Как устроен диод – Диод — Википедия

Содержание

Диод | Виды, характеристики, параметры диодов

В механике  есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – ниппель.  Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток.  Если провести аналогию: бачок с водой – это заряженный конденсатор, шланг – это провод, катушка индуктивности – это колесо с лопастями

которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем  мы будем называть радиоэлемент  – диод.  И в этой статье мы познакомимся с ним поближе.

Что такое диод

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель ;-).

Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:

Диод имеет два вывода, как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод ( а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же  на анод подать минус, а на катод – плюс, то  ток через диод не потечет. Своеобразный ниппель ;-). На схемах  простой диод обозначают вот таким образом:

      

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

 

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

 

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

 На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

www.ruselectronic.com

Как устроен туннельный диод: характеристики, принцип работы, маркировка

Туннельный диод обладает особыми характеристиками, отличающими его от обычных диодов и стабилитронов. Если диоды и стабилитроны хорошо пропускают ток только в одну сторону (в обратную – только в области пробоя), то туннельный диод способен хорошо проводить ток в обе стороны. Это свойство обеспечивают особенности устройства туннельного диода: очень узкий p-n переход и значительное количество присадок.

Содержание статьи

История создания туннельного диода

Эта деталь была предложена в 1956 году японским ученым Л. Есаки. Для ее изготовления использовался германий или арсенид галлия с большим количеством присадок, обладающих низким удельным сопротивлением.

Арсенид галлия оказался более перспективным материалом. При производстве туннельных диодов используются: доноры – олово, сера, теллур, свинец, селен, а также акцепторы – кадмий и цинк. Применяются германиевые полупроводники, в которых: доноры – мышьяк и фосфор, а акцепторы – алюминий и галлий. Примеси вводят в состав диода путем вплавления или диффузии.

Особенности и принцип действия туннельного диода

Туннельные диоды с чрезвычайно малым сопротивлением относят к группе вырожденных. Для них характерны:

  • электронно-дырочный переход – в десятки раз тоньше, по сравнению с обычными диодными устройствами;
  • потенциальный барьер – в 2 раза выше относительно стандартных полупроводниковых деталей;
  • наличие напряженности поля даже при отключении питающего напряжения – 106 В/см.

Уникальные свойства туннельного диода проявляются в его вольтамперной характеристике (ВАХ) при прямом смещении в полупроводнике.

На схеме видно, что на отрезке А ток растет с увеличением напряжения. На участке В полупроводник проявляет отрицательное сопротивление (туннельный эффект), приводящее к тому, что при росте вольтовой характеристики ток снижается. На отрезке С прибор снова обеспечивает прямую зависимость между током и напряжением.

Туннельные диоды предназначены для работы как раз на отрезке, для которого характерно отрицательное сопротивление. Небольшое повышение напряжения выключает его, а снижение – включает.

Основные параметры туннельных диодов

При выборе этого полупроводника учитывают:

  • ток пика – максимальный ток прямого направления;
  • пиковое напряжение, характерное для тока пика;
  • минимальный ток (ток впадины) и характерное для него напряжение;
  • напряжение скачка – максимальный перепад напряжений;
  • емкость – емкость между выводами полупроводника при определенной вольтовой характеристике смещения.

Маркировка туннельных диодов и их обозначение на схеме

В обозначении диодов присутствует несколько позиций (обычно 5). Первой идет буква или цифра. Цифры 1, 2, 3 обозначают, что диод предназначен для военного применения (имеет более широкий температурный рабочий интервал, по сравнению со стандартными полупроводниками). На первой позиции может стоять буква, указывающая на материал, используемый при изготовлении детали: Г – германий, А – арсенид галлия. Вторая позиция показывает класс полупроводника, Д – обозначает «диод». На третьей позиции отображают характеристики мощности или частоты. Четвертая – двух- или трехзначный серийный номер. В конце обозначения производитель предоставляет дополнительную информацию.

Цветовая маркировка диодовОбозначение туннельного диода на схемах

Области применения

Параметры туннельного диода обеспечивают его использование в следующих областях:

  • в качестве высокоскоростного выключателя;
  • в роли усилителя, в котором повышение напряжения вызывает более значительный рост тока, по сравнению со стандартными диодными устройствами;
  • для получения и усиления электромагнитных колебаний;
  • в радиоэлектронных переключающих и импульсных устройствах различного назначения, для которых актуально высокое быстродействие.

Преимущества и недостатки

Плюсы туннельных диодов:

  • особая вольтамперная характеристика в определенном интервале напряжений;
  • уникальное быстродействие, малая инерционность;
  • устойчивость к ионизирующему излучению;
  • сниженное потребление электроэнергии от источника электропитания.

Все туннельные диоды имеют компактные размеры. Часто они представляют собой изделия в герметичных корпусах цилиндрической формы диаметром 3-4 мм, высотой 2 мм и массой менее 1 грамма.

Существенным недостатком полупроводников этого типа является значительное старение, которое приводит к изменению их свойств, а следовательно, к нарушению нормальной функциональности устройства. «Туннельники» могут утратить прежние параметры не только из-за превышенных рабочих режимов, но даже из-за длительного хранения, после чего они превращаются в «обращенные» полупроводники. Такое обстоятельство часто становится причиной некорректного функционирования промышленных осциллографов.

Существуют и «обращенные» полупроводники промышленного изготовления. От туннельных они отличаются меньшей концентрацией примесей, хотя общий принцип функционирования у них одинаковый.

Как проверить туннельный диод на работоспособность

Проверять работоспособность ТД авометром – комбинированным прибором для измерения тока, напряжения и частоты – запрещено, поскольку полупроводники некоторых групп могут выйти из строя. Если неизвестна принадлежность детали к определенной категории, то безопасней использовать генераторный пробник, позволяющий контролировать работоспособность туннельного диода в активном режиме.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


www.radioelementy.ru

Подробное устройство и принцип работы светодиода

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?

Что такое светодиод?

Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

DIP

Цилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания. Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

SMD

Полупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

COB

Chip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности. В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу. Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.

Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения. Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов. В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.

Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.

Читайте так же

ledjournal.info

Обращённый диод — Википедия

Материал из Википедии — свободной энциклопедии

Обозначение на схемах. От катода к аноду — прямое (проводящее) направление тока. От анода к катоду — обратное (запирающее) направление тока[1].

Обращённый дио́д — полупроводниковый диод, вольт-амперная характеристика которого обусловлена туннельным эффектом в области p-n-перехода[2].

Прямая ветвь вольт-амперной характеристики обращённого диода аналогична прямой ветви ВАХ типичного выпрямительного диода с p-n-переходом, а в отличие от туннельного диода, практически не имеет «горба», что обусловлено немного меньшей, чем у туннельного диода, концентрацией примесей в полупроводнике[3].

По сути, обращённые диоды — это вырожденные туннельные диоды. Обратные токи у них велики уже при ничтожно малых обратных напряжениях (десятки милливольт) и значительно превосходят прямые токи в при таком же прямом напряжении.

Из-за неполного легирования обладает значительной температурной зависимостью параметров[3][1][4].

Так как полупроводниковый материал относительно сильно легирован, эти диоды малочувствительны к ионизирующему излучению.

Схема энергетических зон в р-n-переходе обращённого диода при разном напряжении на нём.

Благодаря малой ёмкости и отсутствию накопления неосновных носителей обращённые диоды применяется в СВЧ-схемах детектирования (выпрямления малых сигналов). При этом максимальное рабочее обратное напряжение не превышает 0,7 В.

Также применяются в смесителях СВЧ-сигналов, например, в приёмном тракте радиолокационных станций[2].

Так как при малых прямых смещениях дифференциальное сопротивление диода очень велико, а даже при небольших обратных напряжениях оно мало, эти приборы применяются в коммутаторах и переключателях малых СВЧ-сигналов.

ru.wikipedia.org

определение, особенности, схема и применение :: SYL.ru

Что такое диод? Это элемент, получивший различную проводимость. Она зависит от того, как именно течет электрический ток. Применение устройства зависит от цепи, которой нужно ограничение следования данного элемента. В этой статье мы расскажем об устройстве диода, а также о том, какие виды существуют. Рассмотрим схему и то, где применяются эти элементы.

История появления

Так вышло, что работать над созданием диодов стало сразу два ученых: британец и немец. Следует заметить, что их открытия немного отличались. Первый основал изобретение на ламповых триодах, а второй — на твердотельных.

К сожалению, в то время наука не смогла сделать прорыв в этой сфере, однако для размышлений было дано очень много поводов.

Через несколько лет снова были открыты диоды (формально). Томас Эдисон запатентовал это изобретение. К сожалению, во всех своих работах при жизни это ему не пригодилось. Поэтому подобную технологию развивали другие ученые в разные годы. До начала XX века эти изобретения были названы выпрямителями. И только спустя время Вильям Иклз использовал два слова: di и odos. Первое слово переводится как два, а второе – путь. Язык, на котором было дано название, является греческим. И если переводить выражение полностью, то «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод в своем строении имеет электроды. Речь идет об аноде и катоде. Если первый имеет положительный потенциал, то диод называется открытым. Таким образом, сопротивление становится маленьким, а ток проходит. Если же потенциал положительный имеется у катода, то диод не раскрыт. Он не пропускает электрический ток и имеет большой показатель сопротивления.

Как устроен диод

В принципе, что такое диод, мы разобрались. Теперь нужно понять, как он устроен.

Корпус зачастую изготавливается из стекла, металла или же керамики. Чаще всего вместо последней используются определенные соединения. Под корпусом можно заметить два электрода. Наиболее простой будет иметь нить небольшого диаметра.

Внутри катода располагается проволока. Она считается подогревателем, так как имеет в своих функциях подогрев, который совершается по законам физики. Нагревается диод за счет работы электрического тока.

При изготовлении также используется кремний или германий. Одна сторона прибора имеет нехватку электродов, вторая — их переизбыток. За счет этого создаются специальные границы, которые обеспечивает переход типа p-n. Благодаря ему ток проводится в том направлении, в котором это необходимо.

Характеристики диодов

Диод на схеме уже показан, теперь следует узнать, на что нужно обращать внимание при покупке устройства.

Как правило, покупатели ориентируются только по двум нюансам. Речь идет о максимальной силе тока, а также обратном напряжении на максимальных показателях.

Использование диодов в быту

Довольно часто диоды используют в автомобильных генераторах. То, какой диод выбрать, следует решать самому. Нужно заметить, что в машинах используются комплексы из нескольких приборов, которые признаны называться диодным мостом. Нередко подобные устройства встраиваются в телевизоры и в приемники. Если использовать их вместе с конденсаторами, то можно добиться выделения частот и сигналов.

Для того чтобы защитить потребителя от электрического тока, нередко в устройства встраивается комплекс из диодов. Такая система защиты считается довольно действенной. Также нужно сказать, что блок питания чаще всего у любых приборов использует такое устройство. Таким образом, светодиодные диоды сейчас довольно распространены.

Виды диодов

Рассмотрев, что такое диод, необходимо подчеркнуть, какие виды существуют. Как правило, приборы делятся на две группы. Первой считается полупроводниковая, а вторая не полупроводниковой.

На данный момент популярной является первая группа. Название связано с материалами, из которых такое устройство изготовлено: либо из двух полупроводников, либо из обычного металла с полупроводником.

На данный момент разработан ряд особых видов диодов, которые используются в уникальных схемах и приборах.

Диод Зенера, или стабилитрон

Этот вид используется в стабилизации напряжения. Дело в том, что такой диод при возникновении пробоя резко увеличивает ток, при этом точность максимально большая. Соответственно, характеристики диода такого типа довольно удивительны.

Туннельный

Если простыми словами объяснить, что это за диод, то следует сказать, что этот вид создает отрицательный тип сопротивления на вольт-амперных характеристиках. Зачастую такое приспособление используется в генераторах и усилителях.

Обращенный диод

Если говорить о данном типе диодов, то это устройство может изменять напряжение в минимальную сторону, работая в открытом режиме. Это устройство является аналогом диода тоннельного типа. Хоть и работает оно немного по другому признаку, но основано оно именно на вышеописанном эффекте.

Варикап

Данное устройство является полупроводниковым. Оно характеризуется тем, что имеет повышенную емкость, которой можно управлять. Зависит это от показателей обратного напряжения. Нередко такой диод применяется при настройке и калибровке контуров колебательного типа.

Светодиод

Данный тип диода излучает свет, но только в том случае, если ток течет в прямом направлении. Чаще всего именно это устройство используется везде, где следует создать освещение при минимальных затратах электроэнергии.

Фотодиод

Данное устройство имеет полностью обратные характеристики, если говорить о предыдущем описанном варианте. Таким образом, он вырабатывает заряды, только если на него попадает свет.

Маркировка

Нужно заметить, что особенностью всех устройств является то, что на каждом из элементов имеется специальное обозначение. Благодаря им, можно узнать характеристику диода, если он относится к полупроводниковому типу. Корпус состоит из четырех составных частей. Теперь следует рассмотреть маркировку.

На первом месте всегда будет стоять буква или цифра, которая говорит о материале, из которого изготовлен диод. Таким образом, параметры диода будет узнать несложно. Если указана буква Г, К, А или И, то это означает германий, кремний, арсенид галлия и индий. Иногда вместо них могут указываться цифры от 1 до 4 соответственно.

На втором месте будет указываться тип. Он также имеет разные значения и свои характеристики. Могут быть выпрямительные блоки (Ц), варикапы (В), туннельные (И) и стабилитроны (С), выпрямители (Д), сверхвысокочастотные (А).

Предпоследнее место занимает цифра, которая будет указывать на область, в которой применяется диод.

На четвертом месте будет установлено число от 01 до 99. Оно будет указывать на номер разработки. Помимо этого, на корпус производитель может наносить различные обозначения. Однако, как правило, их используют только на устройствах, создаваемых для определенных схем.

Для удобства диоды могут маркироваться графическими изображениями. Речь идет о точках, полосках. Логики в данных рисунках нет никакой. Поэтому для того, чтобы понять, что имел в виду производитель, придется ознакомиться с инструкцией.

Триоды

Этот вид электродов является аналогом диода. Что такое триод? Он немного по комплексу своему похож на описываемые выше устройства, однако имеет другие функции и конструкцию. Основное различие между диодом и триодом будет заключаться в том, что у него есть три вывода, и чаще всего его самого называют транзистором.

Принцип работы рассчитана на то, что, используя небольшой сигнал, будет выводиться ток в цепь. Диоды и транзисторы используются практически в каждом устройстве, которое имеет электронный тип. Речь идет также и о процессорах.

Плюсы и минусы

Лазерный диод, как и любой другой, имеет преимущества и недостатки. Для того чтобы подчеркнуть достоинства данных устройств, необходимо их конкретизировать. Помимо этого, составим и небольшой список минусов.

Из плюсов следует отметить небольшую стоимость диодов, отличный ресурс работы, высокий показатель службы эксплуатации, еще можно использовать данные устройства при работе с переменным током. Также нужно отметить небольшие размеры, которые позволяют размещать устройства на любой схеме.

Что касается минусов, то нужно выделить, что не существует на данный момент устройств полупроводникового типа, которые можно использовать в приборах с высоким напряжением. Именно поэтому придется встраивать старые аналоги. Также нужно заметить, что на диоды очень пагубно сказываются высокая температура. Она сокращает срок эксплуатации.

Немного интересных сведений о диодах

Первые экземпляры имели совершенно небольшую точность. Именно поэтому характеристики устройств были довольно плохими. Лампы-диоды приходилось распаковывать. Что же это означает? Некоторые устройства могли получать совершенно разные свойства, даже изготовленные в одной партии. После отсева негодных приспособлений элементы проходили маркировку, в которой описывались их реальные характеристики.

Все диоды, которые изготовлены из стекла, получили особенность: они чувствительны к свету. Таким образом, если прибор может открываться, то есть имеет крышку, то вся схема будет работать совершенно по-разному, в зависимости от того, открыто пространство для света или закрыто.

www.syl.ru

Выпрямительный диод — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 июня 2016; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 июня 2016; проверки требуют 5 правок. Аналогия между работой обратного клапана и диода Эффект односторонней проводимости показан в зависимости от полярности подключения диода на схеме

Выпрями́тельные дио́ды — диоды, предназначенные для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований[1].

Основные параметры выпрямительных диодов:

Частотный диапазон выпрямительных диодов невелик. При преобразовании промышленного переменного тока рабочая частота составляет 50 Гц, предельная частота выпрямительных диодов не превышает 20 кГц.

По максимально допустимому среднему прямому току диоды делятся на три группы: диоды малой мощности (Iпр.ср.{\displaystyle I_{\text{пр.ср.}}} ≤ 0,3 А), диоды средней мощности (0,3 А < Iпр.ср.{\displaystyle I_{\text{пр.ср.}}} < 10 А) и мощные (силовые) диоды (Iпр.ср.{\displaystyle I_{\text{пр.ср.}}} ≥ 10 А). Диоды средней и большой мощности требуют отвода тепла, поэтому они имеют конструктивные элементы для установки на радиатор.

В состав параметров диодов входят диапазон температур окружающей среды (для кремниевых диодов обычно от −60 до +125 °С) и максимальная температура корпуса.

Среди выпрямительных диодов следует особо выделить диоды Шотки, создаваемые на базе контакта металл-полупроводник и отличающиеся более высокой рабочей частотой (для 1 МГц и более), низким прямым падением напряжения (менее 0,6 В).

Для повышения коэффициента полезного действия выпрямительные диоды включают по мостовой (реже полумостовой) схеме, чтобы питание нагрузки осуществлялось на протяжении обоих полупериодов.

ru.wikipedia.org

Прекращаем ставить диод / Habr


Нет, это не очередной «вечняк»

После прочтения статьи о защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.

Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?


При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса


Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)


Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.

Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)


При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)


После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой безтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)


Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

В результате практического испытания были получены такие результаты. Сопротивление в открытом состоянии соответствует проходному сопротивлению из даташита на транзистор. В закрытом состоянии паразитный ток во вторичной цепи БП измерить не удалось ввиду его незначительности. Потребляемый ток в режиме работы от аккумулятора составил 1.1 мА, причем он практически на 100% состоит из тока, потребляемого микросхемой. После калибровки под максимальную нагрузку, время срабатывания без нагрузки вышло почти 15 минут. Столько времени понадобилось моему аккумулятору, чтобы разрядиться до того напряжения, которое поступает от БП на устройство под полной нагрузкой. Правда, отключение при полной нагрузке происходит почти сразу (менее 10 секунд), но это время зависит от емкости, заряда, и общего «здоровья» аккумулятора.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)


Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.

Архив с файлами схемы и разводки для EAGLE.

Спасибо за внимание.

habr.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *