Как устроен диод: Диод — полупроводниковый элемент. Принцип работы, устройство и разновидности.

Содержание

Диод — полупроводниковый элемент. Принцип работы, устройство и разновидности.

Диод (Diode -eng.) – электронный прибор, имеющий 2 электрода, основным функциональным свойством которого является низкое сопротивление при передаче тока в одну сторону и высокое при передаче в обратную.

То есть при передаче тока в одну сторону он проходит без проблем, а при передаче в другую, сопротивление многократно увеличивается, не давая току пройти без сильных потерь в мощности. При этом диод довольно сильно нагревается.

Диоды бывают электровакуумные, газоразрядные и самые распространённые – полупроводниковые. Свойства диодов, чаще всего в связках между собой, используются для

преобразования переменного тока электросети в постоянный ток, для нужд полупроводниковых и других приборов.

 

Конструкция диодов.

Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния или германия), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа, то есть принимающей электроны (содержащей искусственно созданный недостаток электроновдырочная»)), другая обладает электропроводимостью n-типа, то есть отдающей электроны (содержащей

избыток электроновэлектронной»)).

Слой между ними называется p-n переходом. Здесь буквы p и n — первые в латинских словах negative — «отрицательный», и positive — «положительный». Сторона p-типа, у полупроводникового прибора является анодом (положительным электродом), а область n-типакатодом (отрицательным электродом) диода.

 

Электровакуумные (ламповые) диоды, представляют собой лампу с двумя электродами внутри, один из которых имеет

нить накаливания, таким образом подогревая себя и создавая вокруг себя магнитное поле.

При разогреве, электроны отделяются от одного электрода (катода) и начинают движение к другому электроду (аноду), благодаря электрическому магнитному полю. Если направить ток в обратную сторону (изменить полярность), то электроны практически не будут двигаться к катоду из-за отсутствия нити накаливания

в аноде. Такие диоды, чаще всего применяются в выпрямителях и стабилизаторах, где присутствует высоковольтная составляющая.

Диоды на основе германия, более чувствительны на открытие при малых токах, поэтому их чаще используют в высокоточной низковольтной технике, чем кремниевые.

 

Типы диодов:
  • · Смесительный диод — создан для приумножения двух высокочастотных сигналов.
  • · pin диод — содержит область проводимости между легированными областями. Используется в
    силовой электронике
    или как фотодетектор.
  • · Лавинный диод — применяется для защиты цепей от перенапряжения. Основан на лавинном пробое обратного участка вольт-амперной характеристики.
  • · Лавинно-пролётный диод — применяется для генерации колебаний в СВЧ-технике. Основан на лавинном умножении носителей заряда.
  • · Магнитодиод. Диод, характеристики сопротивления которого зависят от значения индукции магнитного поля и расположения его вектора
    относительно плоскости p-n-перехода
    .
  • · Диоды Ганна. Используются для преобразования и генерации частоты в СВЧ диапазоне.
  • · Диод Шоттки. Имеет малое падение напряжения при прямом включении.
  • · Полупроводниковые лазеры.

Применяются в лазеростроении, по принципу работы схожи с диодами, но излучают в когерентном диапазоне.

  • · Фотодиоды. Запертый фотодиод открывается под действием светового излучения
    . Применяются в датчиках света, движения и т.д.
  • · Солнечный элемент (вариация солнечных батарей). При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток.
  • · Стабилитроны — используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения.
  • · Туннельные диоды, использующие квантовомеханические эффекты. Применяются как усилители, преобразователи,
    генераторы
    и пр.
  • · Светодиоды (диоды Генри Раунда, LED). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света.

Для данных диодов используют прозрачные корпуса для возможности рассеивания света. Также производят диоды, которые могут давать излучение в ультрафиолетовом, инфракрасном и других требуемых диапазонах (в основном, литографической и космической сфере).

  • · Варикапы (диод Джона Джеумма) Благодаря тому, что
    закрытый p—n-переход
    обладает немалой ёмкостью, ёмкость зависит от приложенного обратного напряжения. Применяются в качестве конденсаторов с переменной ёмкостью.

Диоды. Устройство и работа. Характеристики и особенности

Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.

Особенности устройства

Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

Диод состоит из следующих основных элементов:
  • Корпус. Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
  • Катод. Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
  • Подогреватель. Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
  • Анод. Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
  • Кристалл. Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

Принцип действия

Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

Диоды в состоянии покоя

Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

Обратное включение

Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

Обратный ток

Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

Прямое включение

Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

Прямое и обратное напряжение

Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

Характеристика диодов

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

Похожие темы:

Устройство светодиода принцип работы светодиода преимущества

Светодиод: устройство, принцип работы, преимущества

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.

Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.

Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?

Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?

Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?

Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?

Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.

В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.

К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?

Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?

Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)

У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.

Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов.

Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош…» — и работы Панкова не поддержали.

Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.

Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.

Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.

Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?

Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?

Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?

Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?

Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?

Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?

Об этом лучше всех расскажет профессор Юнович.

Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.

В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.

Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!

Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.

Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?

Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

Рис. 3. Схематическое представления светодиода.

За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?

Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.

Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?

Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.

В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, — но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.

Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества

Экономично…

Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.

За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!

Удобно…

Светодиодный модуль — многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.

Надежно…

Есть надежность совершенно особого рода — та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.

Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, — 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.

Красиво…

Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.

Представительно…

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Что такое диод и как он работает? | ASUTPP

Меня несколько раз спрашивали — что такое диод?

Диод — это электронный компонент, который проводит ток в одном направлении и блокирует ток в другом направлении.

Символ диода выглядит так:

Символ диода выглядит так:

Как подключить диод?

Давайте посмотрим на пример.

В цепи выше диод подключен в правильном направлении. Это означает, что ток может течь через него, так что светодиод загорается.

Но что произойдет, если мы подключим его наоборот?

В этой второй цепи диод подключен неправильно. Это означает, что ток не будет течь в цепи, и светодиод будет выключен.

Для чего нужен диод?

Диоды очень часто используются в источниках питания. От электрической розетки в стене вы получаете переменный ток (переменный ток). Многие устройства, которые мы используем, нуждаются в постоянном токе (DC). Чтобы получить постоянный ток от переменного тока, нам нужна схема выпрямителя. Это схема, которая преобразует переменный ток (переменный ток) в постоянный ток (постоянный ток). Диоды являются основными компонентами в выпрямительных цепях.

Как работает диод?

Диод создан из PN-перехода . Вы получите PN-соединение, взяв полупроводниковый материал с отрицательным и положительным добавлением и соединив его.

На пересечении этих двух материалов появляется «область истощения». Эта область истощения действует как изолятор и отказывается пропускать ток.

Когда вы прикладываете положительное напряжение с положительной стороны к отрицательной стороне, «обедненный слой» между этими двумя материалами исчезает, и ток может течь с положительной на отрицательную сторону.

Когда вы прикладываете напряжение в другом направлении, от отрицательной к положительной стороне, область истощения расширяется и сопротивляется любому протекающему току.

Что нужно знать о диодах?
  1. Вы должны приложить достаточное напряжение в «правильном» направлении — от положительного к отрицательному — чтобы диод начал проводить проводку. Обычно это напряжение составляет около 0,7 В.
  2. Диод имеет ограничения и не может проводить неограниченное количество тока.
  3. Диоды не являются идеальными компонентами. Если вы подадите напряжение в неправильном направлении, будет течь немного тока. Этот ток называется «током утечки».
  4. Если вы подадите достаточно высокое напряжение в «неправильном» направлении, диод сломается и пропустит ток и в этом направлении.

Типы диодов

Есть много разных типов диодов . Наиболее распространенными являются сигнальные диоды, выпрямительные диоды, стабилитроны и светодиоды (светодиоды) . Сигнальные и выпрямительные диоды — это одно и то же, за исключением того, что выпрямительные диоды рассчитаны на большую мощность.

Стабилитроны — это диоды, которые используют напряжение пробоя при подаче напряжения «неправильным» образом. Они действуют как очень стабильные опорные напряжения.

Поделитесь своими комментариями или вопросами ниже!

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Принцип работы диодов для чайников

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Статья была полезна?

0,00 (оценок: 0)

Диоды катоды аноды: для чего нужны

Что такое диод? Для того чтобы ответить на этот вопрос, надо копнуть вглубь, в самое начало, а именно, с чего начинается полупроводник.

Вакуумная двухэлектродная лампа

Вступление из теории

Проводник

Попробуем представить себе кусок материала проводника, например, меди. Чем он характеризуется: в нем есть свободные носители заряда – электроны. Причем таких отрицательных частиц в нем очень много.

Если на эту область подать плюс, то все эти отрицательные элементы устремятся к нему, то есть потечет ток через медь. Это известный факт, поэтому в качестве токопроводящих материалов применяют именно медь. К проводникам также относятся такие элементы периодической таблицы Менделеева, как алюминий, железо, золото и многие другие.

Диэлектрик

Диэлектрик – это материал, который свободных носителей заряда не имеет и, следовательно, ток не проводит.

Полупроводник

Полупроводник – это и металл, и неметалл. Материал, который и проводит ток, и не проводит. В нем мало свободных носителей заряда. Типичными полупроводниками являются кремний, германий.

Что такое диод

Кремний является четырехвалентным элементом. Чтобы его превратить в проводник, к нему подмешивают пятивалентный мышьяк. В результате этого соединения появляются лишние электроны, то есть свободные носители заряда. А если добавить к кремнию трехвалентный индий, в материале появятся позитроны, частицы с нехваткой электрона. Из таких областей и состоит диод.

Полученная структура называется PN элементом или PN-переходом. P – позитивная часть, N – негативная. Одна часть материала обогащена плюсовыми позитронами, другая – минусовыми электронами.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов.

Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:

  • подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов;
  • отсутствие напряжения все возвращает в исходное состояние;
  • смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой.

В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона. Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток.

Для информации. Слово происходит от di (double) + -ode.  Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет.

Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.

Принцип работы диода

Диоды – это полупроводники, состоящие из областей P и N. Благодаря свойствам PN-перехода диод проводит ток только в одном направлении. Таков принцип действия этих устройств. Для чего нужны они?

Назначение диодов

Диоды бывают различного исполнения: от громоздких советских до миниатюрных современных. Может устройство быть одной и той же мощности, но из-за времени выпуска различаться по габаритам. Диоды на большой ток нуждаются в охлаждении, поэтому производятся с креплением под радиатор. Соответственно, устройства без радиатора рассчитаны на малый ток.

Применение диодов

Устройства диодов могут быть ориентированы на ограничение или приостановление движения тока. Чрезвычайно распространенным приложением является его использование в качестве выпрямителя.

Полупроводниковый диодный ограничитель

Выпрямители

Поскольку диод позволяет току течь лишь в одном направлении, то переменный ток проходит через диод только положительную или отрицательную часть напряжения синусоидальной волны. Это означает, что можно эффективно преобразовывать переменный ток в постоянный ток, применяя диоды, расположенные в виде полноволнового выпрямителя.

Например, имеется источник переменного тока. На выходе из него в цепь поставлен диод, через который подключена нагрузка. Что получится? Если источник дает синусоиду, то на выходе диода пройдет только положительная полуволна. И так до следующей полуволны. Но если развернуть диод другой стороной, то на выходе получится отрицательная полуволна, то есть устройство пропускает ток только в одном направлении.

Если поставить на место диода мост, состоящий из четырех диодов, то на выходе будет сигнал в форме полуволн, напоминающих верблюжий горб. Полуволны будут развернуты все в одном направлении. При установке после диодов дополнительного конденсатора получатся те же полуволны, только сглаженные.

Мостовой выпрямитель

Варикапы

Графический значок варикапа очень напоминает условное изображение полупроводникового диода. Варикап – это и есть обыкновенный диод. Работа устройства основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Если напряжение подается маленькое, емкость получается большая, если подается большое напряжение – емкость становится маленькой. Реально варикапы изменяют свою емкость в несколько раз (до 7 раз).

Стабилитроны

Стабилитрон – это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. Выбирают стабилитрон с большим запасом рассеиваемой мощности, потому что он постоянно работает в режиме пробоя. Основное назначение стабилитронов – стабилизация напряжения.

Основной целью стабилизатора напряжения является поддержание постоянного напряжения на нагрузке, независимо от изменений входного напряжения и тока нагрузки. При изменяющихся условиях тока нагрузки стабилитрон может использоваться для получения стабилизированного выходного напряжения. Это основная причина использования стабилитрона в качестве стабилизатора напряжения.

Диоды Шоттки

Диод Шоттки – это низковольтное устройство, в котором используются в качестве электродов металл и обогащенный электронами полупроводник. Напряжение такого диода составляет примерно 0,2-0,4 В, в сравнение с обычным диодом эта величина в два раза меньше.

Зона применения диода Шоттки ограниченная, поскольку он не может работать без стабилитрона. В основном диоды Шоттки используются в устройствах, работающих в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Диодный прибор Шоттки

Светодиоды

Светоизлучающие диоды в настоящее время широко применяются в качестве диодных блоков легких энергосберегающих лампочек. Они становятся незаменимыми для жизни людей, поскольку способствуют снижению возрастающих цен на электроэнергию.

Для информации. Мигающие светодиоды часто применяют в различных сигнальных цепях, для украшения домашнего интерьера. Существуют схемы, с помощью которых можно заставить мигать светодиоды. Сделать мигающие светодиоды – вполне выполнимая задача.

Светодиоды LED

Можно совсем кратко ответить на вопрос, что такое диоды, и зачем они нужны. Именно этот элемент способен остановить свободное движение электронов в определенном направлении.

Видео

Оцените статью:

Как работает диод и светодиод? | ОРЕЛ

С возвращением, капитаны компонентов! Сегодня пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов. Эти детали оживают, когда соединяются в цепь, и могут управлять электричеством разными способами! Вам предстоит работать с двумя полупроводниковыми компонентами: диодом и транзистором. Сегодня мы поговорим о диоде, пресловутом уродливом устройстве управления, которое позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, значит, вы уже далеко впереди, давайте приступим.

Управляйте потоком

Диод хорошо известен своей способностью управлять прохождением электрического тока в цепи. В отличие от пассивных компонентов, которые бездействуют, сопротивляясь или накапливая, диоды активно задействуют приливы и отливы тока, протекающего по нашим устройствам. Есть два способа описать, как ток будет или не течь через диод, и они включают:

  • С опережением. Если вы правильно вставите батарею в цепь, ток будет проходить через диод; это называется состоянием с прямым смещением.
  • с обратным смещением. Когда вам удается вставить батарею в цепь в обратном направлении, ваш диод блокирует прохождение любого тока, и это называется состоянием с обратным смещением.

Простой способ визуализировать разницу между состояниями прямого и обратного смещения диода в простой схеме

Хотя эти два термина могут показаться слишком сложными, представьте диод как переключатель. Он либо закрыт (включен) и пропускает ток, либо открыт (выключен), и ток не может течь через него.

Полярность диодов и символы

Диоды — это поляризованные компоненты, что означает, что они имеют очень специфическую ориентацию, поэтому для правильной работы их необходимо подключить в цепь. На физическом диоде вы заметите две клеммы, выходящие из формы жестяной банки посередине. Одна сторона — это положительный вывод, называемый анодом . Другой вывод — это отрицательный конец, называемый катодом . Возвращаясь к нашему потоку электричества, ток может течь только в диоде от анода к катоду, а не наоборот.

Вы можете определить катодную сторону физического диода, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)

Вы можете легко обнаружить диод на схеме, просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод помечены как положительный и отрицательный, но простой способ запомнить, в каком направлении течет ток в диоде, — это следить за направлением стрелки.

Стрелка на символе диода указывает направление протекания тока.

В наши дни большинство диодов изготовлено из двух самых популярных полупроводниковых материалов в электронике — кремния или германия. Но если вы знаете что-нибудь о полупроводниках, то знаете, что в своем естественном состоянии ни один из этих элементов не проводит электричество. Так как же заставить электричество проходить через кремний или германий? С помощью небольшого волшебного трюка под названием допинг.

Легирование полупроводников

Странные полупроводниковые элементы. Возьмем, к примеру, кремний.Днем это изолятор, но если вы добавите в него примеси с помощью процесса, называемого допингом, вы придадите ему магическую силу проводить электричество ночью.

Благодаря своим двойным свойствам как изолятор, так и проводник, полупроводники нашли свою идеальную нишу в компонентах, которые должны контролировать поток электрического тока в виде диодов и транзисторов. Вот как работает процесс легирования в типичном куске кремния.

  • Развивайте это.Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
  • Допинг это отрицательно. Теперь, когда кремний вырос, пришло время легировать его. Этот процесс может идти двумя путями. Первый — это легирование кремния сурьмой, которая дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Этот кремний называется кремнием n-типа или отрицательного типа, потому что в нем больше отрицательных электронов, чем обычно.
  • Допинг положительно. Силикон можно легировать и в обратном направлении. Добавляя бор к кремнию, он удаляет электроны из атома кремния, оставляя группу пустых дырок там, где должны быть электроны. Это называется кремнием p-типа или положительного типа.
  • Объедините . Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете соединить их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете так называемое соединение.

Именно на этом перекрестке, который можно представить как некую нейтральную зону, происходит вся магия диода.Допустим, вы соединяете кремний n-типа и p-типа, а затем подключаете батарею, создавая цепь. Что случится?

В этом случае отрицательная клемма подключена к кремнию n-типа, а положительная клемма подключена к кремнию p-типа. А между двумя кусками кремния — нейтральная зона? Что ж, он начинает сжиматься, и начинает течь электрический ток! Это состояние диода с прямым смещением, о котором мы говорили в начале.

Правильное подключение батареи к кремнию n-типа и p-типа позволяет току течь через переход.(Источник изображения)

Теперь предположим, что вы подключаете батарею наоборот: отрицательная клемма подключена к кремнию p-типа, а положительная клемма — к кремнию n-типа. Здесь происходит то, что нейтральная зона между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принять диод.

Подсоедините батарею в непреднамеренном направлении, и ваш диод остановит протекание тока между n-типом и p-типом.(Источник изображения)

Прямое напряжение и пробои

Когда вы работаете с диодами, вы узнаете, что для того, чтобы один пропускал ток, требуется очень определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть, что это называется напряжением включения или напряжением включения.

Что определяет это прямое напряжение? Полупроводник , материал и типа . Вот как он распадается:

  • Кремниевые диоды.Для использования кремниевого диода потребуется прямое напряжение от 0,6 до 1 В.
  • Германиевые диоды. Для использования диода на основе германия потребуется более низкое прямое напряжение около 0,3 В.
  • Прочие диоды. Специализированные диоды, такие как светодиоды, потребуют более высокого прямого напряжения, тогда как диоды Шоттки (см. Ниже) потребуют более низкого прямого напряжения. Лучше всего свериться с таблицей данных для вашего конкретного диода, чтобы определить его номинальное прямое напряжение.

Я знаю, что все это время мы говорили о диодах, позволяющих току течь только в одном направлении, но это правило можно нарушить.Если вы приложите огромное отрицательное напряжение к диоду, вы действительно сможете изменить направление его тока! Определенная величина напряжения, которая вызывает этот обратный поток, называется напряжением пробоя . Для обычных диодов напряжение пробоя находится в диапазоне от -50 до -100 В. Некоторые специализированные диоды даже предназначены для работы при этом отрицательном напряжении пробоя, о котором мы поговорим позже.

Семейство диодов — наконец вместе

Существует множество диодов, каждый из которых имеет свои собственные особенности.И хотя у каждого из них есть общая основа ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте посмотрим на каждого члена семейства диодов!

Стандартные диоды

Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный ток.

Стандартный диод для повседневного использования, доступный в компании Digi-Key, обратите внимание на серебряную полоску, которая отмечает катодный конец. (Источник изображения)

Выпрямительные диоды

Это более мощные аналоги стандартных диодов и имеют более высокий максимальный ток и прямое напряжение.В основном они используются в источниках питания.

Более мощные собратья стандартного диода, разница состоит в большем номинальном токе и прямом напряжении.

Диоды Шоттки

Это необычный родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить величину потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, ища свой типичный символ диода с добавлением двух новых изгибов (S-образной формы) на катодном выводе.

Найдите изгибы на катодном конце диода, чтобы быстро определить, что это изгибы Шоттки.

Стабилитроны

Стабилитроны — это черная овца в семействе диодов. Эти парни используются для того, чтобы посылать электрический ток в обратном направлении! Они делают это, используя напряжение пробоя, которое мы обсуждали выше, также называемое пробоем Зенера. Воспользовавшись этой пробивной способностью, стабилитроны отлично подходят для создания стабильного опорного напряжения в определенной точке цепи.

Стабилитрон разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)

Фотодиоды

Фотодиоды — это непокорные подростки из семейства диодных. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях, а также в оптических коммуникациях.

Фотодиоды принимают все это, улавливая энергию света и превращая ее в электрический ток.(Источник изображения)

Светодиоды (светодиоды)

Яркие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! Когда подается правильное прямое напряжение, эти светодиоды загораются яркими цветами. Но вот загвоздка: светодиоды определенного цвета требуют разного прямого напряжения. Например, для синего светодиода требуется прямое напряжение 3,3 В, а для красного светодиода требуется только 2,2 В.

Что делает эти светодиоды настолько популярными?

  • Эффективность .Светодиоды излучают свет с помощью электроники, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им сэкономить массу энергии.
  • Контроль. Светодиодами также очень легко управлять в электронной схеме. Пока перед ними установлен резистор, они обязательно будут работать!
  • Недорого. Светодиоды также очень недороги и рассчитаны на длительный срок службы. Вот почему они так часто используются в светофорах, дисплеях и инфракрасных сигналах.

Светодиоды бывают разных форм и цветов, для каждого из которых требуется разное прямое напряжение! (Источник изображения)

Наиболее распространенное применение диодов

Поскольку диоды бывают разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же разнообразно! Вот лишь несколько примеров использования диодов:

Преобразование переменного тока в постоянный

Процесс преобразования переменного тока (AC) в постоянный ток (DC) может выполняться только диодами! Этот процесс выпрямления (преобразования) тока — это то, что позволяет вам подключить всю вашу повседневную электронику постоянного тока к розетке переменного тока в вашем доме.Есть два типа приложений преобразования, в которых играет свою роль диод:

  • Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы отправляете сигнал переменного тока в цепь, то ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.

    Одиночный диод в цепи однополупериодного выпрямителя, ограничивающий отрицательный полюс сигнала переменного тока. (Источник изображения)

  • Полноволновое мостовое выпрямление .В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, такую ​​как полуволновой выпрямитель, этот процесс фактически преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала готовности постоянного тока.

    Двухполупериодный мостовой выпрямитель делает еще один шаг вперед, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)

Управляющие скачки напряжения

Вы также найдете диоды, которые используются в приложениях, где могут произойти неожиданные скачки напряжения.Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, которое попадает в диапазон напряжения пробоя диода.

Защита вашего тока

Наконец, вы также найдете диоды, которые используются для защиты чувствительных цепей. Если вы хоть раз разбили батарею неправильно и ничего не взорвалось, то можете поблагодарить за это свой дружелюбный диод. Размещение диода последовательно с положительной стороной источника питания гарантирует, что ток течет только в правильном направлении.

Пора освободиться от потока

Вот и все, контрольный диод и все его сумасшедшие члены семьи! У диодов есть масса применений, от питания этих ярких светодиодных ламп до преобразования переменного тока в постоянный. Но почему, несмотря на все эти удивительные применения, диод не получил такой же огласки, как транзистор или интегральная схема? Мы думаем, что дело в том, что на кухне слишком много поваров. Первый диод был открыт почти 150 лет назад, и с тех пор сотни инженеров и ученых приложили свои усилия, чтобы улучшить это открытие.Несмотря на долгую историю существования многих людей, диод до сих пор считается четвертым по значимости изобретением после колеса.

Знаете ли вы, что Autodesk EAGLE включает в себя массу бесплатных библиотек диодов, которые вы можете начать использовать уже сегодня? Пропустите рутинную работу по созданию деталей, попробуйте Autodesk EAGLE бесплатно сегодня!

Диод

| Определение, символ, типы и использование

Диод , электрический компонент, который позволяет току течь только в одном направлении.На принципиальных схемах диод представлен треугольником с линией, пересекающей одну вершину.

Самый распространенный тип диодов использует переход p n . В этом типе диода один материал ( n ), в котором электроны являются носителями заряда, примыкает ко второму материалу ( p ), в котором дырки (места, лишенные электронов, которые действуют как положительно заряженные частицы), действуют как носители заряда. На их границе образуется обедненная область, через которую электроны диффундируют, заполняя дырки на стороне p .Это останавливает дальнейший поток электронов. Когда этот переход смещен в прямом направлении (то есть к стороне p приложено положительное напряжение), электроны могут легко перемещаться через переход, чтобы заполнить отверстия, и через диод протекает ток. Когда переход смещен в обратном направлении (то есть к стороне p приложено отрицательное напряжение), область обеднения расширяется, и электроны не могут легко перемещаться по ней. Ток остается очень маленьким, пока не будет достигнуто определенное напряжение (напряжение пробоя), и ток внезапно не возрастет.

Характеристики перехода p-n

(A) Вольт-амперные характеристики типичного кремниевого перехода p-n . (B) условия прямого смещения и (C) обратного смещения. (D) Обозначение соединения p-n .

Encyclopædia Britannica, Inc.

Светодиоды (светодиоды) — это переходы p n , которые излучают свет, когда через них протекает ток. Несколько переходных диодов p n могут быть соединены последовательно для создания выпрямителя (электрического компонента, преобразующего переменный ток в постоянный).Стабилитроны имеют четко определенное напряжение пробоя, так что ток течет в обратном направлении при этом напряжении, и постоянное напряжение может поддерживаться, несмотря на колебания напряжения или тока. В варакторных (или варикапных) диодах изменение напряжения смещения вызывает изменение емкости диода; Эти диоды находят множество применений для передачи сигналов и используются в радио- и телеиндустрии. (Подробнее об этих и других типах диодов, см. полупроводниковый прибор.)

Ранние диоды представляли собой вакуумные лампы, вакуумную стеклянную или металлическую электронную трубку, содержащую два электрода — отрицательно заряженный катод и положительно заряженный анод. Они использовались в качестве выпрямителей и детекторов в электронных схемах, таких как радио- и телевизионные приемники. Когда на анод (или пластину) подается положительное напряжение, электроны, испускаемые нагретым катодом, текут на пластину и возвращаются к катоду через внешний источник питания. Если к пластине приложено отрицательное напряжение, электроны не могут покинуть катод, и ток пластины не течет.Таким образом, диод позволяет электронам течь от катода к пластине, но не от пластины к катоду. Если на пластину подается переменное напряжение, ток течет только в то время, когда пластина является положительной. Считается, что переменное напряжение выпрямляется или преобразуется в постоянный ток.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас Эта статья была недавно отредактирована и обновлена ​​старшим редактором Эриком Грегерсеном.

Узнайте больше в этих связанных статьях Britannica:

  • Радиотехника: диод Флеминга и De Forest Audion

    Флеминг назвал устройство диодом, потому что оно содержало два электрода, анод и нагретую нить накала; он отметил, что при подаче переменного тока на диод пропускались только положительные половины волны, то есть волна выпрямлялась (изменялась с переменного на постоянный ток).The…

  • Лео Эсаки

    … его изобретение двойного диода, который стал известен как диод Эсаки. Это также открыло новые возможности для твердотельных разработок, которые его участники, получившие премию 1973 года, использовали отдельно. В 1960 году Эсаки получил стипендию IBM (International Business Machines) для дальнейших исследований в Соединенных Штатах, и он…

  • Сэр Джон Амброуз Флеминг

    … также известный как вакуумный диод, кенотрон, термоэлектронная трубка и клапан Флеминга.Это устройство, запатентованное в 1904 году, было первым электронным выпрямителем радиоволн, преобразующим радиосигналы переменного тока в слабые постоянные токи, обнаруживаемые телефонной трубкой. Дополнен сеткой усилителя, изобретенной в 1906 году Ли Де Форестом…

Диоды — обзор | Темы ScienceDirect

8.4.2 Диоды

Диод представляет собой двухслойный полупроводниковый прибор с двумя выводами. Когда полупроводниковые материалы n-типа и p-типа соединяются вместе, это образует PN-переход, который называется диодом.Полупроводниковый диод позволяет току течь через него в одном направлении, но не в другом. Основная структура и обозначение схемы полупроводникового диода показаны на рисунке 8.34. Две клеммы называются анодом (A) и катодом (K).

Рисунок 8.34. Полупроводниковый диод

Обычный ток течет через диод от анода к катоду (электроны текут от катода к аноду). Носителями тока в полупроводниках p-типа являются дырки, а в полупроводниках n-типа — электроны.Нормальная диффузия на стыке двух материалов вызовет дрейф некоторых дырок в материал n-типа, а часть электронов — в материал p-типа. Это создает небольшой заряд на переходе, который отталкивает любую дальнейшую диффузию дырок и электронов. Заряженная область на стыке называется областью обеднения или барьерной областью. Работа диода рассматривается, когда диод смещен в прямом или обратном направлении, как показано на рисунке 8.35.Здесь прикладывается напряжение (В) и может быть измерен ток (I).

Рисунок 8.35. Работа полупроводникового диода

Типичные области применения полупроводникового диода включают выпрямление сигналов переменного тока в источниках питания, схемы пиковых детекторов, ограничение уровня сигнала (для предотвращения превышения уровня напряжения сигнала над безопасным уровнем, называемого защитой входных цепей), телекоммуникации и индуктивные цепи схемы захвата обратной ЭДС (для снятия больших напряжений, создаваемых быстро меняющимся током в катушке индуктивности).

Когда диод смещен в прямом направлении, это уменьшает область обеднения. Если диод достаточно смещен (на достаточно высокое значение V), то начинает течь ток (I). Однако, если диод смещен в обратном направлении, это приводит к увеличению области обеднения и предотвращает протекание тока.

Идеальный диод проводит только тогда, когда диод смещен в прямом направлении, и тогда падение напряжения на диоде (Vd) равно нулю. Когда идеальный диод смещен в обратном направлении, ток не течет.

В реальном диоде, когда диод смещен в прямом направлении, на диоде имеется конечное падение напряжения (Vd): примерно 0,6 В для кремниевого диода и примерно 0,4 В для германиевого диода. Если приложенное напряжение ниже этого значения, ток не будет протекать. Когда реальный диод смещен в обратном направлении, будет небольшой, но конечный ток утечки. Вольт-амперная характеристика кремниевого диода показана на рисунке 8.36.

Рисунок 8.36. Характеристики полупроводникового диода (шкалы с прямым смещением и обратным смещением не равны)

При прямом смещении уравнение диода определяется следующим образом:

I = Is⋅ (ур.v / KT-1)

где I — ток, протекающий в диоде, Is — ток насыщения или утечки (обычно порядка 10 –14 A), V — напряжение на диоде (т. е. V d ), q — заряд электрона, k — постоянная Больцмана, а T — абсолютная температура (в градусах Кельвина). Для схемы, работающей при температуре около 20 ° C, kT / q обычно принимается равным 25 м В.

Варианты полупроводникового диода, обычно встречающиеся в электронных схемах, включают стабилитрон, светоизлучающий диод (LED) и фотодиод.

Если напряжение обратного смещения превышает максимальное значение, напряжение пробоя диода будет проводить ток, и чрезмерный ток может вывести устройство из строя. Это называется лавинным срывом. Также может иметь место вторая форма пробоя, туннельный пробой (или пробой Зенера).

Стабилитрон имеет управляемое обратное напряжение пробоя. Туннелирование или пробой стабилитрона происходит при превышении управляющего напряжения. Символ стабилитрона показан на рисунке 8.37. Стабилитрон используется в таких приложениях, как источники питания и цепи опорного напряжения.

Рисунок 8.37. Обозначение стабилитрона

Светодиод — это диод, который заставляет устройство излучать свет, когда через него протекает ток (с прямым смещением). Доступные цвета: красный, зеленый, оранжевый, синий и белый. Символ светодиода показан на Рисунке 8.38.

Рисунок 8.38. Символ светодиода

Типичное применение светодиода показано на Рисунке 8.39. Здесь светодиод подключен к напряжению источника питания схемы и используется для индикации наличия питания в схеме. Напряжение питания +5 В постоянного тока.Прямое падение напряжения на светодиоде составляет 2 В (фактическое значение зависит от конкретного светодиода), а прямой ток для стандартных светодиодов составляет 20 мА (фактическое значение зависит от конкретного светодиода). Чтобы подключить светодиод к источнику +5 В, ток, протекающий через диод, должен быть ограничен резистором подходящего номинала.

Рисунок 8.39. Работа светодиода

Фотодиод можно использовать для измерения силы света, поскольку он производит ток, зависящий от количества света, падающего на pn переход.

Что такое диод? Определение, конструкция, работа, характеристики и типы диода

Определение : Электронный компонент, сделанный из полупроводникового материала, который позволяет проводить ток только в одном направлении, называется диодом. Это двухконтактное устройство , обычно образованное путем сплавления полупроводниковых материалов p- и n-типа, каждый из которых имеет основные и неосновные носители.

Давайте сначала посмотрим на основное содержание этой статьи.

Содержание: Диод

  1. Символ
  2. Строительство
  3. Рабочий
  4. Уравнение тока диода
  5. Характеристическая кривая
  6. Типы
  7. Ключевые термины

Символ диода

На рисунке ниже показан символ диода с PN переходом:


Конструкция диода

После базового определения приступим к формированию.

Диод в своей основной форме представляет собой устройство с PN-переходом, через которое протекает ток при приложении правильного прямого потенциала. Полупроводниковые материалы p- и n-типа должны быть тщательно скомбинированы, чтобы в них содержалось контролируемое количество донорных и акцепторных примесей. В своей основной форме берется одиночная пластина кремния или германия, которая легирована пятивалентными и трехвалентными примесями на двух ее половинах. Область P обозначает легирование трехвалентной примесью, а область n означает легирование пятивалентной примесью.Или просто, мы можем объединить отдельные материалы p- и n-типа, чтобы сформировать полупроводниковый прибор.

На приведенном ниже рисунке показана структура диода с PN переходом:

Здесь, как мы видим, полупроводниковый материал p-типа объединен с полупроводниковым материалом n-типа, который образует переход. Этот переход известен как PN-переход. На противоположных концах прикреплены два металлических контакта, которые вместе образуют диод с PN переходом. Материал p-типа содержит дырки в качестве основного носителя, а электроны — в качестве неосновного.Напротив, материал n-типа имеет электроны в качестве основного носителя и дырки в качестве неосновного носителя.

Этот p-n переход представляет собой не что иное, как слой неподвижных ионов , называемый обедненным слоем . Когда имеется соответствующий потенциал, в нем отмечается проводящее и непроводящее состояние.

Работа диода

Диод работает без смещения, с прямым смещением и с обратным смещением.

Обсудим вышеупомянутое условие более подробно.Начнем с беспристрастного условия.

  • Несмещенное состояние диода :

Когда на устройство не подается внешний потенциал или напряжение. Тогда это называется несмещенным состоянием диода.

Приведенный ниже рисунок поможет вам лучше понять несмещенное состояние диода.

Здесь материал p-типа сплавлен с материалом n-типа. Это слияние создает соединение. Когда на диод не подается напряжение, большинство носителей заряда i.То есть дырки со стороны p и электроны со стороны n объединяются друг с другом в переходе. Эти носители заряда при объединении генерируют неподвижные ионы, которые истощаются через переход. За счет этого на стыке образуется обедненная область.

Здесь следует отметить, что поток носителей заряда через площадь поперечного сечения известен как диффузия. Следовательно, ток без смещения известен как диффузионный ток .

Разность потенциалов в области истощения порождает электрическое поле.Из-за этого электрического поля дальнейшее движение основных носителей заряда не допускается. Поэтому ширина обедненной области фиксирована. Потенциал в области истощения действует как барьер для дальнейшего движения, следовательно, известный как барьер или встроенный потенциал. Однако неосновные носители по-прежнему дрейфуют через область истощения, и ток течет незначительно. Этот очень небольшой ток, обусловленный неосновными носителями, известен как дрейфовый ток .

  • Прямое смещение диода :

В состоянии прямого смещения сторона p устройства соединена с положительной клеммой источника питания.А сторона n связана с отрицательным потенциалом аккумулятора. Таким образом, соединение будет смещено вперед.

Ниже приведен рисунок, представляющий схему диодов с положительным смещением:

Когда применяется прямое смещение. Отверстия на стороне p испытывают силу отталкивания от положительного вывода. Точно так же электроны отталкиваются от отрицательной клеммы источника питания. Однако первоначально основные носители с обеих сторон не перемещаются через переход из-за барьерного потенциала.

Но, когда потенциал барьера превышен, основной носитель заряда теперь показывает движение через переход. Это движение носителей заряда после преодоления барьерного потенциала генерирует ток. Этот ток известен как ток большинства. В тот момент, когда этот барьер удален, сопротивление, создаваемое переходом, автоматически становится равным 0. Таким образом, прямой ток теперь начинает течь через устройство.

Примечательно, что барьерный потенциал кремния равен 0.7В, а для германия — 0,3В . Таким образом, после преодоления соответствующего потенциала в случае обоих материалов прямой ток начинает течь через устройство.

  • Состояние обратного смещения диода :

Когда мы подключаем внешний потенциал к устройству таким образом, чтобы сторона p была подключена к отрицательной клемме источника питания. И сторона n соединена с положительной клеммой. Тогда говорят, что устройство имеет обратное смещение.

На рисунке ниже показано расположение диода с PN переходом с обратным смещением:

При приложении обратного потенциала отверстия со стороны p испытывают притяжение со стороны отрицательной клеммы.И электроны на стороне n испытывают притяжение от положительной клеммы источника питания. Из-за этого большинство носителей, присутствующих на обеих сторонах, движутся в направлении от стыка. Это увеличивает ширину обедненной области и, следовательно, потенциальный барьер увеличивается.

Переводит устройство в непроводящее состояние. Однако из-за присутствия неосновных носителей как на стороне p, так и на стороне n протекает очень небольшой ток. Этот небольшой ток через устройство известен как обратный ток утечки.Этот обратный ток не зависит от барьерного потенциала и зависит только от температуры и конструкции устройства.

Уравнение тока диода

Ток диода определяется следующим соотношением:

: I D = ток диода

I S = обратный ток насыщения

В D = напряжение на устройстве

T K = температура в Кельвинах

К = 11600 / ƞ

ƞ = коэффициент идеальности колеблется от 1 до 2

С,

Мы также можем написать,

или

Таким образом, при подстановке указанного выше значения в основное уравнение.Получаем,

Это упрощенное уравнение тока диода.

Характеристическая кривая диода

На приведенном ниже рисунке показана характеристика диода с PN переходом в прямом и обратном смещении:

Область A представляет собой кривую для диода с прямым смещением. В то время как область B показывает кривую для диода с обратным смещением.

Будем считать, что диод изготовлен из кремниевого материала. Следовательно, внешний потенциал, необходимый для преодоления барьерного потенциала, равен 0.7V в его корпусе. Таким образом, мы можем видеть в области прямого смещения, быстрое увеличение тока наблюдается после 0,7 вольт. Это известно как напряжение колена, после которого барьерный потенциал полностью снимается, и устройство начинает проводить ток.

Теперь перейдем к области B, которая представляет состояние устройства с обратным смещением. Как мы уже обсуждали, в случае обратного смещения ширина обедненной области очень велика, как и барьерный потенциал. Таким образом, кривая представляет собой обратный ток насыщения, который течет только из-за движения неосновных носителей заряда через устройство.Этот обратный ток составляет всего менее 1 микроампер для кремниевого устройства.

Еще один примечательный момент заключается в том, что при номинальном обратном напряжении протекает небольшой обратный ток. Но при увеличении обратного напряжения возникает условие, вызывающее пробой перехода диода. Это вызывает немедленное увеличение обратного тока через него.

Типы диодов

Они в основном характеризуются принципом действия, обеспечивая различные характеристики терминала и допускающие многократное использование.Ниже приведены различные типы диодов:

Стабилитрон : это тип диода с PN переходом, который работает в условиях обратного смещения. Точнее можно сказать в области разбивки.

Это в основном сильно легированный диод с PN переходом и находит свое применение в регулировании напряжения, защите счетчиков, а также в операциях переключения и ограничения.

Туннельный диод : Туннельный диод, также известный как диод Эсаки, представляет собой плотно легированное устройство с высокой проводимостью.Концентрация примесей меняется в зависимости от нормального диода с PN переходом. Он основан на принципе туннелирования и показывает характеристики отрицательного сопротивления.

Как показывает быстрый отклик, широко используется в качестве усилителя и генератора. Поскольку это слаботочное устройство, широко не используется.

PIN-диод : это трехслойное устройство, в котором внутренняя область расположена между полупроводником p и n-типа. Поскольку внутренний слой обеспечивает высокое удельное сопротивление, он обеспечивает ключ для обработки небольших входных сигналов.

Они широко используются в микроволновых и радиолокационных устройствах.

Варакторный диод : он также известен как варикап-диоды, что представляет собой слово, состоящее из комбинации переменного конденсатора. Это диод с обратным смещением, режим работы которого зависит от переходной емкости. Они широко используются в высокочастотных приложениях.

Фотодиод : Фотодиод — это устройство, которое генерирует ток, когда соответствующая область подвергается воздействию света. Он также работает в режиме обратного смещения.Они широко используются в приложениях обнаружения, демодуляции, коммутации и кодирования.

LED : LED — это сокращенная форма светодиодов. Это устройство, излучающее некогерентный свет из-за приложенного электрического поля. Это диод с прямым смещением. Светодиоды широко используются в цифровых часах, мультиметрах, охранной сигнализации и т. Д.

Лазерный диод : Лазер — это сокращение для обозначения усиления света за счет вынужденного излучения. Они специально разработаны для создания когерентного излучения.Лазерные диоды широко используются в телекоммуникациях и медицине.

Диод Шоттки : Это не диод с PN-переходом, поскольку он образован путем слияния металла с полупроводниковым материалом n-типа. Это исключает область истощения. Они широко используются в цифровых компьютерах.

Ключевые термины, относящиеся к диоду

Барьерный потенциал : это напряжение, генерируемое на переходе при нулевом смещении из-за неподвижных ионов. Также известен как встроенный потенциал.

Коленное напряжение : Это напряжение прямого смещения полупроводникового устройства, которое преодолевает барьерный потенциал. После этого напряжения через переход перемещается большое количество носителей заряда. В результате через устройство протекает большой ток. Его значение составляет 0,3 В, для германия и 0,7 В, для кремния.

Напряжение пробоя : При обратном смещении в устройстве наблюдается очень небольшой ток из-за потока неосновных носителей. Однако, если обратное напряжение увеличивается сверх определенного предела.Затем это приводит к полному разрушению соединения. Это напряжение известно как напряжение пробоя.

Пиковое обратное напряжение : Мы можем понять обратное пиковое напряжение (PIV) по самому названию. Пик означает наивысший или максимум, а обратный означает обратное. Таким образом, это в основном то максимальное напряжение в условиях обратного смещения, которое может выдержать устройство.

Итак, мы можем заключить, что ток через полупроводниковый диод зависит от его смещения или приложенного к нему входа.

физика полупроводников — Почему электричество может течь через диод только в одном направлении?

Позвольте мне попробовать еще одно объяснение, которое я ограничусь диодом с PN переходом (охватывает практически все диоды, используемые в современных схемах).

Диод состоит из p-легированной области (p-тип), прикрепленной к n-легированной области (n-тип). В р-типе поток электронов (е-) в основном осуществляется за счет движения электронов от дырки к дырке. С электрической точки зрения это в точности аналогично (и часто визуализируется) как дырки, движущиеся в направлении, противоположном электронному потоку (хотя физическое движение положительного заряда отсутствует). В n-типе есть слабо связанные e-, которые могут быть подарил (переехал).

На PN переходе диода слабосвязанные е- в n-типе попадают в отверстия соседнего p-типа. Тогда у вас будет изобилие e- в тонком слое слоя p-типа на стыке и их истощение (создание чистого положительного заряда) в тонком слое n-типа. Это устанавливает положительное поле напряжения в n-типе по сравнению с отрицательным в p-типе. Это отталкивает любой свободный e- в n-типе дальше от соединения. В результате получается тонкий слой PN без свободных отверстий и свободных электронных частиц.Слой становится изолятором.

Теперь, если вы приложите положительное напряжение к p-типу и отрицательное к n-типу, е- в p-типе удаляются, образуя свободные отверстия. Одновременно положительное напряжение противодействует обратному напряжению, которое было установлено в PN-переходе, а e- в n-типе силы ближе к p-типу, где они могут пересекаться и заполнять новые отверстия. Текущие потоки.

Если, однако, вы подаете положительное напряжение к n-типу и отрицательное к p-типу («обратное смещение» диода), вы просто усиливаете градиент напряжения, который уже был естественным образом установлен в PN-переходе.Электродвигатели вытесняются еще дальше от PN перехода, и изоляционная граница (область истощения) утолщается. Нет тока.

Чтобы получить более глубокие знания, можно пройти хорошую часть дипломного курса по материаловедению. Я надеюсь, что того, что я написал, достаточно.

Что такое диоды и для чего они используются?

Простейший полупроводниковый компонент — диод — выполняет множество полезных функций, связанных с его основной целью — управлять направлением потока электрического тока.Диоды позволяют току течь через них только в одном направлении.

Идеально эффективные диоды выглядят как разомкнутые цепи с отрицательным напряжением, а в остальном они выглядят как короткие замыкания. Но поскольку диоды допускают некоторую неэффективность, их отношение тока к напряжению нелинейно. Таким образом, вам нужно обратиться к таблице данных диода, чтобы увидеть график кривой прямого напряжения любого данного диода относительно его прямого тока, чтобы вы могли выбрать правильный диод для вашего конкретного проекта.

Тим Ридли / Getty Images

Применение диодов

Несмотря на то, что это простые двухконтактные полупроводниковые устройства, диоды жизненно важны в современной электронике. Некоторые из типичных применений диодов включают:

  • Выпрямление напряжения, например преобразование переменного тока в постоянное
  • Изоляция сигналов от источника питания
  • Управление размером сигнала
  • Смешивание сигналов

Преобразование мощности

Одним из важных применений диодов является преобразование мощности переменного тока в мощность постоянного тока.Один или четыре диода преобразуют бытовую мощность 110 В в постоянный ток, образуя половинный (один диод) или двухполупериодный (четыре диода) выпрямитель . Диод пропускает только половину сигнала переменного тока. Когда этот импульс напряжения заряжает конденсатор, выходное напряжение представляется постоянным напряжением постоянного тока с небольшими колебаниями напряжения. Использование двухполупериодного выпрямителя делает этот процесс еще более эффективным за счет направления импульсов переменного тока таким образом, чтобы как положительная, так и отрицательная половина входной синусоидальной волны рассматривались только как положительные импульсы, эффективно удваивая частоту входных импульсов на конденсатор, что помогает поддерживать его в заряженном состоянии и обеспечивать более стабильное напряжение.

Диоды и конденсаторы создают разные умножители напряжения, чтобы взять небольшое переменное напряжение и умножить его, чтобы получить очень высокое выходное напряжение. При правильной конфигурации конденсаторов и диодов возможны выходы как переменного, так и постоянного тока.

Демодуляция сигналов

Чаще всего диоды используются для удаления отрицательной составляющей сигнала переменного тока. Поскольку отрицательная часть сигнала переменного тока обычно идентична положительной половине, очень мало информации теряется в этом процессе ее удаления, что приводит к более эффективной обработке сигнала.

Демодуляция сигнала обычно используется в радиоприемниках как часть системы фильтрации, чтобы помочь выделить радиосигнал из несущей волны.

Защита от перенапряжения

Диоды также хорошо работают в качестве защитных устройств для чувствительных электронных компонентов. При использовании в качестве устройств защиты по напряжению диоды не проводят ток в нормальных условиях эксплуатации, но немедленно замыкают любые выбросы высокого напряжения на землю, где они не могут повредить интегральную схему.Специализированные диоды, называемые ограничителями переходного напряжения , разработаны специально для защиты от перенапряжения и могут выдерживать очень большие скачки напряжения в течение коротких периодов времени, типичные характеристики скачков напряжения или поражения электрическим током, которые обычно вызывают повреждение компонентов и сокращают срок службы электронного устройства. продукт.

Точно так же диод может регулировать напряжение, выступая в качестве ограничителя или ограничителя — специальной цели, которая ограничивает напряжение, которое может проходить через него в определенной точке.

Текущее рулевое управление

Основное применение диодов — управлять током и следить за тем, чтобы он течет только в правильном направлении. Одной из областей, в которой способность диодов к управлению током используется с хорошим эффектом, является переключение с мощности, поступающей от источника питания, на мощность, работающую от батареи. Когда устройство подключено и заряжается — например, сотовый телефон или источник бесперебойного питания — устройство должно потреблять энергию только от внешнего источника питания, а не от батареи, а пока устройство подключено к сети, батарея должна потреблять энергию. и подзарядка.Как только источник питания будет удален, батарея должна запитать устройство, чтобы пользователь не заметил прерывания.

Хороший пример токового рулевого управления — защита от обратного тока . Рассмотрим, например, вашу машину. Когда ваша батарея умирает и дружелюбный прохожий предлагает помочь с перемычками, если вы перепутаете порядок красных и черных кабелей, вы не поджарите электрическую систему вашего автомобиля, потому что диоды, расположенные рядом с батареей, блокируют ток в неправильном направлении.

Логические ворота

Компьютеры работают в двоичном формате — это бесконечное море нулей и единиц. Деревья двоичных решений в вычислениях основаны на логических вентилях, включенных диодами, которые контролируют, включен ли переключатель («1») или выключен («0»). Хотя в современных процессорах используются сотни миллионов диодов, они функционально такие же, как диоды, которые вы покупаете в магазине электроники, только гораздо меньше по размеру.

Диоды и свет

Светодиодный фонарик — это просто фонарик, свечение которого происходит от светодиода.При наличии положительного напряжения светятся светодиоды.

Фотодиод, напротив, принимает свет через коллектор (например, мини-солнечную панель) и преобразует этот свет в небольшой ток.

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

Как работает диод с pn-переходом

Как работает диод с pn-переходом

Чтобы понять, как работает диод с pn-переходом, начните с представления двух отдельных частей полупроводника, один n-типа, другой p-типа.

Соберите их вместе и соедините, чтобы получился один кусок полупроводника, который легирован по-разному. сторона стыка.


Свободные электроны на n-стороне и свободные дырки на p-стороне могут изначально блуждать по переходу. Когда свободный электрон встречает свободную дырку, он может «упасть в нее». Что касается движения зарядов, то это означает, что дырка и электрон нейтрализуют друг друга и исчезают.

В результате свободные электроны и дырки вблизи перехода стремятся поедать друг друга, создавая область, лишенную любых движущихся зарядов.Это создает то, что называется зона истощения .

Теперь любой бесплатный заряд, который попадает в зону истощения, оказывается в регионе, где нет других бесплатных зарядов. Локально он видит много положительных зарядов (донорных атомов) на стороне n-типа и много отрицательных зарядов ( акцепторные атомы) на стороне p-типа. Они воздействуют на бесплатный заряд, заставляя его возвращаться на «свою сторону». переход от зоны истощения.

Атомы акцептора и донора «прижаты» к твердому телу и не могут перемещаться.Однако отрицательный заряд дополнительного электрона акцептора и положительный заряд дополнительного протона донора (экспонируемый им отсутствующий электрон), как правило, очищают зону обеднения от свободных зарядов после того, как зона сформировалась. Бесплатный заряд теперь требует некоторой дополнительной энергии, чтобы преодолеть силы от донорных / акцепторных атомов, чтобы иметь возможность пересекать зона. Таким образом, соединение действует как барьер, блокируя любой поток заряда (тока) через барьер.

Обычно мы представляем этот барьер, «изгибая» зону проводимости и валентную зону как они пересекают зону истощения.Теперь мы можем представить, что электроны должны «подняться в гору», чтобы двигаться со стороны n-типа. в сторону p-типа. Для простоты мы стараемся не рисовать реальные донорные и акцепторные атомы, которые вызывая этот эффект!

Отверстия напоминают воздушные шары, подпрыгивающие к потолку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *