Как устроен электродвигатель: Как работает электродвигатель

Содержание

Как работает электродвигатель

Электродвигатель работает благодаря тому, что взаимодействуют сила тока и сила магнита вызывают вращение. Электродвигатели состоят из: неподвижной магнитной части (статора) и подвижного (вращающегося) электромагнита – ротора. Чаще всего в роли статора выступает постоянный магнит, а в роли ротора – катушка с обмоткой возбуждения

Особенности работы электродвигателей

Когда полюс ротора притягивается к противоположно заряженному полюсу статора, он меняет автоматически свой заряд на противоположный. Тогда возникает естественное отталкивание между одинаково заряженными полюсами, и ротор не замирает на месте, а, в силу инерции, поворачивается. Автоматически переключают полюса заряда ротора при помощи коллектора. Это такие пластинки, к которым подключается обмотка катушки. Когда ротор поворачивается на 180 градусов, пластинки меняются местами, вследствие чего меняется и направление тока.

Типы  электродвигателей:

  • Двигатель, работающий от постоянного электричества.
  • Двигатель переменчивого тока.

Электричество подается на обмотку катушки через щетки, расположенные на разных концах якоря (ротора). В результате он превращается в электромагнит, создающий вокруг себя магнитное поле. Когда магнитное поле взаимодействует со статором, якорь начинает вертеться, пытаясь вырваться из поля. Мощность двигателя постоянного тока напрямую зависит от обмотки якоря.

Двигатели второго типа получают питание от переменного тока, частотой 60 Гц, бывают они синхронными и асинхронными. Обычно их запускают вручную. Когда якорь двигателя вращается одновременно с магнитным полем напряжения от сети питания, двигатель называют синхронным. Асинхронным является двигатель, у которого скорость вращения якоря не совпадает с частотой магнитного поля, приводящего его в движение.

Типовые режимы работы электрических двигателей

В зависимости от предназначения и типа устройства электродвигатели имеют разные режимы работы. Выделим несколько самых распространенных из них:

  • Продолжительный с постоянной нагрузкой  — S1;
  • Временный с постоянной нагрузкой (отличается от первого четко ограниченной по времени фазой работы) —  S2;
  • Периодический кратковременный (состоит из нескольких кратковременных циклов между фазами покоя) S3;
  • Периодический режим с электрическим пуском S4;
  • Периодический кратковременный режим с электрическим торможением S5;

Всего есть 9 типовых режимов работы электродвигателей. Каждый режим используют для определенного вида нагрузки.

Просмотров: 2740

Дата: Воскресенье, 15 Декабрь 2013

Как работает электродвигатель, устройство «сердца» электрической машины

Ни одна сфера жизнедеятельности человека сегодня не обходится без электродвигателей. Эти устройства настолько прочно вошли в нашу повседневность, что выход из строя одного из них может как минимум испортить нам настроение на день, а как максимум остановить работу целого предприятия. Электродвигатели поднимают большие грузы на стройках, приводят в движение различные станки на заводах, передвигают общественный транспорт по городу, циркулируют воздух по вентиляционным каналам, помогают готовить еду на кухне и охлаждают детали наших компьютеров. Да что там говорить, если они присутствуют даже в детских игрушках.

Несмотря на такую ​​распространенность, автомобилей с электрическим приводом выпускается значительно меньше, чем их «собратьев» с двигателем внутреннего сгорания. На это есть технические и коммерческие причины, обзор которых мы оставили для отдельной статьи. А в этом тексте рассмотрим преимущества и недостатки электродвигателя и самое главное — его принцип действия.

Электрическая машина

Для начала нужно ввести понятие электрической машины, которой называют электромеханическое устройство для преобразования электрической энергии в механическую или механической в ​​электрическую, а также электрической энергии с одними свойствами в электрическую энергию с другими свойствами. Электродвигатель, в свою очередь, является разновидностью электрической машины. Если в механизме электрическая энергия преобразуется в механическую с выделением тепла — это электродвигатель.

В основе принципа действия электродвигателя лежит электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Преобразование электрической энергии в механическую электромагнитным полем впервые продемонстрировал британский ученый Майкл Фарадей в 1821 году. Он подвесил провод и погрузил его в ртуть, в центре ванны установил постоянный магнит, через провод начал пропускать ток. В результате провод начал оборачиваться вокруг магнита, тем самым показывая, что ток вызывает циклическое магнитное поле. Это был простейший электродвигатель, непригодный для практического использования.

Первым в мире электродвигателем, который можно было эффективно использовать в различных системах, считают изобретение россиянина Бориса Якоби. В отличие от других ученых, которые работали над тем, чтобы заставить железный сердечник двигаться в магнитном поле подобно тому, как движется поршень в паровой машине, он предложил механизм с якорем, который вращается, объяснив, что такое строение значительно проще и непосредственно вращательные движения превращать в другие виды легче. Вращение в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов, которые периодически меняли полярность.

Устройство электродвигателя

С развитием науки и техники электродвигатели менялись, разрабатывались новые модели, совершенствовались старые. Но основных составляющих всегда было две: статор и ротор.

  • Статор — неподвижная часть, на которой размещены все вспомогательные детали, также используемый для закрепления на корпусе, установки на поверхности и т.д.
  • Ротор — подвижная часть двигателя, которая может вращаться внутри статора.

На обеих частях конструкции предусмотрены обмотки, которые работают как электромагниты. Также возможна комбинация из электромагнита на роторе и постоянного магнита на статоре, или наоборот. При подаче электрического тока на обмотки в них возникает магнитное поле с соответствующими полюсами. Вследствие этого происходит силовое взаимодействие между полями статора и ротора. Таким образом стороны обмоток с одинаковыми полюсами начинают отталкиваться друг от друга, а с противоположными — притягиваться. Подвижная часть сразу же пытается стать в такое положение, чтобы противоположные полюса совпадали.

Так происходит максимум пол-оборота, или 180 °. Для того, чтобы ротор двигался дальше и сделал полный оборот на угол 360 °, нужно изменить направление тока в одной из обмоток, в результате чего ее полярность изменится на противоположную и стороны с соответствующими полюсами снова начнут притягиваться. Если через определенный период переключать полярность подаваемого на обмотку тока, то вал ротора будет непрерывно вращаться.

В разных видах электродвигателей такая разница между векторами магнитных полей достигается различными путями. Например, длительное время широко применялись коллекторы, а двигатели, соответственно, назывались коллекторными. Типичный коллектор представляет собой барабан на валу ротора, на который выведены контакты всех обмоток в определенном порядке. Ток на контакты подается с помощью угольных щеточек, которые прижимаются к барабану пружинами. Недостатками такого механизма является необходимость периодической замены щеток, стирание контактов и шум, поэтому со временем более популярными стали бесколлекторные двигатели, в которых используются датчики положения ротора.

Количество обмоток на подвижной и неподвижной частях может отличаться. Чем их больше, тем больше плавность хода и более равномерно распределяется мощность.

Читайте также: «Неубиваемый» солнечный двигатель создан французским стартапом (видео)

Классификация электродвигателей

Различать типы электромоторов можно по нескольким признакам, но две самые распространенные группы отличаются по типу электропитания.

По типу тока, который подается на обмотки, электродвигатели бывают постоянного и переменного тока.

В свою очередь, первую группу в зависимости от наличия щеточно-коллекторного узла можно разделить на две: коллекторные и бесколлекторные. Возбуждение в коллекторных двигателях может происходить независимо с помощью постоянных и электрических магнитов, либо самовозбуждаться, при этом обмотка якоря может включаться параллельно, последовательно, частично-параллельно и частично-последовательно.

Среди двигателей, которые питаются от переменного тока, различают синхронные и асинхронные электродвигатели.

Синхронный электродвигатель – это двигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Существуют синхронные двигатели с дискретным углом перемещения ротора, заданное положение которого фиксируется подачей питания на соответствующие обмотки. Такой вид называют шаговыми. Также можно выделить вентильные реактивные электродвигатели, питания обмоток которых формируется с помощью полупроводниковых элементов.

Асинхронный электродвигатель – это двигатель переменного тока, в котором частота вращения ротора отличается от частоты вращения магнитного поля, которое создается напряжением питания. Моторы такого типа могут иметь разное количество фаз переменного тока. Так, однофазные запускаются вручную или пусковой. Также различают двухфазные, трехфазные и многофазные. Именно асинхронные трехфазные электродвигатели в настоящее время являются наиболее распространенными в промышленности. При отсутствии питания током с тремя фазами, могут работать от однофазной электросети, однако с меньшей мощностью и большим нагрузкам на обмотки, которые могут выйти из строя из-за перегрева.

Следует отметить, что впервые модель асинхронного двигателя предложил знаменитый изобретатель Никола Тесла в Будапеште в 1882 году.

Также существует универсальный коллекторный электродвигатель, который может работать как от постоянного, так и от переменного тока. Конструкция предусматривает только последовательное подключение обмоток, поэтому его ротор вращается только в одном направлении независимо от полярности.

Генератор

Электродвигатель может не только потреблять электроэнергию, но и производить ее. В таком случае он называется генератором электрического тока. Если на вал ротора подать обороты, то в обмотках статора возникнет электродвижущая сила. Таким образом, например, в автомобилях с двигателем внутреннего сгорания во время движения заряжается аккумулятор и снабжаются энергией другие приборы. В электромобилях и гибридах часто используется система рекуперации: когда водитель не давит на педаль газа (или тормозит), электроэнергия возвращается обратно в аккумулятор. В этом режиме не двигатель приводит в движение трансмиссию, а колеса буквально крутят ротор.

В общем, электродвигатели получили большую популярность в технике из-за таких преимуществ, как высокий коэффициент полезного действия и простота механизма. Диапазон мощности и габаритов чрезвычайно велик, что позволяет успешно использовать их как в мелких электронных приборах, так и в масштабной промышленной технике.

Читайте также: Новый дешевый двигатель Volabo увеличит запас хода электромобилей на 25%

Источник: shooter.ua

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

Как работает электромотор, строение электромагнитного двигателя автомобиля

Электродвигатель является одним из наиболее распространённых устройств, которое способно превращать даже небольшое количество поглощаемой энергии в сложную механическую работу. Это довольно экономичный, безопасный и практически безвредный для окружающей среды мотор, именно поэтому с каждым годом число авто, основанных на электротяге, только возрастает. В статье подробно рассмотрен основной принцип работы и устройство двигателя, способного работать на электрической энергии.

Как устроен электродвигатель

Сегодня известна не одна модификация электромотора, но несмотря на это, вне зависимости от его сложности и дополнительных узлов, каждый такой агрегат состоит из двух основных частей: статора и ротора. Статор представляет собой неподвижную несущую часть, на которой установлены магнитопроводы, а в некоторых случаях и индуктор — технический блок, преобразующий переменный ток в постоянный. Основой статора любого автомобиля является литой или сварной корпус из металла (станина) и сердечник. В сердечнике предусмотрены специальные пазы, в которых установлена статорная обмотка (из медной проволоки). Её роль играют тонкие, параллельно расположенные и изолированные жилы из меди (или медных сплавов).

Под ротором принято подразумевать главный движущий элемент мотора. Наиболее часто он приобретает вид стального вала, по бокам которого закреплены подшипники. Поверх вала располагается медная обмотка, закрытая пластинами-магнитопроводами. Ротор плотно устанавливается во внутреннюю часть статора, при этом между верхней поверхностью ротора и внутренней частью статора устанавливается минимальный зазор, который не препятствует вращению вала во время работы.

Питание такого узла производится при помощи литий-ионного аккумулятора, его основой являются отдельные модули, подключённые в единое целое при помощи последовательной схемы. Это позволяет создать напряжение необходимой мощности и с устойчивыми параметрами. Зачастую на выходе такой батареи формируется около 300 В постоянного тока, но в некоторых моделях автомобилей при чётко устроенном взаимодействии всех узлов показатель может доходить и до 700 В.

Рекомендуем для прочтения:

Принцип работы электродвигателя

Электромотор можно назвать одним из наиболее простых и эффективных способов конвертирования электрической энергии в механическую. Данное действие реализуется благодаря так называемой магнитной индукции. Под ней подразумевают особое физическое явление, во время которого происходит возникновение электродвижущей силы в замкнутой среде при изменении потока магнитной силы.

В обычных двигателях внутреннего сгорания коленвал приводится в движение при помощи давления газов, как производных сгорания топлива. Электрический двигатель вращает ось благодаря взаимодействию магнитных полей на статоре и роторе. При подаче электроэнергии на медной обмотке этих элементов возникают взаимоотталкивающиеся поля, которые позволяют автоматически двигать ротор относительно неподвижного статора.

Если устроить контролируемый режим подачи питания через проводник, можно добиться стабильного и сбалансированного вращения движущихся частей, а далее — и машины. Такое строение даёт возможность практически отказаться от сложной коробки передач и упростить управление автомобилем. Кроме того, эта конструкция значительно проще, нежели цилиндровый двигатель, поэтому в нормальном режиме эксплуатации её ресурс будет значительно больше.

Видео: Как работает электродвигатель

Виды электродвигателей

Современная промышленность подарила изобилие всевозможных разновидностей и типов электродвигателей. Наиболее часто их классифицируют в зависимости от поглощаемого тока, поэтому выделяют устройства, работающие на постоянном и переменном токе. Существует и смешанный вид силового агрегата, способный работать как на постоянном, так и переменном напряжении.

Важно! Двигатели от разных производителей авто имеют уникальную массу, технические решения, мощность, размеры и прочие параметры, поэтому с каждым годом по ходу развития электротехники классификация дополняется.

В свою очередь, моторы, работающие на переменном напряжении, делятся на две основные группы: синхронные и асинхронные. Первые имеют одинаковую частоту магнитного поля как статора, так и ротора. Вторые отличаются различными частотами, при этом скорость взаимодействия магнитного поля статора значительно больше, нежели у ротора.

Можно также различать электромагнитные двигатели в зависимости от фаз поглощения тока. Так, выделяют одно-, двух- и даже трёхфазные автомоторы, самым редким из них принято считать трёхфазный. Сегодня известно всего несколько реальных воплощений такого агрегата в современном автомобилестроении, это такие автомобили, как Mitsubishi i-MiEV и Chevrolet Volt.

И, наконец, автомобильный электромотор разделяют на бесколлекторный и коллекторный (в зависимости от наличия щёточно-коллекторного узла). Первый тип работает на переменном токе, второй — на постоянном. Коллектор в этом случае играет роль принудительного «выпрямителя» интенсивности напряжения. При этом основная масса автомобилей на современном рынке передвигается именно на коллекторных моторах.

Автомобильный электродвигатель — это реальная, выгодная и более экологичная альтернатива классическим топливным моторам. Конструкция этих агрегатов надёжна, а также позволяет стабильно работать вне зависимости от типа нагрузки. Несмотря на то что большинство современных электромагнитных моторов по мощности уступают бензиновым и дизельным, этот разрыв с каждым годом только сокращается.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Двигатель электромобиля — принцип работы, устройство, виды

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.


Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.
  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:
  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:
  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).
Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:
  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем


Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.

  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.


  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики

Содержание

  1. Краткая история создания
  2. Принцип действия электродвигателя постоянного тока
  3. Устройство электродвигателя постоянного тока
  4. Особенности и характеристики электродвигателя постоянного тока

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.


Бесколлекторный двигатель постоянного тока: особенности и принцип работы

Как работает бесколлекторный двигатель?

Бесколлекторный двигатель постоянного тока имеет на статоре трёхфазную обмотку, и постоянный магнит на роторе. Вращающееся магнитное поле создаётся обмоткой статора, при взаимодействии с которым магнитный ротор приходит в движение. Для создания вращающегося магнитного поля на обмотку статора подаётся система трёхфазных напряжений, которая может иметь различную форму и формируется различными способами. Формирование питающих напряжений (коммутация обмоток) для бесколлекторного двигателя постоянного тока производиться специализированными блоками электроники – контроллером двигателя. 

Заказать бесколлекторный двигатель в нашем каталоге

В простейшем случае обмотки попарно подключаются к источнику постоянного напряжения и по мере того как ротор поворачивается в направлении вектора магнитного поля обмотки статора производится подключение напряжения к другой паре обмоток. Вектор магнитного поля статора при этом занимает другое положение и вращение ротора продолжается. Для определения нужного момента подключения следующих обмоток используется датчик положения ротора, чаще других используются датчики Холла. 


Возможные варианты и специальные случаи

Выпускаемые сейчас бесколлекторные двигатели могут иметь самую разную конструкцию. 

По исполнению статорной обмотки можно выделить двигатели с классической обмоткой, намотанной на стальной сердечник, и двигатели с полой цилиндрической обмоткой без стального сердечника. Классическая обмотка обладает значительно большей индуктивностью, чем полая цилиндрическая обмотка, и соответственно большей постоянной времени. Из-за этого с одной стороны, полая цилиндрическая обмотка допускает более динамичное изменение тока (а, следовательно, и момента), с другой стороны при работе от контроллера двигателя, использующего ШИМ-модуляцию невысокой частоты для сглаживания пульсаций тока, требуются фильтрующие дроссели большего  номинала (а соответственно и большего размера). Кроме того, классическая обмотка, как правило, имеет заметно больший момент магнитной фиксации, а также меньший КПД, чем полая цилиндрическая обмотка.


Ещё одно отличие, по которому разделяются различные модели двигателей – это взаимное расположение ротора и статора – существуют  двигатели с внутренним ротором и двигатели с внешним ротором. Двигатели с внутренним ротором, как правило, имеют более высокие скорости и меньший момент инерции ротора, чем модели с внешним ротором. Благодаря этому двигатели с внутренним ротором имеют более высокую динамику. Двигатели с внешним ротором часто имеют несколько больший номинальный момент при том же наружном диаметре двигателя. 

Отличия от других типов двигателей

Отличия от коллекторных ДПТ. Размещение обмотки на роторе позволило отказаться от щёток и коллектора и избавиться тем самым от подвижного электрического контакта, который значительно снижает надёжность ДПТ с постоянными магнитами. По этой же причине  скорость у бесколлекторных двигателей, как правило, значительно выше, чем у ДПТ с постоянными магнитами. С одной стороны это позволяет увеличить удельную мощность бесколлекторного двигателя, с другой стороны не для всех применений такая высокая скорость является действительно необходимой

Отличия от синхронных двигателей с постоянными магнитами. Синхронные двигатели с постоянными магнитами на роторе очень похожи на бесколлекторные ДПТ по конструкции, однако есть и ряд различий. Во-первых термин синхронный двигатель объединяет в себе много различных видов двигателей, часть из которых предназначены для непосредственной работы от стандартной сети переменного тока, другая часть (например синхронные серводвигатели) может работать только от преобразователей частоты (контроллеров двигателей). Бесколлекторные двигатели, хотя и имеют на статоре трёхфазную обмотку, не допускают непосредственную работу от сетевого напряжения, и обязательно требуют наличия соответствующего контроллера. Кроме того синхронные двигатели предполагают питание напряжением синусоидальной формы в то время как бесколлекторные двигатели допускают питание переменным напряжением ступенчатой формы (блочная коммутация) и даже предполагают его использование в номинальных режимах работы.

Когда нужен бесколлекторный двигатель?

Ответ на этот вопрос достаточно прост – в тех случаях, когда он имеет преимущество перед остальными типами двигателей. Так, например, практически невозможно обойтись без бесколлекторного двигателя в применениях, где требуются большие скорости вращения: свыше 10000 об/мин. Оправдано применение бесколлекторных двигателей также и в тех случаях, когда требуется высокий срок службы двигателя. В тех случаях, когда требуется применять сборку из двигателя с редуктором, однозначно оправдано применение низкоскоростных бесколлекторных двигателей (с большим числом полюсов). Высокоскоростные бесколлекторные двигатели в этом случае будут иметь скорость выше, чем предельно допустимая скорость редуктора, и по этой причине не будет возможности использовать их мощность полностью. Для  применений, где требуется максимально простое управление двигателем (без использования контроллера двигателя) естественным выбором будет коллекторный ДПТ. 

С другой стороны, в условиях повышенной температуры или повышенной радиации проявляется слабое место бесколлекторных двигателей – датчики Холла. Стандартные модели датчиков Холла имеют ограниченную стойкость к радиации и диапазон рабочих температур. Если в подобном применении всё же имеется необходимость использовать бесколлекторный двигатель, то неизбежными становятся заказные исполнения с заменой датчиков Холла на более стойкие к указанным факторам, что увеличивает цену двигателя и сроки поставки.

Бесколлекторный двигатель постоянного тока: принцип работы, варианты конструкций

Содержание:

Бесколлкторные двигатели постоянного тока (бдпт) являются разновидностью синхронных двигателей с постоянными магнитами, которые питаются от цепи постоянного тока через инвертор, управляемый контроллером с обратной связью. Контроллер подаёт на фазы двигателя напряжения и токи, необходимые для создания требуемого момента и работы с нужной скоростью. Такой контроллер заменяет щёточно-коллекторный узел, используемый в коллекторных двигателях постоянного тока. Бесколлекторные двигатели могут работать как с напряжениями на обмотках в форме чистой синусоиды, так и кусочно-ступенчатой формы (например, при блочной коммутации).

Появились бесколлекторные двигатели постоянного тока как попытка избавить коллекторные двигатели постоянного тока с постоянными магнитами от их слабого места – щёточно-коллекторного узла. Этот узел, представляющий собой вращающийся электрический контакт, является слабым местом у коллекторных двигателей с точки зрения надёжности и в ряде случаев ограничивает их параметры.

Принцип работы и устройство бесколлекторного двигателя

Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть).  На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к  обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора. Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.

Варианты конструкции двигателя

 

Обмотка двигателя может иметь различную конструкцию. Обмотка классической конструкции наматывается на стальной сердечник. Другой вариант конструкции обмотки – это обмотка без стального сердечника. Проводники этой обмотки равномерно распределяются вдоль окружности статора. Характеристики обмотки получаются различными, что отражается и на характеристиках двигателя. Кроме того, обмотки могут быть выполнены на различное число фаз и с различным количеством пар полюсов.

Бесколлекторные двигатели также могут иметь конструкции, различающиеся по взаимному расположению ротора и статора. Наиболее распространена конструкция, когда ротор охватывается статором снаружи – двигатели с внутренним ротором. Но также возможна, и встречается на практике конструкция в которой ротор расположен снаружи статора – двигатели с внешним ротором. Третий вариант – статор расположен параллельно ротору и оба располагаются перпендикулярно оси вращения двигателя. Такие двигатели называют двигателями аксиальной конструкции.

Датчик положения, который измеряет угловое положение ротора двигателя — это важная часть приводной системы, построенной на бесколлекторном двигателе. Этот датчик может быть самым разным как по типу, так и по принципу действия. Традиционно используемый для этой цели тип датчиков – датчики Холла с логическим выходом, устанавливаемые на каждую фазу двигателя. Выходные сигналы этих датчиков позволяют определить положение ротора с точностью до 60° — достаточной реализации самых простых способов управления обмотками. Для реализации способов управления двигателем, предполагающих формирование на обмотках двигателя системы синусоидальных напряжений при помощи ШИМ необходим более точный датчик, например, энкодер. Инкрементные энкодеры, очень широко используемые в современном электроприводе, могут обеспечить достаточно информации о положении ротора только при использовании их вместе с датчиками Холла. Если бесколлекторный двигатель оснащён абсолютным датчиком положения – абсолютным энкодером или резольвером (СКВТ), то датчики Холла становятся не нужны, так как любой из этих датчиков обеспечивает полную информацию о положении ротора.

Можно управлять бесколлекторным двигателем, и не используя датчика положения ротора – бездатчиковая коммутация. В этом случае информация о положении ротора восстанавливается на основании показаний других датчиков, например, датчиков фазных токов двигателя или датчиков напряжения. Такой способ управления часто влечёт за собой ряд недостатков (ограниченный диапазон скоростей, высокая чувствительность к параметрам двигателя, специальная процедура старта), что ограничивает его распространение.

Преимущества и недостатки

Высокая надёжность вследствие отсутствия коллектора. Это основное отличие бесколлекторных двигателей от коллекторных. Щёточно-коллекторный узел, является подвижным электрическим контактом и сам по себе имеет невысокую надёжность и устойчивость к влиянию различных воздействий со стороны окружающей среды.

Отсутствие необходимости обслуживания коллекторного узла. Является особенно актуальным для двигателей среднего и крупного габарита. Для микроэлектродвигателей, проведение ремонта экономически оправдано далеко не во всех случаях, поэтому для них этот пункт не является актуальным.

Сложная схема управления. Прямое следствие переноса функции переключения токов обмотки во внешний коммутатор. Если в простейшем случае для управления коллекторным двигателем необходимо иметь только источник питания, то для бесколлекторного двигателя такой подход не работает – контроллер нужен даже для решения самых простых задач управления движением. Однако, когда речь идёт о решении для сложных случаев (например, задачи позиционирования), то контроллер становится необходим для всех типов двигателей.

Высокая скорость вращения. В коллекторных двигателях скорость перемещения щётки по коллектору ограничена, хотя и различна для различных конструкций этих двух деталей и различных используемых материалов. Предельная скорость перемещения щёток по коллектору сильно ограничивает скорость вращения коллекторных двигателей. Бесколлекторные двигатели не имеют такого ограничения, что позволяет выполнять их для работы на скоростях до нескольких сотен тысяч оборотов в минуту – цифра недостижимая для коллекторных двигателей.

Большая удельная мощность. Возможность  достичь большой удельной мощности является следствием высокой скорости вращения, доступной для бесколлекторного двигателя.

Хороший отвод тепла от обмотки. Обмотка бесколлекторных двигателей неподвижно закреплена на статоре и есть возможность обеспечить хороший тепловой контакт её с корпусом, который передаёт тепло, выделяемое в двигателе, в окружающую среду. У коллекторного двигателя обмотка установлена на роторе, и её тепловой контакт с корпусом гораздо хуже, чем у бесколлекторного двигателя.

Больше проводов для подключения. Когда двигатель расположен близко от контроллера, то это конечно не повод для огорчения. Однако если условия окружающей среды, в которых работает двигатель очень сложны, то вынесение управляющей электроники на значительное расстояние (десятки и сотни метров) от двигателя является подчас единственным доступным вариантом для разработчиков системы. В таких условиях каждая дополнительная цепь для подключения двигателя, будет требовать дополнительных жил в кабеле, увеличивая его размеры и массу.

Уменьшение электромагнитных помех, исходящих от двигателя. Щёточно-коллекторный контакт создаёт при работе достаточно сильные помехи. Частота этих помех зависит от частоты вращения двигателя, что осложняет борьбу с ними. У бесколлекторного двигателя единственным источником помех является ШИМ силовых ключей, частота которого обычно постоянна.

Присутствие сложных электронных компонентов. Электронные компоненты (датчики Холла, например) более остальных составных частей двигателя уязвимы для действия жёстких условий со стороны внешней среды, будь то высокая температура, низкая температура или ионизирующие излучения. Коллекторные двигатели не содержат электроники и у них подобная уязвимость отсутствует.

Где применяются бесколлекторные двигатели

К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.

Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.

Читать дальше:

Как работает электродвигатель?

Почти неизбежно вы придете к моменту в своей жизни, когда столкнетесь с несчастным маленьким ребенком и движущейся игрушкой, которая больше не двигается. Вы можете разобрать игрушку, полагаясь на свою удобство, чтобы спасти положение, но, оставшись с кучей компонентов, вы вполне можете задаться вопросом, как эти витки яркой проволоки создают движение. Помимо сломанных игрушек, электродвигатели используются во многих устройствах, которые заставляют наше современное общество двигаться, от автомобилей до часов и охлаждающих вентиляторов в вашем компьютере.

Детали электродвигателя

Электродвигатель создает вращательное или круговое движение. Центральная часть двигателя — это цилиндр, называемый якорем или ротором. Якорь удерживает остальные компоненты, а также является частью двигателя, которая вращается. Вокруг якоря находится статор, который удерживает изолированные катушки с проволокой, обычно медной. Когда к двигателю подается ток, статор создает магнитное поле, которое приводит в движение якорь. В зависимости от конструкции двигателя вы также можете найти щетки или тонкие металлические волокна, которые удерживают ток на противоположной стороне двигателя во время его вращения.

Как заставить работать

Вы могли заметить, что когда у вас есть два магнита, противоположные полюса притягиваются, а подобные полюса отталкиваются. Электродвигатель использует этот принцип для создания крутящего момента или силы вращения. Не электрический ток сам по себе, а создаваемое им магнитное поле создает силу, когда электродвигатель находится в движении. Электричество, движущееся по проводу, создает круговое магнитное поле, в котором провод является источником и центром вращения. Когда вы добавляете ток, статор и якорь образуют стабильное магнитное поле и электромагнит, который толкается или вращается в этом поле соответственно.

Различные типы электродвигателей

Базовый двигатель работает от постоянного или постоянного тока, но другие двигатели могут работать от переменного или переменного тока. Батареи вырабатывают постоянный ток, а розетки в вашем доме — переменные. Для того, чтобы двигатель работал от переменного тока, необходимы два намотанных магнита, которые не соприкасаются. Они приводят в движение двигатель посредством явления, известного как индукция. Эти асинхронные двигатели являются бесщеточными, поскольку не требуют физического контакта, обеспечиваемого щеткой.Некоторые двигатели постоянного тока также являются бесщеточными и вместо этого используют переключатель, который изменяет полярность магнитного поля, чтобы двигатель работал. Универсальные двигатели — это асинхронные двигатели, которые могут использовать любой источник энергии.

Создание простого электродвигателя

Теперь, когда у вас есть основные части и принципы, вы можете поиграть с концепцией дома. Сделайте катушку из медной проволоки более низкого сечения и проденьте каждый конец в алюминиевую банку, чтобы подвесить ее. Поместите небольшой сильный магнит с обеих сторон подвешенной катушки, чтобы создать магнитное поле.Если вы прикрепите батарею к обеим банкам с помощью зажимов из крокодиловой кожи, ваша катушка станет электромагнитом, а созданный вами ротор из медной проволоки должен начать вращаться.

Электродвигатель — Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору. Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле.Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу. Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

У двигателей

есть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность. Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки.Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит. Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, его можно увидеть на рисунках 3 и 4.Без него ротор не смог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии.Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

Как работает двигатель электромобиля — Easy Electric Life

Что такое электродвигатель?

Двигатель электромобиля работает с использованием физического процесса, разработанного в конце 19 века. Он заключается в использовании тока для создания магнитного поля в неподвижной части машины («статоре»), смещение которого приводит в движение вращающуюся часть («ротор»).Мы более подробно рассмотрим эти две части и многое другое ниже.

Принцип электродвигателя

В чем разница между двигателем и двигателем? Эти два слова часто используются как синонимы. Поэтому важно различать их с самого начала. Несмотря на то, что в настоящее время термин «двигатель» используется как почти синоним, в автомобильной промышленности термин «двигатель» относится к машине, которая преобразует энергию в механическую энергию (и, следовательно, в движение), в то время как «двигатель» делает то же самое, но специально использует тепловую энергию. энергия.Поэтому, говоря о преобразовании тепловой энергии в механическую, мы имеем в виду горение, а не электрическое.

Другими словами, двигатель — это тип двигателя. Но мотор — это не обязательно двигатель. В случае с электромобилями, поскольку механическая энергия создается из электричества, мы используем слово «двигатель» для описания устройства, которое заставляет электромобиль двигаться (также известного как тяга).

Как двигатель электромобиля работает внутри электромобиля?

Теперь, когда мы знаем, что мы говорим о двигателях, а не двигателях, как двигатель работает внутри электромобиля?

В наши дни электродвигатели можно встретить во многих бытовых устройствах.Те, которые используют двигатели постоянного тока (DC), имеют довольно простые функции. Двигатель подключен непосредственно к источнику энергии, и его скорость вращения напрямую зависит от силы тока. Хотя эти электродвигатели просты в производстве, они не соответствуют требованиям к мощности, надежности или размеру электромобиля, хотя вы можете обнаружить, что они приводят в действие дворники, окна и другие более мелкие механизмы внутри автомобиля.

Статор и ротор

Если вы хотите понять, как работает электромобиль, вам необходимо ознакомиться с физическими элементами его электродвигателя.И он начинается с понимания принципов работы двух его основных частей: статора и ротора. Разницу между ними легко запомнить: статор неподвижен, а ротор вращается. В двигателе статор использует энергию для создания магнитного поля, которое затем вращает ротор.

Итак, как работает двигатель, когда дело доходит до привода электромобиля ? Для этого мы должны обратиться к двигателям переменного тока (AC), которые требуют использования схемы преобразования для преобразования постоянного тока (DC), подаваемого батареей.Давайте подробнее рассмотрим два разных вида тока.

Электромобиль: переменный ток и постоянный ток

Прежде всего, если вы хотите понять, как работает электродвигатель электромобиля, вам необходимо знать разницу между переменным и постоянным током (электронными токами).

Электричество движется по проводнику двумя способами. Переменный ток (AC) описывает электрический ток, при котором электроны периодически меняют направление. Постоянный ток (DC), как следует из названия, течет в одном направлении.

Аккумулятор в электромобиле работает от постоянного тока. Но когда дело доходит до главного двигателя электромобиля (который обеспечивает тягу к транспортному средству), эта энергия постоянного тока должна быть преобразована в переменный ток через инвертор.

Итак, что происходит, когда эта энергия достигает двигателя? Это зависит от того, используется ли в автомобиле синхронный или асинхронный двигатель.

Типы электродвигателей

В автомобильной промышленности существуют два типа двигателей переменного тока: синхронные и асинхронные.Когда дело доходит до электромобиля, у синхронных и асинхронных двигателей есть свои сильные стороны — один не обязательно «лучше» другого.

Синхронные и асинхронные двигатели

Асинхронный двигатель, также называемый асинхронным двигателем, основан на статоре с электрическим приводом для создания вращающегося магнитного поля. Это влечет ротор в бесконечную погоню, как если бы он безуспешно пытался догнать магнитное поле. Асинхронный двигатель часто используется в электромобилях, которые в основном используются для движения на повышенных скоростях в течение длительных периодов времени.

В синхронном двигателе ротор сам действует как электромагнит, активно участвуя в создании магнитного поля. Таким образом, его скорость вращения прямо пропорциональна частоте тока, который питает двигатель. Это делает синхронный двигатель идеальным для городского движения, которое обычно требует регулярной остановки и запуска на низких скоростях.

И синхронные, и асинхронные двигатели работают в обратном порядке, что означает, что они могут преобразовывать механическую энергию в электричество во время замедления.Это принцип рекуперативного торможения , который происходит от генератора переменного тока.

Части электродвигателей

Давайте теперь подробнее рассмотрим некоторые из различных частей двигателя электромобиля: от магнитов электродвигателей или синхронных двигателей с внешним возбуждением (EESM) до силового агрегата в целом.

Постоянные магниты

В некоторых синхронных двигателях в качестве ротора используется двигатель с постоянными магнитами. Эти постоянные магниты встроены в стальной ротор, создавая постоянное магнитное поле.Преимущество постоянного электромотора в том, что он работает без источника питания, но требует использования металлов или сплавов, таких как неодим или диспрозий. Эти «редкоземельные элементы» являются ферромагнитными, что означает, что они могут быть намагничены, чтобы стать постоянными магнитами. Они используются в различных промышленных целях: от ветряных генераторов, аккумуляторных инструментов и наушников до велосипедных динамо-машин и… тяговых двигателей для некоторых электромобилей!

Проблема в том, что цены на эти «редкие земли» очень волатильны.Несмотря на свое название, на самом деле они не обязательно такие редкие, но встречаются почти исключительно в Китае, который, следовательно, имеет квазимонополию на их производство, продажу и распространение. Это объясняет, почему производители упорно трудятся над поиском альтернативных решений для двигателей электромобилей.

Синхронные двигатели с внешним возбуждением

Одно из этих решений, используемое Renault для New ZOE, включает изготовление магнита электродвигателя из медной катушки. Это требует более сложного производственного процесса, но позволяет избежать проблем с питанием при сохранении отличного соотношения между массой двигателя и передаваемым крутящим моментом.

Гийом Фори, руководитель отдела проектирования завода Renault Cléon во Франции, дает представление о сложности и изобретательности двигателя New ZOE: «Производство EESM требует специальных процессов намотки катушек и пропитки. Ограничения ожидаемых характеристик продукта, цель снижения отношения веса к мощности и высокая скорость производства требуют от нас эффективного использования самых современных технологий для выполнения этих процессов ».

Электрическая трансмиссия

В электромобиле двигатель, состоящий из ротора и статора, является частью более крупного блока, электрической трансмиссии , ансамбля, который заставляет электродвигатель работать.

Также в этом блоке контроллер Power Electronic (PEC) объединяет всю силовую электронику, отвечающую за управление питанием двигателя и зарядку аккумулятора. Наконец, он включает в себя редукторный двигатель, часть, отвечающую за регулировку крутящего момента и скорости вращения, передаваемых двигателем на колеса.

Вместе эти элементы обеспечивают плавную и эффективную работу электродвигателя. И результат? Ваш электромобиль бесшумный, надежный, дешевле, и приятно водить!

Авторские права: Pagecran

Читайте также

Электромобиль

Различные способы хранения энергии

10 июня 2021 г.

Посмотреть больше

Электромобиль

Все, что нужно знать о подключаемом гибридном автомобиле

10 июня 2021 г.

Посмотреть больше

Электромобиль

Все, что нужно знать о зарядке гибридного автомобиля

09 июня 2021

Посмотреть больше

Как на самом деле работают двигатели электромобилей и чем они отличаются?

Когда вы в последний раз задумывались о том, как на самом деле работают электромобили? Мы, супер-фанаты автомобильного бизнеса, по большей части выработали разумное понимание того, как работают силовые агрегаты внутреннего сгорания.Большинство из нас может визуализировать, как топливо и воздух входят в камеру сгорания, взрываются, толкают поршень вниз и вращают коленчатый вал, который в конечном итоге поворачивает колеса. Обычно мы понимаем разницу между рядными, плоскими, V-образными и, возможно, роторными двигателями внутреннего сгорания Ванкеля.

Такие концепции машиностроения сравнительно легко понять. Но, вероятно, справедливо поспорить, что только меньшинство людей, читающих это, может объяснить на салфетке для бара, как именно невидимые электроны вращают колеса автомобиля или чем двигатель с постоянными магнитами отличается от двигателя индукционного переменного тока.Электротехника может показаться автомобильным фанатикам черной магией и колдовством, так что пришло время развенчать этот смелый новый мир электромобильности.

Как работают электромобили: двигатели

Это связано с магнетизмом и естественным взаимодействием между электрическими полями и магнитными полями. Когда электрическая цепь замыкается, позволяя электронам двигаться по проводу, эти движущиеся электроны создают электромагнитное поле с северным и южным полюсами. Когда это происходит в присутствии другого магнитного поля — либо от другой партии ускоряющихся электронов, либо от Уайла Э.Гигантский подковообразный магнит ACME Койота, эти противоположные полюса притягиваются, и подобные полюса отталкиваются друг от друга.

Просмотреть все 12 фотографий

Электродвигатели работают путем установки одного набора магнитов или электромагнитов на вал, а другого набора — на корпусе, окружающем этот вал. Периодически меняя полярность (меняя местами северный и южный полюса) одного набора электромагнитов, двигатель усиливает эти притягивающие и отталкивающие силы для вращения вала, тем самым преобразуя электричество в крутящий момент и, в конечном итоге, поворачивая колеса.И наоборот, как и в случае рекуперативного торможения, эти магнитные / электромагнитные силы могут преобразовывать движение обратно в электричество.

Как работают электромобили: переменный или постоянный ток?

Электроэнергия, подаваемая в ваш дом, поступает в виде переменного тока (AC), так называемого, потому что полярность север / юг или плюс / минус питания меняется (чередуется) 60 раз в секунду. (То есть в США и других странах, работающих от 110 вольт; в странах со стандартом 220 вольт обычно используется переменный ток 50 Гц.) Постоянный ток (DC) — это то, что входит и выходит из + и — полюсов каждой батареи. Как отмечалось выше, двигателям для вращения требуется переменный ток. Без этого электромагнитная сила просто соединила бы их северный и южный полюса вместе. Это цикл постоянного переключения между севером и югом, который заставляет мотор вращаться.

Просмотреть все 12 фото

Современные электромобили предназначены для управления как переменным, так и постоянным током на борту. Аккумулятор накапливает и распределяет постоянный ток, но, опять же, двигателю нужен переменный ток.При подзарядке аккумулятора энергия поступает в бортовое зарядное устройство в виде переменного тока во время зарядки Уровня 1 и Уровня 2 и в виде постоянного тока высокого напряжения на Уровне 3 «быстрых зарядных устройств». Сложная силовая электроника (которую мы не будем пытаться здесь объяснять) обрабатывает многочисленные встроенные преобразования переменного / постоянного тока, повышая и понижая напряжение от 100 до 800 вольт зарядной мощности до напряжения системы батареи / двигателя от 350-800 вольт для многих освещение автомобиля, информационно-развлекательная система и функции шасси, для которых требуется электричество 12–48 В постоянного тока.

Как работают электромобили: какие типы двигателей?

Двигатель постоянного тока (матовый): Да, мы только что сказали, что переменный ток заставляет двигатель вращаться, и эти двигатели старого типа, которые приводили в действие первые электромобили 1900-х годов, ничем не отличаются. Постоянный ток от батареи подается к обмоткам ротора через подпружиненные «щетки» из углерода или свинца, которые приводят в действие вращающиеся контакты, подключенные к обмоткам проводов. Каждые несколько градусов вращения щетки активируют новый набор контактов; это постоянно меняет полярность электромагнита на роторе по мере вращения вала двигателя.(Это кольцо контактов называется коммутатором).

Корпус, окружающий электромагнитные обмотки ротора, обычно имеет постоянные магниты. («Последовательный двигатель постоянного тока» или так называемый «универсальный двигатель» может использовать электромагнитный статор.) Преимущества заключаются в низкой начальной стоимости, высокой надежности и простоте управления двигателем. Изменение напряжения регулирует скорость двигателя, а изменение тока регулирует его крутящий момент. К недостаткам можно отнести меньший срок службы и стоимость обслуживания щеток и контактов.Сегодня этот двигатель редко используется на транспорте, за исключением некоторых индийских железнодорожных локомотивов.

Бесщеточный двигатель постоянного тока (BLDC): Щетки и их обслуживание устраняются путем перемещения постоянных магнитов к ротору, размещения электромагнитов на статоре (корпусе) и использования внешнего контроллера двигателя для попеременного переключения различных обмоток возбуждения. от плюса к минусу, создавая вращающееся магнитное поле.

Преимущества — долгий срок службы, низкие эксплуатационные расходы и высокая эффективность.Недостатки — более высокая начальная стоимость и более сложные регуляторы скорости двигателя, которые обычно требуют трех датчиков Холла для правильной фазировки тока обмотки статора. Такое переключение обмоток статора может привести к «пульсации крутящего момента» — периодическому увеличению и уменьшению передаваемого крутящего момента. Этот тип двигателя популярен для небольших транспортных средств, таких как электрические велосипеды и скутеры, и используется в некоторых вспомогательных автомобильных приложениях, таких как электрический усилитель рулевого управления.

Просмотреть все 12 фотографий

Синхронный двигатель с постоянным магнитом (PMSM): Физически двигатели BLDC и PMSM выглядят почти одинаково.Оба имеют постоянные магниты на роторе и обмотки возбуждения в статоре. Ключевое отличие состоит в том, что вместо использования постоянного тока и периодического включения и выключения различных обмоток для вращения постоянных магнитов, PMSM работает на непрерывном синусоидальном переменном токе. Это означает, что в нем отсутствует пульсация крутящего момента, и для определения скорости и положения ротора требуется только один датчик на эффекте Холла, поэтому он более эффективен и тише.

Слово «синхронный» означает, что ротор вращается с той же скоростью, что и магнитное поле в обмотках.Его большие преимущества — удельная мощность и высокий пусковой момент. Основным недостатком любого двигателя с вращающимися постоянными магнитами является то, что он создает «обратную электродвижущую силу» (ЭДС), когда он не работает на скорости, что вызывает сопротивление и тепло, которые могут размагнитить двигатель. Этот тип двигателя также используется в усилителях рулевого управления и тормозных системах, но он стал предпочтительной конструкцией двигателя в большинстве современных аккумуляторных электрических и гибридных транспортных средств.

Просмотреть все 12 фотографий

Обратите внимание, что большинство двигателей с постоянными магнитами всех типов ориентируют свою ось север-юг перпендикулярно выходному валу.Это создает «радиальный (магнитный) поток». Новый класс двигателей с «осевым потоком» ориентирует оси N-S магнитов параллельно валу, обычно на парах дисков, между которыми расположены неподвижные обмотки статора. Компактная ориентация аксиального потока с высоким крутящим моментом этих так называемых «двигателей-блинов» может быть применена к двигателям типа BLDC или PMSM.

Просмотреть все 12 фотографий

Индукция переменного тока: Для этого двигателя мы убираем постоянные магниты на роторе (и их редкоземельные материалы, которые становятся все более редкими) и поддерживаем переменный ток, протекающий через обмотки статора, как в двигателе PMSM выше.

Замена магнитов — это концепция, запатентованная Никола Тесла в 1888 году: поскольку переменный ток течет через различные обмотки статора, обмотки создают вращающееся поле магнитного потока. Когда эти магнитные линии проходят через перпендикулярные обмотки ротора, они индуцируют электрический ток. Затем это создает другую магнитную силу, которая заставляет ротор вращаться. Поскольку эта сила индуцируется только тогда, когда силовые линии магнитного поля пересекают обмотки ротора, ротор не будет испытывать крутящего момента или силы, если он вращается с той же (синхронной) скоростью, что и вращающееся магнитное поле.

Это означает, что асинхронные двигатели переменного тока по своей природе асинхронны. Скорость ротора регулируется изменением частоты переменного тока. При небольших нагрузках инвертор, управляющий двигателем, может снизить напряжение, чтобы уменьшить магнитные потери и повысить эффективность. Отключение асинхронного двигателя во время крейсерского движения, когда в этом нет необходимости, устраняет сопротивление, создаваемое двигателем с постоянными магнитами, в то время как двухмоторные электромобили, использующие двигатели PMSM на обеих осях, всегда должны приводить в действие все двигатели. Пиковая эффективность может быть немного выше для конструкций BLDC или PMSM, но асинхронные двигатели переменного тока часто достигают более высокого среднего КПД.Еще один небольшой компромисс — это немного более низкий пусковой крутящий момент, чем у PMSM. GM EV1 середины 1990-х годов и большинство Tesla использовали асинхронные двигатели переменного тока.

Просмотреть все 12 фотографий

Электродвигатель сопротивления: Думайте о «сопротивлении» как о магнитном сопротивлении: степени, с которой объект противодействует магнитному потоку. Статор реактивного электродвигателя имеет несколько полюсов электромагнита — концентрированные обмотки, образующие сильно локализованные северный или южный полюса. В вентильном реактивном электродвигателе (SRM) ротор изготовлен из магнитомягкого материала, такого как слоистая кремнистая сталь, с множеством выступов, предназначенных для взаимодействия с полюсами статора.Различные полюса электромагнита включаются и выключаются почти так же, как обмотки возбуждения в двигателе с BLDC. Использование неравного количества полюсов статора и ротора гарантирует, что одни полюса выровнены (для минимального сопротивления), а другие находятся прямо между противоположными полюсами (максимальное сопротивление). При переключении полярности статора ротор вращается с асинхронной скоростью.

Просмотреть все 12 фотографий

Синхронный реактивный двигатель (SynRM) не зависит от дисбаланса полюсов ротора и статора.Скорее, двигатели SynRM имеют более распределенную обмотку, питаемую синусоидальным переменным током, как в конструкции PMSM, со скоростью, регулируемой частотно-регулируемым приводом, и ротор сложной формы с пустотами в форме линий магнитного потока для оптимизации сопротивления.

Последняя тенденция заключается в размещении небольших постоянных магнитов (часто более простых ферритовых) в некоторых из этих пустот, чтобы использовать преимущества как магнитного, так и реактивного крутящего момента, минимизируя затраты и неэффективность высокой скорости обратной ЭДС (или противоэлектродвижущей силы), которая страдают двигатели с постоянными магнитами.

Преимущества: низкая стоимость, простота и высокая эффективность. К недостаткам можно отнести шум и пульсацию крутящего момента (особенно для реактивных реактивных двигателей). Toyota представила внутренний синхронный реактивный двигатель с постоянными магнитами (IPM SynRM) на Prius, а Tesla теперь объединяет один такой двигатель с асинхронным двигателем переменного тока на своих моделях с двумя двигателями. Tesla также использует IPM SynRM в качестве единственного двигателя для своих моделей с задним приводом.

Посмотреть все 12 фото

Электродвигатели никогда не могут петь, как малоблочный или плоскопанельный Ferrari.Но, возможно, через десять лет или около того мы будем относиться к трансмиссии Tesla Plaid с такой же любовью, как и к этим двигателям, и каждый автолюбитель сможет подробно описать, какие двигатели он использует.

Как работает электродвигатель?

Все признают, что если вы можете создать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед. — Джеймс Дайсон

Введение

«Электродвигатель стал немного более известным и ценимым за последние несколько лет благодаря тому, что он все больше интегрируется в наши автомобили.Большинство людей понимает и ценит влияние загрязнения окружающей среды на климат, поэтому производители автомобилей все больше нуждаются в автомобилях, которые могут помочь улучшить нашу окружающую среду или, по крайней мере, причинить меньше вреда ».

«Именно благодаря этой потребности в росте и развитии некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы теперь он работал лучше и эффективнее, чем когда-либо прежде».

Детали электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей — статора и ротора.Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый играет в электродвигателе.



Статора Ротор

Статор

Статор состоит из трех частей — сердечника статора, токопроводящей жилы и каркаса. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены друг с другом.У этих колец есть прорези на внутренней стороне колец, вокруг которых будет наматываться проводящий провод, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов. Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3. Каждый тип проводов наматывается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

Когда токопроводящий провод находится внутри сердечника статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей — сердечника ротора, токопроводящих стержней и двух концевых колец.Пластины из высококачественной легированной стали составляют цилиндрический сердечник ротора, в центре которого проходит стержень. На внешней стороне сердечника ротора есть прорези, которые либо проходят параллельно стержнеобразному стержню в центре сердечника ротора, либо слегка закручены, образуя диагональные прорези. Если сердечник статора имеет диагональные пазы на внешней стороне сердечника, он называется ротором с короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует ротор с короткозамкнутым ротором. По диагональным линиям в сердечнике размещены токопроводящие стержни, образующие обмотку ротора.Затем с обеих сторон сердечника помещают концевые кольца, чтобы закоротить все токопроводящие стержни, которые были размещены на диагональных линиях сердечника ротора.

После сборки ротора и статора ротор вставляется в статор, и с обеих сторон размещаются два концевых выступа. Эти концевые раструбы изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(непрофессионалам)

Если вы инженер-электрик, вы знаете, как работает электродвигатель.Если вы этого не сделаете, это может сильно сбить с толку, поэтому вот упрощенное объяснение (или версия «как работает электродвигатель для чайников») того, как четырехполюсный трехфазный асинхронный двигатель работает в автомобиле.

Начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электроэнергия подается на статор через аккумулятор автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты.Следовательно, когда электрическая энергия от автомобильного аккумулятора подается в двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор — это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Так вот, в типичном автомобиле, который не является электрическим, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса.Вращение колес — это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка — аккумулятор необходимо подзарядить, чтобы он функционировал должным образом.

В электромобиле нет генератора. Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока. Это одна из причин того, почему электромобили так уникальны.Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе — ротор притягивается вращающимся магнитным полем, требуя большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от магнитного поля).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс, представьте, что крутите педали на велосипеде в гору. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее и, возможно, даже придется встать и затратить больше энергии, чтобы повернуть шины и достичь вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее за собой ротор, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, в то время как колеса будут двигаться еще быстрее, чтобы спуститься с холма. В машине это происходит, когда вы отпускаете ногу с газа, а ротор движется быстрее и подает электроэнергию обратно в линию электропередачи для подзарядки аккумулятора.


Что такое переменный ток (AC)


по сравнению с постоянным током (DC)?

Концептуальные различия этих двух типов токов кажутся довольно очевидными.Пока один ток постоянный, другой более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Термин «постоянный ток» относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока сохраняет правильную полярность, то есть неизменную.

Подумайте о том, как батареи имеют четко определенные положительные и отрицательные стороны.В них используются постоянные токи, чтобы на постоянной основе передавать одно и то же напряжение. В дополнение к батареям, топливные элементы и солнечные элементы также производят постоянный ток, в то время как простые действия, такие как трение определенных материалов друг о друга, также могут создавать постоянный ток.

В соответствии с нашей концепцией батареи, рассматривая положительную и отрицательную стороны батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной стороной. Это гарантирует, что обе стороны батареи всегда будут положительными и отрицательными.



Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют шаблону синусоидальной волны (на изображении выше синусоида показана на правом графике напряжения). Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью во времени.Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.

Еще один термин, который вы можете услышать при обсуждении электроэнергии переменного тока, — это частота. Частота сигнала — это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Так почему это важно?

Электроэнергия переменного тока — лучший способ передачи полезной энергии от источника генерации (т.э., плотина или ветряк) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, подающего питание в район (те цилиндрические серые прямоугольники, которые вы видите на полюсах линии электропередачи), может иметь высокое напряжение до 66 кВА (66000 вольт переменного тока).

Мощность переменного тока

позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является самым популярным током энергии для приложений питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Большинство крупных промышленных двигателей представляют собой асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала, это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью. Обычно многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого из них, чтобы намеренно выйти из строя.

Что означает три фазы?

Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, сформулированном в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.Эта энергия заставляет катушки проводящих проводов вести себя как электромагниты.

Простой способ понять три фазы — рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии. По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.


Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем об успехе, который Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут. Однако есть десятки других компаний, которые добиваются значительного прогресса в этой области, например Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного дороже, чем они есть, потому что мы не учитываем реальный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США — Илон Маск

Электродвигатели прямо или косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно.С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему, связанную с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух.


Примечание. Значения MPG (миль на галлон, указанные для каждого региона) представляют собой комбинированный рейтинг экономии топлива в городе / шоссе бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение 58 миль на галлон в США — это средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году.

С большой точки зрения рост электромобилей дает несколько преимуществ. Во-первых, уменьшается шумовое загрязнение, так как шум, излучаемый электродвигателем, гораздо более приглушен, чем шум двигателя, работающего на газе.Кроме того, в связи с тем, что электродвигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в техосмотрах.


Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса. Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, ориентированный не только на стиль и производительность, но и на внешнее воздействие.Таким образом, хотя электрический двигатель, возможно, не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс.

Если больше ничего не должно произойти из достижений в области электродвигателей, то по крайней мере мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду. Это новое определение прогресса в том виде, в каком он определяется электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Строительство трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает асинхронный двигатель работает? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Принцип работы трехфазного индукционного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- electric-drive-test-ride-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.html
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165742.html # main
http://www.caranddriver.com/reviews/2015-tesla-model-s-p90d-test-review
http://www.caranddriver.com/tesla/ model-s
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-1/what-is-alternating-current-ac/
http: // science.howstuffworks.com/electricity8.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Изображение с: http://faq.zoltenergy.co/ технический /
http://www.kerryr.net/pioneers/tesla.htm
https://en.wikipedia.org/wiki/Westinghouse_Electric_(1886)
http://www.allaboutcircuits.com/textbook/alternating- current / chpt-13 / Introduction-ac-motors /
https://www.youtube.com/watch?v=Q2mShGuG4RY
http://www.explainthatstuff.com/electricmotors.html
http://electronics.howstuffworks.com/motor.htm
https://en.wikipedia.org/wiki/Induction_motor


Электродвигатель. Факты для детей

Электродвигатель преобразует электрическую энергию в механическое движение. Динамо-машина или электрический генератор делают обратное: они превращают механическое движение в электрическую энергию. Большинство электродвигателей работают за счет силы магнетизма. Также использовались электростатические двигатели.

Машины, использующие электродвигатели, включают: вентиляторы, стиральные машины, холодильники, насосы и пылесосы.

Внутри электродвигателя

Анимация, показывающая работу щеточного электродвигателя постоянного тока.

Начнем с общего плана простого двухполюсного электродвигателя постоянного тока. Простой мотор состоит из шести частей:

  • Якорь или ротор
  • Коммутатор
  • Кисти
  • Ось
  • Полевой магнит
  • Источник питания постоянного тока какой-то

Электродвигатель — это все о магнитах и ​​магнетизме: двигатель использует магниты для создания движения.Если вы когда-либо играли с магнитами, вы знаете основной закон всех магнитов: противоположности притягиваются, а любит отталкиваться. Итак, если у вас есть два стержневых магнита, концы которых помечены как «север» и «юг», то северный конец одного магнита будет притягивать южный конец другого. С другой стороны, северный конец одного магнита будет отталкивать северный конец другого (и аналогично юг будет отталкивать юг). Внутри электродвигателя эти силы притяжения и отталкивания создают вращательное движение.

Чтобы понять, как работают электродвигатели, важно понять, как работают электромагниты.Электромагнит — основа электродвигателя.

Электродвигатели классифицируются по двум различным категориям: DC (постоянный ток) и AC (переменный ток). В этих категориях существует множество типов, каждый из которых предлагает уникальные возможности, которые подходят им для наилучшего применения.

История

В 1821 году Майкл Фарадей создал первый электродвигатель. Он работал с использованием силы магнетизма.

Он создал простой электромагнит, взяв гвоздь и проволоку, намотав около 100 петель проволоки вокруг гвоздя и соединив их с батареей.При этом у него был простой электромагнит с северным и южным полюсами. В середине гвоздя он проделал отверстие и вставил в него веретено, чтобы гвоздь мог вращаться. Затем он взял магнит в форме подковы и поместил гвоздь, обернутый проволокой, посередине.

Он подключил провод северного полюса к отрицательному полюсу батареи, а провод южного полюса к положительному полюсу. Основной закон магнетизма сказал ему, что произойдет: северный конец электромагнита будет отталкивать северный конец подковообразного магнита и притягивать южный полюс.То же самое произошло с другой стороной ногтя, в результате чего гвоздь повернулся.

Фарадей не был доволен результатом электромотора, потому что мотор вращался только один раз. Он поменял полярность аккума и проволочный гвоздь снова повернулся только один раз. Если бы он менял полярность каждый раз, когда северный полюс гвоздя, обернутого проволокой, находился напротив южного полюса подковообразного магнита, то он бы получил желаемый результат. Обернутый проволокой гвоздь будет вращаться и вращаться вокруг шпинделя (пока батарея не разряжена).

Связанные страницы

Картинки для детей

  • Вид в разрезе через статор асинхронного двигателя.

  • Электромагнитный эксперимент Фарадея, 1821 г.

  • «Электромагнитный самовращающийся двигатель» Джедлика, 1827 г. (Музей прикладного искусства, Будапешт). Исторический мотор отлично работает и сегодня.

  • Ротор электродвигателя (слева) и статор (справа)

  • Маленький мотор постоянного тока игрушки с коммутатором

  • Работа щеточного электродвигателя с двухполюсным ротором и статором ПМ.(«N» и «S» обозначают полярности на внутренних сторонах магнитов; внешние грани имеют противоположные полярности.)

  • Современный недорогой универсальный мотор от пылесоса. Обмотки возбуждения окрашены в темно-медный цвет с обеих сторон назад. Ламинированный сердечник ротора — серый металлик с темными пазами для намотки катушек. Коммутатор (частично скрыт) потемнел от использования; он направлен вперед. Большая коричневая деталь из формованного пластика на переднем плане поддерживает направляющие и щетки (с обеих сторон), а также передний подшипник двигателя.

  • Большой асинхронный двигатель переменного тока мощностью 4500 л.с.

  • Миниатюрный двигатель без сердечника

Электродвигатели — Как работают электродвигатели? — Высшее — OCR 21C — Объединенная научная версия GCSE — OCR 21st Century

Объяснение электродвигателя

На схеме показан простой двигатель, работающий на постоянном токе (dc).

Правило левой руки Флеминга может быть использовано для объяснения того, почему катушка поворачивается

Начиная с позиции, показанной на схеме двигателя постоянного тока:

  • ток в левой части катушки вызывает силу, направленную вниз, и ток в правая часть катушки создает восходящую силу
  • катушка вращается против часовой стрелки из-за сил, описанных выше

Когда катушка вертикальна, она движется параллельно магнитному полю, не создавая силы.Это привело бы к остановке двигателя, но две особенности позволяют катушке продолжать вращение:

  • импульс двигателя заставляет его немного продолжать вращаться

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *