Какое сопротивление должно быть на обмотках электродвигателя: Сопротивление обмотки электродвигателя | Полезные статьи

Содержание

Сопротивление обмотки электродвигателя | Полезные статьи

Современные электродвигатели являются надежными силовыми агрегатами. Они способны работать десятки лет при своевременном обслуживании и ремонте. Для этого необходимо регулярно осуществлять смазку подшипников, вовремя выполнять их замену, а также контролировать состояние обмоток статора.

Для чего выполняется проверка сопротивления изоляции электродвигателя 

Даже в том случае, если оборудование не работало, какое-то время, необходимо обязательно произвести замер сопротивления изоляции, так как она является гигроскопичной и может изменить свои свойства под воздействием влажности воздуха. Снижение сопротивления может быть довольно значительным, поэтому прежде чем включать машину в сеть, должна быть произведена проверка сопротивления изоляции электродвигателя. 

Согласно требованиям правил технической эксплуатации электроустановок потребителей (ПТЭЭП) такая процедура производится перед вводом электродвигателя в эксплуатацию, после текущего и капитального ремонта, а также при плановых испытаниях один раз в три года.

Замер сопротивления изоляции после текущего и планового ремонта производится для контроля качества его выполнения.

Какие приборы необходимы

Проверяется сопротивление каждой обмотки относительно корпуса, а также сопротивление между обмотками. Для изменения сопротивления изоляции обмоток статора электродвигателя относительно корпуса используется мегаомметр, удобный и компактный прибор, состоящий из омметра и магнитоэлектрического генератора постоянного тока. Для проверки сопротивления между обмотками используется мультиметр в режиме омметра. Сопротивление между обмотками должно быть одинаковым.
Сопротивление изоляции электродвигателя, имеющего номинальное напряжение до 660В, следует измерять при напряжении в 500В.

Если производится контроль сопротивления обмоток машины с номинальным напряжением до 3000 В, то применяют мегаомметры с напряжением в 1000В. Измерение сопротивления обмотки электродвигателя с номинальным напряжением более 3000В используются приборы со значением в 2500В. В том случае, если в исследуемом двигателе имеется фазосдвигающий конденсатор, то перед измерением его необходимо отключить от обмотки.

Как правильно производить измерение сопротивления изоляции

Измерения должны производиться при температуре воздуха не ниже +5°C. Перед исследованиями необходимо:

    • обесточить электродвигатель;
    • снять с него остаточные заряды путем заземления обмоток на 2-3 минуты.

Измерительный провод с зажимом от гнезда «Л» (или «MΩ») подключается к одному из выводов обмоток, а провод от гнезда «З» (или «–») к заземляющему винту в клеммной коробке или к корпусу двигателя.
Для проведения измерения нужно вращать рукоятку генератора со скоростью около 120 оборотов в минуту. Данные измерений записываются после того , как стрелка установилась на месте через 15 и через 60 секунд.

Только при соблюдении этих условий полученный результат можно считать достоверным. После произведенного замера испытываемый двигатель необходимо обязательно разрядить.

При проведении испытаний обязательно должна учитываться температура, при которой производилось измерение сопротивления обмоток электродвигателя. Полученные результаты должны соответствовать нормативам, указанным в ПТЭЭП приложение 3 пункт 23, а также таблице №28 приложения 3.1 (для двигателей с напряжением свыше 1 кВ). При температуре изоляции, равной по значению температуре окружающего воздуха, сопротивление обмотки двигателя должно быть не менее 1 МОм. Сопротивление обмотки электродвигателя машины постоянного тока – не менее 0,5 МОм. 

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Сопротивление обмоток электродвигателя таблица — Всё о электрике

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.8. Нормы приемо-сдаточных испытаний

Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Напряжение мегаомметра, кВ

Обмотка статора напряжением до 1 кВ

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

4. Измерение сопротивления постоянному току: ¶

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Испытательное напряжение, кВ

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

Реостат и пускорегулировочный резистор

Резистор гашения поля синхронного электродвигателя

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶

Синхронная частота вращения электродвигателя, Гц

Допустимая вибрация, мкм

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение “мегаомы”;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около “0”;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора “звезда” или “треугольник” необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

{SOURCE}

Сопротивление обмоток электродвигателя таблица — всё о электрике

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут

При образовании жгута важно обеспечит хороший контакт

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Конструктивные особенности мегаомметров

Существуют разные модели мегаомметров, но все они включают в себя высоковольтный источник постоянного напряжения (генератор) и амперметр. Генератор выдает откалиброванное напряжение, величина которого выставляется заранее. По этой причине измерительную шкалу прибора можно сразу проградуировать в единицах измерения сопротивления, а не силы тока.

Виды мегаомметров

Можно выделить два основных вида приборов:

Мегаомметры, укомплектованные механическим генератором. Это приборы старого образца, в которых в качестве источника напряжения используются динамо-машины. Их нужно приводить в действие вручную с частотой примерно 2 об/сек. Они достаточно габаритные и тяжелые, но при этом не нуждаются в источнике питания. Такие приборы удобны своей автономностью.

Так выглядит мегаомметр с механическим генератором

Мегаомметры, укомплектованные электронным преобразователем. Это приборы нового поколения. В них источник постоянного напряжения работает от встроенных аккумуляторов или блока питания. Такие устройства компактные и легкие, но их работоспособность зависит от источника питания.

Так выглядит электронный мегаомметр

Проверка других деталей и прочие потенциальные проблемы

  • утечка масла из конденсатора;
  • наличие отверстий в корпусе;
  • вспученный конденсаторный корпус;
  • неприятные запахи.

Конденсатор тоже проверяют с помощью омметра. Щупами следует коснуться выводов конденсатора, а уровень сопротивления должен сначала быть небольшим, а затем постепенно увеличиваться по мере зарядки конденсатором напряжением от батареек. Если сопротивление не растет или конденсатор короткозамкнутый, то, скорее всего, его пора менять.

Перед проведением повторной проверки конденсатор нужно разрядить.

Переходим к следующему этапу проверки двигателя: задней части картера, где устанавливаются подшипники. В этом месте ряд электродвигателей оснащается центробежными переключателями, которые переключают пусковые конденсаторы или цепи для определения количества оборотов в минуту. Также нужно проверить контакты реле на предмет пригорелости. Кроме этого, их следует почистить от жира и грязи. Механизм выключателя проверяется посредством отвертки, пружина должна нормально и свободно работать.

И заключительный этап – это проверка вентилятора. Мы рассмотрим его на примере проверки вентилятора двигателя TEFC, который целиком закрыт и имеет воздушное охлаждение.

Посмотрите, чтобы вентилятор был надежно прикреплен и не был забит грязью и прочим мусором. Отверстия на металлической решетке должны быть достаточными для свободной циркуляции воздуха, если это не будет обеспечено, то может случиться перегрев двигателя и впоследствии он выйдет из строя.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности. Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины

При 20°С она составляет:

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Виды тестеров

При эксплуатации электрических устройств широко используются цифровые мегомметры модели: Ф4101/4102 от 100.0 до 1000.0 В. Наладчики до сих пор работают с марками тестеров М4100/1, 4100/5 и МС-05 м от 100.0 до 2500.0 В. Выбор типоразмера мегомметра базируется по номинальному сопротивлению тестируемого устройства: силовые кабели и трансформаторы, машины и изоляторы. Для определения состояния изоляции в электроустановках до 1000.0 В допускается применять мегомметры от 100.0-1000.0 В, а в установках более 1000.0 В — 1000.0-2500.0 В.

Устройства также классифицируются по генерируемому напряжению и пределам сопротивления в МОм:

  • 500.0 В — 500.0;
  • 1000.0 В — 1000.0;
  • 2500.0 В — 2500.0.

Дополнительная информация. Приборы также разнятся классами точности. У популярной модели М4100 погрешностью не более 1%, а у марки Ф4101 до 2,5%. Выбор приборов тестирования электроустановок выполняют с учетом допустимых эксплуатационных показателей.

Электронный измеритель

Электронный измеритель

Цифровой или электронный тестер — современный вид оборудования, оснащен производительным генератором с полевыми транзисторами. Замеры выполняются путем сопоставления падения напряжения в эталонной цепи с фиксированным сопротивлением. Результаты демонстрируются на панели. Функция сохранения результатов тестирования накапливает данные для последующего анализа. Эта модель отличается от аналоговых приборов компактными размерами и малым весом.
Преимущества цифрового тестера:

  • Высокий уровень точности, позволяет определять сопротивление на больших участках цепи;
  • удобная легко читаемая цифровая панель;
  • технологическая доступность для измерения одним пользователем;
  • прекрасно работает даже в очень загруженном пространстве;
  • удобный и безопасный в использовании.

Недостатки электронного типа мегомметра:

  • Требуется внешний источник энергии;
  • высокие цены на изделия.

Электромеханический измеритель

Электромеханический прибор

Эти модели имеют аналоговый дисплей на передней панели тестера и ручную рукоятку, используемую для вращения и выработки напряжения, которое проходит через электрическую систему.

Преимущества ручного мегомметра:

  1. Остается важным в современном высокотехнологичном мире, оставаясь самым старым методом определения значения сопротивления.
  2. Для работы не требуется внешний источник.
  3. Низкие цены на рынке.

Недостатки ручного мегомметра:

  1. Для работы требуется не менее 2 человек, один для вращения ручки, другой для подключения мегомметра к проверяемой электрической системе.
  2. Низкая точность измерения.
  3. Требует большое свободное место для размещения.
  4. Предоставляет аналоговый результат измерения.
  5. Высокие требования к безопасности при использовании.

Особенности конструкции схемы:

  1. Отклоняющая и управляющая катушка — подключены параллельно генератору, установлены под прямым углом друг к другу и поддерживают полярность таким образом, чтобы создавался крутящий момент в противоположном направлении.
  2. Постоянные магниты, создают магнитное поле для отклонения указателя с помощью магнитного полюса «Север-Юг».
  3. Указатель — один конец, связанный с катушкой, другой отклоняется по шкале от бесконечности до «0».
  4. Масштаб предоставляется в верхней части мегомметра от диапазона «ноль» до «бесконечности» и позволяет пользователю прочитать значение.
  5. Подключение источника постоянного тока (DC) или аккумулятора.
  6. Испытательный режим вырабатывается генератором для мегомметра с ручным управлением. Аккумулятор или электронное зарядное устройство предусмотрено для цифрового мегомметра с той же целью.

Обратите внимание! Сопротивление токовой катушки помогает защитить тестер от любых повреждений при испытании из-за низкого внешнего электросопротивления

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности. Делая начало работы, следует осуществить проверку прибора на исправность

Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо — снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это — явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите — Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте

Оцените статью:

Какое должно быть сопротивление обмоток асинхронного двигателя?

Какое сопротивление должно быть у двигателя?

При температуре изоляции, равной по значению температуре окружающего воздуха, сопротивление обмотки двигателя должно быть не менее 1 МОм. Сопротивление обмотки электродвигателя машины постоянного тока – не менее 0,5 МОм.

Какое должно быть сопротивление обмоток?

Проверка замыкание обмоток на корпус. Правильнее всего делать её «мегером», выставляется нужно напряжение, один щуп подключается к обмоткам, а другой к корпусу. Измеренное сопротивление нормируется. Для моторов на напряжение 0,4 кВ, оно должно быть минимум 500 кОм при проверочном напряжении мегаомметра 500 В.

Как проверить обмотку электродвигателя тестером?

Прозвонка электродвигателя мультиметром
Для измерения сопротивления обмотки мультиметр переводится в режим омметра, его щупы соединяются с парой выводов. Предел измерения — 200 Ом или меньше. Необходимо последовательно прозвонить сопротивления всех трех обмоток. Полярность омметра в данном случае роли не играет.

Какое сопротивление изоляции обмотки электродвигателя должно быть?

Сопротивление изоляции должно быть: в статоре не менее 0,5мОм; в фазном роторе не менее 0,2мОм; минимальное сопротивление изоляции термодатчиков не нормируется.

Как рассчитать сопротивление обмотки электродвигателя?

И здесь нам опять поможет закон Ома R = U/I. В зависимости от диаметра провода обмотки (которую, обычно, видно), можно прикинуть максимальный ток и отсюда определить максимальное напряжение источника питания.

Как определить сопротивление обмоток электродвигателя?

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Какое сопротивление обмотки статора генератора?

Сопротивление обмотки статора проверяется без диодного моста и меж выводами должно быть около 0,2 Ом, а помеж нулевым проводом и обмоткой до 0,3. Сильное гудение генератора во время работы говорит о замыкании обмотки статора или моста.

Как проверить двигатель пылесоса тестером?

Далее можно приступить к проверке якоря.

  1. Для проверки вам понадобится тестер. Проверяем тестером сопротивление между ламелями якоря, касаясь щупами соседних ламелей. …
  2. Затем нужно проверить выводы обмотки стартора в режиме прозвонки. Если цепь оборвана, нужна перемотка двигателя или же новый мотор для пылесоса samsung.

Как проверить обмотку двигателя на межвитковое замыкание?

Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание.

Как прозвонить двухскоростной электродвигатель?

Прозвонка электродвигателя мультиметром
Для измерения сопротивления обмотки мультиметр переводится в режим омметра, его щупы соединяются с парой выводов. Предел измерения — 200 Ом или меньше. Необходимо последовательно прозвонить сопротивления всех трех обмоток. Полярность омметра в данном случае роли не играет.

Как проверить мегаомметром электродвигатель?

Переводим прибор в режим до 100 Ом. После этого подключаем мегаомметр. Между крайним и средним выводом сопротивление должно быть от 30 до 50 Ом, а между вторым и крайним – до 20. Если такие значения получены во время прозвона, то двигатель исправен.

Как проверить обмотку двигателя 220в?

Схема его проверки выглядит следующим образом:

  1. Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
  2. Затем измерьте сопротивление между корпусом якоря и коллектором.
  3. Проверьте обмотки статора.
  4. Измерьте сопротивление между корпусом и выводами статора.

Измерение сопротивления двигателя — Блог Режимщика

Как известно, обычный мультиметр не может нормально измерить сопротивление порядка 1 ома и ниже. Такое сопротивление имеют измерительные шунты и … обмотки двигателей. И не мудрено. Длина провода одной обмотки двигателя мощностью 260 Вт составляет всего-лишь 30 см.

Для тех, кто любит побыстрее ролик на 1 мин.

Что есть сопотивление двигателя?

Лично у меня сразу возник этот вопрос. Ведь оттуда торчит 3-4 провода (4-й средняя точка звезды). Ответ лежит на поверхности — это сопротивление между любыми двумя проводами (для 3х проводных). Обычно мотают 3 обмотки и соединяют в общем случае либо в звезду, либо в треугольник. На самом деле вариантов тьма тьмущая, но смысл один — сопротивление обмоток, соединенных в треугольник меньше, чем соединеных в звезду. Поэтому для них нужно меньшее напряжение, а ток получается выше. А мы помним, что момент пропорционален току. Чтобы не перегревать обмотки их соединяют в звезду, но при этом падает мощность, поэтому повышают напряжение. Также, двигатели «со  звездой» в 1.73 раза крутятся медленнее чем «с треугольником» при одинаковом напряжении. Схему выбирают в зависимоти от нужного момента и требуемой скорости вращения при заданном напряжении. Подробнее неплохо расписано тут.

Как и чем измерять?

И здесь нам опять поможет закон Ома R = U/I. В зависимости от диаметра провода обмотки (которую, обычно, видно), можно прикинуть максимальный ток и отсюда определить максимальное напряжение источника питания. В моем случае имеется двигатель с неизвестными параметрами. На глазок, диаметр провода 0.5 мм, тогда по табличке определяем примерное сопротивление R=0,1 Ом на 1 м, а также длительно допустимый ток не более Iдоп = 1А. В моторе 12 зубьев, т.е. по 4 зуба на обмотку. Можно очень примерно прикинуть кол-во витков и средний диаметр зуба чтобы грубо вычислить длину провода. При соединении в звезду на 2 обмотки в моем моторе больше 1 м вряд-ли влезет, поэтому в первом приближении буду ориентироваться на величину сопротивления 0,1 Ом.

Далее вспомним про кратность пускового тока порядка K = 7 для переменного тока, а для постоянного импульсного можно вполне взять K = 10 (это почти наобум, но с хорошим запасом — см. список в конце статьи). Отсюда делаем вывод, что при измерении сопротивления нужно обеспечить кратковременный ток около I = Iдоп*K = 1*10 = 10А. Это значит, что нам нужно подать напряжение U = I*R = 10 * 0,1 = 1В. Довольно маленькое напряжение при довольно большом токе. Выбор пал на пару оставшихся в живых Ni-Cd аккумуляторов от шуруповерта. Они обеспечивают большой ток разряда при номинальном напряжении 1.2В. В прошлый раз я измерил их внутреннее сопротивление и получил 0.13 и 0.22 Ома соответственно. Остальные 10 штук совсем дохлые. Соединенные параллельно они должны дать около I = U/(Re+R) = 1.2/(0.13*0.22/(0.13+0.22) + 0.1) = 6.6 А. Не много, но ничего мощнее под рукой не оказалось. Если под рукой нет подходящего источника питания можно попробовать подобрать токоограничивающий резистор достаточной мощности чтобы погасить на себе излишки. Если есть источник 5В (например, компьютерный БП обычно дает 12А и более), то в моем случае потребуется шунт Rш = U/I — R = 5/10 — 0.1 = 0.4 Ом. Найти такое сопротивление будет не просто, тем более что оно должно быть мощностью 40W или хотябы кратковременно пропускать такую мощность. Можно посмотреть в сторону ламп накаливания…

Ну а дальше все просто. Кратковременно подключаем нашу батарею к любым двум выводам двигателя. Быстро замеряем напряжение и ток. Делим одно на другое и получаем искомое сопротивление.

Само собой, для измерения я задействовал свой приборчик на Arduino. Честно говоря, изначально именно для этого измерения он и был собран.

 

Перед измерением хорошенько накачал аккумуляторы. Батарея выдала аж 20 мОм, видимо немного раскачались.  А измеренное сопротивление нашего подопытного бесколлекторного двигателя 112 мОм оказалось очень близким к прикидочному и косвенно подтвердило предположение о соединении обмоток в звезду. Так что способ подсчета кол-ва витков также работает, но тут нет гарантии, что намотка не проводилась жгутом из нескольких проводов, да и при малом диаметре и большой плотности навивки подсчитать кол-во витков бывает очень затруднительно.

Зачем вообще это надо?

Знать сопротивление нужно чтобы исходя из диаметра проводов обмоток определить допустимую электрическую мощность двигателя или если проще, то какое максимальное напряжение можно подать на двигатель чтобы он не перегрелся. В современных двигателях постоянного тока все чаще применяют неодимовые магниты (привет, электрокары). Известны случаи построения кулибиными ветрогенераторов мощностью до 5 кВт с использованием этих магнитов. Но есть и недостаток — при температуре выше 90°С он теряет свои суперсвойства, поэтому контроль нагрева таких двигателей очень важен, а значит важно знать сопротивление обмоток.

Тут конечно еще много неизвестных. Нужно определить максимальный ток провода при импульсном питании. Есть такие данные:

1А — 0.05мм, 3А — 0.11мм, 10А — 0.25мм, 15А — 0.33мм,
20А — 0.4мм, 30А — 0.52мм, 40А — 0.63мм, 50А — 0.73мм,
60А — 0.89мм, 70А — 0.92мм, 80А — 1.00мм, 90А — 1.08мм, 100А — 1.16мм

Вроде бьются с моими параметрами, но откуда они я пока не разбирался. Похоже на ток плавкого предохранителя, т.е. прям край-край. Если руководствоваться ими, то в моем случае диаметр 0,4мм «по меди» даст 20А, а мощность при 3S Li-Po батареии составит P = 3*3,7*20 = 222 Вт; при 4S составит P = 4*3,7*20 = 296 Вт. Какое максимальное напряжение можно подать зависит от теплового баланса, т.е. от условий охлаждения, а это посчитать уже проблематично — проще измерить, но это, возможно, тема отдельной статьи.

P.S.

Лично мне измерение сопротивления моего двигателя помогло убедиться в том, что найденные в интернете характеристики мотора, внешне похожего на мой, заслуживают доверия. Его заводские характеристики: ток без нагрузки 0.4А, максимальный ток 22 А, мощность 260 Вт (механическая в соответствии с ГОСТ Р 52776-2007). А в другом месте нашел, что у подобного мотора сопротивление 0.119 Ом, что в принципе, близко к моим результатам.

Купон на 15% скидку на радиоуправляемые игрушки на Алиэкспресс.

Сопротивление — изоляция — обмотка — двигатель

Сопротивление — изоляция — обмотка — двигатель

Cтраница 1

Сопротивление изоляции обмоток двигателя и обмоток обратной связи не должно быть менее 10 Мом при подаче напряжения 500 в постоянного тока между выводами обмотки и корпусом системы в течение периода не менее одной минуты.  [1]

Сопротивление изоляции обмоток двигателя по отношению к корпусу и между собой в холодном состоянии должно быть не менее 1 Мом.  [2]

Сопротивление изоляции обмоток двигателя измеряют переносным мегомметром. Величина сопротивления на неработающем ( холодном) двигателе должна быть не ниже 0 5, а на прогретом — 0 2 Мом. Если сопротивление ниже указанных величин, двигатель снимают для просушки в стационарных условиях.  [3]

Сопротивление изоляции обмоток двигателя и обмоток обратной связи не должно быть менее 10 Мом при подаче напряжения 500 в постоянного тока между выводами обмотки и корпусом системы в течение периода не менее одной минуты.  [4]

Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0 5 Мом при рабочей температуре обмоток.  [6]

Сопротивление изоляции обмотки двигателя следует замерить также по сле его ремонта.  [7]

Сопротивление изоляции обмоток двигателей переменного тока напряжением до 1 000 в не нормируется. Обычно двигатели напряжением 380 в и мощностью до 1 00 кет включают без сушки, если сопротивление изоляции обмоток статора и ротора не ниже 0 5 Мом.  [8]

Величина сопротивления изоляции обмоток двигателей согласно Правилам устройства электроустановок ( ПУЭ) яе нормируется. В связи с этим может возникнуть вопрос, а стоит ли замерять сопротивление изоля — ции обмоток.  [9]

Замер сопротивления изоляции обмоток двигателя ДК между корпусом и обмотками и между обмотками производится аналогично рассмотренному, при этом надо разъединить обмотки — снять перемычки Пч на клеммной панели Кп. Сопротивление изоляции обмоток ( если специально не оговорено) должно быть не менее 0 5 МОм, в противном случае надо просушить двигатель, установив его, например, рядом с отопительным прибором.  [10]

Замер сопротивления изоляции обмоток двигателя ДК между корпусом и обмотками и между обмотками производится аналогично рассмотренному, при этом надо разъединить обмотки — снять перемычки Пч на клеммной панели Кп. Сопротивление изоляции обмоток ( если специально не оговорено) должно быть не менее 0 5 МОм, в противном случае надо просушить двигатель, установив его, например, рядом с отопительным прибором.  [11]

Сроки замера сопротивления изоляции обмоток двигателей должны устанавливаться местной инструкцией по эксплуатации двигателей с учетом конкретных условий.  [12]

В начале сушки сопротивление изоляции обмоток двигателей понижается по мере роста температуры, но после достижения минимального значения оно начинает постепенно возрастать, пока не установится на определенной неизменной величине. Сушка двигателей считается законченной, если сопротивление изоляции и коэффициент абсорбции остаются постоянными в течение 5 — 10 час.  [13]

Контактный стержень очищают, тщательно промывают касторовым маслом, затем проверяют сопротивление изоляции обмотки двигателя относительно корпуса. После проверки изоляции на электробур навинчивают устройство контроля изоляции, а затем центратор и УБТ.  [14]

Для устранения неисправности нужно отсоединить жилы питающего кабеля от зажимов двигателя и замерить раздельно сопротивление изоляции обмоток двигателя и жил ( питающего кабеля относительно земли.  [15]

Страницы:      1    2

Сопротивление изоляции электродвигателя: измерения и нормы

Современное электротехническое оборудование, как правило, содержит медные токопроводы, надежно защищенные изоляционной оболочкой. Используемые в промышленности и в быту электродвигатели не является исключением. Но для эффективной работы этих агрегатов важно следить за тем, чтобы изоляция проводников поддерживалась в идеальном состоянии и сохраняла свои защитные свойства.

Для чего нужна проверка сопротивления изоляции

Если регулярно не проверять сопротивление изоляции электродвигателей – через какое-то время она может высохнуть или сильно износиться и перестать выполнять свои защитные функции. А такое положение чревато серьезными последствиями, из которых короткое замыкание – самое неприятное. Следствием его нередко становится возгорание изоляции и других горючих материалов, постепенно перерастающее в полномасштабный пожар.

Измерение сопротивления изоляции электродвигателя

Именно поэтому организация и проведение измерений сопротивления изоляции электродвигателя – первостепенная задача служб, ответственных за поддержание электротехнического оборудования в рабочем состоянии. Ее своевременное проведение в соответствие с утвержденным рабочим графиком позволит избежать серьезных последствий (предотвратит выход из строя дорогостоящего оборудования).

Нормы сопротивления изоляции

Как и для других элементов электротехнического оборудования – для электродвигателей и схожих с ними по устройству машин постоянного тока предусмотрены предельные величины по проводимости защитной изоляции. Если реальный показатель оказывается при измерении ниже допустимого предела – агрегат снимается с эксплуатации.

Нормы для асинхронных двигателей

Согласно ПУЭ при измерении сопротивления изоляции обмоток электродвигателя следует учитывать специфику конструкции и заявленную мощность агрегата. Только после того, как учтены все эти факторы – можно начать измерять контролируемый параметр

С учетом этих факторов проверяемый показатель должен соответствовать следующим значениям:

  • Для статорных обмоток – не менее 0,5 мОм;
  • Для ротора двигателя – не менее 0,2 мОм;
  • Показатель для термических датчиков не нормируется.

Дополнительная информация: Приблизительная оценка, нередко используемая в практике измерений, исходит из значения этого показателя не ниже 1мОм.

Его снижение до 0,5 мОм, например, свидетельствует о незначительных отклонениях от нормы, которые, тем не менее, со временем приводят к серьезным последствиям. При обнаружении существенного снижения этого показателя, вызывающий сомнение агрегат лучше всего отправить на обследование в специализированную мастерскую.

Нормы для машин постоянного тока

Методики проверки для машин постоянного тока несколько отличаются от уже рассмотренных процедур для асинхронных двигателей. Здесь сначала потребуется снять щетки из щеткодержателей (как вариант – подложить под их корпус кусочек изоляционного материала).

Проверка минимального сопротивления изоляции организуется между следующими узлами и элементами схемы:

  • между всеми возбуждающими обмотками и коллектором;
  • между щеткодержателем и основанием (корпусом) агрегата;
  • между коллектором якоря и основанием;
  • а также между возбуждающими обмотками и корпусом агрегата.

Важно! В ходе проверки катушки возбуждения электрически отключаются от других узлов и проверяются каждая по отдельности.

Допустимое сопротивление изоляции определяется рядом факторов, основные из которых – это рабочего напряжение агрегата и температура воздуха. При среднем показателе в 20°С оно соответствует следующим значениям:

  1. при 220 Вольтах питания – 1,85мОм;
  2. при 380 или 440 Вольтах – 3,7мОм;
  3. в случае напряжения в 660 Вольт – 5,45 мОм (этот же показатель предусмотрен для высоковольтных машин на 6 кВ или 10 кВ).

Помимо рассмотренных узлов контролируется сопротивление бандажей. Оно меряется между им самим и корпусом, и, кроме того, между им и фиксируемой обмоткой двигателя. Это показатель не может быть менее 0,5 мОм.

Методы обследования

При проведении испытаний асинхронных двигателей статорные обмотки, включенные по схемам «звезда» или «треугольник» потребуется демонтировать и проверить все входящие в их состав катушки. Вслед за этим производятся замеры нужного параметра по отношению к корпусу и между собой. Для этого применяются различные методы, основные из которых перечислены ниже:

  • Использование специального измерительного прибора – мегаомметра.
  • Посредством вольтметра и аналогового амперметра.
  • С применением измерительного моста или современного цифрового омметра.
  • Испытание напряжением высокой величины.
  • Использование обычного мультиметра.

Каждый из этих способов нуждается в подробном рассмотрении.

Мегаомметр

Проверка мегомметром проводится с соблюдением следующих условий:

  • при питающем напряжении до 500 Вольт используется прибор с соответствующим номиналом;
  • при больших напряжениях выбирается мегаомметр с рабочими значениями до 1000 Вольт.

Обратите внимание: Если электротехническое оборудование рассчитано на 600 Вольт – предписывается применять прибор на 2500 Вольт.

Проверки по отношению к корпусу двигателя и между обмотками осуществляются по очереди для каждой из цепей с разными выводами. При этом все остальные концы соединяются с корпусом агрегата. Те же процедуры для обмоток трехфазного двигателя, включенных звездой или треугольником, проводится для всех трех составляющих.

Измерение сопротивления изоляции электродвигателя мегаомметром

Имеющиеся в схеме элементы, постоянно подсоединенные к корпусу агрегата (защитные конденсаторы или изолированные обмотки, например) на время испытаний отсоединяются. Для измерений, проводимых с электродвигателями, обмотки которых имеют водяное охлаждение, потребуется прибор с защитным экраном. Его зажимы перед снятием показаний присоединяются к стационарному или переносному . По завершении измерений с каждой из проверяемых цепей снимается остаточный заряд путем прикосновения ее к заземленному корпусу машины.

Измерительный мост и цифровой омметр

Измерения по этой методике поводятся согласно прилагаемой к приборам инструкции. Схема измерительного моста содержит два постоянных резистора и один переменный. Они соединены таким образом, что образуют два своеобразных «плеча» в виде 2-х цепочек На незанятое место во второй половинке включается сопротивление, которое нужно измерить.

Измерительный мост постоянного тока

В диагональ моста включен стрелочный измерительный прибор. Изменяя величину переменного сопротивления оператор добивается баланса двух цепочек, когда через плечи течет одинаковый ток. Искомое сопротивление определяется из соотношения, в которое подставляются значения трех

Цифровой омметр СО 3001

сопротивлений (2-х постоянных и одного переменного, полученного в результате измерений).

Цифровой омметр – это современный электронный прибор, позволяющий измерять сопротивление в широких пределах (фото справа).

Использование амперметра плюс вольтметр

Достаточно точно найти искомые значения для обмоток можно методом измерения напряжения и тока. С этой целью придется проделать следующие операции:

  1. Подключить между центральной жилой обмотки двигателя и его корпусом вольтметр, а последовательно в эту цепочку установить амперметр.
  2. Подать на полученную схему небольшое напряжение, а затем измерить ток и напряжение в ней.
  3. По классической формуле R=U/I определить сопротивление.
  4. Проделать те же операции, постепенно повышая напряжение до предельного значения.
  5. На основе полученных данных рассчитать среднеарифметический показатель.
Измерение сопротивления изоляции электродвигателя с помощью амперметра и вольтметра

Затем нужно проделать те же операции для других обмоток и элементов электродвигателя.

Использование повышенного переменного напряжения

Для проведения таких испытаний потребуется повышенное напряжение, получаемое с линейного преобразователя (трансформатора). Последний оснащен устройством регулировки, позволяющим получать нужный уровень испытательного потенциала. Кроме того, в схему установки входит выключатель с видимым разрывом и устройство токовой защиты. С его помощью трансформатор автоматически отключается при пробое в цепях вторичной обметки или при разрушении изоляционной защиты.

Схема испытания изоляции электродвигателя повышенным напряжением переменного тока.

Время приложения напряжения при проведении испытаний выбирается равным 1-ой минуте для основной изоляции и 5 минутам – для межвитковой. Кратковременное приложение высоковольтного потенциала на сказывается на состоянии изоляции (не ухудшает ее защитных свойств).

Важно! Повышать напряжение до 1/3 испытательной величины можно произвольно, не учитывая динамику процесса.

По достижении этого уровня его следует наращивать плавно, со скоростью, позволяющей снимать показания со стрелочных шкал визуально. При тех ж операциях с электрическими машинами время наращивания напряжения от 1/2 до максимального значения не может быть менее 10 секунд.

Мультиметр

С помощью мультиметра точно измерить изоляцию обмоток двигателя не получится. При его наличии удается только приблизительно оценить ее качество. Другими словами – в данном случае можно убедиться только в том, что нет короткого замыкания, например. О снятии точных значений искомого показателя в этой ситуации не может быть и речи.

Причины низкого сопротивления

В нормальных условиях сопротивление изоляции проводов электродвигателя, покрытых защитной пленкой, сохраняет свое значение в течение длительного времени. Но в ходе эксплуатации на нее воздействует ряд разрушающих факторов, основными из которых являются:

  • Механические напряжения.
  • Повышенная влажность окружающей среды.
  • Воздействие содержащихся в ней агрессивных веществ.
  • Резкие колебания температуры.

Дополнительная информация: Существенное влияние на состояние защитной оболочки оказывает и перегрев двигателя, работающего во внештатном режиме.

Все перечисленные факторы приводят к снижению сопротивления изоляции с возможностью последующего пробоя обмотки на корпус или межфазного замыкания.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Помогла50Не помогла3

Измерение сопротивления обмоток электродвигателей / генераторов

Метод измерения

Для испытания сопротивления обмотки двигателя используется четырехпроводной метод измерения (Кельвина). Он обеспечивает наилучшие возможные результаты измерения, поскольку гарантирует, что сопротивление соединительных токоведущих кабелей не будет учтено при измерении.

Испытательный ток пропускают через обмотки с помощью сильноточных кабелей. Падение напряжения на обмотках измеряется с помощью сенсорных кабелей.

Размещение кабелей очень важно. Токовые кабели всегда должны быть размещены вне чувствительных кабелей. Таким образом, сопротивление как кабелей, так и зажимов практически полностью исключено из измерения сопротивления (Рисунок 1). Сопротивление рассчитывается по закону Ома и равно падению напряжения, деленному на испытательный ток:

R = U / I

Рисунок 1 — Подключение РМО-М к тестируемому объекту

Испытание сопротивления обмотки

Значение испытательного тока следует выбирать в соответствии с номинальным током обмотки.Информацию о номинальном токе обмотки можно найти на паспортной табличке испытуемого объекта. Испытательный ток не должен превышать 10% номинального тока обмотки. Из-за нагрева кабелей более высокие значения испытательного тока значительно увеличивают сопротивление обмотки.

Сопротивление обмотки трехфазных двигателей переменного тока измеряется между их выводами (все три комбинации).

Рисунок 2 — Измерение сопротивления обмотки статора двигателя переменного тока Рисунок 3 — Подключение для измерения сопротивления обмотки статора асинхронного двигателя.

Сопротивление обмотки ротора с контактным кольцом измеряется непосредственно на контактных кольцах (нелинейное переходное сопротивление щеток не входит в измеренное сопротивление обмотки).

Рисунок 4 — Измерение сопротивления обмотки ротора с контактным кольцом. Рисунок 5 — Меню результатов РМО-М

Разрядный двигатель после испытания сопротивления обмотки

Имейте в виду, что в магнитной цепи все еще остается энергия. После завершения измерения прибор РМО-М автоматически запустит текущий процесс разряда. Во время текущей разрядки на дисплее устройства отображается сообщение «РАЗРЯДКА».

Рисунок 6 — Сообщение о разрядке

Ни в коем случае нельзя снимать провода в процессе тестирования.Оператор всегда должен ждать окончания сигнала разгрузки и звукового сигнала зуммера. Это признак того, что проверенный двигатель был правильно разряжен.

Процесс подачи тока и отвода энергии регулируется полностью автоматически. Цепь безопасного разряда, оснащенная индикатором, быстро рассеивает накопленную магнитную энергию после завершения испытания.

ВНИМАНИЕ! : Измерительные провода не следует отсоединять до тех пор, пока с дисплея не исчезнет сообщение «Разрядка» и не погаснет светодиод разрядки.

После завершения всех испытаний измерительные провода отключаются в следующем порядке:

  1. щупы удалены из объекта испытаний
  2. щупы удалены из прибора.

Кабель питания от сети сначала отключается от источника питания, а затем от прибора. Наконец, заземляющий (PE) кабель отключается от прибора.

RMO50M и RMO100M

ДВ Омметры силовых обмоток РМО50М и РМО100М предназначены для измерения сопротивлений индуктивных испытательных объектов, применяемых в электроэнергетике и других отраслях промышленности.

Испытательный ток RMO50M находится в диапазоне от 5 мА до 50 А постоянного тока. Диапазон измерения от 0,1 мкОм до 1000 Ом. Обмоточный омметр RMO100M имеет возможность проверки с более высокими значениями испытательного тока. Испытательный ток RMO100M находится в диапазоне от 5 мА до 100 А постоянного тока, а диапазон измерения — от 1 мкОм до 1000 Ом.

Максимальный вход в канале измерения напряжения составляет 5 В для всех значений испытательного тока. Имея это в виду, оператор должен выбрать испытательный ток таким образом, чтобы при ожидаемом сопротивлении это значение напряжения не превышалось.Например, если ожидаемое сопротивление при измерении будет около 100 мОм, значение испытательного тока должно быть ниже 50 А, потому что:

U = I ∙ R

5 В = 50 А ∙ 100 мОм

В противном случае на устройстве отображается сообщение об ошибке «Изменить ток». Это указывает на слишком высокое испытательное напряжение. В этом случае следует уменьшить испытательный ток и повторить испытание.

Это сообщение также отображается, если индуктивность тестового объекта слишком высока.Опять же, следует уменьшить испытательный ток и повторить испытание.

Чтобы загрузить эту статью в формате .pdf, войдите в систему и перейдите по следующей ссылке.


1 апреля 2020 г.

Как измеряется сопротивление электродвигателя?

Омметр используется для измерения электрического сопротивления между двумя точками. Единица измерения для сопротивления — Ом. При испытании электродвигателей полезно знать сопротивление изоляции между обмоткой двигателя (s) и землей корпуса.Это значение обычно находится в диапазоне от десятков до миллионов Ом .

Нажмите, чтобы увидеть полный ответ


Кроме того, как измеряется сопротивление двигателя?

Прикоснитесь красным (положительным) проводом мультиметра к положительному концу обмотки провода вокруг двигателя . Прикоснитесь черным (отрицательным) проводом мультиметра к отрицательному концу обмотки провода вокруг двигателя . На экране мультиметра отображается значение сопротивления в Ом .

Во-вторых, как измерить сопротивление изоляции двигателя? Измерение сопротивления изоляции выполняется с помощью мегаомметра — омметр диапазона с высоким сопротивлением . Вот как работает тест : напряжение постоянного тока 500 или 1000 В подается между обмотками и землей двигателя .

В связи с этим, какое сопротивление должен иметь электродвигатель?

С помощью мультиметра измерьте сопротивление между корпусом (корпусом) двигателя и землей.Хороший мотор должен показывать менее 0,5 Ом. Любое значение больше 0,5 Ом указывает на неисправность двигателя . Для однофазных двигателей ожидаемое напряжение составляет около 230 В или 208 В в зависимости от того, используете ли вы систему напряжения Великобритании или Америки.

Как проверить обмотки электродвигателя?

Испытание на прямое короткое замыкание в двигателе , мощность , обмотки, , индукция (без щеток) , двигатели . Установите мультиметр на 30 000 Ом и подключите один тестовый провод к одной клемме, а другой — к другой клемме.Каждый из наборов обмоток должен показывать примерно одинаковое значение сопротивления.

Как проверить обмотку двигателя переменного тока мультиметром?

Обмотка двигателя переменного тока Сопротивление Тест

Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра или омметра для клеммы фаза-фаза (U к V, V к W, W к U). Показания в омах для каждой обмотки должны быть одинаковыми (или почти одинаковыми).Помните, что все три фазы имеют идентичные обмотки или почти !

Нажмите, чтобы увидеть полный ответ


Учитывая это, как проверить обмотки двигателя мультиметром?

Как проверить двигатель шпинделя на обрыв или короткое замыкание обмоток

  1. Установите мультиметр на Ом.
  2. Тесты от Т1 до Т2, от Т2 до Т3 и от Т1 до Т3.
  3. Если двигатель шпинделя не прошел тест, вы можете убедиться, что проблема не в разъеме, на котором может быть охлаждающая жидкость, которая мешает вашим результатам.
  4. Проверьте свои вставки.

Далее возникает вопрос, должны ли обмотки двигателя иметь непрерывность? Обмотка (все три в трехфазном двигателе ) должна иметь низкое сопротивление, но не ноль. Чем меньше двигатель , тем выше будет это показание, но не должен открывать . Обычно он будет достаточно низким (менее 30 Ом) для срабатывания звукового индикатора целостности цепи .

Из этого, как проверить мотор мультиметром?

С мультиметром , установленным на низкое сопротивление (обычно 200), проверьте между каждым выводом обмотки и металлическим кожухом двигателя .Если есть какие-либо показания на любом из них, значит, двигатель неисправен, не используйте его. Вы можете обнаружить, что когда он работает без заземления, корпус становится под напряжением до напряжения питания.

Как проверить двигатель переменного тока?

Испытание на прямое короткое замыкание в силовых обмотках двигателя в асинхронных двигателях (без щеток) . Установите мультиметр на 30 000 Ом и подключите один тестовый провод к одной клемме, а другой — к другой клемме.Каждый из наборов обмоток должен показывать примерно одинаковое значение сопротивления.

Проверка сопротивления обмотки двигателей

2 августа 2019 г., Публикуется в статьях: EE Publishers, статьях: Energize, статьях: Vector.

Информация от Megger

Измерение сопротивления обмотки позволяет выявлять различные неисправности в двигателях и трансформаторах: короткое замыкание витков, неплотные соединения, обрывы жил и неисправные механизмы РПН.

Измерение сопротивления обмотки позволяет выявить в двигателях проблемы, которые другие тесты могут не обнаружить. Эти проблемы включают частичное или полное замыкание катушек, плохие обжимы или соединения, дисбаланс между фазами (неправильное включение фаз) и неправильные соединения катушек (фазировка). Исследования, проведенные IEEE и Исследовательским институтом электроэнергетики (EPRI) по отказам электрического вращающегося оборудования, показывают, что 48% отказов двигателей происходят из-за сбоев в электросети.

Обмотка vs.сопротивление изоляции

Как и трансформаторы, двигатель или генератор разбивается на два основных компонента: изоляционный и механический. Механическое состояние и конструкция ротора или статора влияют на сопротивление обмотки. Измерители сопротивления обмотки подают известный постоянный ток через обмотки, измеряют результирующее падение напряжения на обмотке и вычисляют сопротивление. Не следует применять более 10% номинального тока обмотки, так как это нагреет обмотку и приведет к изменению значения сопротивления по мере нагрева меди или алюминия.

Для электроизоляционного компонента используется прибор сопротивления изоляции (IR) для проверки состояния обмотки относительно земли (внешний корпус обмотки статора). Измерители сопротивления изоляции подают высокое постоянное напряжение, которое вызывает небольшой ток через тестируемую изоляцию. Затем тестер выдает показания сопротивления. Хорошая изоляция должна иметь высокое сопротивление, а типичные значения находятся в диапазоне МОм или ГОм. При подаче испытательного напряжения постоянного тока никогда не следует превышать номинальное напряжение проверяемой обмотки двигателя.

Требования к тестерам

Для наиболее распространенных измерений сопротивления можно использовать обычный мультиметр, настроенный на шкалу Ом (Ом). Однако обмотки в больших двигателях имеют низкое сопротивление и очень индуктивны. Поэтому тестер должен безопасно подавать достаточный испытательный ток при более значительном испытательном напряжении для безопасного и своевременного измерения обмотки статора.

Рис. 1: Измерение межфазного сопротивления.

Более высокое испытательное напряжение быстрее преодолеет индуктивность (до 50 раз быстрее, чем обычный измеритель низкого сопротивления).Обычный мультиметр не может измерить сопротивление обмотки. MTO106 Megger обеспечивает испытательный ток до 6 А и напряжение холостого хода 48 В.

В измерителе сопротивления обмотки используется четырехпроводное измерение с набором выводов Кельвина для повышения точности измерения. Это исключает сопротивление набора проводов при измерении, обеспечивая точность.

Безопасность — важный фактор при проверке сопротивления обмотки. Обмотки двигателя или генератора могут накапливать большое количество энергии, когда в них подается постоянный ток во время испытания (это называется индуктивной зарядкой).Эта энергия должна безопасно отводиться от обмотки после прекращения испытательного тока.

MTO106 автоматически разрядит эту энергию безопасно после завершения теста. Функция разряда является пассивной и обеспечивает автоматический разряд в случае непреднамеренного отключения питания или случайного отключения измерительных проводов. Устройство также имеет визуальный и звуковой индикатор разряда при возникновении условий разряда.

Для чего нужны испытания на сопротивление обмоток?

Хотя обнаружение проблем в жизненно важных двигателях или генераторах важно, очень важно их обнаружение до того, как они приведут к катастрофическому отказу.Программы прогнозирующего и профилактического обслуживания, которые включают регулярное тестирование, могут помочь обнаружить проблемы с обмоткой на раннем этапе. Проверка сопротивления обмотки дает информацию о состоянии обмоток.

Анализ результатов испытаний

Показания сопротивления обмотки можно сравнить с заводскими значениями. Распространенный метод диагностики — сравнение с предыдущими показаниями. Поскольку сопротивление обмотки зависит от температуры, важно использовать температурные поправочные коэффициенты, когда это применимо.Результаты испытания сопротивления обмотки сравниваются между тремя фазами (на трехфазном двигателе).

Ряд стандартов обеспечивает максимальные проценты отклонения, но типичные пределы составляют от 1 до 3% между средним значением для трех обмоток. Чрезмерная разница в показаниях сопротивления между фазами может указывать на возможную проблему внутри двигателя. Сопротивление обмотки также используется для измерения потерь в обмотке I 2 R .

На самом деле сопротивление есть всегда, даже если оно небольшое.Это вызывает электрические потери, которые рассеиваются в виде тепла. Информация в этой статье относится к испытаниям обмотки статора двигателя. Испытания сопротивления ротора обычно можно проводить с помощью омметра с низким сопротивлением.

Заключение

Поддержание работы двигателей имеет решающее значение во многих отраслях промышленности. Знание состояния обмоток — одна из важных составляющих обеспечения надлежащей работы двигателей.

Контакты Corola Argiro, Megger, [email protected]

Статьи по теме

  • Портал ресурсов правительства ЮАР по коронавирусу COVID-19
  • Постановлениями министерства предлагается 13813 МВт новых построек на НПЗ, Eskom — нет.
  • Настало время для южноафриканской национальной ядерной компании Necsa
  • Разбираясь со слоном в комнате, это Эском…
  • Интервью с министром полезных ископаемых и энергетики Гведе Манташе
  • Проверка обмоток двигателя шпинделя — как определить неисправные обмотки шпинделя


    Как проверить наличие плохих обмоток в двигателе шпинделя

    Чтобы проверить двигатель шпинделя на наличие плохих обмоток, вы можете использовать несколько различных методов.Как всегда, обязательно отключите все питание от машины, прежде чем делать что-либо . Мы настоятельно рекомендуем использовать квалифицированного, опытного поставщика, такого как TigerTek, для ремонта вашего шпиндельного двигателя. Наши специалисты по ремонту имеют многолетний опыт работы и неизменно обеспечивают лучшее в отрасли качество по очень конкурентоспособным ценам, при этом все они подкреплены полной 12-месячной гарантией. Чтобы ощутить разницу с TigerTek, позвоните нам по телефону 1. или свяжитесь с нами для получения бесплатного предложения.

    Проверка на замыкание на массу

    С помощью омметра: Отключите все питание от машины. Проверьте все три провода по отдельности T1, T2, T3 (все три фазы) к проводу заземления. Показания должны быть бесконечными. Если его ноль или читается какая-либо непрерывность вообще, значит проблема либо с двигателем, либо с кабелем. Если это так, идите прямо к двигателю, отсоедините его от кабеля и проверьте двигатель и кабель отдельно. Убедитесь, что выводы на обоих концах ничего не касаются, включая другие выводы. Большинство коротких замыканий серводвигателей можно прочитать с помощью обычного измерителя качества. Убедитесь, что вы используете качественный измеритель с сопротивлением не менее 10 МОм. Используя мегомметр: Отключите все питание от машины. Проверьте все три провода по отдельности T1, T2, T3 (все три фазы) на провод заземления. Показания обычно находятся в диапазоне от 600 до 2000 МОм. Большинство шорт будет ниже 20 МОм. Соблюдайте осторожность, чтобы не прикасаться к проводам или проводам к чему-либо при считывании показаний. Это может дать ложные и неповторимые показания, заставляя вас гоняться за своим рассказом. Вышеупомянутое является средним значением для трехфазных двигателей 230 В переменного тока. Эмпирическое правило, с которым я сталкивался в других справочных материалах, — это сопротивление около 1000 Ом на каждый вольт входящей мощности.Хотя 230 мегабайт для цепи 230 В переменного тока, по моему опыту, кажется невысоким. Используйте это только как практическое правило. Только помните, что от 230 до 600 мегабайт часто наблюдается некоторое ухудшение состояния кабелей или изоляции двигателя.

    Испытания на обрыв или короткое замыкание обмоток

    С помощью омметра: Отключите все питание от машины. Поставить измеритель на ом: От Т1 до Т2 От Т2 до Т3 От Т1 до Т3 Обычно ожидаемый диапазон составляет от 0,3 до 2,0 Ом, хотя большинство из них составляет около 0,8 Ом. Если вы читаете ноль, значит существует короткое замыкание между фазами.Обычно, если он разомкнут, он бесконечно или значительно превышает 2 кОм. Примечания к кабелям и вилкам Часто в разъем на кабеле двигателя попадает охлаждающая жидкость. Попробуйте просушить и повторить тест. Если он по-прежнему плохой, на самих вставках иногда появляются следы прожога, вызывающие небольшое короткое замыкание. В этом случае вставки следует заменить. Также ищите области, где кабель движется через отслеживание. Провода со временем изнашиваются. Если это двигатель постоянного тока, проверьте щетки. Вокруг мотора должно быть 3-4 круглых заглушки.Под ними вы найдете пружину с квадратным блоком (щеткой). Посмотрите, сколько осталось, возможно, потребуется заменить. Также проверьте коммутатор, по которому движутся щетки, на предмет износа; попробуйте протереть поверхность.

    Как измерить сопротивление изоляции двигателя

    Сопротивление изоляции обмотки

    Если двигатель не запускается сразу по прибытии, важно, , защитить его от внешних факторов , таких как влажность, высокая температура и загрязнения, чтобы избегать повреждения изоляции.Перед вводом двигателя в эксплуатацию после длительного хранения необходимо измерить сопротивление изоляции обмотки.

    Как измерить сопротивление изоляции двигателя (фото: elecls.cc.oita-u.ac.jp)

    Если двигатель хранится в месте с высокой влажностью, необходима периодическая проверка .

    Практически невозможно определить правила для фактического минимального значения сопротивления изоляции двигателя, поскольку сопротивление варьируется в зависимости от метода изготовления, состояния используемого изоляционного материала, номинального напряжения, размера и типа.Фактически, требуется многолетний опыт, чтобы определить, готов двигатель к работе или нет.

    Общее практическое правило — 10 МОм или более.

    5-1011 Мегом
    Значение сопротивления изоляции Уровень изоляции
    2 Мегаом или меньше Плохо
    2-5 Мегом Критично
    10-50 МОм Хорошо
    50-100 МОм Очень хорошо
    100 МОм и более Отлично

    Измерение сопротивления изоляции выполняется мегомметром Омметр высокого сопротивления диапазона.Вот как работает тест: Напряжение постоянного тока 500 или 1000 В, подается между обмотками и землей двигателя.

    Испытание изоляции заземления двигателя

    Во время измерения и сразу после него некоторые клеммы находятся под опасным напряжением, и к НЕ ДОПУСКАЕТСЯ прикасаться .

    В этой связи стоит упомянуть три момента: Сопротивление изоляции, измерение и проверка.


    1. Сопротивление изоляции


    2.Измерение

    • Минимальное сопротивление изоляции обмотки относительно земли измеряется при 500 В постоянного тока . Температура обмотки должна быть 25 ° C ± 15 ° C .
    • Максимальное сопротивление изоляции следует измерять при напряжении 500 В постоянного тока с обмотками при рабочей температуре 80–120 ° C в зависимости от типа двигателя и КПД.

    3. Проверка

    • Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, хранившегося какое-то время, меньше 10 МОм , причина может заключаться в том, что обмотки влажные и нуждаются в сушеные.
    • Если двигатель работал в течение длительного периода времени, минимальное сопротивление изоляции может упасть до критического уровня . Пока измеренное значение не падает ниже расчетного значения минимального сопротивления изоляции, двигатель может продолжать работать.

      Однако, если оно упадет ниже этого предела, двигатель должен быть немедленно остановлен , чтобы избежать травм людей из-за высокого напряжения утечки.

    Ссылка: Grudfos — Motor Book

    Соответствующий контент EEP с рекламными ссылками

    Как рассчитать ток двигателя с учетом сопротивления обмотки

    Обновлено 3 ноября 2020 г.

    Автор: Chris Deziel

    Согласно Согласно закону Ома ток (I) через проводящий провод прямо пропорционален приложенному напряжению (V) и сопротивлению провода (R).Это соотношение не изменится, если проволока намотана на сердечник и образует ротор электродвигателя. В математической форме закон Ома:

    В = IR

    или, если поместить ток и сопротивление по разные стороны от знака равенства:

    I = \ frac {V} {R}

    Сопротивление провода зависит от его диаметра. , длина, проводимость и температура окружающей среды. Медная проволока используется в большинстве двигателей, а медь имеет одну из самых высоких проводимостей среди всех металлов.

    TL; DR (слишком долго; не читал)

    Закон Ома гласит, что ток через провод — даже длинный провод, намотанный на соленоид двигателя — равен напряжению, деленному на сопротивление.Вы можете определить сопротивление обмотки двигателя, если знаете калибр провода, радиус соленоида и количество обмоток.

    Сопротивление провода

    Закон Ома говорит вам, что вы можете рассчитать ток через обмотку двигателя, если вы знаете напряжение и сопротивление провода. Напряжение определить несложно. Вы можете прикрепить к клеммам источника питания вольтметр и измерить его. Определение другой переменной, сопротивления провода, не так просто, потому что оно зависит от четырех переменных.

    Сопротивление провода обратно пропорционально диаметру и проводимости провода, что означает, что оно увеличивается по мере уменьшения этих параметров. С другой стороны, сопротивление прямо пропорционально длине провода и температуре — оно увеличивается с увеличением этих параметров. Что еще более усложняет, сама проводимость изменяется с температурой. Однако, если вы проводите измерения при определенной температуре, например при комнатной температуре, и температура, и проводимость становятся постоянными, и вам нужно только учитывать длину провода и его диаметр, чтобы рассчитать сопротивление провода.Сопротивление (R) становится равным константе (k), умноженной на отношение длины провода (l) к диаметру (d):

    R = k \ frac {l} {d}

    Длина провода и калибр провода

    Для расчета сопротивления необходимо знать как длину провода, намотанного вокруг соленоида двигателя, так и диаметр провода. Однако, если вы знаете калибр проволоки, вы знаете и диаметр, потому что можете посмотреть его в таблице. Некоторые таблицы помогают еще больше, перечисляя сопротивление на стандартную длину для проводов всех размеров.Например, диаметр провода калибра 16 составляет 1,29 мм или 0,051 дюйма, а сопротивление на 1000 футов составляет 4,02 Ом.

    В конце концов, все, что вам действительно нужно измерить, — это длина провода, если вы знаете его калибр. В соленоиде двигателя провод несколько раз наматывается вокруг сердечника, поэтому для расчета его длины вам нужны две части информации: радиус сердечника (r) и количество витков (n). Длина одной обмотки равна окружности сердечника — 2πr, поэтому общая длина провода составляет 2πrn.Используйте это выражение для расчета длины провода, и, узнав ее, вы сможете экстраполировать сопротивление из таблицы сопротивлений.

    Расчет тока

    Зная приложенное напряжение и рассчитав сопротивление провода, у вас есть все необходимое для применения закона Ома для определения тока, протекающего через катушку.

    Добавить комментарий

    Ваш адрес email не будет опубликован.