепловая машина. Он использует предоставленную энергию (тепло) и превращает ее в «работу» — в данном случае в механическую энергию — для приведения в движение поршней. Первый закон термодинамики также предполагает, что полная энергия системы никогда не изменяется; он просто меняет форму.

Это понимание имело решающее значение для определения тепловой энергии.Тепловая энергия возникает в результате «беспорядочного движения молекул» в веществе, приводимого в движение их внутренней энергией. Тепловая энергия измеряется теплотой или холодом этого вещества из-за кинетической энергии молекул.

Вещество или объект обладают кинетической энергией, когда его молекулы и частицы движутся в этом веществе.

Как определить тепловую энергию?

источник

Тепловая энергия считается суммой всей кинетической энергии и потенциальной энергии, составляющих физическую систему.Эта полная тепловая энергия также известна как полная внутренняя энергия системы. Его кинетическая энергия может принимать три формы:

  • Вибрация: Движение атома или молекулы как вибрация. Микроволновые печи нагревают пищу и жидкость, которые мы потребляем, за счет увеличения молекулярных колебаний пищи или напитков.
  • Вращение: Скорость вращения атома.
  • Translational: Движущийся объект, движущийся по линейной траектории. Стрельба из лука дает стрелу поступательную кинетическую энергию.

Хотя тепло и тепловая энергия часто считаются синонимами, строго говоря, с научной точки зрения, это не одно и то же. Термическая энергия относится к движению молекул внутри объекта или вещества. Каждый объект или вещество имеет тепловую энергию — солнце является крупнейшим источником тепловой энергии в нашей солнечной системе.

Тепло — это передача энергии от одного объекта или вещества к другому, поток тепловой энергии. У рабочей плиты есть тепловая энергия, как и у любой кастрюли или чайника, которые вы на нее ставите.Печь может передавать тепло кастрюле, а кастрюля будет передавать тепло своему содержимому.

Температура — это совсем другое дело. Температура — это горячность или холодность объекта, измеренная в определенное время. Температура — это мера средней кинетической энергии молекул, составляющих вещество. Сама по себе температура не может сделать никакой полезной работы; это просто текущая температура объекта.

Ваш врач может измерить вашу температуру, когда вы пойдете на медосмотр, проверяя, нет ли повышения температуры.Если вы больны, ваша температура может быть выше, чем обычно, показывая, что температура является моментальным снимком чего-то горячего или прохладного.

Если углубиться в термодинамику, кинетическая энергия молекул вещества может быть увеличена путем нагревания. Количество тепла, необходимое для воздействия на заданное повышение температуры, называется удельной теплоемкостью. Другими словами, размер и вес молекул определяют удельную теплоемкость, необходимую для увеличения их кинетической энергии — или количества тепловой энергии — и, следовательно, количество передаваемого тепла и степень повышения температуры.

Как мы измеряем тепловую энергию?

Обычно мы измеряем тепловую энергию в джоулях, которые в Международной системе единиц часто обозначают сокращенно до Дж (единица СИ).

Мы также измеряем тепловую энергию топлива и источников энергии в британских тепловых единицах (британских тепловых единицах), чтобы сравнивать их на равной основе. Одна британская тепловая единица — это количество тепла, необходимое для нагрева одного фунта воды с 39 до 40 градусов по Фаренгейту.

Btu — относительно небольшое измерение — при сжигании спички выделяется около 1 BTU.

Как именно происходит передача тепловой энергии?

источник

Тепловая энергия может передаваться в виде тепла одним из трех способов. Их:

  • Проводимость
  • Конвекция
  • Излучение

Рассмотрим каждый из них по очереди на примере костра и кастрюли с изначально холодной водой.

Что такое конвекция в тепловой энергии?

Конвекция связана с движением тепла через жидкость или газ.Когда мы ставим кастрюлю с холодной водой на костер, тепловая энергия переходит в воду. То, что происходит, называется конвекцией. По мере того, как вода нагревается, она становится менее плотной и поднимается вверх. Более плотная и холодная вода опускается, а затем нагревается конвекционными потоками.

Вы, вероятно, знакомы с принципом, согласно которому теплый воздух поднимается вверх, а холодный — опускается. Этот принцип действует как в жидкостях, так и в газах. При нагревании более теплое вещество, будь то жидкость или воздух, расширяется и перемещается вверх. В конце концов, тепло распространяется по жидкости или газу.

Что такое теплопроводность в тепловой энергии?

Проводимость — это внутренняя теплопередача в объекте, будь то твердое тело, жидкость или газ. Возвращаясь к нашей сковороде, происходит теплопроводность, когда тепло течет через сковороду к ее ручке, нагревая ручку. Проводимость означает, что тепловая энергия горячего объекта с более высокой температурой течет к более холодному объекту с более низкой температурой.

Проводимость происходит по-разному в зависимости от того, является ли твердое тело металлом или неметаллом. Как и следовало ожидать, металлы лучше проводят тепло.Причина в том, что электроны в атомах металла могут вырываться и перемещаться, причем гораздо быстрее, чем если бы они были атомами газа или неметалла.

В случае неметаллических твердых тел процесс немного другой. При нагревании тепловая энергия передается от одного атома к другому за счет вибрационных эффектов. Но процесс и поток энергии медленнее, поскольку атомы неподвижны.

Что такое излучение в тепловой энергии?

Излучение, третий тип передачи тепловой энергии, происходит в волнах, движущихся со скоростью света.Ему не нужен материал или предмет, чтобы путешествовать. Солнце — лучший пример этого излучения, передачи энергии электромагнитными волнами, путешествующих в пространстве в виде световой волны или электромагнитного излучения. Вы замечаете изменение температуры, когда выходите из тени на солнце в солнечный день.

Солнечное тепло не может достичь Земли посредством конвекции или теплопроводности — молекулы не могут столкнуться, потому что никакие поверхности не соприкасаются.

Тепловое равновесие возникает, когда объекты с одинаковой температурой внутри одной системы не обмениваются какой-либо тепловой энергией именно потому, что они имеют одинаковую температуру.Между объектами нет разницы температур.

Почему идеальный газ был так важен для понимания тепловой энергии?

источник

Химики потратили годы, пытаясь найти уравнение для связи молекулы газа с окружающей средой, включая ее тепловую энергию. Проблема заключалась в том, что всегда были факторы, такие как межмолекулярные силы, мешающие результатам. Не испугавшись, химики изобрели условный, гипотетический газ, названный идеальным газом, газ, который ведет себя постоянно.

Представление об этом идеальном газе помогло химикам понять многие концепции о газе и его поведении, включая соотношение между давлением и объемом газа относительно его температуры. Идея идеального газа породила закон идеального газа и уравнение идеального газа.

Эти концепции позволили химикам открыть, что давление газа прямо пропорционально его температуре и количеству молекул. Идеальный газ позволил химикам измерить тепловую энергию газа.

Как мы используем тепловую энергию?

Есть несколько форм тепловой энергии. Наиболее очевидный из них — когда мы нагреваем воду для ванны, ставим чайник на плиту, чтобы он закипел, или гладили одежду утюгом. Здесь мы извлекаем выгоду из присущего нам свойства тепловой энергии передаваться в виде тепла для нашего использования.

Другие формы тепловой энергии включают солнечную энергию, геотермальную энергию, энергию океана и батареи топливных элементов. Большое внимание уделяется использованию тепловой энергии, поскольку она предпочтительнее типичных источников энергии, которые могут способствовать выбросам парниковых газов.Но он также может представлять опасность для окружающей среды.

Каковы плюсы и минусы этих форм тепловой энергии?

источник

Есть много преимуществ и недостатков в использовании тепловой энергии человеком. Давайте посмотрим на различные виды тепловой энергии и ее использование в современном мире.

Как мы используем солнечную тепловую энергию?

Солнечная тепловая энергия обычно получается с помощью отражателей и приемников, которые собирают и концентрируют солнечную энергию.Они увеличивают энергию солнца во много раз по сравнению с нормальной силой, а некоторые системы увеличивают ее интенсивность более чем в 100 раз.

Эти технологии обычно фокусируют солнечную энергию на трубке, содержащей жидкий теплоноситель, который используется для активации водяной турбины для производства электроэнергии. Некоторые системы также имеют систему хранения, которая позволяет им сохранять энергию в ночное время и в другое время, когда нет солнечного света. Эта система обеспечивает постоянную подачу питания.

Такие системы обычно встречаются в Калифорнии, Аризоне и Неваде.

Несмотря на то, что солнечные тепловые системы высоко ценятся как чистый возобновляемый источник энергии для отопления и охлаждения, они все же имеют некоторые недостатки. Среди них — то, что для жизнеспособности им требуются большие участки земли, иногда до 10 акров на каждый мегаватт (МВт) производимой энергии.

Другие проблемы включают необходимость значительных запасов воды и высокую стоимость таких систем.

Как мы используем геотермальную энергию?

Геотермальная энергия находится в земной коре.У него много преимуществ, в том числе его постоянная доступность, в отличие от других видов возобновляемой энергии. Он значительно чище, чем природный газ, и для его производства не требуется ископаемое топливо. Это также относительно дешево.

Геотермальная энергия добывается путем бурения до подземных резервуаров, где может течь очень горячая вода. Затем эта горячая вода используется для привода турбин для производства электроэнергии.

Однако есть несколько недостатков, в том числе выброс токсичных тяжелых металлов и сероводорода, а также провоцирование землетрясений.

Как мы используем тепловую энергию океана?

Тепловая энергия океана считается жизнеспособным вариантом для непрерывного производства экологически чистой электроэнергии без каких-либо неблагоприятных последствий для океана. Он полагается на энергию, которая может быть получена из-за заметно различающихся температур между поверхностью океана, которая постоянно нагревается солнцем, и его глубинами, которые обычно очень холодные.

Поскольку океаны покрывают примерно две трети поверхности Земли, у такого источника энергии есть много заманчивых возможностей.

Однако, как и все источники тепловой энергии, у него есть свои недостатки. Это дорогостоящая технология, которая также может нарушить жизнь водной флоры и фауны.

Какие еще виды тепловой энергии мы используем?

Батареи топливных элементов — еще один вид тепловой энергии, вызывающий интерес. Обычные батареи со временем перестают работать. Батареи на топливных элементах могут работать до 80 000 часов в больших распределенных энергосистемах, если у них есть запас топлива, обычно водород.

Они имеют широкое применение от промышленного масштаба до индивидуального личного уровня.

Как и все батареи, батареи топливных элементов имеют электрод и катод. Но водородные топливные батареи полагаются на электроны из молекул водорода, чтобы создать поток электричества. Однако из-за производственных затрат, отсутствия инфраструктуры и высокой цены на водородные батареи отрасль остается молодой.

Добавить комментарий

Ваш адрес email не будет опубликован.