Как определить напряжение питания светодиодов? Ответ
Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?
Теоретический метод
Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.
Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.
С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов. Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.
Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.
Практический метод
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Все что нужно знать про светодиоды
Последнее время, в интернете на различных компьютерных форумах я замечаю людей, которые хотят применить светодиоды для моддинга, однако не обладают достаточными знаниями для этого. Вместо полезных советов, такие люди зачастую выслушивают на тех же форумах рассуждения различных дилетантов, которые не разбираются в теме, а даже самый просто вопрос порождает эпические споры с философскими рассуждениями. Большинство информация из таких тем не только не принесет никакой пользы, а зачастую может и навредит. Для того что бы снять все самые популярные вопросы и заблуждения, которые касаются применения светодиодов в моддинге, я и решил написать сей небольшой опус.
Что такое светодиоды
В последнее время ведется много разговоров о светодиодах, постоянно появляются новости о все более мощных светодиодах, новых разработках и новых товарах на основе светодиодов (стоит вспомнить хотя бы новые жк-мониторы со светодиодной подсветкой от компании Apple). Так что же такое светодиод?
Светодиоды разных размеров, цветов и яркости
Применение светодиодов в моддинге
Светодиоды это одни из первых вещей, которые начали применять в моддинге, ведь еще в конце 1999 – начале 2000 года первые моддеры меняли в своих корпусах стоковые светодиоды наскучивших цветов на более яркие светодиоды интересных и необычных цветов.
Вентилятор со светодиодной подсветкой
гибкая LED лента
Гибкая светодиодная лампа
Светодиоды, в случае применения их в моддинге, обладают следующими преимуществами и недостатками.
Преимущества
- Яркие и насыщенные цвета
- Надежность (длительный срок службы)
- Высокая эффективность
- Практически не греются
- Компактный размер
Недостатки
- Легко перегорают при неправильном подключении
- Далеко не plug-and-play, с точки зрения подключения
Разновидности светодиодов
Светодиоды разделяются на разные разновидности в зависимости от размеров, количества кристаллов в одном корпусе, яркости, мощности, по цвету излучения, а так же другим параметрам.
Пример светодиодов самых популярных размеров
Светодиоды различной формы и цвета
Свечение светодидов с диффузным (цветным) корпусом
Геометрические форма и размеры. Самыми популярными являются светодиоды в цилиндрическом корпусе стандартизированных размеров: 3/5/10 мм в диаметре, реже 8 мм, хотя иногда встречаются и до 20 мм в диаметре. Также существуют SMD-светодиоды, которые отличаются очень компактным размером – до 2 х 2 мм, предназначены они для припаивания прямо на плату и обычно используются для подсветки экранов. Существуют также светодиоды выполненные в корпусах квадратной или прямоугольной формы.
Количество кристаллов. В большинстве случаев, в корпусе одного светодиода находится один полупроводниковый кристалл, однако бывают случаи в которых в корпус одного светодиода устанавливают больше одного кристалла, например:
- Многоцветные светодиоды
В случае необходимости сделать многоцветных светодиод, в корпусе одного светодиода устанавливается более одного полупроводникового кристалла, причем сами кристаллы сделаны из разных материалов и соответственно излучают разные цвета: синий, зеленый, красный, желтый и так далее. Двухцветные светодиоды чаще всего используют как индикаторы (обычно красный/зеленый цвет), трехцветные светодиоды чаще всего используют для подсветки дисплеев и постройки светодиодных экранов так как данные светодиоды могут отображать три базовых цвета (синий/зеленый/красный), при смешивании которых можно получить всю палитру цветов, необходимых для отображения фото и видеоматериалов с достаточным качеством. Четырехцветные светодиоды достаточно редкие и содержат кристаллы для отображения, как видно из названия, четырех цветов (синий/зеленый/красный/желтый) и применяются в основном для создания белого света с высокими качественными характеристиками CRI (Color rendering index).
- Светодиоды повышенной мощности
Для повышения яркости (количества света) светодиода иногда в корпус одного светодиода устанавливают несколько светоизлучающих кристаллов одного цвета (обычно ставят четыре кристалла), чем кратно увеличивают яркость светодиода. Это можно сравнить с четырехъядерными процессорами =).
Яркость. Из-за большого спектра применения светодиодов, производители выпускают светодиоды с различной яркостью: от не очень ярких для индикаторных целей до суперякрих, в основном для подсветки чего-то. На показатель яркости также влияет диаграмма направленности светодиода, например светодиод одной мощности с углом излучения в 20 градусов кажется более ярким, чем светодиод такой же мощности но с более широким углом излучения, например 140 градусов.
Мощность. Для разных целей производятся светодиоды различных мощностей: от сотых долей ватта до серьезных 5 и более ватт на одном кристалле. Типичные моддерские, так называемые «ультраяркие», светодиоды имеют мощность примерно в 60 мВт (примерно 1/16 Вт), и если их использовать в подсветке корпуса среднего размера то их может понадобиться примерно от 15 до 25 штук. Среднестатистический четырехъкристальный суперяркий светодиод имеет мощность примерно в 240 мВт (1/4 Вт) и таких светодиодов для подсветки корпуса среднего размера нужно примерно от 4 до 8 штук, в зависимости от прочих особенностей.
Цвет. В зависимости от полупроводника, на основе которого выполнен светодиод, так же отличается цвет, излучаемый светодиодом . В продаже чаще всего можно встретить светодиоды таких цветов: красный, оранжевый, желтый, зеленый, синий, фиолетовый, ультрафиолетовый. Светодиоды всех цветов находят свое применение в моддинге, причем как для индикаторных целей, так и для подсветки. Существуют также светодиоды, работающие в инфракрасном диапазоне, но поскольку их излучение не видно невооруженному глазу – их применение ограничено пультами ДУ и видеокамерами ночного видения.
Особого внимания заслуживают синие, фиолетовые и ультрафиолетовые светодиоды – все они вызывают люминесценцию (флюоресценцию) некоторых красителей, но в разной степени. Синие светодиоды вызывают не очень яркую люминесценцию, а также немного искажают ее цвет задевая своим синим излучением. Фиолетовые светодиоды напротив – выглядят тусклыми, но вызывают сильную люминесценцию, обычно их продают под видом ультрафиолетовых светодиодов, но это не так. Ультрафиолетовые светодиоды довольно-таки редко встречаются в продаже, а те что встречаются обычно являются ультрафиолетовыми светодиодами длинноволнового диапазона ультрафиолета, так называемого УФ-А (UV-A) – самого безопасного, внешне эти светодиоды выглядят очень тусклыми из-за низкой чувствительности человеческого глаза к диапазону мение 400 нм, но эти светодиоды вызывают еще более сильную люминесценцию, чем фиолетовые – это связано с большей энергией этого диапазона излучения.
вечение светодиодов с прозрачным корпусом
Типичные характеристики светодиодов
Две главных характеристики светодиодов это напряжение и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА, в свою очередь одноватные светодиоды обычно потребляют 300-400 мА. Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.
При использовании светодиодов, лучше уточнить сколько светодиоду необходимо вольт у продавца или изготовителя, но когда эта информация не доступна, можно воспользоваться следующей таблицей.
Таблица примерных напряжений светодиодов в зависимости от цвета
Цветовая характеристика | Длинная волны | Напряжение |
Инфракрасные | от 760 нм | до 1.9 В |
Красные | 610 – 760 нм | от 1.6 до 2.03 В |
Оранжевые | 590 – 610 нм | от 2.03 до 2.1 В |
Желтые | 570 – 590 нм | от 2.1 до 2.2 В |
Зеленые | 500 – 570 нм | от 2. 2 до 3.5 В |
Синие | 450 – 500 нм | от 2.5 до 3.7 В |
Фиолетовые | 400 – 450 нм | 2.8 до 4 В |
Ультрафиолетовые | до 400 нм | от 3.1 до 4.4 В |
Белые | Широкий спектр | от 3 до 3.7 В |
Правила подключения и расчет светодиодов
Светодиод пропускает электрический ток только в одном направлении, а это значит что для того чтобы светодиод излучал свет, он должен быть правильно подключен. У светодиода два контакта: анод(плюс) и катод (минус). Обычно, длинный контакт у светодиода – это анод, но бывают и исключения так что лучше уточнить данный факт в технических характеристиках конкретного светодиода.
Светодиоды относятся к таком типу электронных компонентов которому, для долгой и стабильной работы, важно не только правильное напряжение, но и оптимальная сила тока – так что всегда, при подключении светодиода, нужно их подключать через соответствующий резистор. Иногда этим правилом пренебрегают, но результат чаще всего один – светодиод или сразу сгорает, или его ресурс очень значительно сокращается. В некоторые светодиоды резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды в продаже встречаются довольно-таки редко и чаще всего к светодиоду необходимо подключать внешний резистор.
Стоит помнить, что резисторы так же отличаются своими характеристиками и, для подключения их к светодиодам, вам необходимо выбрать резистор правильного номинала. Для того чтобы рассчитать необходимый номинал резистора следует воспользоваться законом Ома – это один из самых важных физических законов, связанных с электричеством. Данный закон все учили в школе, но практически никто его не помнит =).
Закон Ома – это физический закон с помощью которого вы можете определить взаимозависимость напряжения (U), силы тока (I) и сопротивления (R). Суть эго проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не меняются.
Этот закон визуально отображается при помощи формулы: U= I*R
Когда вы знаете напряжение и сопротивления, с помощью этого закона можна найти силу тока по формуле: I = U/R
Когда вам известно напряжение и сила тока, можно найти сопротивление: R = U/I
Когда вам известна сила тока и сопротивление, можно вычислить напряжение: U = I*R
Теперь рассмотрим на примере. У вас есть светодиод с рабочим напряжением в 3 В и силой тока в 20 мА, вы его хотите подключить к источнику напряжения 5В из USB-разъема или БП, чтобы при этом он не сгорел. Значит у нас есть напряжение 5 В, но светодиоду нужно только 3 В, значит от 2 В нам необходимо избавиться (5В – 3В=2В). Чтобы избавится от лишних 2 В нам необходимо подобрать резистор с правильным сопротивлением, которое рассчитывается следующим образом: мы знаем напряжение от которого необходимо избавиться и знаем силу тока нужную светодиоду – воспользуемся формулой изложенной выше R = U/I. Соответственно 2В/0.02 А= 100 Ом. Значит вам необходим резистор на 100 Ом.
Иногда, в зависимости от характеристик светодиода, необходимый резистор получается с не стандартным номиналом, который нельзя найти в продаже, например 129 или 111.7 Ом =). В таком случае необходимо просто взять резистор немного большего сопротивления, чем рассчитанный – светодиод будет работать не на 100 процентов своей мощности, а примерно на 90-95 %. В таком режиме светодиод будет работать более надежно, а снижение яркости визуально не будет заметно.
Также можно рассчитать насколько мощный резистор вам нужен – для этого умножаем напряжение, которое будет задерживаться на резисторе, на силу тока, которая будет в цепи. В нашем случае это 2В х 0.02 А = 0.04 Вт. Значит вам подойдет резистор такой мощности или большей.
Светодиоды иногда подключают по несколько штук параллельно или последовательно, используя один резистор. Для правильного подключения следует помнить что при параллельном подключении суммируется сила тока, а при последовательном суммируется требуемое напряжение. Параллельно и последовательно можно подключать только одинаковые светодиоды с использование одного резистора, а если вы используете разные светодиоды с разными характеристиками, то лучше рассчитать каждому светодиоду свой резистор – так будет надежней. Светодиоды даже одной модели имеют небольшое расхождение в параметрах и, при подключении большого количества светодиодов параллельно или последовательно, это небольшое расхождение в параметрах может выдать результатом много сгоревших светодиодов =). Еще одним подводным камнем может стать тот факт, что продавец или производитель (намного реже) может дать немного не верные данные по светодиодам, а сами светодиоды могут иметь не четкое рабочее напряжение, а набор из параметров минимального/оптимального и максимального напряжения. Данный фактор не будет особо влиять при подключении небольшого количества светодиодов, а в случае подключения большого количества – результатом могут быть все те же сгоревшие светодиоды. Так что с параллельным и последовательным подключением не стоит чересчур увлекаться, надежней будет чтобы к каждому светодиоду или небольшой группе светодиодов (3-5 штук) подключался отдельный резистор. Рассмотрим несколько примеров подключения.
Схема параллельного подключения светодиодов
Схема последовательного подключения светодиодов
Пример 1. Вы хотите подключить последовательно три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В (например из molex-разъема). Три светодиода по 3 вольта каждый будут вместе потреблять 9 вольт (3 В x 3=9 В). Наш источник тока обладает напряжением в 12 вольт, соответственно от 3 вольт надо будет избавиться (12 В – 9 В = 3 В). Так как подключение последовательное, то сила тока составит 20мА, соответственно 3 вольта (напряжение, от которого необходимо избавится) делим на 0.02 А (сила тока, необходимая каждому светодиоду) и получаем значение необходимого сопротивления – 150 Ом. Значит нужен резистор на 150 Ом.
Пример 2. У вас в наличии четыре светодиода, каждый из которых рассчитан на 3 вольта, и источник питания на 12 В. В такой ситуации можно подумать что резистор не нужен, однако это не так – светодиоды очень чувствительны к силе тока и лучше добавить в цепь резистор на 1 Ом. Резистор данного номинала не повлияет на яркость свечения, а будет чем-то на подобии «предохранителя» – светодиоды будут работать намного надежней. Без применения резистора, в данному случае, светодиоды могут попросту сгореть, быстро или не очень.
Пример 3. Вы хотите параллельно подключить три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В. Поскольку при параллельном подключении суммируется сила тока, а не напряжение, трем светодиодам потребуется сила тока в 60 мА (20 мА x 3 = 60 мА). Наш источник тока обладает напряжением в 12 вольт, а светодиодам необходимо напряжение в 3 вольта, соответственно от 9 вольт необходимо избавиться (12 В – 3 В = 9 В). Так как подключение параллельное, то сила тока составит 60мА, соответственно 9 вольт (напряжение, от которого необходимо избавится) делим на 0.06 А (сила тока, необходимая всем светодиодам) и получаем значение необходимого сопротивления – 150 Ом. Значит нужен резистор на 150 Ом.
Так же в интернете существует большое количество разнообразных «калькуляторов для светодиодов», которыми вы можете воспользоваться. Достаточно зайти на соответствующий сайт, указать характеристики светодиодом и источника тока и вы получите все необходимые данные по резистору, а так же его цветовую маркировку. Пример такого калькулятора вы можете увидеть на сайте led-calculator.com.
Видео процесса выращивания светодиодов.
Питание светодиодов, простейшие драйверы
На эту тему: Электронный балласт для светодиодной лампы. Схемотехника.
Стабилизатор тока светодиода. Схемотехника.
Драйверы светодиодов
Очень часто при покупке светодиода задаётся вопрос: «На сколько он вольт?» Разумеется, если речь идёт о LED-лампе, модуле, ленте, панели – законченном устройстве, уже содержащем схему управления или хотя бы просто резистор – то да, они выпускаются на стандартные напряжения. В подавляющем большинстве это 12В постоянного тока или 220 переменного. В промышленной аппаратуре встречаются и другие значения питающего напряжения, но в данной статье мы не будем касаться таких устройств, а рассмотрим, как правильно запитать дискретные светодиоды простейшими средствами – без готовых (и недешёвых) промышленных драйверов.
Прежде всего, следует помнить, что практически для всех электрических процессов в основном важно не напряжение, а ток. Физика описывает механическое действие тока, химическое действие тока, тепловое действие тока… Не напряжения, а именно тока. А какое напряжение необходимо приложить, зависит от требуемого тока и сопротивления нагрузки: U=IR (производное закона Ома).
И вот это самое R (сопротивление) зачастую непостоянно, и зависимость тока от напряжения нелинейная. Даже в обычной лампочке накаливания сопротивление нити возрастает (как и у всех металлов) с повышением температуры. Но такая нелинейность нам на руку: как бы сам собой стабилизируется ток – его увеличение ведёт к разогреву волоска, это повышает сопротивление и, следовательно, противодействует дальнейшему увеличению тока. Именно поэтому лампы накаливания можно питать фиксированным напряжением: необходимый ток установится автоматически.
Со светодиодами – сложнее. Их вольтамперная характеристика (ВАХ), как и у всех полупроводниковых диодов, при достижении некоторого напряжения становится очень крутой, почти вертикальной, и малейшее его отклонение может вызвать значительное изменение тока. И даже при очень точном и стабильном напряжении к тем же результатам может привести тепловое смещение характеристики. Наконец, светодиоды имеют разброс параметров, и при одном и том же напряжении ток может сильно отличаться даже у приборов из одной партии.
Рабочий участок характеристики лежит в очень узком диапазоне напряжений и зависит от длины волны излучаемого света и материала светодиода: 1,5…2,1 В для арсенида галлия (красных, оранжевых, желтых), но более 2,4 В для красных же из AlInGaP… Таблица по всем цветам и материалам обширна, а для расчетов, в общем, не нужна. С достаточной точностью можно считать напряжение светодиодов
- красных – 2 В,
- желтых – 2,5 В,
- зелёных – 3 В,
- синих и белых – 3,5 В.
В принципе так можно было бы и отвечать на вопрос из первого предложения статьи, но с оговоркой, что любое отклонение напряжения приведет либо к перегоранию светодиода, либо к тому, что он будет излучать лишь несколько процентов своего номинального светового потока.
Таким образом, светодиоды следует питать только фиксированным током (не напряжением!), а уж просто его ограничить или стабилизировать с высокой точностью – зависит от того, какое качество освещения, эффективность и долговечность излучателя необходимы.
При использовании светодиодов для индикации или подсветки небольшой мощности, вполне допустимо погасить ток до уровня 60-70% максимально допустимого просто последовательно включенным резистором с сопротивлением:
R=(U-UVD)/I, где U – напряжение питания, UVD – рабочее напряжение светодиода (или суммарное нескольких, включенных последовательно), I – необходимый ток.
Мощность, выделяющаяся на резисторе P=I2R при питании маломощных светодиодов от низковольтных источников, обычно не превышает 100 мВт и позволяет использовать маленькие детали.
Максимально допустимый ток практически всех маломощных диодов (полностью пластиковых, не имеющих площадки для радиатора) составляет 20 мА, а мощность – не более 50 мВт. Исключение – квадратные «Пираньи», которые могут содержать несколько кристаллов, включенных параллельно, или кристаллы большой площади, и рассеивать, соответственно, до 200 мВт. Это немного, но в случае близкого расположения нескольких светодиодов может вызвать ощутимый нагрев, что необходимо учитывать в конструкции – обеспечивать конвекцию воздуха, не заливать теплоизолирующими полимерами и т.д.
Из формулы видно, что тот же самый ток можно получить при различном сопротивлении – в зависимости от напряжения и количества светодиодов. Например, около 14 мА будет протекать через диод с рабочим напряжением 3 В при его питании от 12-вольтового источника через резистор 643 Ом. И такой же ток, но через 3 аналогичных диода, обеспечит резистор в 214 Ом. В первом случае существенно меньше будет изменение тока при отклонениях напряжения питания и температурном дрейфе ВАХ, зато во втором – в 9 раз меньше потери энергии на резисторе (относительно потребляемой излучателями). Палка о двух концах: экономичность против стабильности и долговечности. Практически для нормальной работы светодиодов достаточно, чтобы на резисторе падала где-то треть-четверть напряжения питания.
Если количество светодиодов не укладывается в это условие (их суммарное напряжение превосходит или незначительно меньше напряжения источника), применяют групповое включение нескольких параллельно соединённых последовательных цепочек с резистором в каждой. Просто параллельное соединение светодиодов используется только в дешёвых китайских фонарях и не может гарантировать равномерного распределения тока между излучателями даже одной партии, не говоря уже о раздельно приобретенных компонентах.
Например, необходимо запитать 10 белых маломощных светодиодов от источника в 9 В (достаточно стабильного, не «гуляющего», как бортовая сеть автомобиля на 30-40%). В таком случае можно выбрать ток достаточно близкий к максимально допустимому. Скажем, 17 мА.
Последовательное соединение 3х3,5 В уже неприемлемо: недостаточно напряжения питания. Значит, останавливаемся на схеме из пяти цепочек по 2 диода – как раз треть питания на резисторах, сопротивлением R = (9 В-2*3,5 В)/17 мА=117 Ом. Конечно, не обязательно искать соответствующие прецизионные, вполне подойдёт ближайшее значение из стандартного ряда – 120 Ом.
Ток, потребляемый от источника, составит 5*17=85 мА, а мощность P=U*I=9 В*85 мА=765 мВт. То есть подойдёт блок питания мощностью всего 1 Вт (щелочная батарейка «Крона» прослужит около сотни часов).
Именно так (параллельные группы только не из двух, а из трёх последовательно соединённых диодов и резистора) устроены 12-вольтовые светодиодные ленты. Поэтому резать их можно только по специально отмеченным границам – на целое количество групп.
Стабилизировать ток в маломощной цепочке проще всего полевым транзистором VT с начальным током стока, слегка превышающим рабочий ток светодиодов (КП302, КП307 и т.п.), подобрав его точное значение изменением сопротивления R в пределах нескольких десятков Ом.
Более серьёзные схемы для стабилизации тока, а также для питания светодиодов от сети 220 В рассмотрены в статье про самодельные LED-лампы. В случае же еще больших мощностей или совсем низковольтного питания (менее 3В), или для максимальной эффективности использования самых дорогих излучателей рекомендуется уже применять промышленные драйверы: себестоимость самодельного устройства такой сложности будет выше, чем у серийно выпускаемого.
Назад к каталогу статей >>>
потребление тока, напряжение, мощность и светоотдача
ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
Времена, когда светодиоды использовали только в качестве индикаторов включения приборов, давно прошли. Современные светодиодные приборы могут полностью взаимозаменить лампы накаливания в бытовых, промышленных и уличных светильниках. Этому способствуют различные характеристики светодиодов, зная которые можно правильно подобрать LED-аналог. Использование светодиодов, учитывая их основные параметры, открывает обилие возможностей в сфере освещения.
Основой светодиода является искусственный полупроводниковый кристаллик
Какие бывают светодиоды
Светодиод (обозначается СД, СИД, LED в англ. ) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.
Светодиоды вполне могут заменить обычные лампы накаливания
Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.
Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).
В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.
Применение светодиодной подсветки в интерьере кухни
Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве светодиодных ламп с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.
Обратите внимание! Сравнивая лампы на SMD и COB светодиодах можно отметить, что первые поддаются ремонту путем замены вышедшего из строя светодиода. Если не работает лампа на COB светодиодах, придется менять всю плату с диодами.
Характеристики светодиодов
Выбирая для освещения подходящую светодиодную лампу, следует учитывать параметры светодиодов. К ним относят напряжение питания, мощность, рабочий ток, эффективность (светоотдача), температуру свечения (цвет), угол излучения, размеры, срок деградации. Зная основные параметры, можно будет без труда выбрать приборы для получения того или иного результата освещенности.
LED-технологии используются в оформлении табло аэропортов и вокзалов
Величина тока потребления светодиода
Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.
Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.
Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.
Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.
Светодиодная гирлянда может использоваться в качестве декора помещения
Напряжение светодиодов
Как узнать напряжение светодиодов? Дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на кристалле напряжение. Именно это значение берется во внимание при расчетах.
Учитывая применение различных полупроводников для светодиодов, напряжение у каждого из них может быть разным. Как узнать, на сколько Вольт светодиод? Определить можно по цвету свечения приборов. Например, для синих, зеленых и белых кристаллов напряжение составляет около 3В, для желтых и красных – от 1,8 до 2,4В.
При использовании параллельного подключения светодиодов идентичного номинала с величиной напряжения в 2В можно столкнуться со следующим: в результате разброса параметров одни излучающие диоды выйдут из строя (сгорят), а другие будут очень слабо светиться. Это произойдет ввиду того, что при увеличении напряжения даже на 0,1В наблюдается увеличение силы тока, проходящего через светодиод, в 1,5 раза. Поэтому так важно следить, чтобы ток соответствовал номиналу светодиода.
100Вт лампы накаливания эквивалентно 12-12,5Вт LED-светильника
Светоотдача, угол свечения и мощность светодиодов
Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.
Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.
Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:
Мощность лампы накаливания, Вт | Соответствующая мощность светодиодного светильника, Вт |
100 | 12-12,5 |
75 | 10 |
60 | 7,5-8 |
40 | 5 |
25 | 3 |
При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.
Цветовая температура LED-источников
Одним из важных параметров светодиодных источников является температура свечения. Единицы измерения этой величины – градусы Кельвина (К). Следует отметить, что все источники света по температуре свечения разделяют на три класса, среди которых теплый белый имеет цветовую температуру менее 3300 К, дневной белый – от 3300 до 5300 К и холодный белый свыше 5300 К.
Обратите внимание! Комфортное восприятие человеческим глазом светодиодного излучения непосредственно зависит от цветовой температуры LED-источника.
Цветовая температура обычно указывается на маркировке светодиодных ламп. Она обозначается четырехзначным числом и буквой К. Выбор LED-ламп с определенной цветовой температурой напрямую зависит от особенностей применения ее для освещения. Предложенная ниже таблица отображает варианты использования светодиодных источников с разной температурой свечения:
Цвет свечения светодиодов | Цветовая температура, К | Варианты использования в освещении | |
Белый | Теплый | 2700-3500 | Освещение бытовых и офисных помещений как наиболее подходящий аналог лампы накаливания |
Нейтральный (дневной) | 3500-5300 | Отличная цветопередача таких ламп позволяет применять их для освещения рабочих мест на производстве | |
Холодный | свыше 5300 | Используется в основном для освещения улиц, а также применяется в устройстве ручных фонарей | |
Красный | 1800 | Как источник декоративной и фито-подсветки | |
Зеленый | — | Подсветка поверхностей в интерьере, фито-подсветка | |
Желтый | 3300 | Световое оформление интерьеров | |
Синий | 7500 | Подсветка поверхностей в интерьере, фито-подсветка |
Волновая природа цвета позволяет выразить цветовую температуру светодиодов, используя длину волны. Маркировка некоторых светодиодных приборов отражает цветовую температуру именно в виде интервала различных длин волн. Длина волны имеет обозначение λ и измеряется в нанометрах (нм).
Типоразмеры SMD светодиодов и их характеристики
Учитывая размер SMD светодиодов, приборы классифицируются в группы с различными характеристиками. Наиболее популярные светодиоды с типоразмерами 3528, 5050, 5730, 2835, 3014 и 5630. Характеристики SMD светодиодов в зависимости от размеров рознятся. Так, разные типы SMD светодиодов отличаются по яркости, цветовой температуре, мощности. В маркировке светодиодов первые две цифры показывают длину и ширину прибора.
Светодиоды SMD 5630 на LED-ленте
Основные параметры светодиодов SMD 2835
К основным характеристикам SMD светодиодов 2835 относят увеличенную площадь излучения. В сравнении с прибором SMD 3528, который имеет круглую рабочую поверхность, площадь излучения SMD 2835 имеет прямоугольную форму, что способствует большей светоотдаче при меньшей высоте элемента (около 0,8 мм). Световой поток такого прибора составляет 50 лм.
Корпус светодиодов SMD 2835 выполнен из термостойкого полимера и может выдерживать температуру до 240°С. Следует отметить, что деградация излучения в этих элементах составляет менее 5% в течение 3000 часов функционирования. Кроме того, прибор имеет достаточно низкое тепловое сопротивление перехода кристалл-подложка (4 С/Вт). Рабочий ток в максимальном значении – 0,18А, температура кристалла – 130°С.
По цвету свечения выделяют теплый белый с температурой свечения 4000 К, дневной белый – 4800 К, чистый белый – от 5000 до 5800 К и холодный белый с цветовой температурой 6500-7500 К. Стоит отметить, что максимальная величина светового потока у приборов с холодным белым свечением, минимальная – у светодиодов теплого белого цвета. В конструкции прибора увеличены контактные площадки, что способствует лучшему отводу тепла.
Полезный совет! Светодиоды SMD 2835 могут быть использованы для любого типа монтажа.
Размеры светодиода SMD 2835
Характеристики светодиодов SMD 5050
В конструкции корпуса SMD 5050 размещены три однотипных светодиода. LED источники синего, красного и зеленого цвета имеют технические характеристики, аналогичные кристаллам SMD 3528. Значение рабочего тока каждого из трех светодиодов составляет 0,02А, следовательно суммарная величина тока всего прибора 0,06А. Для того, чтобы светодиоды не вышли из строя, рекомендуется не превышать эту величину.
LED приборы SMD 5050 имеют прямое напряжение величиной 3-3,3В и светоотдачу (сетевой поток) 18-21 лм. Мощность одного светодиода складывается из трех величин мощности каждого кристалла (0,7Вт) и составляет 0,21Вт. Цвет свечения, испускаемый приборами, может быть белым во всех оттенках, зеленым, синим, желтым и многоцветным.
Близкое расположение светодиодов разных цветов в одном корпусе SMD 5050 позволило реализовать многоцветные светодиоды с отдельным управлением каждым цветом. Для регулирования светильников с использованием светодиодов SMD 5050 используют контроллеры, благодаря чему цвет свечения можно плавно изменять от одного к другому через заданное количество времени. Обычно такие приборы имеют несколько режимов управления и могут регулировать яркость свечения светодиодов.
Размеры светодиода SMD 5050
Типовые характеристики светодиода SMD 5730
Светодиоды SMD 5730 – современные представители LED-приборов, корпус которых имеет геометрические размеры 5,7х3 мм. Они относятся к сверхярким светодиодам, характеристики которых стабильны и качественно отличаются от параметров предшественников. Изготовленные с применением новых материалов, эти светодиоды отличаются повышенной мощностью и высокоэффективным световым потоком. Кроме того, они могут работать в условиях повышенной влажности, устойчивы к перепадам температур и вибрации, имеют длительный срок службы.
Существует две разновидности приборов: SMD 5730-0,5 с мощностью 0,5Вт и SMD 5730-1 с мощностью 1Вт. Отличительной особенностью приборов является возможность их функционирования на импульсном токе. Величина номинального тока SMD 5730-0,5 составляет 0,15А, при импульсной работе прибор может выдерживать силу тока до 0,18А. Данный тип светодиодов обеспечивает световой поток до 45 лм.
Светодиоды SMD 5730-1 работают на постоянном токе 0,35А, при импульсном режиме – до 0,8А. Эффективность светоотдачи такого прибора может составить до 110 лм. Благодаря термостойкому полимеру, корпус прибора выдерживает температуру до 250°С. Угол рассеивания обоих типов SMD 5730 равен 120 градусам. Степень деградации светового потока составляет менее 1% при работе в течение 3000 часов.
Размеры светодиода SMD 5730
Характеристики светодиодов Cree
Компания Cree (США) занимается разработкой и выпуском сверхъярких и самых мощных светодиодов. Одна из групп светодиодов Cree представлена серией приборов Xlamp, которые делятся на однокристальные и многокристальные. Одной из особенностей однокристальных источников является распределение излучения по краям прибора. Это инновация позволила выпускать светильники с большим углом свечения, используя минимальное количество кристаллов.
В серии LED-источников XQ-E High Intensity угол свечения составляет от 100 до 145 градусов. Имея небольшие геометрические размеры 1,6х1,6 мм, мощность сверхярких светодиодов – 3 Вольта, а световой поток – 330 лм. Это одна из новейших разработок компании Cree. Все светодиоды, конструкция которых разработана на базе одного кристалла, имеют качественную цветопередачу в пределах CRE 70-90.
Статья по теме:
Как сделать или починить LED-гирлянду самостоятельно. Цены и основные характеристики наиболее популярных моделей.
Компания Cree выпустила несколько вариантов многокристальных LED-приборов с новейшими типами питания от 6 до 72 Вольт. Многокристальные светодиоды делятся на три группы, в которые входят приборы с высоким напряжением, мощностью до 4Вт и выше 4Вт. В источниках до 4Вт собраны 6 кристаллов в корпусе типа MX и ML. Угол рассеивания составляет 120 градусов. Купить светодиоды Cree такого типа можно с белым теплым и холодным цветом свечения.
Полезный совет! Несмотря на высокую надежность и качество света, купить мощные светодиоды серии MX и ML можно по относительно небольшой цене.
В группу свыше 4Вт входят светодиоды из нескольких кристаллов. Самыми габаритными в группе являются приборы мощностью 25Вт, представленные серией MT-G. Новинка компании – светодиоды модели XHP. Один из крупных LED-приборов имеет корпус 7х7 мм, его мощность 12Вт, светоотдача 1710 лм. Светодиоды с высоким напряжением питания объединяют в себе небольшие габариты и высокую светоотдачу.
LED-лампы серии XQ-E High Intensity производителя Cree (США)
Схемы подключения светодиодов
Существуют определенные правила подключения светодиодов. Беря во внимание, что проходящий через прибор ток движется только в одном направлении, для длительного и стабильного функционирования LED-приборов важно учитывать не только определенное напряжение, но и оптимальную величину тока.
Схема подключения светодиода к сети 220В
В зависимости от используемого источника питания, различают два вида схем подключения светодиодов к 220В. В одном из случаев используется драйвер с ограниченным током, во втором – специальный блок питания, стабилизирующий напряжение. Первый вариант учитывает использование специального источника с определенной силой тока. Резистор в данной схеме не требуется, а количество подключаемых светодиодов ограничивается мощностью драйвера.
Для обозначения светодиодов на схеме используются пиктограммы двух видов. Над каждым схематическим их изображением находятся две небольшие параллельные стрелочки, направленные вверх. Они символизируют яркое свечение LED-прибора. Перед тем как подключить светодиод к 220В используя блок питания, необходимо в схему включить резистор. Если это условие не выполнить, это приведет к тому, что рабочий ресурс светодиода существенно сократится или он попросту выйдет из строя.
Схема подключения светодиодов к сети 220В с использованием гасящего конденсатора С1
Если при подключении использовать блок питания, то стабильным в схеме будет лишь напряжение. Учитывая незначительное внутреннее сопротивление LED-прибора, включение его без ограничителя тока приведет к сгоранию прибора. Именно поэтому в схему включения светодиода вводят соответствующий резистор. Следует отметить, что резисторы бывают с разным номиналом, поэтому их следует правильно рассчитывать.
Полезный совет! Негативным моментом схем включения светодиода в сеть 220 Вольт с использованием резистора становится рассеивание большой мощности, когда требуется подключить нагрузку с повышенным потреблением тока. В этом случае резистор заменяют гасящим конденсатором.
Как рассчитать сопротивление для светодиода
При расчете сопротивления для светодиода руководствуются формулой:
U = IхR,
где U – напряжение, I – сила тока, R – сопротивление (закон Ома). Допустим, необходимо подключить светодиод с такими параметрами: 3В – напряжение и 0,02А – сила тока. Чтобы при подключении светодиода к 5 Вольтам на блоке питания он не вышел из строя, надо убрать лишние 2В (5-3 = 2В). Для этого необходимо включить в схему резистор с определенным сопротивлением, которое рассчитывается с помощью закона Ома:
R = U/I.
Резисторы с различными значениями сопротивления
Таким образом, отношение 2В к 0,02А составит 100 Ом, т.е. именно такой необходим резистор.
Очень часто бывает, что учитывая параметры светодиодов, сопротивление резистора имеет нестандартное для прибора значение. Такие ограничители тока нельзя отыскать в точках продажи, например, 128 или 112,8 Ом. Тогда следует использовать резисторы, сопротивление которых имеет ближайшее большее значение по сравнению с расчетным. При этом светодиоды будут функционировать не в полную силу, а лишь на 90-97%, но это будет незаметно для глаза и положительно отразится на ресурсе прибора.
В интернете представлено множество вариантов калькуляторов расчетов светодиодов. Они учитывают основные параметры: падение напряжения, номинальный ток, напряжение на выходе, количество приборов в цепи. Задав в поле формы параметры LED-приборов и источников тока, можно узнать соответствующие характеристики резисторов. Для определения сопротивления маркированных цветом токоограничителей также существуют онлайн расчеты резисторов для светодиодов.
Схемы параллельного и последовательного подключения светодиодов
При сборке конструкций из нескольких LED-приборов используют схемы включения светодиодов в сеть 220 Вольт с последовательным или параллельным соединением. При этом для корректного подключения следует учитывать, что при последовательном включении светодиодов требуемое напряжение представляет собой сумму падений напряжений каждого прибора. В то время как при параллельном включении светодиодов складывается сила тока.
Схемы параллельного подключения светодиодов. В варианте 1 на каждую цепь диодов используется отдельный резистор, в варианте 2 — один общий для всех цепей
Если в схемах используются LED-приборы с разными параметрами, то для стабильной работы необходимо рассчитать резистор для каждого светодиода отдельно. Следует отметить, что двух совершенно одинаковых светодиодов не существует. Даже приборы одной модели имеют незначительные отличия в параметрах. Это приводит к тому, что при подключении большого их количества в последовательную или параллельную схему с одним резистором, они могут быстро деградировать и выйти из строя.
Обратите внимание! При использовании одного резистора в параллельной или последовательной схеме можно подключать лишь LED-приборы с идентичными характеристиками.
Расхождение в параметрах при параллельном подключении нескольких светодиодов, допустим 4-5 шт., не повлияет на работу приборов. А если в такую схему подключить много светодиодов – это будет плохим решением. Даже если LED-источники имеют незначительный разброс характеристик, это приведет к тому, что некоторые приборы будут излучать яркий свет и быстро сгорят, а другие – будут слабо светиться. Поэтому при параллельном подключении следует всегда использовать отдельный резистор для каждого прибора.
Что касается последовательного соединения, то здесь имеет место экономное потребление, так как вся цепь расходует количество тока, равное потреблению одного светодиода. При параллельной схеме, потребление составляет сумму расходования всех включенных в схему LED-источников, включенных в схему.
Схема последовательного подключения светодиодов
Как подключить светодиоды к 12 Вольтам
В конструкции некоторых приборов резисторы предусмотрены еще на этапе изготовления, что дает возможность подключения светодиодов к 12 Вольт или 5 Вольт. Однако такие приборы не всегда можно найти в продаже. Поэтому в схеме подключения светодиодов к 12 вольт предусматривают ограничитель тока. Первым делом необходимо выяснить характеристики подключаемых светодиодов.
Такой параметр, как прямое падение напряжения у типовых LED-приборов составляет около 2В. Номинальный ток у этих светодиодов соответствует 0,02А. Если требуется подключить такой светодиод к 12В, то «лишние» 10В (12 минус 2) необходимо погасить ограничительным резистором. С помощью закона Ома можно рассчитать для него сопротивление. Получим, что 10/0,02 = 500 (Ом). Таким образом, необходим резистор с номиналом 510 Ом, который является ближайшим по ряду электронных компонентов Е24.
Чтобы такая схема работала стабильно, требуется еще вычислить мощность ограничителя. Используя формулу, исходя из которой мощность равна произведению напряжения и тока, рассчитываем ее значение. Напряжение величиной 10В умножаем на ток 0,02А и получаем 0,2Вт. Таким образом, необходим резистор, стандартный номинал мощности которого составляет 0,25Вт.
Схема подключения RGB светодиодной ленты к 12В
Если в схему необходимо включить два LED-прибора, то следует учитывать, что напряжение падающее на них, будет составлять уже 4В. Соответственно для резистора останется погасить уже не 10В, а 8В. Следовательно, дальнейший расчет сопротивления и мощности резистора делается на основании этого значения. Расположение резистора в схеме можно предусмотреть в любом месте: со стороны анода, катода, между светодиодами.
Как проверить светодиод мультиметром
Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».
Полезный совет! Перед тем как проверить светодиод на работоспособность, рекомендуется приглушить основное освещение, так как при тестировании ток очень низкий и светодиод будет излучать свет так слабо, что при нормальном освещении этого можно не заметить.
Схема проверки светодиода с помощью цифрового мультиметра
Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.
Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.
Что можно сделать из светодиодов своими руками
Многие радиолюбители практикуют сборку различных конструкций из светодиодов своими руками. Собранные самостоятельно изделия не уступают по качеству, а иногда и превосходят аналоги производственного изготовления. Это могут быть цветомузыкальные устройства, мигающие конструкции светодиодов, бегущие огни на светодиодах своими руками и многое другое.
Использование светодиодов в создании сценических костюмов
Сборка стабилизатора тока для светодиодов своими руками
Чтобы ресурс светодиода не выработался раньше положенного срока, необходимо чтобы ток, протекающий через него, имел стабильное значение. Известно, что светодиоды красного, желтого и зеленого цвета могут справляться с повышенной нагрузкой по току. В то время как сине-зеленые и белые LED-источники даже при небольшой перегрузке сгорают за 2 часа. Таким образом, для нормальной работы светодиода необходимо решить вопрос с его питанием.
Если собрать цепочку из последовательно или параллельно соединенных светодиодов, то обеспечить им идентичное излучение можно в том случае, если ток, проходящий через них, будет иметь одинаковую силу. Кроме того, импульсы обратного тока могут негативно повлиять на ресурс LED-источников. Чтобы такого не произошло, необходимо включить в схему стабилизатор тока для светодиодов.
Качественные признаки светодиодных светильников зависят от применяемого драйвера – устройства, которое преобразует напряжение в стабилизированный ток с конкретным значением. Многие радиолюбители собирают схему питания светодиодов от 220В своими руками на базе микросхемы LM317. Элементы для такой электронной схемы имеют небольшую стоимость и такой стабилизатор легко сконструировать.
Схема подключения мощного светодиода с использованием интегрального стабилизатора напряжения LM317
При использовании стабилизатора тока на LM317 для светодиодов регулируют ток в пределах 1А. Выпрямитель на базе LM317L стабилизирует ток до 0,1А. В схеме устройства используют всего лишь один резистор. Его рассчитывают посредством онлайн калькулятора сопротивления для светодиода. Для питания подойдут имеющиеся подручные устройства: блоки питания от принтера, ноутбука или другой бытовой электроники. Более сложные схемы собирать самостоятельно не выгодно, так как их проще приобрести в готовом виде.
ДХО из светодиодов своими руками
Применение на автомобилях дневных ходовых огней (ДХО) заметно повышает видимость автомобиля в светлое время другими участниками дорожного движения. Многие автолюбители практикуют самостоятельную сборку ДХО с использованием светодиодов. Один из вариантов – устройство ДХО из 5-7 светодиодов мощностью 1Вт и 3Вт на каждый блок. Если использовать менее мощные LED-источники, световой поток не будет соответствовать нормативам для таких огней.
Полезный совет! При изготовлении ДХО своими руками, учитывайте требования ГОСТа: световой поток 400-800 Кд, угол свечения в горизонтальной плоскости – 55 градусов, в вертикальной – 25 градусов, площадь – 40 см².
Дневные ходовые огни улучшают видимость автомобиля на дороге
Для основания можно использовать плату из алюминиевого профиля с площадками для крепления светодиодов. Светодиоды фиксируются на плате с помощью теплопроводного клеящего состава. В соответствии с типом LED-источников подбирается оптика. В данном случае подойдут линзы с углом свечения 35 градусов. Линзы устанавливаются на каждый светодиод отдельно. Провода выводятся в любую удобную сторону.
Далее изготавливается корпус для ДХО, служащий одновременно и радиатором. Для этого можно использовать П-образный профиль. Готовый светодиодный модуль располагают внутри профиля, закрепив его на винтах. Все свободное пространство можно залить прозрачным герметиком на силиконовой основе, оставив на поверхности только линзы. Такое покрытие будет служить в качестве влагозащиты.
Подключение ДХО к питанию производится с обязательным использованием резистора, сопротивление которого предварительно просчитывается и проверяется. Способы подключения могут быть разными, учитывая модель автомобиля. Схемы подключения можно отыскать в сети интернет.
Схема подключения ДХО с блоком управления
Как сделать, чтобы светодиоды мигали
Наиболее популярными мигающими светодиодами, купить которые можно в готовом виде, являются приборы, регулируемые уровнем потенциала. Мигание кристалла происходит за счет изменения питания на выводах прибора. Так, двухцветный красно-зеленый LED-прибор излучает свет в зависимости от направления проходящего по нему тока. Эффект мигания в RGB-светодиоде достигается подключением трех выводов для отдельного управления к конкретной системе регулирования.
Но можно сделать мигающим и обычный одноцветный светодиод, имея в арсенале минимум электронных компонентов. Перед тем как сделать мигающий светодиод, необходимо выбрать работающую схему, которая будет простой и надежной. Можно использовать схему мигающего светодиода, которая будет запитана от источника с напряжением 12В.
Схема состоит из транзистора небольшой мощности Q1 (подойдет кремниевый высокочастотный КТЗ 315 или его аналоги), резистора R1 820-1000 Ом, 16-вольтового конденсатора С1 емкостью 470 мкФ и LED-источника. При включении схемы конденсатор заряжается до 9-10В, после этого транзистор на миг открывается и отдает накопленную энергию светодиоду, который начинает мигать. Данную схему можно реализовать только в случае питания от источника 12В.
Мигание светодиодов используется, например, в елочной гирлянде
Можно собрать более усовершенствованную схему, которая работает по аналогии с транзисторным мультивибратором. В схему входят транзисторы КТЗ 102 (2 шт.), резисторы R1 и R4 по 300 Ом каждый, чтобы ограничить ток, резисторы R2 и R3 по 27000 Ом, чтобы задавать ток базы транзисторов, 16-вольтовые полярные конденсаторы (2 шт. емкостью 10 мкФ) и два LED-источника. Данная схема питается от источника постоянного напряжения 5В.
Схема работает по принципу «пары Дарлингтона»: конденсаторы С1 и С2 попеременно заряжаются и разряжаются, что служит причиной открывания конкретного транзистора. Когда один транзистор отдает энергию С1, загорается один светодиод. Далее плавно заряжается С2, а ток базы VT1 снижается, что приводит к закрытию VT1 и открытию VT2 и загорается другой светодиод.
Полезный совет! Если использовать напряжение питания свыше 5В, потребуется применить резисторы с другим номиналом, чтобы исключить выход из строя светодиодов.
Схема вспышек на светодиоде
Сборка цветомузыки на светодиодах своими руками
Чтобы реализовать достаточно сложные схемы цветомузыки на светодиодах своими руками, необходимо сначала разобраться, как работает простейшая схема цветомузыки. Она состоит из одного транзистора, резистора и LED-прибора. Такую схему можно запитать от источника с номиналом от 6 до 12В. Функционирование схемы происходит за счет каскадного усиления с общим излучателем (эмиттером).
На базу VT1 поступает сигнал с изменяющейся амплитудой и частотой. В том случае, когда колебания сигнала превышают заданный порог, транзистор открывается и загорается светодиод. Минусом данной схемы является зависимость мигания от степени звукового сигнала. Таким образом эффект цветомузыки будет проявляться только при определенной степени громкости звука. Если звук увеличить. светодиод будет все время гореть, а при уменьшении – чуть вспыхивать.
Чтобы добиться полноценного эффекта, используют схему цветомузыки на светодиодах с разбивкой диапазона звука на три части. Схема с трехканальным преобразователем звука питается от источника напряжением 9В. Огромное количество схем цветомузыки можно найти в интернете на различных форумах радиолюбителей. Это могут быть схемы цветомузыки с использованием одноцветной ленты, RGB-светодиодной ленты, а также схемы плавного включения и выключения светодиодов. Так же в сети можно отыскать схемы бегущих огней на светодиодах.
Схема для сборки цветомузыки своими руками
Конструкция индикатора напряжения на светодиодах своими руками
Схема индикатора напряжения включает резистор R1 (переменное сопротивление 10 кОм), резисторы R1, R2 (1кОм), два транзистора VT1 КТ315Б, VT2 КТ361Б, три светодиода – HL1, HL2 (красные), HLЗ (зеленый). X1, X2 – 6-вольтовые источники питания. В данной схеме рекомендуется использовать LED-приборы с напряжением 1,5В.
Алгоритм работы самодельного светодиодного индикатора напряжения представляет собой следующее: когда подается напряжение, светится центральный LED-источник зеленого цвета. В случае падения напряжения, включается светодиод красного цвета, расположенный слева. Увеличение напряжения заставляет светиться красный светодиод, размещенный справа. При среднем положении резистора все транзисторы будут в закрытом положении, и напряжение поступит лишь на центральный зеленый светодиод.
Открытие транзистора VT1 происходит, когда ползунок резистора передвигают вверх, тем самым повышая напряжение. В этом случае поступление напряжения на HL3 прекращается, и оно подается на HL1. При перемещении ползунка вниз (понижение напряжение) происходит закрытие транзистора VT1 и открытие VT2, что даст питание светодиоду HL2. С незначительной задержкой LED HL1 погаснет, HL3 один раз мелькнет и засветится HL2.
Схема сборки индикатора напряжения на светодиодах своими руками
Такую схему можно собрать, используя радиодетали от устаревшей техники. Некоторые собирают ее на текстолитовой плате, соблюдая масштаб 1:1 c размерами деталей, чтобы все элементы могли разместиться на плате.
Безграничный потенциал LED-освещения дает возможность самостоятельно конструировать из светодиодов различные светотехнические приборы с отличными характеристиками и достаточно низкой стоимостью.
Как узнать, сколько светодиодов можно использовать при заданном напряжении
\ $ V = I \ cdot R \ $ «штуковина», как вы ее называете, Закон Ома . Очень важный.
Светодиодывызывают довольно постоянное падение напряжения, которое, как говорит Malife , зависит в основном от цвета светодиода, а также немного зависит от тока. Эта диаграмма показывает, что для всех светодиодов видимого света требуется минимум 1,8 В. Красный светодиод упадет примерно на 2,2 В, поэтому, как вы видели, он может питаться от батареи 3 В. Для двух последовательно соединенных светодиодов требуется не менее 4.4V, поэтому он не будет работать с батареей 3V, но 6V в порядке.
Странные три светодиода. Вы говорите, что два слабо светятся, а третий нет. Яркость светодиода определяется током, и один и тот же ток проходит через все светодиоды, поэтому все три должны светиться равномерно. Единственное, что я могу придумать, это то, что третий может быть неисправен или это может быть ИК-светодиод. Хотя светодиод, который выходит из строя из-за слишком большого тока, обычно будет открыт, а не закорочен. Также закороченный светодиод не должен уменьшать яркость.Светодиоды
чрезвычайно чувствительны к электростатическому разряду , и это могло привести к потере светодиода. Если у вас нет других средств защиты от электростатического разряда, прикоснитесь к большому металлическому предмету перед тем, как брать светодиоды.
Теперь в схеме Malife есть большая ошибка , и это отсутствие резистора. У вас будет разница в напряжении между светодиодами и аккумулятором. Для двух светодиодов это будет около 6 В — 4,4 В = 1,6 В. Вы должны что-то сделать с этим, если вы подключите три именно так, может протекать очень большой ток, который может разрушить ваши светодиоды.Таким образом, вы устанавливаете резистор, который выдержит напряжение 1,6 В. Поскольку вы знаете закон Ома, вы можете рассчитать номинал резистора, если знаете, что для типичного светодиодного индикатора требуется 20 мА:
\ $ R = \ dfrac {V} {I} = \ dfrac {6V — 2 \ times 2.2V} {20 mA} = 80 \ Omega \ $
Для одиночного светодиода это будет
\ $ R = \ dfrac {V} {I} = \ dfrac {3V — 2.2V} {20 mA} = 40 \ Omega \ $
Неважно, в каком порядке вы разместите светодиоды и резистор.
Если вы не использовали резистор в своих экспериментах, и светодиоды не загорелись, это, вероятно, связано с тем, что батарея не может обеспечивать слишком большой ток.
редактировать (после вашего комментария)
Рядом с законом Ома есть также законы Кирхгофа: закон напряжения Кирхгофа (KVL) и закон Кирхгофа (KCL). KVL говорит, что сумма всех напряжений в контуре равна нулю. В нашем случае напряжение аккумулятора равно сумме напряжений на светодиодах и резисторе. (Напряжение на компоненте часто называют падением напряжения на нем.)
На схеме выше мы начинаем с 3 В наверху. На светодиоде «падает» 2,2 В, поэтому напряжение на катоде равно 0.8В. Остается только резистор, прежде чем мы дойдем до 0 В, так что 0,8 В — это падение напряжения на резисторе.
Для более чем одного светодиода начните с положительного контакта батареи и пройдитесь по контуру, вычитая напряжения при прохождении компонентов, пока вы не достигнете 0 В, когда вернетесь к батарее.
Светодиодная лента Внутренняя схема и информация о напряжении
В этой статье рассматриваются внутренние схемы и принцип работы светодиодной ленты. Эта информация предназначена для обсуждения технических вопросов и не является необходимой для обычных пользователей, заинтересованных в регулярном использовании светодиодных лент.
Назад к основам — Напряжение светодиодного чипа
Указанное напряжение светодиодной ленты — например, 12В или 24В — в первую очередь определяется:
1) указанным напряжением используемых светодиодов и компонентов, а
2) конфигурацией светодиодов на светодиодной ленте.
Светодиоды обычно представляют собой устройства с напряжением 3 В. Это означает, что если между положительным и отрицательным концами светодиода будет приложена разница в 3 В, он загорится.
Что произойдет, если у вас будет несколько светодиодов в цепочке, один за другим (серией)? В этом случае напряжения отдельных светодиодов суммируются.
Следовательно, для трех последовательно соединенных светодиодов потребуется прямое напряжение 9 В (3 В x 3 светодиода), а для 6 последовательно соединенных светодиодов потребуется прямое напряжение 18 В (3 В x 6 светодиодов).
Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.
Итак, 3 последовательно соединенных светодиода требуют 9 вольт для светодиодов и 3 вольт для резистора, в результате чего мы получаем 12 вольт.
Для шести последовательно соединенных светодиодов требуется 18 вольт для светодиодов и 3 вольта на резистор (x2), что доводит нас до 24 вольт.
Это «строительные блоки» для каждой группы светодиодов на светодиодной ленте. То, как он размещен на светодиодной ленте, можно увидеть на нашем рисунке ниже:
Что происходит с параллельными светодиодами? Напряжение остается прежним, но ток распределяется поровну между каждой из параллельных цепей. Следовательно, если у вас есть 3 параллельные группы, каждая из которых потребляет 50 мА при 24 В, общая потребляемая мощность составляет 150 мА, также при 24 В.
Эти два примера из 3 светодиодов и 6 светодиодов показывают, как сконфигурирована типичная светодиодная лента на 12 и 24 вольт. Поскольку в светодиодных лентах используются светодиодные устройства на 3 вольта, и они сконфигурированы так, чтобы иметь несколько параллельных цепочек из 3 или 6 светодиодов.
Вы должны подавать точно указанное напряжение?
Вам может быть интересно, означает ли 12 вольт ровно 12,0 вольт или 11,9 вольт все еще будут работать? Хорошей новостью является то, что мощность, подаваемая на светодиодную ленту, оставляет желать лучшего.
Ниже приведена диаграмма из таблицы данных светодиодов, показывающая, сколько тока будет проходить через светодиод в зависимости от напряжения.
Вы увидите, что, например, при 3,0 В этот конкретный светодиод потребляет около 120 мА. Если мы уменьшим напряжение до 2,9 В, светодиод будет потреблять немного меньше, всего около 80 мА. Если мы увеличим напряжение до 3,1 В, светодиод будет потреблять больше, примерно 160 мА.
Поскольку в светодиодной полосе на 12 В имеется 3 последовательно соединенных светодиода и резистор, подача 11 В вместо 12 В немного похожа на уменьшение напряжения для каждого светодиода на 0.25В.
Будут ли светодиоды работать при 2,75 В? Если мы обратимся к таблице выше, окажется, что потребляемый ток упадет со 120 мА на светодиод до примерно 40 мА.
Хотя это довольно значительное падение, светодиоды будут работать нормально, хотя и с гораздо более низким уровнем яркости.
Что, если бы мы подавали только 10 В на светодиодную ленту на 12 В? В этом случае мы снижаем напряжение на каждый светодиод на 0,5 В. Если обратиться к таблице, то при 2,5 В светодиоды практически не потребляют ток.
Скорее всего, при таком напряжении вы увидите очень тусклую светодиодную ленту.
Все напряжения ниже номинального значения светодиодной ленты являются безопасными, так как вы всегда будете потреблять меньший ток и, следовательно, исключите любую возможность повреждения или перегрева. Но как насчет уровней напряжения более 12 В?
Давайте посмотрим на питание 12,8 В светодиодной ленты 12 В. Это увеличивает напряжение на светодиод на 0,20 В.
На наш светодиод теперь подается напряжение 3,2 В, при котором диаграмма показывает потребляемый ток 200 мА.
Так уж получилось, что максимальный ток производителя составляет 200 мА.Если установить более высокое значение, вы рискуете повредить светодиод.
И имейте в виду, что каждый светодиод будет иметь разные характеристики, и присущие производственные различия могут повлиять на фактические диапазоны напряжения, которые приемлемы для конкретной светодиодной ленты.
Мы показали, что для светодиодной ленты на 12 В она может переходить от темноты к перегрузке в узком диапазоне от 10 В до 12,8 В.
Хотя можно подавать напряжение, немного отличающееся от номинального, вам нужно быть осторожным и точным, чтобы не повредить светодиоды.
А как насчет уменьшения яркости светодиодной ленты?
Один из способов уменьшить яркость светодиодной ленты — это установить входное напряжение ниже номинального уровня, как мы видели выше. В действительности, однако, силовая электроника не очень хороша в снижении выходного напряжения таким образом.
Предпочтительным методом является использование так называемого ШИМ (широтно-импульсной модуляции), когда светодиоды включаются и выключаются с большой скоростью. Регулируя соотношение времени включения и выключения (рабочий цикл), можно отрегулировать видимую яркость светового потока светодиодной ленты.
Для светодиодной ленты 12 В это означает, что она всегда получает либо полное напряжение 12 В, либо 0 В, в зависимости от того, на какой части цикла ШИМ мы находимся.
Точно так же мы также знаем, что светодиод потребляет одинаковое количество тока, когда он находится в состоянии «включено», независимо от его рабочего цикла. Это дополнительное преимущество для светодиодных лент, цветовая температура которых должна оставаться постоянной даже при изменении ее яркости.
Итог
Одно из значительных преимуществ светодиодных лент — это простота, но универсальность: они сочетаются с простыми устройствами питания постоянного напряжения.
Иногда может быть полезно понять внутреннюю работу таких устройств, поскольку это может помочь нам понять некоторые из более тонких аспектов их работы, такие как изменение яркости и входного напряжения.
Как рассчитать мощность светодиода
При работе со светодиодным освещением, особенно когда эти светодиоды являются частью проекта с батарейным питанием, может быть важно рассчитать энергопотребление светодиодов в цепи.Это простая задача с мультиметром, способным измерять ток, сопротивление и напряжение, но если у вас его нет, можно оценить энергопотребление светодиода, просмотрев упаковку и листы производителя, прилагаемые к светодиодам. Вам нужно только найти ток и напряжение ваших светодиодов.
TL; DR (слишком долго; не читал)
Расчет энергопотребления светодиодного освещения является критическим шагом для любого проекта электроники с батарейным питанием, и, к счастью, это просто сделать.Чтобы рассчитать мощность светодиода, вам необходимо знать ток и напряжение вашего светодиода, которые вы можете узнать либо с помощью электрического мультиметра, либо проконсультировавшись с упаковкой и материалами производителя. Мощность светодиода рассчитывается путем умножения силы тока светодиода на его напряжение. Будьте осторожны при работе с электрическими цепями и токами, даже при их измерении.
Определение напряжения
Первым шагом к вычислению потребляемой мощности светодиода является определение напряжения светодиода. Если у вас под рукой нет мультиметра, посмотрите в паспорте производителя и найдите типичное прямое напряжение светодиодного блока или измерьте его с помощью мультиметра, когда светодиод включен.Кроме того, вы можете оценить напряжение по цвету светодиода. Белые светодиоды обычно имеют напряжение 3,5, красные — 1,8 вольт, синие — 3,6 вольт и 2,1 вольта для зеленого, оранжевого или желтого светодиода.
Определение тока
После того, как вы заметили напряжение светодиода, вам нужно будет определить ток. Его можно измерить напрямую с помощью мультиметра, чтобы определить точное значение, но материалы производителя должны давать приблизительную оценку типичного тока.