Как увеличить мощность трансформатора на 12 вольт: Как увеличить мощность трансформатора на 12 вольт

Содержание

Как увеличить мощность электронного трансформатора

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:

Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.

Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:

В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.

Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).

Диоды были заменены на готовую сборку (4 А, 600 В).

Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.

Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.

Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.

Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.

Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

 

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.

Первым делом был произведен замер тока, который показал, что токи свыше 20 А.

После этого нужно измерить выходное напряжение под нагрузкой. Расчетное напряжение составляло около 15 В. Реальное значение без нагрузки – 17 В, а под нагрузкой просело до 15,3 В. В итоге легко узнать мощность, которая составляет примерно 300 Вт. Это чистая мощность на выходе.

Прикрепленные файлы: СКАЧАТЬ

Автор: АКА КАСЬЯН


 

Падение напряжения на проводах — расстояние от трансформатора до ламп или ленты

Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?

Общая рекомендация — это расстояние не должно превышать 5 метров. Это известный факт.

Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.

Потери на проводах — суть проблемы

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений — сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Вторая часть проблемы — провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему — провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V ∕ I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедея] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Оценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W — мощность в ваттах потребителей тока на конце провода;
  • V — напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L — длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S — площадь сечения провода в мм²;
  • ρ — значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Точное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться — просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить различные неприятности вплоть до пожара.

Выводы

Как легко видеть из формул, чем толще провод, тем падение напряжения меньше.

При этом падение напряжения обратно пропорционально площади сечения проводника.

Двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах

Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют.

Падение напряжения на проводе линейно падает с увеличением напряжения источника тока.

Двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения

Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.

Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.

Пример

Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.

Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.

Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности — 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше — возгорание проводов или выход из строя светильников.

А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.

Единственное правильное решение — увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза — примерно в два раза уменьшаем потери на проводах.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос — подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

в квартире и на даче

Низкое напряжение в сети – можно сказать, болезнь удаленных потребителей. Стиралка еле крутится, в квартире или в доме; совершенно исправный насос вдруг перестал качать воду на даче – причина чаще всего одна: падение напряжения сети электропитания. При допустимых пределах 195 – 235 В (если линейное напряжение, как и нас и в Европе, 220 В) на «кончиках» распределительной сети может быть 180 и даже 175 В.

Прежде всего, нужно разобраться, где происходит падение напряжения. Тут не нужно измерений и приборов – достаточно поспрашивать соседей. Если у них все в порядке, потери напряжения – в Вашей абонентской проводке и нужно звать мастера-электрика.

Повышение напряжения в сети электропитания

Если же низкое напряжение у всех в округе – нужно думать, как повысить напряжение в сети у себя. Но не пугайтесь сразу же больших затрат на чудеса современной электроники. Они нужны, о них речь пойдет ниже. Но чаще всего проблему можно решить быстро и без хлопот подручными средствами. Причем – технически грамотно и совершенно безопасно.

При стабильно низком напряжении в сети выручит самый обыкновенный понижающий трансформатор на 12 – 36 В. Да, да, именно понижающий. И большой его мощности не потребуется. 100-ваттный потянет нагрузку в 500 Вт, а киловаттный – в 5 кВт. И увеличить напряжение в сети можно до допустимых пределов.

Никаких чудес, никакой паранауки – достаточно такой трансформатор использовать как повышающий автотрансформатор, добавив напряжение понижающей обмотки к линейному. Тогда при 175 В в розетке на выходе будет при 12 В добавочных 187 В. Маловато, но бытовая техника работать будет. Если вдруг напряжение повысится до нормы, автотрансформатор выдаст 232 В; это еще в норме. При 36 В добавочных 175 В вытягиваем до 211 В – норма! Но вдруг и в розетке норма окажется, получим 256 В, а это уже нехорошо для электроприборов. Поэтому лучше всего – 24 В добавочных.

А как же мощность? Дело в том, что в сетевой обмотке автотрансформатора течет РАЗНОСТНЫЙ ток, и если повышать напряжение на небольшую долю от исходного, он окажется совсем незначительным. Правда, в дополнительной обмотке пойдет суммарный ток, но она в понижающих трансформаторах выполняется из толстого провода и при мощности исходного трансформатора в 100 Вт выдержит ток в 3-5 А, а это более 500 Вт при 220 В.

Нужно только правильно сфазировать обмотки. Для этого включаем трансформатор, как показано на схеме, БЕЗ НАГРУЗКИ. К гнездам «Прибор» подключаем любой вольтметр переменного тока на 300 В и более, хотя бы тестер. Показывает меньше, чем в розетке? Меняем местами концы любой из обмоток. Стало больше, чем в розетке? Все, можно пользоваться. Потребителей включаем вместо измерительного прибора.

Нужно только поставить в цепь сети предохранитель – вдруг в розетке «зашкалит» (это может случиться, если на старой и плохо обслуживаемой подстанции испортится зануление), так пусть он сгорит, а не техника.

Подходящий трансформатор можно найти на «железном» или радиорынке, а то и у себя в кладовке. Не спутайте только с гасящим устройством для низковольтных электропаяльников – они выполнены на конденсаторах, и от них толку не будет, а будет авария.

Защита от перепадов напряжения

В городских условиях напряжение в сети, как правило, держится, но актуальной становится защита квартиры от перепадов напряжения. Вот тут пора вспомнить о чудесах электроники, поскольку «железно – проволочная» электротехника эффективных, простых и дешевых способов их сглаживания не знает.

Поспрашивайте в электро- и радиомагазинах автомат защиты от перепадов напряжения; их еще называют «барьер защитный». Как примерно такой выглядит, видно на иллюстрации. Современные устройства такого типа сравнительно недороги, компактны, их легко подключить и обслуживания в процессе эксплуатации они не требуют.

Простой защитный барьер для домашней электросети

Но не вспоминайте об автотрансформаторе на даче – защитный барьер лишь устраняет броски напряжения; все время держать напряжение в розетке при стабильно пониженном он не может. В качестве накопителей энергии в таких устройствах используются суперконденсаторы, а они хоть и «супер», но все же не электрогенераторы.

Как все-таки быть при нестабильном напряжении?

Бывает и так, что напряжение в сети резко колеблется – то меньше нормы, то больше. Это признак запущенного местного электрохозяйства: тронутых коррозией распределительных проводов в сочетании с плохим нулем на подстанции. Законные меры воздействия на энергетиков оставим юристам; данная же статья техническая, и нам нужно знать, как держать напряжение в норме.

Старый добрый стабилизатор напряжения для дачи вполне подойдет. Возможно, еще от дедушкина черно-белого телевизора, если хранился в подходящих условиях. Только нужно учесть, что наиболее употребительные феррорезонансные стабилизаторы могут давать очень короткие, в несколько миллисекунд, выбросы напряжения, а они могут повредить компьютерную технику, современный телевизор и вообще все, где используются импульсные блоки питания.

Поэтому после такого стабилизатора желательно включить описанный выше автотрансформатор, но с добавкой не 24, а 6-12 В. Напряжение в розетке будет в пределах нормы, а обмотки с большой индуктивностью на массивном железе автотрансформатора паразитные импульсы погасят.

В продаже на интернет-аукционах и с рук можно встретить старые промышленные магнитнокомпенсационные стабилизаторы, и вроде бы подходящей мощности: 1-10 кВт. Но ныне применение таких устройств запрещено. Они хорошо держат напряжение, но дают большую реактивную составляющую потребляемой мощности, очень вредную для управляемых электроникой энергосистем.

Энергетики, вооруженные ныне компьютерным мониторингом, засекают «реактивку» мгновенно, вычисляют источник абсолютно точно, а штрафные санкции (весьма внушительные) применяют охотно и без промедления.

В частном домовладении достаточно обеспеченного владельца радикальное средство стабилизации напряжения в домовой сети – электронный преобразователь напряжения с собственным накопителем энергии. По принципу действия это тот же компьютерный «бесперебойник» (UPS), но на мощность 3-10 кВт.

Стоят такие устройства весьма и весьма недешево (3-20 тыс. долл. США), но обеспечивают идеальное качество напряжения в сети и электропитание потребителей при ее пропадании. В отличие от компьютерных UPS, они, как правило, имеют интерфейс связи со снабженным собственной электроникой аварийным дизель-генератором, так что «движок» запускается не сразу при пропадании сети, а спустя некоторое время, или когда аккумулятор бесперебойника начинает садиться.

В заключение – важный момент. Человек, поверхностно знакомый с электротехникой, может «сообразить»: ага, компьютерный киловаттный UPS, стало быть, сможет держать утюг почаса-час, а телевизор или люстру – чуть ли не сутки, а стоит несколько сотен долларов. Поставлю-ка я такой на даче!

Неверно. Компьютерные UPS рассчитаны на кратковременное эпизодическое использование, потому и стоят в десятки раз дешевле ИБП общего назначения. При непрерывном использовании достаточно дорогостоящий прибор очень быстро окончательно выйдет из строя.

***

© 2012-2020 Вопрос-Ремонт.ру

Загрузка…

что еще почитать:

Вывести все материалы с меткой:

ПОВЫШЕНИЕ МОЩНОСТИ ИНВЕРТОРА


   Автомобильные преобразователи напряжения широко применяются в нашей повседневной жизни. Развитие импульсных технологий позволила резким образом снизить габаритные размеры, вес и стоимость таких инверторов, поэтому сейчас они доступны почти всем. За киловатт мощности придется заплатить порядка 40$, но на самом деле…

   Практика переделки китайских инверторов помогло понять каким должен быть хороший инвертор и изучить все нюансы схематики. Почти все инверторы 12-220 Вольт выполнены по одинаковой схеме, имеют множество защит и в практике работают довольно стабильно. 

   Во всех инверторах мы можем увидеть традиционные схемы с применением задающего двухтактного генератора и силовых ключей. Но если использовать импульсную схему инверторов, то частота на выходе устройство будет значительным образом отклонятся от сетевой, именно поэтому высокое напряжение уже после трансформатора выпрямляется и подается на высоковольтные силовые ключи, которые открываются с частотой 50 Гц — этот процесс обеспечивается отдельным генератором (часто используют микросхему

TL494 и ее аналоги).

   Недавно была сделана попытка умощнения промышленного инвертора и на практике удалось поднять мощность от 300 до 800 ватт. 

   Силовые транзисторы в первичной цепи стоят IRF3205 — одна пара, которые вполне способны обеспечить выходную мощность в пределах 300 ватт. Были добавлены еще две пары силовых ключей, но этого для умощнения недостаточно. 

   Габаритные размеры сердечника трансформатора не позволяют снять большую выходную мощность, поэтому пришлось заменить и трансформатор. Мотать новый трансформатор не нужно — подойдет буквально любой трансформатор от компового блока питания. 

   Трансформатор в компьютерном блоке питания предназначен для понижения сетевого напряжения, в нашем случае мы им будем повышать входной номинал до 250 Вольт. Для этого нужно домотать сетевую обмотку. Новая обмотка состоит из 16 витков и намотана проводом 0,8 мм, поске намотки эту обмотку подключаем последовательно с промышленной обмоткой.

   Затем тестируем схему. Отвод от середины «косу» трансформатора подключаем к плюсу питания 12 Вольт. Для начала вторичную обмотку не нужно подключать на соответствующие выводы на плате инвертора. После запуска проверяем тепловыделение на ключах, если они холодные, то скорее всего схема работает нормально. Дяльше ко вторичной обмотке подключаем лампу накаливания 220 Вольт 40-100 ватт и снова запускаем схему. Лампа должна гореть ПОЛНЫМ НАКАЛОМ. Если все хорошо, то подключаем вторичную обмотку к плате. 

   Схема имеет защиту от перегрева, повышения входного напряжения, защиту от КЗ на выходе, перегруза и переплюсовки входного напряжения, должен заметить, что все защиты лично проверял — работает. 

ВИДЕО РАБОТЫ УСИЛЕННОГО ИНВЕРТОРА 12-220

   Выходные ключи использованы на 10 Ампер, в ходе работы с большими нагрузками будут перегреваться, поэтому помимо теплоотвода возможно будет нужда активного охлаждения.


Поделитесь полезными схемами


ПРОБНИК ЭЛЕКТРИКА

   Универсальный пробник детектор — простой многофункциональный прибор для радиотелемастера, позволяющий проверить конденсаторы, прозвонить провода и т.д.



СХЕМА ЧАСТОТОМЕРА

   Частоту звукового сигнала можно определить с помощью электронного частотомера. Работа частотомера. Звуковой сигнал, преобразованный в электрический, подаётся на вход усилителя на транзисторе VT1. Транзистор почти полностью открыт, он ограничивает только полупериоды отрицательной, и усиливают только полупериоды положительной полярности.


ПРОСТАЯ САМОДЕЛЬНАЯ РАЦИЯ

   Схема простой самодельной радиостанции состоит из ВЧ генератора и ЗЧ-усилителя. Обе части работают как на прием, так и на передачу. Приемник – сверх регенеративный детектор. Сигнал снимается с коллектора транзистора VT1. Передатчик представляет собой ЗЧ-усилитель, нагруженный ВЧ-генератором, с выходом сигнала на телескопическую антенну.


Мощность трансформатора, какая должна быть, как правильно выбрать, рассчитать.

Трансформатор является преобразователем электрической энергии. С его помощью можно легко трансформировать одну величину тока и/или напряжения в другую. Конструкция его достаточно проста. Он состоит из следующих основных функциональных частей: магнитопровод определенной формы, катушки, каркас, на который и наматываются рабочие катушки. Магнитопровод делают в виде тора (круглой формы), Ш-образной и П-образной формы. Каждая форма имеет свои особенности в работе.

Магнитопровод трансформатора, рассчитанный на работу с низкой частотой (промышленная частота в 50 Гц) делают из листового железа. Это позволяет снизить потери при работе устройства. Трансформатор, что работает на более высоких частотах уже имеет магнитопровод из феррита  различных марок. Мощность трансформатора напрямую связана с размерами магнитопровода, материалом (из которого он сделан), частотой, на которой устройству приходится работать.

Самый простой вариант трансформатора содержит в себе две обмотки, называемые первичной и вторичной. Первичная обмотка является входной, вторичная — выходной. Первичная может состоять из нескольких обмоток (или одной, но с отводом), рассчитанных на различное входное напряжение (обычно можно встретить на 220 вольт и на 110). У вторичной может быть гораздо больше обмоток, в зависимости от количества различных напряжений, что нужно получить под разные нужды от одного трансформатора.

Теперь, что касается самой электрической мощности трансформатора. На практике обычно бывает так — есть электротехническое устройство потребитель (нагрузка), которое нужно запитать. Известно напряжение его питания и сила тока, что оно потребляет при своей работе. Под это устройство нужно подобрать соответствующий блок питания. Напомню, что электрическую мощность можно найти по следующей простой формуле: P=U*I (мощность в ваттах равна напряжение в вольтах умноженное на силу тока в амперах). Следовательно, зная напряжение и ток нагрузки мы легко вычисляем мощность устройства. Блок питания должен иметь чуть большую мощность, чем нагрузка, которую он будет питать (запас по мощности должен быть не менее 25%).

Поскольку трансформатор является основным функциональным элементом, определяющий общую мощность блока питания (трансформаторного), то именно его мощность должна быть правильно рассчитана и подобрана под нагрузку. Итак, к примеру, есть небольшой, двухканальный усилитель звуковой частоты, мощность которого 20 ватт на канал. Питание у него 12 вольт. Под него нужно собрать (найти) подходящий трансформаторный блок питания. Общая мощность этого усилителя будет равна 40 ватт (два канала по 20 ватт). Следовательно, с учетом запаса, нам нужно найти понижающий силовой трансформатора, у которого мощность будет не меньше 50 ватт. Поскольку нагрузка нуждается в 12 вольтах, то и вторичная обмотка трансформатора должна быть рассчитана на это напряжение.

Минимальные размеры (при той же мощности) будет у трансформатора круглой формы (тора), но его сложнее мотать (если это делать самому). Ш-образные и П-образные легче наматывать, они проще в своей разборке и сборке, хотя и имеют чуть большие размеры и вес. Мощность трансформатора (если говорить о трансформаторах, рассчитанных на стандартную частоту сети 50 герц, имеющие железные магнитопровод) имеет прямую зависимость от площади поперечного сечения основной части сердечника, где намотан провод обмоток. Формулу зависимости площади сечения магнитопровода трансформатора от его мощности можно выразить так: мощность трансформатора (ватты) равна квадрату площади поперечного сечения основной части магнитопровода (квадратные сантиметры).

То есть, если мы имеем понижающий силовой трансформатор (с металлическим сердечником), но мощность его нам неизвестна, то нужно взять и измерить его толщину и ширину основной его части (где намотан провод). Далее узнаем сечение этой части, перемножаем эту ширину и толщину (в сантиметрах). Полученный результат возводится в квадрат. Вот и получаем мощность, которой обладает этот трансформатор, с этим магнитопроводом. Либо при покупке сразу смотрим или узнаем номинальную мощность приобретаемого трансформатора.

Поскольку электрическая мощность равна произведению силы тока на напряжение, то при одной и той же мощности нам нужно будет учитывать, что если мы увеличиваем напряжение, то придется жертвовать уменьшением силы тока (уменьшая диаметр, сечение провода вторичной обмотки), и наоборот, увеличивая ток на выходе трансформатора, мы будем вынуждены снижать напряжение (уменьшая количество витков в обмотке). Если важен и ток и напряжение на выходе трансформатора, а вся вторичная обмотка не помещается в магнитопровод, то, естественно, нужно увеличивать размеры этого магнитопровода, повышая общую мощность трансформатора.

P.S. В каком-то смысле импульсные трансформаторы, рассчитанные на работу с более высокими частотами, нежели стандартные 50 герц, можно назвать резиновыми по своей мощности. То есть, при пропускании через них тока одной частоты они будут выдавать одну мощность, если же частоту этого тока увеличить, то и мощность этого трансформатора также будет увеличена, при тех же самых его размерах магнитопровода. Но для таких высокочастотных трансформаторов уже используются специальные электронные схемы преобразователей, и содержат в себе сердечники из феррита различных марок (вместо железа).

Как повысить напряжение электронного трансформатора. Китайский электронный трансформатор TASCHIBRA TRA25

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым. Это самый дешевый блок питания. для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

От конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Электронные трансформаторы китайского производителя

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Электронные трансформаторы DM-150 T06 A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована .

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Электронные трансформаторы начали входить в моду совсем недавно. По сути, он является импульсным блоком питания, который предназначен для понижения сетевых 220 Вольт до 12 Вольт. Такие трансформаторы применяются для питания галогенных ламп 12 Вольт. Мощность выпускаемых ЭТ на сегодня 20-250 Ватт. Конструкции почти у всех схем подобного рода схожи друг с другом. Это простой полумостовой инвертор, достаточно нестабильный в работе. Схемы лишены защиты от КЗ на выходе импульсного трансформатора. Еще одним недостатком схемы является то, что генерация происходит только тогда, когда на вторичную обмотку трансформатора подключают нагрузку определенной величины. Я решил написать статью, поскольку считаю, что ЭТ может быть использован в радиолюбительских конструкциях в качестве источника питания, если внести некоторые простые альтернативные решения в схему ЭТ. Суть переделки — дополнить схему защитой от КЗ и заставить ЭТ включаться при подаче сетевого напряжения и без лампочки на выходе. На самом деле переделка достаточно проста и не требует особых навыков в электронике. Схема показана ниже, красным — изменения.

На плате ЭТ мы можем увидеть два трансформатора — основной (силовой) и трансформатор ОС. Трансформатор ОС содержит 3 отдельные обмотки. Две из них являются базовыми обмотками силовых ключей и состоят из 3-х витков. На этом же трансформаторе есть еще одна обмотка, которая состоит всего из одного витка. Эта обмотка последовательно подключена к сетевой обмотке импульсного трансформатора. Именно эту обмотку нужно снять и заменить перемычкой. Дальше нужно поискать резистор с сопротивлением 3-8 Ом (от его величины зависит срабатывания защиты от КЗ). Затем берем провод диаметром 0,4-0,6мм и мотаем два витка на на импульсном трансформаторе, затем 1 виток на трансформаторе ОС. Резистор ОС подбираем с мощностью от 1 до 10 ватт, он будет нагреваться, и достаточно сильно. В моем случае использован проволочный резистор с сопротивлением 6,2 Ом, но не советую использовать их, поскольку проволока имеет некоторую индуктивность, что может повлиять на дальнейшую работу схемы, хотя точно сказать не могу — время покажет.


При КЗ на выходе тут же сработает защита. Дело в том, что ток во вторичной обмотке импульсного трансформатора, а также и на обмотках трансформатора ОС резко спадет, это приведет к запиранию ключевых транзисторов. Для сглаживания сетевых помех на входе питания установлен дроссель, который был выпаян от другого ИБП. После диодного моста желательно установить электролитический конденсатор с напряжением не менее 400 Вольт, емкость подобрать исходя от расчета 1мкФ на 1 ватт.


Но даже после переделки, не стоит замыкать выходную обмотку трансформатора более 5 секунд, поскольку силовые ключи будут греться и могут выйти из строя. Переделанный таким образом импульсный БП включится без выходной нагрузки вообще. При КЗ на выходе генерация срывается, но схема не пострадает. Обычный же ЭТ при замыкании выхода, просто мгновенно сгорает:


Продолжая экспериментировать с блоками электронных трансформаторов для питания галогенных ламп, можно доработать сам импульсный трансформатор, например для получения повышенного двухполярного напряжения для питания автомобильного усилителя.


Трансформатор в ИБП галогенных ламп выполнен на ферритовом кольце, и по виду с этого кольца можно выжимать нужные ватты. С кольца были сняты все заводские обмотки и на их место были намотаны новые. Трансформатор на выходе должен обеспечивать двухполярное напряжение — 60 вольт на плечо.


Для намотки трансформатора использовался провод от китайских обычных железных трансформаторов (входили в комплект приставки сега). Провод — 0,4 мм. Первичная обмотка — мотается 14-ю жилами, сначала 5 витков по всему кольцу, провод не отрезаем! После намотки 5 витков делаем отвод, скручиваем провод и мотаем еще 5. Такое решение избавит от трудной фазировки обмоток. Первичная обмотка готова.


Вторичка мотается также. Обмотка состоит из 9-ти жил того же провода, одно плечо состоит из 20 витков, тоже мотается по всему каркасу, затем отвод и мотаем еще 20 витков.


Для очищения лака я просто поджег провода зажигалкой, затем очистил их монтажным ножом и вытер кончики растворителем. Должен сказать — работает великолепно! На выходе получил требуемые 65 вольт. В дальнейших статьях мы рассмотрим варианты такого рода, а также добавим выпрямитель на выходе, превращая ЭТ в полноценный импульсный блок питания, который может быть использован практически для любых целей.

После всего сказанного в предыдущей статье (смотрите ), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода — жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 — 70см2, используя при этом изолирующие слюдяные прокладки.

C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 — 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка — резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо поставить . Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 — 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 — 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.

Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется «TRIGGER DIODE”, — это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

Особенности электронного трансформатора на IR2161:
Интеллектуальный драйвер полумоста;
Защита от короткого замыкания нагрузки с автоматическим перезапуском;
Защита от токовой перегрузки с автоматическим перезапуском;
Качание рабочей частоты для снижения электромагнитных помех;
Микромощный запуск 150 мкА;
Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам;
Компенсация сдвига выходного напряжения увеличивает долговечность ламп;
Мягкий запуск, исключающий токовые перегрузки ламп.


Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике.


Чтоб задействовать электронный трансформатор в импульсном , нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц.


Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.


Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя . Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

Обсудить статью СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

Стандартные трансформаторы, собранные на электротехнической стали, давно уже не используются в современной электронной радиоаппаратуре. Все без исключения современные телевизоры, компьютеры, музыкальные центры и ресиверы имеют электронные трансформаторы в блоках питания. Причин тут несколько:

Экономия . При нынешних ценах на медь и сталь, гораздо дешевле установить небольшую плату с десятком деталей и маленьким импульсным трансформатором на ферритовом сердечнике.

Габариты . Аналогичный по мощности электронный трансформатор будет иметь размер в 5 раз меньше, и на столько же меньший вес.

Стабильность . В ЭТ чаще всего уже встроена защита от замыканий и перегрузок по току (кроме дешёвых китайских), а диапазон входных напряжений составляет 100-270 вольт. Согласитесь — ни один обычный трансформатор не даст стабильности выходных напряжений при таком разбросе питания.

Поэтому не удивительно, что и радиолюбители стали всё чаще использовать эти импульсные преобразователи напряжения для питания своих самодельных конструкций. Как правило, такие ЭТ выпускают на напряжение 12В, но повысить или понизить его, а так-же добавить ещё несколько дополнительных напряжений (например при создании двухполярного источника питания УНЧ), можно домотав несколько витков на ферритовом кольце.


И вам не придётся тратить сотни метров провода, так как в отличии от обычного трансформатора на железе, здесь идёт примерно 1 виток на вольт. А в более мощных электронных трансформаторах пол витка и менее — смотрите на фото ниже, где показаны 60-ти и 160-ти ваттные трансформаторы.


В первом случае 12-ти вольтовая обмотка содержит 12 витков, а во втором всего 6. Следовательно чтоб получить допуустим 300 вольт выходного напряжения (для питания лампового усилителя), нужно будет домотать всего 150 витков. Если надо получить меньшее напряжение, чем 12В — делаем отвод от штатной обмотки. Типовая :

Только следует учесть, что большинство таких импульсных трансформаторов не запускаются с током нагрузки менее 1А. Для различных моделей минимальный ток может отличаться. А здесь читайте подробнее о доработках китайских ЭТ , позволяющих запускаться им даже при малых токах и не боятся КЗ.


О мощности электронных трансформаторов. Не слишком доверяйте написанному на корпусе ЭТ. Если он маркирован, как трансформатор 160 ватт, то уже при 100 ваттах нагрев будет такой, что возникнет риск выхода из строя выходных ключевых транзисторов. Поэтому мысленно делите её пополам. Или ставьте транзисторы на нормальные радиаторы не забывая про термопасту.


Цены на электронные трансформаторы сравнимы с аналогичными на железе. Так ЭТ 160 ватт стоит в нашем магазине электротоваров 5 долларов, а более слабый ЭТ на 60 ватт — 3 доллара. В общем единственным недостатком электронных трансформаторов можно считать повышенный уровень ВЧ помех и меньшую надёжность в работе. Если вы его спалили — чинить нет смысла, вероятность удачного ремонта не высока (если конечно проблема не в предохранителе на входе 220В). Дешевле просто купить новый.

Обсудить статью ТРАНСФОРМАТОР ЭЛЕКТРОННЫЙ ПОНИЖАЮЩИЙ

Как поднять силу тока в блоке питания. Как повысить силу электрического тока. Сопротивление проводников. Удельное сопротивление. Уголь, графит применяются в электрических щетках в электродвигателях. Проводники применяются с целью пропускать через себя сил

!
Наверное, проблема о которой поговорим сегодня, знакома многим. Думаю, у каждого возникала необходимость увеличения выходного тока блока питания. Давайте же рассмотрим конкретный пример, у вас имеется 19-ти вольтовый адаптер питания от ноутбука, который обеспечивает выходной ток, ну предположим, в районе 5А, а вам нужен 12-ти вольтовый блок питания с током 8-10А. Вот и автору (YouTube канал «AKA KASYAN») понадобился однажды блок питания с напряжением 5В и с током в 20А, а под рукой имелся 12-ти вольтовый блок питания для светодиодных лент с выходным током в 10А. И вот автор решил его переделать.

Да, собрать нужный источник питания с нуля или использовать 5-ти вольтовую шину любого дешевого компьютерного блока питания конечно можно, но многим самодельщикам-электронщикам будет полезно знать, как увеличить выходной ток (или в простонародье ампераж) почти любого импульсного блока питания.

Как правило, источники питания для ноутбуков, принтеров, всевозможные адаптеры питания мониторов и так далее, делают по однотактным схемам, чаще всего они обратноходовые и построению ничем не отличается друг от друга. Может быть иная комплектация, иной ШИМ-контроллер, но схематика одна и таже.


Однотактный ШИМ-контроллер чаще всего из семейства UC38, высоковольтный полевой транзистор, который качает трансформатор, а на выходе однополупериодный выпрямитель в виде одного или сдвоенного диода Шоттки.


После него дроссель, накопительные конденсаторы, ну и система обратной связи по напряжению.


Благодаря обратной связи выходное напряжение стабилизировано и строго держится в заданном пределе. Обратную связь обычно строят на базе оптрона и источника опорного напряжения tl431.


Изменение сопротивления резисторов делителя в его обвязки, приводит к изменению выходного напряжения.


Это было общим ознакомлением, а теперь о том, что нам предстоит сделать. Сразу необходимо отметить, что мощность мы не увеличиваем. Данный блок питания имеет выходную мощность около 120Вт.


Мы собираемся снизить выходное напряжение до 5В, но взамен увеличить выходной ток в 2 раза. Напряжение (5В) умножаем на силу тока (20А) и в итоге получим расчетную мощность около 100Вт. Входную (высоковольтную) часть блока питания мы трогать не будем. Все переделки коснутся только выходной части и самого трансформатора.


Но позже после проверки оказалось, что родные конденсаторы тоже неплохие и имеют довольно низкое внутреннее сопротивление. Поэтому в итоге автор впаял их обратно.


Далее выпаиваем дроссель, ну и импульсный трансформатор.


Диодный выпрямитель довольно неплохой — 20-ти амперный. Самое хорошая то, что на плате имеется посадочное место под второй такой же диод.


В итоге второго такого диода автор не нашел, но так как недавно из Китая ему пришли точно такие же диоды только слегка в другом корпусе, он воткнул пару штук в плату, добавил перемычку и усилил дорожки.


В итоге получаем выпрямитель на 40А, то есть с двукратным запасом по току. Автор поставил диоды на 200В, но в этом нет никакого смысла просто у него таких много.


Вы же можете поставить обычные диодные сборки Шоттки от компьютерного блока питания с обратным напряжением 30-45В и меньше.
С выпрямителем закончили, идем дальше. Дроссель намотан вот таким проводом.


Выкидываем его и берем вот такой провод.


Мотаем около 5-ти витков. Можно использовать родной ферритовый стержень, но у автора поблизости валялся более толстый, на котором и были намотаны витки. Правда стержень оказался слегка длинным, но позже все лишнее отломаем.


Трансформатор — самая важная и ответственная часть. Снимаем скотч, греем сердечник паяльником со всех сторон в течение 15-20 минут для ослабления клея и аккуратно вынимаем половинки сердечника.


Оставляем все это дело минут на десять для остывания. Далее убираем желтый скотч и разматываем первую обмотку, запоминая направление намотки (ну или просто сделайте пару фоток до разборки, в случае чего они вам помогут). Второй конец провода оставляем на штырьке. Далее разматываем вторую обмотку. Также второй конец не отпаиваем.


После этого перед нами вторичная (или силовая) обмотка собственной персоны, именно ее то мы и искали. Эту обмотку полностью удаляем.


Она состоит из 4-ех витков, намотана жгутом из 8-ми проводов, диаметр каждого 0,55мм.


Новая вторичная обмотка, которую мы намотаем, содержат всего полтора витка, так как нам нужно всего лишь 5В выходного напряжения. Мотать будем тем же способом, провод возьмем с диаметром 0,35мм, но вот количество жил аж 40 штук.


Это гораздо больше чем нужно, ну, впрочем, сами можете сравнить с заводской обмоткой. Теперь все обмотки мотаем в том же порядке. Обязательно соблюдайте направление намотки всех обмоток, иначе ничего работать не будет.


Жилы вторичной обмотки желательно залудить еще до начала намотки. Для удобства каждый конец обмотки разбиваем на 2 группы, чтобы на плате не сверлить гигантские отверстия для установки.


После того как трансформатор установлен, находим микросхему tl431. Как уже ранее было сказано, именно она задает выходное напряжение.


В ее обвязке находим делитель. В данном случае 1 из резисторов этого делителя, представляет из себя пару smd резисторов, включенных последовательно.


Второй резистор делителя выведен ближе к выходу. В данном случае его сопротивление 20 кОм.


Выпаиваем этот резистор и заменяем его подстроечным на 10 кОм.


Подключаем блок питания в сеть (обязательно через страховочную сетевую лампу накаливания с мощностью в 40-60Вт). К выходу блока питания подключаем мультиметр и желательно не большую нагрузку. В данном случае это маломощные лампы накаливания на 28В. Затем крайне аккуратно, не дотрагиваясь платы, вращаем подстроечный резистор до получения желаемого напряжения на выходе.


Далее все вырубаем, ждём минут 5, дабы высоковольтный конденсатор на блоке полностью разрядился. Затем выпаиваем подстроечный резистор и замеряем его сопротивление. После чего заменяем его на постоянной, либо оставляем его. В этом случае у нас еще и возможность регулировки выхода появится.

Инструкция

Согласно закону Ома для электрических цепей постоянного тока:U=IR, где:U — величина подаваемого на электрическую цепь ,
R — полное сопротивление электрической цепи,
I — величина протекающего по электрической цепи тока,для определения силы тока нужно разделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того чтобы увеличить силу тока, можно увеличить подаваемое на вход электрической цепи напряжение или уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет повышению напряжения. Например, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то протекающий по ней ток составлял:
1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В общее напряжение станет 3 В, а протекающий по электрической цепи ток повысится до 0,3 А.
Подключение осуществляется «последовательно, то есть плюс одного элемента питания присоединяется к минусу другого. Таким образом, соединив последовательно достаточное количество источников питания, можно получить необходимое напряжение и обеспечить протекание тока нужной силы. Объединенные в одну цепь несколько источников напряжения батареей элементов. В быту такие конструкции обычно называют «батарейками (даже если питания всего из одного элемента).Однако на практике повышение силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, происходящим при увеличении проходящего по ним тока. При этом, как правило, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Кроме того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию или даже возгоранию. Особенно внимательным нужно быть при эксплуатации электробытовых приборов, которые могут работать лишь при фиксированном напряжении.

Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Например, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если затем сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то протекающий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки практически равно нулю. Бесконечного тока при этом, конечно, не возникает, так как в цепи имеется внутреннее сопротивление источника питания. Более значительного уменьшения сопротивления можно добиться, если сильно охладить проводник. На этом эффекте сверхпроводимости основано получение токов огромной силы.

Для повышения силы переменного тока используются всевозможные электронные приборы, в основном — трансформаторы тока, применяемые, например, в сварочных аппаратах. Сила переменного тока повышается также при понижении частоты (так как вследствие поверхностного эффекта понижается активное сопротивление цепи).Если в цепи переменного тока присутствуют активные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.

В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд .

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по , сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению (I = U / R), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения — Вольт, сопротивления — Ом, силы тока — Ампер.
Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же — нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки — амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома (I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра — напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление — вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p — это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения. Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника. Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 (Ом * мм2 / м).

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал — это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.


применяется в нагревательных приборах, так как обладает высоким удельным сопротивлением при большом сечении. Понадобится малое количество его длины, чтобы сделать нагревательный элемент.

Уголь, графит применяются в электрических щетках в электродвигателях.


Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Диэлектрики

Диэлектрики имеют большое значение удельного сопротивления, которое в сравнении с проводниками намного выше.

Фарфор применяют, как правило, при изготовлении изоляторов. Для производства изоляторов также используют стекло.

Эбонит чаще всего применяется в трансформаторах. Из него изготовляют каркас катушек, на которые наматывается провод.

Также в качестве диэлектриков часто используют разные виды пластмасс. К диэлектрикам относится материал, из которого произведена изоляционная лента.

Материал, из которого изготовлена изоляция в проводах, также является диэлектриком.

Основное назначение диэлектрика — это защита людей от поражения электротоком, изолировать между собой токопроводящие жилы.

Прогресс не стоит на месте. Производительность компьютеров стремительно растет. А с увеличением производительности растет и энергопотребление. Если раньше на блок питания почти не обращалось внимания, то теперь, после заявления nVidia о рекомендованной мощности питания для своих топовых решений в 480 Вт, все немного изменилось. Да и процессоры потребляют все больше и больше, а если еще все это как следует разогнать…

C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы… Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание.

Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше.

Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе

  • Power Man PRO HPC 420W – 59 уе
  • Power Man PRO HPC 520W – 123 уе

При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все!

В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как «перекос напряжений». Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова .

«…Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений…»

На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается.

И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону.

Так, например, было у меня. Даже написал на эту тему заметку – «Лампочка оверклокера » Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии «в воздухе», что и усилило эффект «перекоса».

После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта . Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением «перекоса напряжений». Только что приобретенный блок питания непригоден для разгона!

И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить «для опытов», но элементарно «давила жаба». Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет «перекоса». А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от «перекоса» блок питания выключится гораздо раньше.

Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания.

Конечно, делать блок питания такой мощности «с нуля» — сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же .

«…Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках…»

В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление «перекоса напряжений» не будет.

Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три.

К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже.

Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят.

Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500.

Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения.

Рис 1. SG6105

Рис. 2. Типовая схема включения.

Рис. 3. Схема включения SG6105

Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно.

Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов.

Рис. 4. Схема распайки разъема

Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель.

Рис 5. Схема для микросхем TL494, MB3759, KA7500

В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12.

Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам.

Р(Wt)/U(V)=I(A), 120/12=10А

Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам.

Фото 1 Бюджетный стенд для подбора шунта.

Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт.

На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания.

Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения.

В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности.

Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго.

Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода…

Фото 3. Блок PowerMaster 350 W

Нахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа.

Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме.

Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков.

Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое.

Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо.

На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого «проседания», никаких «перекосов»! Полдела сделано.

Теперь берусь за PowerMan Pro 420 W. Так же разбираю его.

Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы.

Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания

Рис 6. Фрагмент схемы блока питания PowerMan

Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W.

Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого «проседания» напряжения.

Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС .

Конфигурация такая:

  • Мать Epox KDA-J
  • Процессор Athlon 64 3000
  • Память Digma DDR500, две планки по 512Mb
  • Винт Samsung 160Gb
  • Видео GeForce 5950
  • DVD RW NEC 3500

Включаю, все прекрасно работает.

Опыт удался. Теперь можно приступать к дальнейшей модернизации «объединенного блока питания». Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке . Но это в дальнейшем.

Влияние «объединенного блока питания» на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история.

Перечень используемой литературы:

  1. Журнал «Радио». – 2002.-№ 5, 6, 7. «Схемотехника блоков питания персональных компьютеров» авт. Р. Александров

Ждём Ваших комментариев в специально созданной .

Определение трансформатора | PCMag

Устройство, которое в основном используется для изменения напряжения переменного тока (AC). Однако трансформатор также может использоваться для поддержания того же напряжения, но действует как электрический изолятор. Самый распространенный тип — трансформатор с ламинированным сердечником, используемый в источниках питания. Сделанный из стальных пластин, обернутых двумя катушками проволоки, соотношение витков между «первичной» входной катушкой и «вторичной» выходной катушкой определяет изменение напряжения. Например, если первичная обмотка имеет 1000 обмоток, а вторичная — 100, входное напряжение 120 В будет изменено на 12 В.

Через электромагнитную индукцию
Существует множество архитектур трансформаторов, и они охватывают весь диапазон размеров. Маленькие используются в бесчисленных черных ящиках, которые подключаются к стене и создают низкое напряжение постоянного тока для каждого электронного устройства, в то время как трансформаторы весом в тонны используются для передачи 50 000 вольт переменного тока по национальной электросети. Однако все они работают за счет электромагнитной индукции. Изменяющийся ток в первичной катушке индуцирует напряжение на вторичной катушке.

Импульсные источники питания
Чем больше ток, необходимый для питания устройства, тем толще провода в катушках и тем больше трансформатор.Однако, если используется высокая частота, количество обмоток может быть уменьшено, чтобы трансформатор был небольшим. Для этого поступающее напряжение преобразуется в постоянное (выпрямленное), и высокочастотный генератор подает импульсы на транзистор, который передает выпрямленное напряжение в виде прямоугольных волн в «импульсный трансформатор». Импульсы включения / выключения постоянного тока вызывают изменение тока в первичной катушке точно так же, как и переменный ток. Генерация прямоугольной волны превращает источник питания в «импульсный источник питания». См. Адаптер питания, источник питания и бородавку.

Импульсный источник питания

Для уменьшения количества обмоток в катушках трансформатора используется высокочастотный импульсный трансформатор. Это гипотетический пример; напряжения и частоты меняются. Например, генератор может генерировать частоты от 1 кГц до 200 кГц. Ниже представлена ​​упрощенная принципиальная схема этого источника питания.

AUSV 1320 OPEN Автомобильная электроника

    Щиток приборов

    AUSV 1320 ОТКРЫТО

    Трансформаторы

    Перейти к содержанию Щиток приборов
    • Авторизоваться

    • Панель приборов

    • Календарь

    • Входящие

    • История

    • Помощь

    Закрывать