Как рассчитать мощность нагревателя – Как рассчитать мощность нагревателя — Дальтэн производство и продажа электронагревательных элементов

Содержание

Калькулятор расчета необходимой мощности электрообогревателя

Электрический обогрев помещений всегда может прийти на помощь основной системе отопления, заменить ее в осенний или весенний период межсезонья, а в особых случаях – даже стать основным источником тепла в зимнюю пору. Все зависит от того, какой тепловой мощностью обладают приобретаемые электрические нагреватели.

Калькулятор расчета необходимой мощности электрообогревателяКалькулятор расчета необходимой мощности электрообогревателя

Несмотря на широкое разнообразие современных электрических обогревательных приборов – конвекторов, тепловентиляторов, масляных радиаторов, инфракрасных излучателей и т.п., параметр мощности для любого из них является определяющим. Именно он показывает тот эксплуатационный потенциал, который заложен производителем в это изделие. Значит, прежде чем отправляться в магазин за покупкой, необходимо четко представлять, с каким критерием оценки подходить к выбору той или иной модели. Поможет в этом — калькулятор расчета необходимой мощности электрообогревателя.

Ниже будут даны некоторые необходимые разъяснения по порядку проведения расчетов.

Калькулятор расчета необходимой мощности электрообогревателя

Перейти к расчётам

Пояснения по проведению расчетов мощности обогревателя

Программа калькулятора основана на учете особенностей помещения, в котором предполагается использование электрического обогревателя.

Цены на электрообогреватели

Электрообогреватели

  • Прежде всего необходимо определиться, какая миссия будет возлагаться на прибор – станет ли он лишь «подмогой» для отопления, или необходимо предусмотреть вариант, когда обогреватель должен будет справиться с функцией основного источника тепла.
  • Площадь помещения – исходная величина для проведения расчетов.
  • Внешние стены – чем их больше, тем выше общее количество тепловых потерь, требующих определенной компенсации.
  • Стены с северной и восточной сторон практически никогда не получают «солнечного заряда», в отличие от южных и юго-западных.
  • Стены, расположенные с наветренной стороны, охлаждаются значительно быстрее других – это учтено в алгоритме расчета.
  • При указании уровня температур не следует указывать рекордно низкие показатели – это должно быть значение, которое является обычным для региона проживания, в самую холодную декаду зимы. Тем самым калькулятор уже учтет имеющиеся климатические особенности.
  • Степень утепления стен. Если термоизоляционные работы проводились полноценно, на основании проведенных теплотехнических расчетов, то можно отнести стены к разряду качественно утепленных. Кирпичная стена, примерно в 400÷500 мм толщиной, и аналогичная ей, могут претендовать на среднюю степень утепленности. Стены вообще без утепления, по идее, рассматриваться и вовсе не должны, так как в таком помещении даже при непозволительно большом расходе электроэнергии, комфортного микроклимата все равно не добиться. Приобретение электрообогревателя в таких условиях становится бессмысленной затеей.
  • Высота потолков – влияет на общий объем помещения.
  • Следующие два окна ввода – это характер помещений, расположенных сверху и снизу рассматриваемой комнаты. Естественно, от их особенностей зависит количество теплопотерь через верхнее и нижнее перекрытие.
  • Далее – блок полей, касающихся окон в помещении. Необходимо, в первую очередь, указать тип окон – калькулятор учтет их теплосберегающие возможности. Далее, после указания количества и размеров окон, программа вычислит коэффициент остекления (относительно площади помещения) и сделает соответствующую корректировку в расчетах.
  • Наконец, в комнате может быть одна или даже несколько используемых дверей, выходящих на улицу или в неотапливаемые помещения. Естественно, что при каждом открывании такой двери в комнату поступает немалый объем охлаждённого воздуха, который потребует дополнительного расхода тепловой мощности.

Результат дается в ваттах и киловаттах. По этим параметрам уже можно будет оценивать приглянувшуюся в магазине модель электрообогревателя.

2016-08-16_125714Как правильно выбрать электрообогреватель?

Помимо мощности, существует немало иных критериев оценки подобных приборов – габариты, безопасность в работе, удобство пользования, мобильность, степень автоматизации и другие. Подробнее об аспектах выбора энергосберегающих электрических обогревателей – в специальной публикации нашего портала.

stroyday.ru

Калькуляторы расчета нагревателя муфельной печи

Если домашнему мастеру по характеру выполняемых им работ необходима муфельная печь, то он, конечно, может приобрести готовый прибор в магазине или по объявлениям. Однако, стоит подобное оборудование заводского производства – весьма недешево. Поэтому многие умельцы берутся за изготовление таких печей самостоятельно.

Калькуляторы расчета нагревателя муфельной печиКалькуляторы расчета нагревателя муфельной печи

Основной «рабочий узел» электрической муфельной печи – нагреватель, который в условиях кустарного производства обычно исполняют в виде спирали из специальной проволоки с высокими показателями сопротивления и термической отдачи. Характеристики его должны строго соответствовать мощности создаваемого оборудования, предполагаемым температурным режимам работы, а также отвечать еще некоторым требованиям. Если планируется самостоятельное изготовление прибора, то советуем применить предлагаемые ниже алгоритм и удобные калькуляторы расчета нагревателя муфельной печи.

Расчет требует определенных пояснений, которые постараемся изложить максимально доходчиво.

Алгоритм и калькуляторы расчета нагревателя муфельной печи

Из чего делаются нагревательные спирали

Для начала – буквально несколько слов о проволоке, которая используется для навивки нагревательных спиралей. Обычно для таких целей применяется нихромовая или фехралевая.

  • Нихромовая (от сокращений никель + хром) чаще всего представлена сплавами Х20Н80-Н, Х15Н60 или Х15Н60-Н.

Цены на муфельную печь

муфельная печь

Ее достоинства:

— высокий запас прочности при любых температурах нагрева;

— пластична, легко обрабатывается, поддаётся свариванию;

— долговечность, стойкость к коррозии, отсутствие магнитных качеств.

Недостатки:

— высокая стоимость;

— более низкие показатели нагрева и термоустойчивости по сравнению с фехралевой.

  • Фехралевая (от сокращений феррум, хром, алюминий) – в наше время чаще используется материал из сплава Х23Ю5Т.

Достоинства фехраля:

— намного дешевле нихрома, благодаря чему в основном материал и пользуется широкой популярностью;

— имеет более значительные показатели сопротивления и резистивного нагрева;

— высокая жаростойкость.

Недостатки:

— низкая прочность, а после даже однократного нагрева свыше 1000 градусов – выраженная хрупкость спирали;

— невыдающаяся долговечность;

— наличие магнитных качеств, подверженность коррозии из-за наличии в составе железа;

— ненужная химическая активность – способен вступать в реакции с материалом шамотной футеровки печи;

— чрезмерно большое термическое линейное расширение.

Каждый из мастеров волен выбрать любой из перечисленных материалов, проанализировав их «за» и «против». Алгоритм расчёта учитывает особенности такого выбора.

Шаг 1 – определение мощности печи и силы тока, проходящего через нагреватель.

Чтобы не вдаваться в ненужные в данном случае подробности, сразу скажем, что существуют эмпирические нормы соответствия объема рабочей камеры муфельной печи и ее мощности. Они показаны в таблице ниже:

Объем муфельной камеры печи (литры)Рекомендуемая удельная мощность печи (Вт/л)
1÷5300÷500
6÷10120÷300
11÷5080÷120
51÷10060÷80
101÷50050÷60

Если есть проектные наброски будущего прибора, то объем муфельной камеры определить несложно – произведением высоты, ширины и глубины. Затем объем переводится в литры и умножается на указанные в таблице рекомендуемые нормы мощности. Так получаем мощность печи в ваттах.

Табличные значения указаны в некоторых диапазонах, так что или применяйте интерполяцию, или принимайте примерно среднюю величину.

Найденная мощность, при известном напряжении сети (220 вольт) позволяет сразу определить силу тока, который будет проходить через нагревательный элемент.

I = P / U.

I – сила тока.

Р – определённая выше мощность муфельной печи;

U – напряжение питания.

Весь этот первый шаг расчета очень легко и быстро можно проделать с помощью калькулятора: все табличные значения уже внесены в программу вычисления.

Калькулятор мощности муфельной печи и силы тока, проходящего через нагреватель

Перейти к расчётам

Шаг 2 – определение минимального сечения проволоки для навивки спирали

Любой электрический проводник ограничен в своих возможностях. Если через него пропускать ток, выше допустимого, он попросту перегорит или расплавится. Поэтому очередной шаг в расчетах – определение минимально допустимого диаметра проволоки для спирали.

Определить его можно по таблице. Исходные данные – рассчитанная выше сила тока и предполагаемая температура разогрева спирали.

D (мм)S (мм ²)Температура разогрева проволочной спирали, °C
2004006007008009001000
Максимальная допустимая сила тока, А
519.65283105124146173206
412.637608093110129151
37.0722.337.554.5647788102
2.54.9116.627.54046.657.566.573
23.1411.719.628.733.839.54751
1.82.541016.924.92933.13943.2
1.62.018.614.42124.52832.936
1.51.777.913.219.222.425.73033
1.41.54
7.25
1217.42023.32730
1.31.336.610.915.617.82124.427
1.21.1369.81415.818.721.624.3
1.10.955.48.712.413.916.519.121.5
10.7854.857.710.812.114.316.819.2
0.90.6364.256.79.3510.4512.314.516.5
0.80.5033.75.78.159.1510.812.314
0.750.4423.45.37.558.49.9511.2512.85
0.70.3853.14.86.957.89.110.311.8
0.650.3422.824.46.37.158.259.310.75
0.60.2832.5245.76.57.58.59.7
0.550.2382.253.555.15.86.757.68.7
0.50.19623.154.55.25.96.757.7
0.450.1591.742.753.94.455.25.856.75
0.40.1261.52.343.33.854.455.7
0.350.0961.271.952.763.33.754.154.75
0.30.0851.051.632.272.73.053.43.85
0.250.0490.841.331.832.152.42.73.1
0.20.03140.651.031.41.651.8222.3
0.150.01770.460.740.991.151.281.41.62
0.10.007850.10.470.630.720.80.91
D — диаметр нихромовой проволоки, мм
S — площадь поперечного сечения нихромовой проволоки, мм²

И сила тока, и температура берутся ближайшие, но обязательно с приведением в большую сторону. Например, при планируемом нагреве 850 градусов следует ориентироваться на 900. И, допустим, при силе тока в этом столбце, равной 17 амперам, берется большее ближайшее – 19,1 А. В двух левых столбцах сразу определяется минимально возможная проволока – ее диаметр и площадь поперечного сечение.

Более толстую проволоку использовать можно (иногда это становится и обязательным – о таких случаях будет рассказано ниже). Но меньше – никак нельзя, так как нагреватель просто перегорит в рекордно короткий срок.

Шаг 3 – определение необходимой длины проволоки для навивки спирального нагревателя

Известны мощность, напряжение, сила тока. Намечен диаметр проволоки. То есть имеется возможность, используя формулы электрического сопротивления, определить длину проводника, который будет создавать необходимый резистивный нагрев.

L = (U / I) × S / ρ

ρ — удельное сопротивление нихромового проводника, Ом×мм²/м;

L — длина проводника, м;

S  — площадь поперечного сечения проводника, мм².

Как видно, потребуется еще одна табличная величина – удельное сопротивление материала на единицу площади поперечного сечения и длины проводника. Необходимые для расчета данные – показаны в таблице:

Марка нихромового сплава, из которого изготовлена проволокаДиаметр проволоки, ммВеличина удельного сопротивления, Ом×мм²/м
Х23Ю5Тнезависимо от диаметра1.39
Х20Н80-Н0,1÷0,5 включительно1.08
0,51÷3,0 включительно1.11
более 31.13
Х15Н60
или
Х15Н60-Н
0,1÷3,0 включительно1.11
более 31.12

Еще проще покажется расчет, если использовать наш калькулятор:

Калькулятор расчета длины проволоки для спирали

Довольно часто нихромовую ил фехралевую проволоку реализуют не на метры, а на вес. Значит, потребуется перевести длину в ее эквивалент по массе. Выполнить такой перевод поможет предлагаемая таблица:

Диаметр проволоки, ммВес погонного метра, гДлина 1 кг, м
Х20Н80Х15Н60ХН70ЮХ20Н80Х15Н60ХН70Ю
0.62.3742.3172.233421.26431.53447.92
0.73.2313.1543.039309.5317.04329.08
0.84.224.123.969236.96242.74251.96
0.95.3415.2145.023187.23191.79199.08
16.5946.4376.202151.65155.35161.25
1.29.4959.2698.93105.31107.88111.98
1.311.14410.87910.48189.7491.9295.41
1.412.92412.61712.15577.3779.2682.27
1.514.83714.48313.95367.469.0571.67
1.616.88116.47915.87659.2460.6862.99
1.821.36520.85620.09346.8147.9549.77
226.37625.74824.80637.9138.8440.31
2.231.91531.15530.01531.3332.133.32
2.541.21340.23138.75924.2624.8625.8
2.851.69750.46648.6219.3419.8220.57
359.34657.93355.81416.8517.2617.92
3.267.52365.91563.50314.8115.1715.75
3.580.77778.85375.96812.3812.6813.16
3.685.45883.42480.37111.711.9912.44
4105.504102.99299.2249.489.7110.08
4.5133.529130.349125.587.497.677.96
5164.85160.925155.0386.076.216.45
5.5199.469194.719187.5955.015.145.33
5.6206.788201.684194.4794.844.955.14
6237.384231.732223.2544.214.324.48
6.3261.716255.485246.1383.823.914.06
6.5278.597271.963262.0133.593.683.82
7323.106315.413303.8743.093.173.29
8422.016411.968396.8962.372.432.52
9534.114521.397502.3221.871.921.99
10659.4643.7620.151.521.551.61

Шаг 4 – Проверка соответствия удельной поверхностной мощности рассчитанного нагревателя допустимому значению

Нагреватель или не справится со своей задачей, или будет работать на грани возможностей и оттого быстро перегорит, если его поверхностная удельная мощность будет выше допустимого значения.

Поверхностная удельная мощность – это количество тепловой энергии, которое необходимо получить с единицы площади поверхности нагревателя.

Прежде всего – определяем допустимое значение этого параметра. Оно выражается следующей зависимостью:

βдоп = βэф × α

βдоп – допустимая удельная поверхностная мощность нагревателя, Вт/см²

βэф – эффективная удельная поверхностная мощность, зависящая от температурного режима работы муфельной печи.

α – коэффициент эффективности теплового излучения нагревателя.

βэф берем из таблицы. Данными для входа в нее являются:

Левый столбец – ожидаемая температура воспринимающей среды. Проще говоря – до какого уровня требуется разогреть помещенные в печь материалы или заготовки. Каждому уровню соответствует своя строка.

Все остальные столбцы – температура разогрева нагревательного элемента.

Пересечение строки и столбца даст искомое значение βэф.

Требуемая температура тепловоспринимающего материала, °СПоверхностная мощность βэф (Вт/cм ²)  при температуре разогрева нагревательного элемента, °С
80085090095010001050110011501200125013001350
1006.17.38.710.312.514.1516.41921.824.928.436.3
2005.97.158.5510.15121416.2518.8521.6524.7528.236.1
3005.656.858.39.911.713.751618.621.3524.527.935.8
4005.26.457.859.4511.2513.315.5518.120.92427.4535.4
5004.55.77.158.810.5512.614.8517.420.223.326.834.6
6003.54.76.17.79.511.513.816.419.322.325.733.7
70023.24.66.258.051012.414.917.720.824.332.2
8001.252.654.26.058.110.412.915.718.822.330.2
8501.434.86.859.111.714.517.62129
9001.553.45.457.7510.31316.219.627.6
9501.83.856.158.6511.514.518.126
10002.054.36.859.712.7516.2524.2
10502.34.87.6510.7514.2522.2
11002.555.358.51219.8
11502.855.959.417.55
12003.156.5514.55
13007.95

Теперь – поправочный коэффициент α. Его значение для спиральных нагревателей показано в следующей таблице.

ИллюстрацияВариант расположения спирального нагревательного элементаЗначение коэффициента α
Нагревательная спираль спрятана в ниши футеровки муфельной печи.0,16 ÷ 0,24
Нагревательная спираль заключена в кварцевые трубки и расположена на полочках по стенкам камеры0,30 ÷ 0,36

Простое перемножение этих двух параметров как раз и даст допустимую удельную поверхностную мощность нагревателя.

Примечание: Практика показывает, что для муфельных печей с высокотемпературным нагревом (от 700 градусов), оптимальным значением  βдоп будет 1,6 Вт/см² для нихромовых проводников, и примерно 2,0÷2,2  Вт/см² для фехралевых. Если печь работает в режиме нагрева до 400 градусов, то таких жестких рамок нет – можно ориентироваться на показатели от 4 до 6 Вт/см².

Итак, с допустимым значением поверхностной удельной мощности определись. Значит, необходимо найти удельную мощность рассчитанного ранее нагревателя и сравнить с допустимой.

Быстро рассчитать этот параметр поможет калькулятор:

Калькулятор расчета удельной поверхностной мощности нагревателя

Перейти к расчётам

Если полученное значение не превышает допустимого – расчет может считаться законченным.

В том случае, когда найденное значение превосходит допустимый уровень поверхностной удельной мощности, придется проведенные расчеты несколько откорректировать. Сделать это можно, вернувшись к шагам №2—3, и повторив вычисления с увеличением диаметра проволоки на одну или несколько стандартных позиций – одновременно с этим возрастет и ее длина. Затем – снова сверить показатели. И так – пока не будет найден оптимальный вариант и с точки зрения максимальной экономичности, и с позиций обеспечения соответствия указанному параметру.

С набором наших калькуляторов провести повторный расчет – это дело буквально нескольких минут. И вот на этом расчет может считаться законченным. Можно приобретать проволоку выбранного сплава, с рассчитанными диаметром и длиной.

Как собрать муфельную печь своими руками

В этой публикации акцент был сделан именно на расчетах нагревательного элемента. А более подробно именно о процессе самостоятельного изготовления муфельной печи – читайте в специальной статье нашего портала.

stroyday.ru

как правильно рассчитать, как выбрать

Желаете, чтобы мощности обогревателя хватало на то, чтобы согреть Вас в самые холодные зимние вечера? Тогда стоит подойти к выбору ответственно. Перед покупкой лучше ознакомиться с рядом параметров приборов различного типа, учесть метраж прогреваемого помещения, а также такие факторы, как отсутствие/наличие теплоизоляции, толщину стен и максимальную разницу между уличной и комнатной температурой в самое холодное время года. В случае ошибки в расчетах вы рискуете приобрести обогреватель с большей мощностью, чем это необходимо (что обернется переплатами за электроэнергию), или, наоборот, устройство с меньшей мощностью, которое не способно эффективно прогреть площадь комнаты.

Виды электрических обогревателей, их отличия друг от друга

Электрические обогреватели бывают разных видов, каждый из которых имеет свои преимущества, недостатки, принцип и скорость действия.

Перечислим некоторые из них:

  1. Тепловой вентилятор – такое устройство чем-то напоминает обычный вентилятор, однако перед его лопастями помещена накаливающаяся спираль, которая обеспечивает обогрев той части комнаты, на которую направлен поток воздуха. Несмотря на то что тепловентилятор достаточно эффективен, он не предназначен для постоянного обогрева помещения. Существенный недостаток такого устройство – краткосрочность результата от его воздействия на окружающую среду.
  2. Обогреватель из керамики по принципу действия очень похож на тепловентилятор, только в качестве нагревателя выступают керамические пластины. Подобные модели работают на газе и от электросети, бывают напольные, настенные и даже настольные. Основным преимуществом керамического обогревателя является сохранение влажности в помещении.
  3. Радиатор масляного типа справляется с нагревом воздуха в очень короткие сроки, однако его не стоит приобретать, если в доме есть животные или маленькие дети, поскольку и те, и те рискуют обжечься. Такой прибор считается не самым экономичным вариантом – он расходует много электроэнергии.
  4. Электрические модели нагревают воздух до нужной температуры достаточно быстро, а сами остывают медленно. В основе принципа работы этих устройств — конвекция. В нижней части прибора расположены детали, всасывающие воздух, нагрев происходит за счет работы ТЭНа – трубчатого электронагревателя, от площади которого напрямую зависит объем разогретого газа. Именно поэтому ТЭН часто производят с ребристой поверхностью. Преимущество конвектора перед масляным обогревателем состоит в том, что температура теплоносителя повышается с большей скоростью, а значит, не придется ждать, пока в комнате потеплеет. Кроме того, эти устройства гораздо компактнее. Особенно популярны настенные модели.
  5. Инфракрасный обогреватель. Работа устройств этого вида основана на электромагнитном излучении – при этом нагреваются сначала предметы, попадающие под воздействие волн, а затем – сам воздух. Конструктивными элементами прибора также выступают ТЭНы. Другой вариант – открытые спирали, иногда защищенные кварцевыми трубками, либо металлические сетки, пластиковые панели с отверстиями или карбоновое покрытие. В комнатах обогреватель защищают прозрачными перегородками или металлическими сетками. Инфракрасные обогреватели бывают разных типов. В зависимости от длины волн их делят на коротковолновые, средне- и длинноволновые, от источника энергии – электрические, газовые, дизельные и водяные, от способа установки – передвижные и стационарные.

Как рассчитать мощность обогревателя?

Все современные приборы оснащены термостатами, которые позволяют поддерживать определенную температуру. Сам тип обогревателя мало влияет на эффективность его работы – тут важно произвести правильный расчет.

Чтобы согреть воздух в квартире, необходимо с помощью конвектора поддержать температуру воздуха с определенной теплоемкостью.


При расчете мощности обогревателя учитывают следующие показатели:
  1. Минимальная уличная температура в зимний период.
  2. Комфортная температура в комнате.
  3. Плотность воздуха – 1,3 кг/м3.
  4. Теплоемкость воздуха — 0,001 МДж.
  5. Теплота 1 МДж – 0,277кВт/ч

Количество тепла, необходимого для разогрева конкретного помещения, можно высчитать по формуле: с= Q/m(t2 — t1), где с — удельная теплоемкость, Q — теплота, m — масса воздуха.

Преобразуем формулу, получится: Q=c*m*(t2-t1), теперь нужно узнать массу воздуха в комнате.

Формула для её вычисления проста: m= ϱ*Р*h, где ϱ — плотность воздуха, Р — площадь помещения, h — высота.

Таким образом, формула расхода тепла приобретает формулу: kWt= 0,277*c*ϱ*Р*h*(t2-t1).

Итак, можно рассчитать примерные энергозатраты на обогрев небольшой комнаты (в 40 кв. м при высоте потолка в 3 м. при минимальной температуре – 10 и необходимой +20).

kWt= 0,277*0,001*1,3*3*40*30= 1,29636 (кВт/ч).

Теплопотери

Существует несколько причин, по которым тепло уходит из помещения:

  • вентиляция;
  • теплопроводность стен, окон, потолка и пр.;
  • излучение.

По нормам СНиП, примерный объем циркуляции свежего воздуха – 20 кв. м. в час.Чтобы согреть вновь поступивший прохладный воздух необходимо дополнительное количество энергии. Расчет производится по той же формуле: kWt= 0,277*0,001*1,3*20*30=0,21606 (кВт/ч).

Формула для расчета теплопотерь выглядит так: Q=λ*(t1-t2)*S/L, где S — площадь стенки, L — толщина стены, λ — коэффициент теплопроводности,  который индивидуален для каждого материала.

Например, для кирпича λ = 0,5 Вт/(м*С), длина стены = 8 м, высота = 3 м, толщина стены = 0,5 м.

S= 4*8*3= 96 кв.м.

Q=0,5*30*96/0,5= 2880 (Вт)=2,88 (кВт).

Таким образом, теплопотери уже превышают необходимые энергозатраты для обогрева помещения без их учета. Но не стоит забывать, что необходимо ещё учесть показатель крышного перекрытия, а там теплопотери могут достигать нескольких десятков.Выходит, что для поддержания нормальной температуры в помещении требуется чуть ли не в пятнадцать раз больше электроэнергии, чем для его «чистого» обогрева.

Учет теплоизоляции

Значительную роль в расчете необходимой мощности играет теплоизоляция. Например, слой минеральной ваты в 2 м значительно снизит теплопотери , λ = 0,06 (для вышеперечисленных параметров):

Q= 0,06*30*40/0,2 = 360 (Вт) = 0, 36 (кВт).

При расчете теплопотерь пола во внимание берут то, что грунт имеет изначальную температуру около 5 градусов тепла.

Если помещение изолировано, то понадобится в среднем от 3 до 5 кВт для компенсации теплопотерь. Расчет собственного примера можно сделать по приведенному примеру, данные о конкретных материалах легко найти в справочниках.

Как выбрать обогреватель?

Произведя необходимые подсчеты, следует выбирать прибор по показателю максимальной мощности с небольшим запасом – умножая полученный в результате расчетов коэффициент на 1,2, тем более что все современные модели имеют терморегулятор.

Мощное устройство быстрее прогреет помещение. Сохранить тепло помогут шторы, которые служат своеобразным теплоизолятором. Для конвекторных обогревателей нужно создать условия по свободной циркуляции воздуха.

Выбрав устройство с помощью расчетов, Вы избежите лишней траты денег.

tehnopanorama.ru

Расчет нагрева воды ТЭНом и электричеством

Определение технических параметров приборов и расчёт нагрева воды – мощности нагревателя, змеевика, количества тепла и расхода энергии для нагрева воды – зависит от типа устройства электроводонагревателей, которые бывают накопительными и проточными.

Содержание статьи

Общие данные, необходимые для вычислений

Чем мощнее электрообогреватель, тем быстрее он подогревает заданное количество воды. Поэтому приборы по этому параметру подбирается в соответствии с задачами, необходимым объёмом и допустимым временем ожидания. Так, например, нагрев до 60°С  15 литров с нагревателем в 1,5 кВт займёт около полутора часов. Однако для больших объёмов (например, для наполнения 100-литровой ванны) при разумном времени ожидания (до 3 часов) для доведения жидкости до комфортной температуры понадобится устройство на 3 кВт мощнее.

Для полноценного вычисления расчётной мощности  необходимо учесть ряд параметров:

  1. Рабочий ресурс бытовой электросети.
    Проблема «выбивания пробок» особенно актуально стоит в домах вторичного жилфонда. Некоторые жильцы, столкнувшись с ней (например, при установке электрических радиаторов), решали вопрос добавлением отдельного кабеля, усилением проводки. Однако более универсальный рецепт – покупка водонагревателя со средним или низким энергопотреблением (чаще это приборы накопительного типа). Разница между количеством киловатт бытовой электросети и совокупной мощностью всех домашних электроприборов даст значение оптимальной мощности водонагревателя, к которому нужно стремиться.
  2. Соотношение мощности ТЭНа (нагревательного элемента) и объёма бака.
    Параметр, более важный для устройств накопительного типа, в которых вода расходуется постепенно, и критичной становится скорость её остывания. Чтобы 1-киловаттный водонагреватель не покупали со 100-литровыми баками, производители приводят ориентировочную таблицу, где 1-киловаттный прибор предназначен на 15 литров, 1,5 кВт – на 50, 2 кВт – на 50-100, а 5 кВт – на 200-литровый бак.
  3. Скорость водорасхода в минуту.
    Параметр имеет большее значение для проточных водонагревателей. В обиходе мощностные показатели такого нагревательного устройства (с учётом максимальной ресурсозатратности) рассчитываютсяпутём умножения на два количества литров ворорасхода в минуту. То есть, если на проточное мытьё посуды в среднем тратится 4 л/мин., то ТЭН должен быть 8 кВт. Если при приёме душа расходуется 8 л/мин., то необходим 16-киловаттныйТЭН. Вычисления усложняет то, что в квартире используются сразу 2 (а иногда и 3) точки водозабора. В этом случае, рекомендуется в вычислениях получившуюся величину умножать в полтора раза.

Накопительные водонагреватели (бойлеры)

Без физико-математических формул бытовой расчёт описывается следующим образом: за 1 час 1 кВт нагревает 860 литров на 1 К. Для более точного определения времени нагревания, мощностных характеристик, объёма используется универсальная формула, из которой потом выводятся остальные результаты:

Эта формула состоит из нескольких и отражает целый ряд параметров, учитывая при этом фактор теплопотерь. (При малых мощностных характеристиках и большом объёме этот фактор становится более существенным, однако в бытовых нагревателях этим учётным значением чаще пренебрегают):

Nfull – мощностные характеристики нагревательного элемента,

Qc – теплопотери водонагревательной ёмкости.

  1. c= Q/m*(tк-tн)
    • С – удельная теплоёмкость,
    • Q – количество теплоты,
    • m – масса в килограммах (либо объём в литрах),
    • tк  и tн  (в °С) – конечная и начальная температуры.
  2. N=Q/t
    • N – мощностные характеристики нагрева.
    • t — время нагревания в секундах.
  3. N = Nfull — (1000/24)*Qc

Упрощенные формулы с постоянным коэффициентом:

  • Расчёт мощности ТЭНа для нагрева воды нужной температуры:
    W= 0,00117*V*(tк-tн)/T
  • Определение времени,  необходимого для нагревания воды в водонагревателе:
    T= 0,00117*V*(tк-tн)/W

Составляющие формул:

  • W (в кВТ) –  мощностная характеристика ТЭНов (нагревательного элемента),
  • Т (в часах) – время нагрева воды,
  • V (в литрах) – объем бака,
  • tк  и tн  (в °С) – конечная и начальная температуры (конечная – обычно 60°C).

Часто объём приравнивают к массе (m). Тогда определение мощности ТЭНа будет производиться по формуле: W= 0,00117*m*(tк-tн)/T. Формулы считаются упрощёнными, ещё и потому что в них не учитывается:

  • фактическая мощность электросети,
  • температура окружающей среды,
  • конструктивные особенности и потенциальные теплопотери бака,
  • рекомендации некоторых производителей, относительно tн (порядка 5-8 °С летом и 15-18 °С – зимой).

При покупке устройства надо принимать во вниание, что относительно низкие мощностные характеристики накопительных водонагревателей по сравнению с проточными ещё не гарантируют финансовую экономию. Накопительные меньше «забирают», но из-за того, что работают дольше, больше и расходуют. Для финансовой экономии более надёжной стратегией будет общее снижение водопотребления за счёт установки различного вида экономителей (http://water-save.com/) и строгий учёт водорасхода.

Проточные водонагреватели

В расчете количества тепла для нагрева проточной воды надо учитывать разницу в стандартах напряжения России (220 В) и Европы (230 В), так как значительная часть электроводонагревателей изготовляется западноевропейскими компаниями. Благодаря этой разнице номинальный показатель в 10 кВт в таком приборе при подключении к российской сети в 220В будет на 8,5% меньше – 9,15.

Максимальный гидропоток V (в литрах за минуту) с заданными мощностными характеристиками W (в киловаттах) рассчитывается по формуле: V= 14,3*(W/t2-t1), в которой t1 и t2– температуры на входе в нагреватель и в результате подогрева соответственно.

Ориентировочные мощностные характеристики электроводонагревателей применительно к бытовым потребностям (в киловаттах):

  • 4−6 –  только для мытья рук и посуды,
  • 6−8 – для принятия душа,
  • 10−15 – для мойки и душа,
  • 15−20 – для полного водоснабжения квартиры или частного дома.

Выбор затрудняет то, что нагреватели выпускаются в двух вариантах подключения: к однофазной (220 В) и трёхфазной (380 В) сети. Однако нагреватели для однофазной сети, как правило, не выпускаются выше 10 киловатт.

Вычисления для бассейнов

Расчет нагрева воды в бассейне складывается из вычисления параметров электронагревателя и объёма, который необходимо подогреть. В таблице указано приблизительное время в часах, за которое температура поднимается с 10 °С до 28 °С. При этом существенную роль в конечных вычислениях играет площадь водяного «зеркала», температура окружающей среды, степень открытости/ закрытости места расположения бассейна.

Читайте далее

Оставьте комментарий и вступите в дискуссию

hitropop.com

Необходимая мощность для нагрева объема жидкости

РАСЧЕТ МОЩНОСТИ, НЕОБХОДИМОЙ ДЛЯ НАГРЕВА ОБЪЕМА ЖИДКОСТИ

РАСЧЕТ ОНЛАЙН

Мощность, которая должна быть установлена для повышения температуры объема жидкости, содержащейся в резервуаре, в течение заданного времени, является результатом двух расчетов: расчет мощности для повышения температуры жидкости (Pch) и расчет теплопотерь (Pth)

Установленная мощность (кВт) = Мощности для повышения температуры жидкости (Pch) + Теплопотери (Pth)

1 / Расчет мощности, необходимой для повышения температуры объема жидкости :

— Тепловая мощность : Pch (кВт)

— Вес жидкости : M (кг)

— Удельная теплоемкость жидкости : Cp (ккал/кг×°C)

— Начальная температура : t1 (°C)

— Необходимая конечная температура : t2 (°C)

— Время нагрева : T (ч)

1,2 : Коэффициент запаса, связанный с нашими производственными допусками и изменениями в напряжении сети питания

Pch = (M × Cp × (t2 − t1) × 1,2) ÷ (860 × T)

 

a/ Расчет массы нагреваемой жидкости :

— Вес жидкости : M (кг)

— Объем жидкости, который необходимо нагреть : V (дм3 или литры)

— Плотность жидкости : ρ (кг/дм3)

                             M = V × ρ

ρ / Cp для некоторых жидкостей :

Вода : 1 / 1

Минеральное масло : 0,9 / 0,5

Битум : 1,1 / 0,58

Уксусная кислота : 1,1 / 0,51

Соляная кислота : 1,2 / 0,6

Азотная кислота : 1,5 / 0,66

b/ Расчет объема жидкости :

В цилиндрическом резервуаре :

— Объем резервуара : V (дм3)

— Диаметр резервуара : (дм)

— Высота столба жидкости : h2 (дм)

 

 

V = π × (∅² ÷ 4)  × h2

В прямоугольном резервуаре :

— Объем резервуара : V (дм3)

— Длина резервуара : L (дм)

— Ширина резервуара : W (дм)

— Высота столба жидкости : h2 (дм)

 

V = L × W × h2

 

 

 

2/ Расчет мощности, необходимой для компенсации потерь тепла :

 

— Теплопотеря : Pth (кВт)

— Площадь поверхности теплообмена резервуара : S2)

— Требуемая конечная температура : t2 (°C)

— Температура окружающей среды : ta (°C)

— Коэффициент теплообмена : K (ккал/час × м2 × °C)

1,2 : Коэффициент запаса, связанный с нашими производственными допусками и изменениями в напряжении сети питания

 

Pth = (S × (t2 — ta) × K × 1,2) ÷ 860

 

Коэффициент обмена K как функция скорости ветра и толщины изоляции :

a/ Расчет площади поверхности теплообмена резервуара : S (м2)

Площадь поверхности цилиндрического резервуара :

— Площадь поверхности резервуара : S2)

— Диаметр резервуара : (м)

— Высота резервуара : h3 (м)

 

S = (π × (∅² ÷ 4))  + (π × ∅ × h3)

 

Площадь поверхности прямоугольного резервуара :

— Площадь поверхности резервуара : S2)

— Длина резервуара : L (м)

— Ширина резервуара : W (м)

— Высота столба жидкости : h3 (м)

S = ((L + W ) × h3 × 2) + (L × W)

 

 

www.vulcanic.com

Калькулятор расчета мощности накопительного водонагревателя

Как подобрать объем и мощность нужного водонагревателя накопительного?

 

Чтобы правильно подобрать необходимый бойлер Вам достаточно знать расход необходимой горячей воды за час и период простоя, когда расход воды минимальный и есть возможность согреть и накопить горячую воду для дальнейшего потребления. Дальше достаточно выбрать необходимый объем и мощность водонагревателя или бойлеры в таблице калькулятора мощности водонагревателя, представленной ниже.

 

Также Вы можете позвонить к нам по номеру: 8 (495) 222-96-98 и наш специалист поможет Вам в подборе необходимого водонагревателя.

 

Расчет объема накопительного водонагревателя , литров  

 
   
Объем смешанной воды, л.
Объем водонагревателя, л.
  При среднесменном потреблении за 1 час При пиковом потребленим в течении 1-го часа При пиковом потребленим в течении 2-х часов
Объем смешанной воды, л.      
Объем водонагревателя, л.      
Необходимая мощность для нагрева водонагревателя за:
При среднесменном потреблении за 1 час, литров/час
При пиковом единовременном потребленим в течении 1-го часа, литров/час
При пиковом единовременном потребленим в течении 2-x часов, литров/час
Необходимая мощность для нагрева водонагревателя за: 1 час 2 часа 3 часа 4 часа 5 часов 6 часов 7 часов 8 часов 9 часов
При среднесменном потреблении за 1 час, литров/час                  
При пиковом единовременном потребленим в течении 1-го часа, литров/час                  
При пиковом единовременном потребленим в течении 2-x часов, литров/час                  

Расчета необходимой мощности водонагревателя, кВт/час  

Расчета времени нагрева ,час  

Таблица соотношения времени нагрева и мощности змеевика, Твхода воды=+10С, Твыхода воды=+65С
Площадь змеевика, м2 Эквивалент мощности,    кВт 1000 литров 1500 литров 2000 литров 3000 литров 5000 литров 7500 литров 10000 литров
0,5 10,2 6ч23м 9ч35м 12ч47м 19ч11м      
1 20,4 3ч11м 4ч47м 6ч23м 9ч35м 15ч59м 24ч  
1,5 30,6 2ч7м 3ч11м 4ч15м 6ч23м 10ч39м 15ч59м 21ч19м
2 40,8 1ч35м 2ч23м 3ч11м 4ч47м 7ч59м 11ч59м 16ч
2,5 51 1ч16м 1ч56м 2ч32м 3ч50м 6ч23м 9ч35м 12ч47м
3 61,2 1ч3м 1ч35м 2ч7м 3ч11м 5ч19м 10ч39м
3,5 71,4 54м 1ч22с 1ч50м 2ч45м 4ч34м 6ч52м 9ч9м
4 81,6 47м 1ч11м 1ч35м 2ч23м 4ч  6ч 
5 102 37м 57м 1ч16м 1ч54м 3ч11м 4ч47м 6ч23м
6 122,4 31м 47м 1ч3м 1ч35м 2ч39м 4ч  5ч19м
7 142,8 27м 40м 54м 1ч22м 2ч16м 3ч25м 4ч34м
8 163,2 23м 35м 47м 1ч11м 3ч  4ч 
9 183,6 21м 31м 42м 1ч3м 1ч46м 2ч39м 3ч32м
10 204 18м 28м 37м 57м 1ч35м 2ч23м 3ч11м
12 244,8 15м 23м 31м 47м 1ч19м 2ч39м
15 306 12м 18м 25м 37м 1ч3м 1ч35м 2ч7м
18 367,2 10м 15м 21м 31м 52м 1ч19м 1ч46м

 

Таблица соотношения времени нагрева и мощности ТЭНов, Твхода воды=+10С, Твыхода воды=+65С

Площадь змеевика, кВт 1000 литров 1500 литров 2000 литров 3000 литров 5000 литров 7500 литров 10000 литров
15 4ч20м 6ч31м 8ч41м 13ч3м 21ч45м 32ч37м 43ч30м
30 2ч10м 3ч15м 4ч20м 6ч31м 10ч52м 16ч18м 21ч45м
45 1ч26 2ч10м 2ч53м 4ч20м 7ч15м 10ч52м 14ч30м
60 1ч4м 1ч37м 2ч10м 3ч15м 5ч25м 8ч9м 10ч52м
75 52м 1ч18м 1ч44м 2ч15м 4ч20м 6ч31м 8ч41м
90 43м 1ч4м 1ч26м 2ч10м 3ч37м 5ч25м 7ч15м
105 37м 55м 1ч14м 1ч51м 3ч6м 4ч39м 6ч12м
120 32м 48м 1ч4м 1ч37м 2ч42м 4ч4м 5ч25м
135 28м 43м 57м 1ч26м 2ч24м 3ч37м 4ч49м
150 25м 39м 52м 1ч18м 2ч10м 3ч15м 4ч20м
165 23м 35м 47м 1ч10м 1ч58м 2ч57м 3ч57м
180 21м 32м 43м 1ч4м 1ч48м 2ч42м 3ч37м

goppo.ru

Калькулятор расчета необходимой мощности электрообогревателя

Ссылка на статью успешно отправлена!

Отправим материал вам на e-mail

Электрический обогреватель может стать настоящим спасением в зимнее время года. Он может использоваться как дополнительное средство для основной отопительной системы, а также применяться вместо нее в периоды похолодания весной или осенью. Очень важно узнать, какая мощность у покупаемого изделия.

Подобные устройства представлены большим ассортиментом. К ним относятся тепловентиляторы, инфракрасные конструкции, масляные механизмы  и конвекторы. В любом из этих вариантов характеристика мощности является определяющей. Этот показатель отображает эксплуатационные возможности того или иного устройства. Прежде чем купить подходящий прибор следует определиться с параметрами оценки, которые при этом понадобятся. Чтобы выбрать хороший вариант, стоит воспользоваться калькулятором расчета мощности электрического оборудования.

Ниже будут представлены объяснения, которые нужны при проведении правильных расчетов.

Некоторые обогреватели могут стать полноценным механизмом для отопления

Содержание статьи

Калькулятор для расчета подходящей мощности электрического оборудования

Расчет производится для каждого отдельного помещения.

Что важно учитывать при использовании специальной программы

Программка для расчета учитывает нюансы каждого помещения, где будет установлен подобный электрический прибор. Вот эти особенности:

  • важно определить для чего необходимо устройство. Как дополнительный прибор для системы отопления или лучше выбрать вариант, когда конструкция сможет заменить основной обогрев;
  • важным параметром является площадь комнаты;
  • чем больше внешних стен, тем более значительные будут теплопотери;
  • поверхности с восточной и северной стороны самые холодные;
  • сильно охлаждаются стены с наветренных сторон, что учитывается в алгоритме программы;
  • при указании зимних температур, нужно обозначить стандартные параметры, которые характерны для определенной местности в самый морозный период зимы. При этом программа учитывает погодные условия;
  • степень теплоизоляции. Например, стена из кирпича, толщина которой составляет 400-500 мм — имеет средние показатели;
  • высота потолка важна при расчетах объема комнаты;
  • важны помещения, которые находятся выше и ниже комнаты, для которой проводятся расчеты;
  • указывается тип окон и их теплоизолирующие характеристики. Также вычисляется показатель остекления, а также проводятся необходимые поправки в вычислениях;
  • в помещении могут быть двери, которые выходят в прохладное помещение или даже на улицу. При распахивании створок холодный воздух проникает в комнату. При этом будет большой расход тепла.

Таблица тепловых мощностей

Результат предоставляется в киловаттах и ваттах. По данным параметрам можно оценить понравившуюся модель обогревателя. Кроме мощности важно учитывать такие параметры, как безопасность в работе, мобильность, габариты и удобство использования.

Статья по теме:

Экономьте время: отборные статьи каждую неделю по почте

homemyhome.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о