Как рассчитать мощность конвектора по площади помещения: Рассчитываем мощность конвектора по площади и объему

Содержание

Как рассчитать мощность конвектора отопления по площади

Установка конвекторов отопления требует расчета мощности — это обязательное условие создания эффективной системы отопления. Прибор такого типа отлично заменяет радиаторы, при этом позволяет сэкономить место в помещении. Устройство конвектора, в котором большая часть теплоотдачи происходит за счет движения нагретого воздуха, дает эффект более быстрого и равномерного прогрева.

Принцип расчета тепловой мощности приборов отопления

Принцип расчета потребности в приборах отопления одинаков для радиаторов и конвекторов. Если речь идет о помещении со стандартной высотой потолков от 2,7 до 3,0 м, то поддержание комфортной температуры в диапазоне 19 — 22 С обеспечивается при поступлении 100 ватт тепла на 1 м.кв.

Разница между конвекторным и радиаторным отоплением состоит только в принципе передачи тепла, а потребность помещения  в энергии для прогрева остается такой же. При расчете можно прибегнуть к сложной комплексной методике, которая используется специалистами в области проектирования.

Она учитывает большое количество факторов, поэтому ее применяют для больших объектов, где общее количество потерь во всех квартирах и помещениях складывается в большие суммы.

Простой расчет с использованием коэффициентов

Если вы решили прибегнуть к простому расчету мощности конвектора отопления для частного дома, то можно использовать две основные методики — по объему для высоких помещений и по площади для стандартных. При этом можно включить в формулу и основные поправочные коэффициенты, отражающие теплопотери стен и окон.

Основные данные расчета для модели конвектора Бриз производства КЗТО:

  • паспортная мощность изделия в зависимости от размеров — чем больше длина прибора, тем больше его теплоотдача;
  • реальные размеры прибора по высоте, глубине и длине;
  • площадь помещения;
  • дополнительные поправочные коэффициенты с учетом особенностей помещения — конструкции стен и остекления.

Для более точного расчета введем поправочные коэффициенты — в примере мы рассматривали помещение с одной наружной стеной из кирпича и однослойным остеклением в виде окна. Если помещение угловое, то потребность увеличится примерно на 10 % (коэффициент 1,1), если остекление тройное, то вводим коэффициент 0,8 — он покажет снижение потребности в тепле.

В самом простом варианте обогрев комнаты площадью 20 кв.м. потребует установки конвекторов суммарной мощностью 2,0 кВт, углового помещения — 2,2 кВт, с хорошим утеплением и качественными стеклопакетами — примерно 1,7 кВт. Расчет сделан для помещения высотой до 3,0 м.

Пример расчета тепловой мощности конвектора модели Бриз

Пример расчета построим на нескольких вариантах модели, используя разные данные о размерах. Высота приборов находится в пределах 80 — 120 мм, глубина — 200 — 380 мм, длина от 0,8 до 5 м (5000 мм). Конвектор размерами 200 х 80 мм имеет теплоотдачу с одного метра длины 340 Вт. Умножаем площадь помещения на 100, получая таким образом общую потребность помещения в тепловой энергии. Полученный результат делим на 340 — в итоге мы видим, какова должна быть общая длина конвекторов.

Этот результат можно поделить на длину одного из выбранных изделий — вы получите их количество в штуках.

Как рассчитать мощность конвектора отопления? 1. по площади или 2. тепловой расчет помещения?!

Просмотров: 3395

Конвекторы – основные отопительные приборы для отопления жилых, общественных помещений и производств. Чаще всего при установке качественного внутреннего отопления выбор падает именно на конвекторы, поскольку они дают высокоэффективный и бесперебойный источник тепла, способный отапливать помещения любого назначения и размера.

Важным фактором после выбора типа конвектора является расчет его мощности.

Рассмотрим 2 варианта расчета мощности (Вт) конвектора

1. Подбор происходит исходя из площади помещения. (не грамотный подход, переплата в 2-3 раза)

Данный вариант расчета мощности конвектора является не верным (разъяснение в конце раздела), но его часто применяют и поэтому рассмотрим его тоже.

 

Для произведения расчетов потребуется собрать необходимые данные, от которых будет зависеть корректность результатов.

От чего зависит расчет мощности конвектора

Рассчитать оптимальный показатель мощности отопительного прибора для дома – задача не из простых. В этом случае важно не лениться делать подсчеты и манипулировать с цифрами, ведь только это поможет определить золотую середину именно для вашего помещения. Слишком большой показатель прибора становится главной причиной высоких денежных расходов, недостаток, в свою очередь, ведет к отсутствию необходимого количества тепла.

При самостоятельном расчете мощности отопительного прибора необходимо учитывать следующие факторы:
  • тип конвектора;
  • назначение помещения;
  • количество окон в комнате;
  • высота потолка;
  • наличие другого типа отопления;
  • количество наружных стен;
  • наличие теплоизоляции, тип остекления.
Чтобы избежать ошибок в расчете, важно учитывать все детали расположения помещения. Предпочтительно обратиться за профессиональной помощью, но, если такой возможности нет, можно обойтись собственными силами, опираясь на основные методики произведения расчета.
Формула расчета мощности

Расчет мощности по площади является самым простым, поскольку требует минимальных знаний. Стандартная формула такого расчета гласит, что для отопления 10 кв.м. площади стандартно требуется 1 кВт тепловой энергии. Но эта формула не верна на сегодняшние дни, так как ее применяли в 50-60-х годах при строительстве многоэтажных домов из одинаковых материалов. Применение такого расчета давало понять, какую ориентировочную мощность на отопление можно принять для строительства районной котельной.

Начиная с 90-х годов, произошли изменения в строительных нормах, и основное изменение каснулось энергоэффективного строительства многоэтажных домов. Это привело к более теплым фасадам зданий и уменьшению затрат на отопление.

Формула 1 кВт на 10 кв.м. стала не актуальной.

 


В качестве исключений, при которых коэффициент тепловой энергии может измениться, относятся:
  • угловое расположение комнаты – 1,2 кВт;
  • нет внешнего утепления стен – 1,1 кВт;
  • окна из однослойных стеклопакетов – 0,9 кВт;
  • высокие потолки (от 2,8 до 3 м) – 1,05 кВт;
  • качественная теплоизоляция, тройной стеклопакет – 0,8 кВт.

В идеале для расчета учитываются такие детали, как наличие входной двери, роза ветров, а также оптимальное соотношение площади напольного покрытия и окон. Из этого следует, что оптимальный мощностный показатель для встроенного помещения 20 кв.м. со стандартными теплопотерями, высотой потолка 2,7 м и одинарным стеклопакетом составляет 2 кВт.

Простая таблица расчетов

Для определения оптимальной мощности конвектора можно воспользоваться универсальной таблицей мощностей по площади отапливаемой комнаты, с учетом высоты потолков и важных факторов размещения:

площадь помещения мощность в кВт с учетом:
высота потолка 2,7 м высота потолка 2,8 м высота потолка 2,9 м и больше 1 наружная стена 2 наружные стены
10 1 1,12 1,16 — 1,2 1кВт 1,2кВт
15 1,5 1,68 1,74 — 1,8 1,2кВт 1,3кВт
20 2 2,24 2,32 — 2,4 +10% +10%
25 2,5 2,8 2,9 — 3 +15% +15%
30 3 3,36 3,48 — 3,6 +20% +20%

Пользуясь представленной выше таблицей можно с легкостью подобрать необходимую мощность для конвектора. При угловом размещении комнаты важно применить к представленным параметрам повышающий коэффициент 1,1, при наличии в комнате надежного теплового изолирования – 0,8.

Итак, описание данного метода с научной точки зрения:

Расчет мощности по площади помещения, применим, но!!! Данный метод использовался ранее и применяется сейчас, только при строительстве района, микрорайона, мини городках и т.д., в определенном регионе. Им пользуются для определения мощности районной котельной или ИТП.

Когда идет строительство из однотипного материала и определён объём строительства, берут 1 дом, производят тепловой расчет и выводят теплопотери на 1 кв.м.

При индивидуальном или частном строительстве, такой метод не применим, так как все строения выполнены из разных материалов.

Применяя такой метод, Вы никогда не определите, сколько тепла нужно подать в помещение для его обогрева. Вы либо переплатите за отопление, будет избыток тепла, либо будет холодно зимой в доме или квартире.

2. Подбор конвекторов, используя теплотехнический расчет наружных ограждений.

На первый взгляд, данный метод кажется сложным, но на самом деле вам не требуется ломать голову над этим.

Когда Вы приобретает конвектор или иной прибор для отопления, вам просто нужно уточнить у продавца следующее: Какую мощность дает тот или иной прибор (Вт) и при какой температуре теплоносителя (для водяных систем отопления)?

Если такую информацию получить удается, то хорошо и можно дальше продолжать диалог, если сказать не могут, то лучше обратиться в другое место за приобретением отопительного прибора.

Итак, предположим, Вы получили ответ на вопрос и что делать дальше?:
  1. Нужно иметь на руках план или проект с размерами помещений и окон;
  2. Узнать температуру теплоносителя в вашей системе отопления, для квартир, это предоставляет управляющая компания, для частных домов, при покупке котла отопления, в его технических характеристиках имеется такая информация.

Рассмотрим вариант с квартирами, так как для частного дома требуется более профессиональный подход в области теплоэнергетики.

1. Требуется только выяснить, из чего сделаны наружные стены в квартире. В этом вопросе Вам поможет управляющая компания или строитель, с которым Вы будете делать ремонт.

Есть несколько типов при современном строительстве, наружных стен в многоэтажных домах:

  • Материал стен однородный;
  • Многослойный с утеплителем;
  • Вентилируемый фасад;
  • Стекло.
2. Обладая этой информацией, Вы можете обратится в туже фирму, где собираетесь приобрести прибор отопления и попросить сделать подбор с учетом вышеперечисленных данных.

Если Вам помочь не смогли по каким-то причинам, то не стоит расстраиваться, не все продавцы в области отопления разбираются в этом вопросе, лучше обратиться туда, где есть профессионалы.

3. Когда Вам удалось найти общий язык с продавцом или инженером, то можете смело покупать конвектор или другой прибор отопления.

Данный метод гарантирует на 95-100%, что Вы купили такой прибор отопления, который Вам подходит и не переплатили в 2-3 раза.

Как рассчитать мощность работы конвектора для помещений в загородном доме?

Самый точный расчет мощности обогревателя может выполнить только профессионал, с учетом всех вводных, включая климатическую зону и материала строения, качества утепления дома. Параметров действительно много, так что же делать простому потребителю, который стоит у прилавка с конвекторами?

 

 

Приблизительные расчеты необходимой мощности конвектора

В действительности все относительно просто:

  • Расчет мощности конвектора по площади помещения. Если теплоизоляция дома отвечает нормативным требования и высота потолков приближенная к стандарту 250 – 300 см. Предварительные вычисления по упрощенной формуле без повышающих или понижающих поправок будут выглядеть так:  Площадь комнаты делим на 10. Для помещения в 10 м2 потребуется мощность прибора в 1кВт.
  • Расчет необходимой мощности конвектора по объему помещения потребуется, если высота перекрытий больше или меньше стандартных 2,5-3 м. Вычисляем объем, используя базовые школьные знания —  площадь комнаты умножить на высоту стены. Полученный объем умножаем на 0.04. Примером возьмет ту же комнату 10 м2, но с высотой стены 3 м – 10х3. Весь объем воздуха в этой комнате будет 30 м3. 30х0.04кВт (или 40Вт) =1,2 кВт или 1200Вт. Прибор, обеспечивающий теплоотдачу на 1,2 кВт (1200 Вт) в час вполне способен поддерживать оптимально-комфортную температуру в небольшой комнате с потолком 3м,  с одним окном и одной наружной стеной.

Обратите внимание, речь идет о помещении с одним окном и одной внешней стеной!

Расчеты даны для помещения с одной внешней стеной и одним окном. Как скорректировать калькуляцию, находясь даже у  прилавка?

Как применять поправочные коэффициенты при расчете мощности конвектора отопления

Выше описаны расчеты без коэффициентов поправок, с учетом того, что средняя мощность конвектора отопления, как основного источника тепла, берется из расчета 40 Ватт на 1м3.

Если конвектор требуется для дополнительного отопления, то требования к мощности можно уменьшить на 25-30%.

Повышающий коэффициент 1,1 (цифра, на которую следует умножать свой предварительный расчет) применяется на каждое дополнительное окно, внешнюю стену (угловая комната).

 

 

 

 

Энергосберегающие окна, качественное утепление дома эковатой, позволяют применить понижающий коэффициент 0.8 при определении мощности конвектора отопления.

Мощности прибора отопления в характеристиках производителя, это максимальный показатель. И если теплоотдачу можно уменьшить, благодаря терморегуляторам, то выше заявленной мощности прибор работать не будет. Поправки при вычислении нужной мощности конвектора в сторону увеличения более рациональны. Не стоит опасаться перегрева в помещении, поскольку современные приборы оснащены системой контроля, а вот недостаток мощности не позволит дать достаточного количества тепла для обогрева.

Важно. Если мощность котла отопления выбирают, учитывая суммарную площадь дома, то конвектор, исходя из площади самого помещения, его исходных данных.

Сам принцип работы конвекторов основан на конвективном движении потоков воздуха. Теплый и более легкий воздух всегда стремится вверх, холодный в свою очередь вниз. И конвектор запускает циркуляцию воздуха в усиленном режиме. Упрощенно это выглядит так – холодный воздух, опускаясь вниз, затягивается в камеру конвектора. Нагревается, проходя через теплообменник, поднимается, заполняя помещение теплом. Поэтому очень важно в частном доме обеспечить теплоизоляцию перекрытий, чтобы не дать теплу покинуть комнату вместе с восходящими потоками воздуха.

Как правило, конвекторы отопления устанавливают под окном, для того чтобы отсечь потоки холодного воздуха, идущие от оконных проемов. Внутрипольные водяные конвекторы для этих целей устанавливают по периметру остекленных панорамных стен. Встроенные в пол водяные конвекторы отопления от российского производителя в Санкт-Петербурге поставляет компания Warmes Haus. Более полутора тысяч моделей в различном исполнении. Возможно и изготовление по индивидуальным параметрам. Нисколько не уступая европейским производителям в качестве, российские приборы отопления более доступны по срокам поставки и цене.

 

 

 

Калькулятор расчета мощности конвектора отопления по площади

Стены

Общая длина внешних (холодных) стен помещения: м

Высота стены: м

Количество слоев материала наружних стен: 1 2 3 4 5

Тип материала:

Слой 1
ЖелезобетонКерамзитобетонПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйФанера клеенаяГранит, гнейс и базальт1МраморИзвестнякТуфКартон облицовочныйПлиты минераловатныеПенополиуретанГравий керамзитовыйПеностекло или газостеклоТолщина слоя: м

Слой 2
ЖелезобетонКерамзитобетонПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйФанера клеенаяГранит, гнейс и базальт1МраморИзвестнякТуфКартон облицовочныйПлиты минераловатныеПенополиуретанГравий керамзитовыйПеностекло или газостеклоТолщина слоя: м

Слой 3
ЖелезобетонКерамзитобетонПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйФанера клеенаяГранит, гнейс и базальт1МраморИзвестнякТуфКартон облицовочныйПлиты минераловатныеПенополиуретанГравий керамзитовыйПеностекло или газостеклоТолщина слоя: м

Слой 4
ЖелезобетонКерамзитобетонПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйФанера клеенаяГранит, гнейс и базальт1МраморИзвестнякТуфКартон облицовочныйПлиты минераловатныеПенополиуретанГравий керамзитовыйПеностекло или газостеклоТолщина слоя: м

Слой 5
ЖелезобетонКерамзитобетонПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйФанера клеенаяГранит, гнейс и базальт1МраморИзвестнякТуфКартон облицовочныйПлиты минераловатныеПенополиуретанГравий керамзитовыйПеностекло или газостеклоТолщина слоя: м

Остекление

Высота окна: м

Ширина окна: м

Стеклопакет: Однокамерный Двухкамерный

Пол

Холодный подвал

Площадь пола: кв. м

Количество слоев материала пола: 1 2 3 4 5

Тип материала:

Слой 1
Гранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанКерамзитобетонГравий керамзитовыйРаствор ЦементнопесчаныйПесок для строительных работ (ГОСТ 8736-77*) Толщина слоя: м

Слой 2
Гранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанКерамзитобетонГравий керамзитовыйРаствор ЦементнопесчаныйПесок для строительных работ (ГОСТ 8736-77*) Толщина слоя: м

Слой 3
Гранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанКерамзитобетонГравий керамзитовыйРаствор ЦементнопесчаныйПесок для строительных работ (ГОСТ 8736-77*) Толщина слоя: м

Слой 4
Гранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанКерамзитобетонГравий керамзитовыйРаствор ЦементнопесчаныйПесок для строительных работ (ГОСТ 8736-77*) Толщина слоя: м

Слой 5
Гранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанКерамзитобетонГравий керамзитовыйРаствор ЦементнопесчаныйПесок для строительных работ (ГОСТ 8736-77*) Толщина слоя: м

Кровля

Холодный чердак

Площадь кровли кв. м

Количество слоев материала кровли: 1 2 3 4 5

Тип материала:

Слой 1
Сосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйРаствор Цементнопесчаный Толщина слоя м

Слой 2
Сосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйРаствор Цементнопесчаный Толщина слоя м

Слой 3
Сосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйРаствор Цементнопесчаный Толщина слоя м

Слой 4
Сосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйРаствор Цементнопесчаный Толщина слоя м

Слой 5
Сосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйРаствор Цементнопесчаный Толщина слоя м

Расчет конвекторов отопления по площади помещения

Эти отопительные приборы устроены так, что большая часть их теплоотдачи происходит путем конвекции, откуда и название. Конвекторы по типу используемого энергоносителя бывают газовые и электрические. Если первые применяются как основной источник тепла в помещении, то электрические приборы обычно бывают дополнительными обогревателями. Хотя, в тех случаях, когда другие энергоносители недоступны, иногда приходится использовать отопительнные электроконвекторы для частного дома в качестве основного обогревателя.

Для того, чтобы мощности отопительных приборов хватало для поддержания желаемой температуры в помещении при любой погодной ситуации, следует делать предварительные вычисления, с тем, чтобы определить необходимую для этого теплоотдачу конвекторов. Далее в статье мы рассмотрим, как можно лучше рассчитывать тепловую мощность воздухонагревателей, беря во внимание площадь помещения, а также его объем.

Расчет необходимой теплоотдачи конвектора как основного источника тепла

Как упоминалось выше, в виде основного средства для выработки тепла обычно используется конвектор, нагревающийся от горения природного газа. Это стационарный прибор, что устанавливается в том помещении, какое должен отапливать.

Газовые конвекторы выпускаются разной мощности, от 2 до 7 кВт с шагом 1 кВт, причем все производители придерживаются данных стандартов. Следует помнить, что этот показатель обозначает максимально возможную теплоотдачу, какую может обеспечить описываемый обогреватель, поэтому во время покупки устройства следует учитывать этот нюанс. Теперь рассчитаем необходимую тепловую мощность конвекционного отопления частного дома газовым обогревателем исходя из площади помещения.

Расчет по площади

Сразу стоит отметить, что данный расчет очень приблизительный и требует множество повышающих и понижающих поправок. Однако он прост и годится для приблизительной оценки потребности комнаты в нужной мощности прибора для отопления. Согласно строительным нормам, в комнате с одним окном, наружной стеной и высотой потолка в пределах 2,5 м для обогрева 1 м2 площади необходим 0,1 кВт тепла. Имеется в виду, что этого количества тепловой энергии хватит при любых возможных погодных условиях. Опять же следует учесть, что данного количества тепла хватит для отопления 1 м2 в течение часа.

Для расчета возьмем комнату с описанными условиями площадью 10 м2 (2,5х4, например). Значит, мощность обогревателя нам понадобится 10х0,1= 1 кВт. Поэтому, если отапливать такую комнату газовым конвектором, пригодится прибор с максимальной теплоотдачей 2 кВт. Нет ничего страшного в том, что воздухонагреватель мощнее расчетной потребности. Дело в том, что все современные газовые обогреватели оборудованы автоматической системой терморегуляции, что отключает прибор при достижении определенной температуры, какая выставляется произвольно с помощью ручки-регулятора.

При таком способе вычислений существует множество понижающих и повышающих коэффициентов, с помощью которых можно улучшить их точность. Так, например, если комната угловая, то есть, имеет две наружные стены, то полученный результат следует умножить на коэффициент 1,1. Если проведена качественная теплоизоляция стен и установлены энергосберегающие окна, поправка будет равна 0,8.

Расчет по объему

Чтобы рассчитать теплоотдачу конвектора, необходимую для отопления данного помещения, отталкиваясь при калькуляции от имеющегося объема, нужно проделать такие несложные действия:

  • сделать расчет объема комнаты;
  • умножить найденную величину на 0,04;
  • уточнить результат с помощью коэффициентов.

Расчет по объему считается более точным, так как здесь учитывается высота потолочных пререкрытий. Объем рассчитывается просто, — нужно площадь комнаты умножить на высоту стены. Допустим, если взять ту же комнату площадью 10 м2 с высотой потолка 3 м, объем выйдет 30 м3. Умножив данную величину на 0,04 (именно столько нужно кВт тепла для отопления 1 м3), получаем 1,2 кВт. То есть, если в комнате с площадью 10 м2 будет высота потолков 3 м, конвекционного газового обогревателя с максимальной теплоотдачей 2 кВт здесь будет вполне достаточно.

И в этом случае, чтобы получить более точный результат можно использовать коэффициенты. Скажем, если в комнате более одного окна, на каждое из них добавляется 10%. Наоборот, снижается потребность помещения в тепловой энергии, если произведено утепление пола и потолочных перекрытий (это касается частных домов).

Расчет электрического конвектора отопления как дополнительного источника тепла

Электрические конвекционные обогреватели часто используются для дополнительного отопления в пиковые морозы, когда по каким-то причинам мощности основного отопления не хватает для поддержания комфортных показателей микроклимата. В этом случае необходимая теплоотдача прибора рассчитывается так. Если ведется расчет по площади, то на каждый м2 нужно от 30 до 50 Вт. Если же вычислять, отталкиваясь от величины объема, то на каждый м3 помещения необходимо 0,015-0,02 кВт тепловой энергии.

Электроконвекторы для отопления также оборудованы автоматизированной системой терморегуляции, поэтому при вычислении необходимой теплоотдачи для вспомогательного обогрева, лучше сделать поправку в большую сторону.

В этой статье мы описали простые способы расчета конвекторов отопления, как в случае использования их в качестве основного источника тепла, так и для дополнительного обогрева. Надеемся, приведенные способы расчетов помогут вам правильно определиться с необходимой мощностью обогревателя.

Мощность конвектора отопления — Система отопления

На этой вкладке сайта мы сможем выбрать для нужного коттеджа необходимые компоненты монтажа. Любой узел неоспоримо важен. Посему выбор каждого элемента системы нужно осуществлять грамотно. Монтаж обогревания коттеджа включает некоторые устройства. Схема обогревания имеет, батареи терморегуляторы, крепежи, увеличивающие давление насосы, коллекторы, развоздушки, трубы, бак для расширения котел, систему соединения.

Мощность конвектора отопления

Рассчитываем мощность конвектора

Для выбора тепловой мощности конвектора, достаточной для каждой комнаты, можно следовать простому правилу:

  • в комнате с одной наружной стеной и одним окном одного киловатта (1 кВт) тепловой мощности конвектора достаточно для отопления 10 кв.м. жилой площади;
  • если в комнате две наружные стены и одно окно, то для отопления 10 кв.м. требуется добавить 20%, получится 1,2 кВт тепловой мощности;
  • если в комнате две наружных стены и два окна, для отопления 10 кв.м. требуется 1,3 кВт тепловой мощности.

Существуют более точные расчеты необходимой мощности радиаторов. которыми руководствуются специалисты, но для грубой оценки предложенного простого метода достаточно. При этом методе расчета батареи могут оказаться чуть большей мощности, чем необходимо, но зато возрастет качество отопительной системы (возможна более точная настройка и низкотемпературный режим отопления).

для работы программы расчета, необходимо разрешить активное содержимое для данной страницы

Расчет мощности отопительного конвектора

Источник: http://maxiterm.ua/howtochuse/

Мощность конвектора отопления

Электрические конвекторы используются как основные источники отопления здания, так и в качестве дополнительных приборов обогрева. Этот момент при расчете необходимой мощности устройства учитывается в первую очередь. Чаще прибор является дополнением к централизованной или автономной системе, если основное отопление не обеспечивают необходимый температурный режим в некоторых помещениях.

Расчет мощности обогревателя для каждого случая производится по различным исходным данным.

Устройство электрического конвектора отопления.

Для более точного вычисления параметров желательно знать теплопотери конструкций зданий, где будут установлены обогреватели. Но если эти значения неизвестны, можно воспользоваться справочниками по системам отопления.

В обобщенном виде расчет мощности обогревателя производится по следующим коэффициентам:

  • для помещений с качественной теплоизоляцией (стандарты стран Скандинавии и Канады) — 20 Вт/м 3 ;
  • для объектов со средней теплоизолированностью (утепление конструкций пенопластом, использование стеклопакетов и т. д.) — 30 Вт/м 3 ;
  • слабо изолированные объекты (по существующим стандартам на ограждающие конструкции) — 40 Вт/м 3 ;
  • объекты с минимальной теплозащитой (ангары, склады, производственные помещения и т. п.) — 50 Вт/м 3 .

Исходя из этих данных, принимается, что для обогрева каждого 1 м 3 помещения требуется в среднем 40 Вт мощности конвектора, как основного источника тепла. Для использования устройства в качестве дополнительного отопления расчет производится со значением коэффициента 25-30 Вт/м 3 .

Расчет требуемой мощности конвектора

Устройство встраиваемого конвектора.

Таким образом, мощность конвектора для отопления помещения в обобщенном исчислении должна быть равна его объему, умноженному на 40. К примеру, для комнаты площадью 10 м 2 и высотой 3 м потребуется обогреватель мощностью 10х3х40=1200 Вт. Если в этом помещении есть основная система отопления, в качестве дополнительного источника тепла потребуется прибор производительностью 10х3х25=750 Вт.

Для квартир со стандартной высотой потолков (2.4-3 м) обогреватель выбирают, производя расчет по упрощенной формуле. Для каждого 1 м 2 площади требуемую мощность принимают равной 100 Вт, для дополнительного обогрева соответственно — 70 Вт.

Для эффективного электрообогрева нескольких комнат лучше приобретать прибор меньшей производительности, но для каждой комнаты. Для внутренних комнат с одной наружной стеной расчетные параметры можно несколько снизить. Для угловых помещений их значение необходимо увеличить. Для прихожих и подсобных помещений температурный режим может быть менее комфортным, поэтому конвектор допустимо установить с меньшей производительностью. Современные электрические обогреватели оборудованы термостатами, отключающими устройство при достижении определенной величины температуры. Использование более мощных конвекторов для отпления не грозит излишним нагревом воздуха.

Если здание, в котором вы собираетесь установить обогреватели, имеет старую алюминиевую электропроводку, ее следует заменить. Вне зависимости от сечения провода алюминий может не выдержать нагрузки отопительных приборов. Если у вас пока нет возможности поменять проводку, проведите отдельную линию к розеткам для подключения обогревателей.

Сечение кабеля необходимое для питания отопительных приборов лучше выяснить у работников службы электрических сетей. Это позволит избежать наложения штрафов с их стороны в дальнейшем. Если вы решаете этот вопрос самостоятельно, производя расчет, следует учесть, что минимальное сечение провода для розетки составляет 2,5 мм 2. Для потребителей с суммарной мощностью 9 кВт это значение равно 4 мм 2. Смонтировав проводку с размером сечения 6 мм 2. вы обеспечите запас ее надежности в случае установки дополнительных электроприборов в дальнейшем.

Источник: http://1poteply.ru/obogrevateli/montag/konvektory-otopleniya.html

Мощность конвектора отопления

С приходом холодов многие задумываются о дополнительном обогреве своего жилища, кабинета или другого места. Одним из распространенных  способов обеспечить себя теплом является покупка и  установка конвектора (о технологии установки ).

Что же такое конвектор? Это последняя разработка в технике, позволяющая обогревать воздух в помещении, основанный на движении воздушных масс.

Принцип работы основан на всем известном законе теплообмена. Согласно этому закону, холодные воздушные массы опускаются вниз, а теплые воздушные массы понимаются на верх, создавая, таким образом, циркуляцию. По прохождению некоторого времени нижние холодные слои нагреваются, тем самым создают оптимальную температуру в помещении.

Детальнее о принципе работы читайте тут .

При покупке оборудования стоит задуматься о его мощности и о том, как рассчитать мощность конвектора отопления.

С этим вопросом можно довольно таки легко справиться.  В первую очередь стоит уточнить, для каких целей необходим конвектор: как дополнительный обогрев или же источник основного тепла в помещении.

В случае установки конвектора как единственного источника подачи тепла стоит принимать в расчет цифру 40 Вт на метр кубический. Это означает, что для обогрева одного кубического метра помещения необходимо будет затратить сорок ватт энергии.  Так как же рассчитать мощность конвектора отопления? Для полного подсчета нужно знать размеры помещения: высота потолка, длина и ширина комнаты. Умножив все данные, получим объем комнаты, затем эту цифру перемножаем на сорок  и получаем значение необходимой мощности.

Совет. Не стоит применять простую форму для расчетов, где берется значение сто ватт вместо сорока. В этом случае можно допустить грубую ошибку. Ведь умножая объем на сто ватт, не учитывается высота потолка.  Можно сказать, что это нет так уж и важно, но потребляемая мощность конвектора будет тогда определена неверно.  В  домах загородного типа или в старинных домах высота потолка имеет внушительные значения и это может огромным образом повлиять на отопление. Формула будет посчитана неправильно,  мощность будет маленькая и  в итоге прибор отопления просто не справится со своей задачей. Поэтому нужно учитывать малейшие нюансы при расчете.

Пример расчетов

Для наглядности  проведем небольшой расчет: необходим конвектор для отопления помещения  с окном, площадью 10 квадратных метров и потолок, площадью 4  метра.  Подставляем значения в формулу и получим: 10 умножим на 4 и умножим на 40 (10*4*40) в итоге получим 1600 ватт. Максимальная мощность для такой комнаты будет 2кВт.

Еще одно важное замечание. Конвектор стоит устанавливать непосредственно под окном (под подоконником), таким образом холодный воздух от окна будет сразу же нагреваться тем самым не охлаждая температуру в помещении.

Во втором случае, когда конвектор устанавливается как дополнительный источник тепла в помещении на случай сильных холодов, перебойной подачи тепла по централизованной отопительной сети  расчет мощности конвектора немного другой.

Для расчета мощности в формулу, приведенную выше, подставляется значение не сорок ватт, а двадцать пять или тридцать пять, все зависит от площади помещения и размеров потолка. Соответственно для небольшого помещения берем значение двадцать пять и для помещения больших размеров берем значение тридцать пять.

Рассчитаем. Площадь помещения 20 квадратных метров и высота потолка три метра, получим (20*3*25) = 1500 кВт. Из расчетов видно, что мощность конвектора должна быть  от одного до полторы тысячи киловатт. Поэтому берем усредненное значение и получаем мощность конвектора 1.25 киловатт.

Полезная подсказка для проверки расчетов

Следуя этим советам можно приобрести оборудование, которое будет всегда радовать своим теплом.

Стоит отметить, что существует несколько вариантов конвекторов:

  • Напольный.
  • Настенный.

Каждый из них обладает своими качествами и недостатками. Так напольный конвектор является универсальным средством обогрева, он устанавливается в любое место на полу. Это может быть кабинет, прихожая, кладовка. Вообще вариантов  размещения много и каждый из них приносит тепло как для одного человека, так и для нескольких.

Настенный конвектор устанавливают только под окном, образуя теплоизоляцию.

Не стоит забывать и о стабильном напряжении.  Не каждая фирма или организация, а так же дом может похвастаться стабильным напряжением. Иногда случаются перепады в сети, что чревато для многих электрических приборов поломкой. Для предотвращения подобных случаев необходимо позаботиться и о защите от перепадов. Существует два варианта решения этой задачи: реле-прерыватель и стабилизатор. Оба прибора хорошо справляются со своей задачей, чем обеспечивают непрерывную  работу всех электрических приборов, в том числе и  конвектора отопления.

Если вам ближе формат видео инструкции, смотрите ролик ниже. В нем Александр Ярыгин (директор компании «Авангард Холдо» рассказывает про правильный расчет мощности оборудования, делится советами из практики).

Надеемся, что материал был вам полезен. Будем сильно благодарны, если вы нажмете кнопки социальных сетей.

Источник: http://kvarremontnik.ru/rasschityvaem-moshhnost-konvektora/

Так же интересуются
15 мая 2021 года

Как рассчитать тепловую мощность конвекторов, обогревателей и прочих отопительных приборов 

На чтение 9 мин. Опубликовано Обновлено

Теплотехнический расчет – это вычисление требуемой толщины перекрытий в соответствии теплоизоляционных характеристик материалов и мощности нагревательных приборов. Любое помещение для создания комфортных условий в холодное время года требует определенного количества тепла, и неважно проектируется отопительная система частного дома или требуется обогреть только одну комнату – расчеты необходимы.

Все отопительные приборы независимо от типа устройства (конвекторы, радиаторные батареи, обогреватели, тепловые пушки и т.д.) и типа теплоносителя (водяные, газовые, электрические) отапливают помещения и производимое ими тепло называется тепловой мощностью. Именно эта характеристика имеет важнейшее значение при выборе обогревательного прибора.

Например невозможно обогреть мастерскую площадью 20 м2 и построенную без теплоизоляции при -150С электрическим обогревателем мощностью 1 кВт, а небольшую ванную комнату, расположенную в центре кирпичного дома запросто.

Количество тепла, которое требуется помещению для обогрева, измеряется в килокалориях, а мощности приборов в ваттах, поэтому для перевода одного значения в другое нужно килокалории поделить на 860 и получатся кВт.

1 кВт=860 ккал.

Все производители отопительного оборудования обязательно указывают тепловую мощность прибора в паспорте или инструкции. Однако, следует учитывать, что указанная мощность достигается при соблюдении всех условий эксплуатации т.е. для водяных конвекторов или радиаторов имеет значение температура теплоносители, а для газовых приборов давление газа.

Поэтому помимо мощности отопления производители указывают, для каких условий эксплуатации предназначено оборудование.

Например, если у вас старая система центрального отопления с температурой нагрева 40-500С, рекомендуется приобретать конвекторы для низкотемпературных систем отопления.

Простейший расчет тепловой мощности обогревателя

Существует общепринятый стандарт расчета тепловой мощности обогревателя при высоте помещения не более 3 м. На 10 метров квадратных площади устанавливается 1 кВт мощности прибора.

Эта формула неплохо работает при расчетах электрических отопительных приборов в помещениях с идеальными условиями — высокой теплоизоляцией, минимальной теплопотерей и одним окном с утепленным стеклопакетом. Но существует и примитивный вариант расчета, позволяющий учитывать и высоту комнат.

Простой расчет тепловой нагрузки (Q) помещения:

V (объем помещения/м3) х 40 Вт/1000 = Q (кВт/ч)

Эта формула не позволяет допустить ошибок, связанных с грубым расчетом по принципу 1 кВт на 10 м2 т.к., учитывает объем комнаты включая высоту потолков. Однако и при таком расчёте легко совершить оплошность и приобрести «слабый» прибор — не учтено много важных факторов.

Пример расчетов

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м.

По первой формуле мы выясняем площадь помещения – 5х6 = 30 м2 и умножаем на 1 кВт. Получается, что нам потребуется обогреватель на 3 кВт.

Но эти расчеты не гарантируют, что, купив обогреватель мощностью 3 кВт, вы получите комфортную температуру в помещении — в столь примитивном расчете даже не учитывается температура за окном. Если в средней полосе 3 кВт могут и справится с отоплением такой гостиной, но на севере с -35 за окном можете не сомневаться, разочарование от покупки и стучащие зубы вам обеспечены.

По второй формуле мы выясняем объем помещения – 4х5х6 = 120 м3.

V х 40 Вт/1000 = 120 х 40 / 1000 = 4,8 кВт

Как можно видеть вторая формула более точно отражает необходимую потребность помещения в тепле. Кроме того учитывайте, что эти расчеты обычно применяются в электрических обогревателях, а с прибором мощностью 5 кВт в час вы разоритесь на счетах за электроэнергию, да и далеко не вся проводка выдержит подобную нагрузку.

Формула расчета тепловой нагрузки с учетом разницы температур

Для более точного определения требуемой тепловой мощности обогревателя или конвектора рекомендуем воспользоваться следующими формулой.

V (объем помещения) х T (разница температур) х φ (коэффициент теплопотери) = ккал/ч

где:

  • V – это упоминаемый выше объем комнаты: ширина * длину * высоты.
  • Т (разница температур) – в зависимости от климатической зоны температура на улице может составлять и -50 С и -300С. Поэтому в формулу введен параметр выражающий разницу между средней зимней температурой на улице и желаемой температурой в помещении. Пример: среднее зимнее значение на улице составляет -150С, а в комнате требуется 250С – получается Т = 400 С.
  • φ – коэффициент теплопотерь помещений в зависимости от конструкции и изоляции.
    • 3-4 – отсутствие теплоизоляции. Простые деревянные или металлические строения без изоляции.
    • 2-2,9 – низкая теплоизоляция. Кладка в один кирпич, упрощенная конструкция строений, одинарные окна.
    • 1-1,9 – средняя теплоизоляция. Строения с кладкой в два кирпича, стандартные здания, обычная кровля, небольшое количество окон.
    • 0,6-0,9 — высокая теплоизоляция. Мало окон, сдвоенные рамы, кирпичные стены, двойная теплоизоляция, утепленная крыша и толстое основание пола.

Для получения значения мощности конвектора или обогревателя в киловаттах требуется получившееся в число разделить на 860.

Пример расчетов

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на хорошем основании (фундамент), с большим панорамным окном. Средняя температура зимой -150С, желаемая температура в комнате +220С.

  • Выясняем объем помещения – 4х5х6х = 120 м3.
  • Определяем разницу температур – 15+22=370С.
  • Подбираем коэффициент – возьмем среднее значение 1,4 т.к. несмотря на стены в два кирпича и утолщенный пол присутствует большое окно.

Подставляем данные в формулу:

V х T х φ = 120 х 37 х 1,4 = 6216 ккал.

Переводим килокалории в кВт – 6216/860= 7,2 кВт.

Получается, что для получения требуемой температуры в гостиной нам потребуется установить обогревательный прибор на 7 кВт.

Естественно в данном случае и речи не может быть об установке электрических приборов. Такие значения можно получить при установке газовых или водяных конвекторов, радиаторных батарей, тепловых пушек и т.д. Однако с учетом размеров гостиной, подобная мощность излишня — снова нет в расчете некоторых важных нюансов.

Формула расчета тепловой мощности с учетом дополнительных факторов

Несмотря на введение коэффициента потерь тепла предыдущая формула не способна отразить всевозможные нюансы помещений. Наример теплопотери квартиры расположенной на 5 этаже в центре девятиэтажного здания ниже, чем у угловой квартиры на последнем этаже. Для получения более точных данных рекомендуем воспользоваться формулой:

Q = (100 Вт/м2 х S х φ1 х φ2 х φ3 х φ4 х φ5 х φ6 х φ7)/1000

Где:

  • S – площадь помещения в м2.
  • φ 1 – потери тепла через окна:
    • 0,85 – тройной стеклопакет;
    • 1 – двойной стеклопакет;
    • 1,27 – одинарный стеклопакет (стандартный).
  • φ 2 – утепление стен (теплоизоляция):
    • 0,854 – высокое;
    • 1 – кладка в два кирпича;
    • 1,27 – низкое.
  • φ 3 – соотношение общей площади окон к площади пола помещения в %:
    • 1,2 – 50%;
    • 1,1 – 40%;
    • 1 – 30%;
    • 0,9 – 20%;
    • 0,8 – 10%.
  • φ 4 – коэффициент умножения в зависимости от температуры внешней среды в минусовых значениях 0С:
    • 1,5 – -350С;
    • 1,3 – -250С;
    • 1,1 – -200С;
    • 0,9 – -150С;
    • 0,7 – -100С.
  • φ 5 – сколько стен имеют контакт со внешней средой (выходят на улицу):
    • 1,4 -4;
    • 1,3 -3;
    • 1,2 -2;
    • 1,1 -1.
  • φ 6 – теплоизоляция помещения находящегося сверху над расчетным:
    • 0,8 – обогреваемое;
    • 0,9 – утеплённое, но не отапливаемое;
    • 1 — холодный чердак или крыша.
  • φ 7 – высота в метрах:
    • 1,2 – 4,5м;
    • 1,15 – 4м;
    • 1,1 – 3,5м;
    • 1,05 – 3м;
    • 1 – 2,5м.

Как видите в формуле расчета тепловой мощности обогревательного оборудования учтено значительно больше значений влияющих на теплопотери.

Пример расчета

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на утепленном фундаменте с большим панорамным окном, со стандартным остеклением, занимающим 50% от площади пола. Средняя температура зимой -150С. На втором этаже отапливаемые спальни, две стены выходят на улицу.

Выясняем требуемые значения и коэффициенты:

  • S – 30м2.
  • φ 1 – 1,27.
  • φ 2 – 1.
  • φ 3 – 1,2.
  • φ 4 – 0,9.
  • φ 5 – 1,2.
  • φ 6 – 0,8.
  • φ 7 – 1,15.

Подставляем значения в формулу:

Q = (100 Вт/м2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000

Q = (100 Вт/м2 х 30 х 1,27 х 1 х 1,2 х 0,9 х 1,2 х 0,8 х 1,15)/1000 = 4,543 кВт

Исходя из этого уточненного расчета, получается, что нам нужно организовать отопление на 4,5-5 кВт.

Эта формула предпочтительна для расчета тепловой мощности отопительных систем, причем она подходит для расчета отопления в небольших жилых помещениях и в организации отопления промышленных объектов.

Важно! Для увеличения срока службы теплового оборудования и для учета непредвиденных ситуаций, рекомендуется добавлять небольшой запас в 10-15 %.к полученной тепловой мощности.

Нюансы при расчете мощности водяных конвекторов

Для выяснения необходимой мощности конвектора водяного отопления нужно учитывать дополнительные факторы, среди которых температура и давление рабочей среды (воды в отопительной системе).

Производители в паспортах и инструкций к водяным конвекторам указывают требуемую температуру теплоносителя, при которой прибор достигнет заявленной мощности. По санитарным нормам температура воды в централизованной системе отопления должна быть 70 градусов.

Однако в зависимости от состояния системы тепловой напор может быть ниже (в старых строениях) или выше (в новостройках). Большинство бытовых конвекторов работают при температуре до 950 С, однако максимальная температура, которую выдерживают водяные конвекторы это 120-1500С в зависимости от модели. В частных домах определение теплового напора проще — каждый пользователь может контролировать и задавать требуемые рабочие режимы самостоятельно.

Если вы уверены в требуемой температуре теплоносителя, можно приступать к расчетам по описанным формулам. Если вы проживаете в домах старого фонда, система отопления оставляет желать лучшего и зимой батареи нагреваются в пределах 30-600С, выбирайте специализированные конвекторы, рассчитанные на работу в низкотемпературных отопительных системах.

Модели для примера

  • Универсал КНУ-С КСК 20 – Настенный водяной конвектор мощностью 2,941 Вт предназначен для отопления помещения площадью до 30 м2.
  • ТРОПИК II КСК-В20-2 – водяной конвектор отопления на 2,206 кВт. Настенно-напольный тип монтажа, терморегулятор в комплекте.
  • FEG EURO F 8.50 CP – газовый конвектор на 7,095 кВт. Предназначен для площадей до 70 м2 или объемом до 140 м3. Расход газа 0,66 м3/час.
  • Hosseven HBS-12/1V — газовый конвектор на 9,6 кВт. Предназначен для помещений площадью до 96 м2. Расход газа 1,12 м3/час.
  • Ballu BHG-60 – тепловая пушка с обогревом 55 кВт. Работает на сжиженном газе. Воздушная производительность 1450 м3/час. Предназначена для обогрева производственных цехов с хорошей вентиляцией.
  • Stiebel Eltron CNS 300 S – электрический конвектор на 3 кВт. Настенный тип крепления, механическое управление. Предназначен для комнат площадью до 30 м2.
  • Electrolux EIH/AG2-2000 E — конвективно-инфракрасный обогреватель на 2 кВт рассчитан на обогрев комнат до 28 м2.
Будем рады оценке «Понравилось» или «Не понравилось» и комментарию, о том, что именно не понравилось в статье. Если оценили материал отрицательно и прокомментировали, мы постараемся его улучшить — нам важно знать Ваше мнение!Понравилось1Не понравилось

Расчет необходимой мощности для комнаты

Энергия 29 июн 2020

Было бы полезно знать волшебную формулу, которая даст нам количество тепла, необходимое для обогрева отдельной комнаты или всего дома. К счастью, есть несколько формул, позволяющих приблизиться к фактическому результату, но они допускают погрешность. Почему предел погрешности? Это связано с тем, что не все дома одинаковы.

Чтобы рассчитать необходимое отопление, мы должны учитывать размер и объем дома, ориентацию, размер и количество окон, тип изоляции стен и крыши и т. Д.

ДВЕ ПОЛЕЗНЫЕ ФОРМУЛЫ

Обычно мощность, необходимая для электрического обогрева, рассчитывается в ваттах.

Мощность: умножьте площадь в футах на 10. Для комнаты 20 футов на 20 футов мы получим 400 квадратных футов, умноженных на 10, чтобы получить 4000 ватт. Количество ватт = площадь x 10.

Этот результат действителен для домов, в которых есть комнаты с высотой потолков 8 футов. В случае современных домов с потолками выше 8 футов, практическое правило расчета — 1.25 Вт на кубический фут. Принимая во внимание предыдущий пример, высота потолка 9 футов составит 400 квадратных футов x 9 x 1,25 = 4500 Вт. Количество ватт = площадь x высота x 1,25.

Если вы подозреваете, что стены или потолок имеют дефекты теплоизоляции, вы можете добавить несколько процентных пунктов к расчету. То же самое можно сказать и о стенах с большими окнами. После выполнения расчетов для существующего дома нам может потребоваться добавить дополнительные обогреватели, такие как конвекторы или приточно-вытяжные устройства.

И наоборот, если комната имеет окна и хорошо ориентирована на солнце, мы можем придерживаться обычного расчета.

Наилучшая оценка потребностей дома в отоплении будет сделана сложением результатов для каждой комнаты.

В Северной Америке до сих пор можно встретить использование БТЕ / час в качестве меры мощности при обогреве. Формула для преобразования БТЕ в кВт следующая: P (кВт) = P (БТЕ / ч) / 3412,14.

Если мы полагаемся исключительно на электрические плинтусы в качестве источника тепла, их обычно устанавливают у основания окон, чтобы обеспечить наилучшее распределение тепла.В этом случае не стесняйтесь разделить общую требуемую мощность на количество окон в каждой комнате.

Для получения дополнительной информации о типе отопительного оборудования для конкретной комнаты или всего дома посетите следующую страницу.

Конвекция | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Обсудите метод передачи тепла конвекцией.

Конвекция вызывается крупномасштабным потоком вещества. В случае с Землей атмосферная циркуляция вызвана потоком горячего воздуха от тропиков к полюсам и потоком холодного воздуха от полюсов к тропикам. (Обратите внимание, что вращение Земли вызывает наблюдаемый восточный поток воздуха в северном полушарии). Автомобильные двигатели охлаждаются потоком воды в системе охлаждения, а водяной насос поддерживает поток холодной воды к поршням. Система кровообращения используется телом: когда тело перегревается, кровеносные сосуды кожи расширяются (расширяются), что увеличивает приток крови к коже, где ее можно охладить за счет потоотделения.Эти сосуды становятся меньше, когда на улице холодно, и больше, когда жарко (поэтому течет больше жидкости и передается больше энергии).

Тело также теряет значительную часть своего тепла в процессе дыхания.

Хотя конвекция обычно сложнее, чем теплопроводность, мы можем описать конвекцию и сделать несколько простых, реалистичных расчетов ее эффектов. Естественная конвекция вызывается выталкивающими силами: горячий воздух поднимается вверх, потому что плотность уменьшается с увеличением температуры.Таким образом, дом на Рисунке 1 поддерживается в тепле, как и горшок с водой на плите на Рисунке 2. Океанские течения и крупномасштабная атмосферная циркуляция передают энергию из одной части земного шара в другую. Оба являются примерами естественной конвекции.

Рис. 1. Воздух, нагретый так называемой гравитационной печью, расширяется и поднимается, образуя конвективную петлю, которая передает энергию другим частям комнаты. По мере того, как воздух охлаждается у потолка и внешних стен, он сжимается, в конечном итоге становится плотнее воздуха в помещении и опускается на пол.Правильно спроектированная система отопления с использованием естественной конвекции, подобная этой, может быть достаточно эффективной для равномерного обогрева дома.

Рис. 2. Конвекция играет важную роль в теплопередаче внутри этого котла с водой. Попадая внутрь, передача тепла другим частям горшка происходит в основном за счет конвекции. Более горячая вода расширяется, уменьшается по плотности и поднимается, передавая тепло другим областям воды, в то время как более холодная вода опускается на дно. Этот процесс повторяется.

Эксперимент на вынос: конвекционные ролики в подогреваемой сковороде

Возьмите две маленькие горшки с водой и с помощью пипетки нанесите каплю пищевого красителя на дно каждой. Оставьте один на скамейке, а другой нагрейте на плите. Наблюдайте, как цвет распространяется и сколько времени требуется, чтобы достичь вершины. Наблюдайте, как образуются конвективные петли.

Пример 1. Расчет теплопередачи путем конвекции: конвекция воздуха через стены дома

Большинство домов не герметичны: воздух входит и выходит через двери и окна, через трещины и щели, по проводке к выключателям и розеткам и так далее.Воздух в типичном доме полностью заменяется менее чем за час. Предположим, что дом среднего размера имеет внутренние размеры 12,0 м × 18,0 м × 3,00 м в высоту, и что весь воздух заменяется за 30,0 мин. Рассчитайте теплопередачу в ваттах за единицу времени, необходимую для нагрева входящего холодного воздуха на 10,0 ° C, заменяя тем самым тепло, передаваемое только конвекцией.

Стратегия

Тепло используется для повышения температуры воздуха так, чтобы Q = мк Δ T .Скорость теплопередачи тогда равна [латекс] \ frac {Q} {t} \\ [/ latex], где t — время оборота воздуха. Нам дано, что Δ T составляет 10,0 ° C, но мы все равно должны найти значения массы воздуха и его удельной теплоемкости, прежде чем мы сможем вычислить Q . Удельная теплоемкость воздуха представляет собой средневзвешенное значение удельной теплоты азота и кислорода, что дает c = c p 1000 Дж / кг · ºC из таблицы 1 (обратите внимание, что удельная теплоемкость при постоянном давлении должна использоваться для этого процесса).

Решение
  1. Определите массу воздуха по его плотности и заданному объему дома. Плотность рассчитывается исходя из плотности ρ и объема м = ρV = (1,29 кг / м 3 ) (12,0 м × 18,0 м × 3,00 м) = 836 кг.
  2. Рассчитайте тепло, передаваемое при изменении температуры воздуха: Q = мкл Δ T так, чтобы Q = (836 кг) (1000 Дж / кг · ºC) (10,0ºC) = 8.{6} \ text {J}} {1800 \ text {s}} = 4,64 \ text {кВт} \\ [/ latex].
Обсуждение

Эта скорость передачи тепла равна мощности, потребляемой примерно сорока шестью лампочками мощностью 100 Вт. Вновь построенные дома рассчитаны на время оборота 2 часа или более, а не 30 минут для дома в этом примере. Обычно используются погодоустойчивые уплотнения, уплотнения и улучшенные оконные уплотнения. В очень холодном (или жарком) климате иногда принимаются более крайние меры для достижения жесткого стандарта более 6 часов на один оборот воздуха.Еще более продолжительное время оборота вредно для здоровья, потому что требуется минимальное количество свежего воздуха для подачи кислорода для дыхания и разбавления бытовых загрязнителей. Термин, используемый для процесса, при котором наружный воздух проникает в дом из трещин вокруг окон, дверей и фундамента, называется «инфильтрация воздуха».

Холодный ветер более холодный, чем неподвижный холодный воздух, потому что конвекция в сочетании с проводимостью в теле увеличивает скорость передачи энергии от тела.В таблице ниже приведены приблизительные коэффициенты охлаждения ветром, которые представляют собой температуры неподвижного воздуха, обеспечивающие такую ​​же скорость охлаждения, как и воздух с заданной температурой и скоростью. Факторы охлаждения ветром являются ярким напоминанием о способности конвекции передавать тепло быстрее, чем теплопроводность. Например, ветер со скоростью 15,0 м / с при 0ºC имеет холодный эквивалент неподвижного воздуха при температуре около -18ºC.

Таблица 1. Факторы охлаждения ветром
Температура движущегося воздуха Скорость ветра (м / с)
(ºC) 2 5 10 15 0
5 3 -1 −8 −10 −12
2 0 −7 −12 −16 −18
0 -2 −9 −15 −18 −20
−5 −7 −15 −22 −26 −29
−10 −12 −21 −29 −34 −36
−20 −23 −34 −44 −50 −52
−10 −12 −21 −29 −34 −36
−20 −23 −34 −44 −50 −52
−40 −44 −59 −73 −82 −84

Хотя воздух может быстро передавать тепло за счет конвекции, он является плохим проводником и, следовательно, хорошим изолятором.Количество доступного пространства для воздушного потока определяет, действует ли воздух как изолятор или проводник. Например, расстояние между внутренней и внешней стенами дома составляет около 9 см (3,5 дюйма) — достаточно для эффективной работы конвекции. Дополнительная изоляция стен препятствует воздушному потоку, поэтому потери (или приток) тепла уменьшаются. Точно так же зазор между двумя стеклами окна с двойным остеклением составляет около 1 см, что предотвращает конвекцию и использует низкую проводимость воздуха для предотвращения больших потерь.Мех, волокна и стекловолокно также используют преимущества низкой проводимости воздуха, удерживая его в пространствах, слишком маленьких для поддержания конвекции, как показано на рисунке. Мех и перья легкие и поэтому идеально подходят для защиты животных.

Рис. 3. Мех наполнен воздухом, который разбивается на множество маленьких карманов. Конвекция здесь очень медленная, потому что петли такие маленькие. Низкая проводимость воздуха делает мех очень хорошим легким изолятором.

Некоторые интересные явления происходят , когда конвекция сопровождается фазовым переходом .Это позволяет нам охладиться с помощью потоотделения, даже если температура окружающего воздуха превышает температуру тела. Тепло от кожи требуется для испарения пота с кожи, но без потока воздуха воздух становится насыщенным и испарение прекращается. Воздушный поток, вызванный конвекцией, заменяет насыщенный воздух сухим, и испарение продолжается.

Пример 2. Расчет потока массы во время конвекции: теплоотдача пота от тела

Средний человек в состоянии покоя выделяет тепло мощностью около 120 Вт.С какой скоростью должна испаряться вода из тела, чтобы избавиться от всей этой энергии? (Это испарение может происходить, когда человек сидит в тени и температура окружающей среды такая же, как температура кожи, что исключает передачу тепла другими методами.)

Стратегия

Энергия необходима для фазового перехода ( Q = мл v ). Таким образом, потеря энергии в единицу времени составляет

[латекс] \ displaystyle \ frac {Q} {t} = \ frac {mL _ {\ text {v}}} {t} = 120 \ text {W} = 120 \ text {J / s} \\ [/ латекс].

Мы разделим обе части уравнения на L v , чтобы найти, что масса, испарившаяся за единицу времени, равна [латекс] \ frac {m} {t} = \ frac {120 \ text {Дж / с}} { L _ {\ text {v}}} \\ [/ latex].

Решение

Вставьте значение скрытой теплоты из таблицы 1 в раздел «Фазовый переход и скрытая теплота», л v = 2430 кДж / кг = 2430 Дж / г. Это дает

[латекс] \ displaystyle \ frac {m} {t} = \ frac {120 \ text {J / s}} {2430 \ text {J / g}} = 0,0494 \ text {g / s} = 2,96 \ text {г / мин} \\ [/ латекс]

Обсуждение

Испарение около 3 г / мин кажется разумным.Это будет около 180 г (около 7 унций) в час. Если воздух очень сухой, пот может испариться, даже если этого не заметят. Значительное количество испарений также происходит в легких и дыхательных путях.

Рис. 4. Кучевые облака создаются водяным паром, поднимающимся из-за конвекции. Возникновение облаков происходит за счет механизма положительной обратной связи. (кредит: Майк Лав)

Другой важный пример сочетания фазового перехода и конвекции происходит при испарении воды из океанов.При испарении воды тепло уходит из океана. Если водяной пар конденсируется в жидкие капли при образовании облаков, в атмосферу выделяется тепло. Таким образом, происходит общий перенос тепла от океана в атмосферу. Этот процесс является движущей силой грозовых облаков, тех огромных кучевых облаков, которые поднимаются на 20 км в стратосферу. Водяной пар, переносимый конвекцией, конденсируется, высвобождая огромное количество энергии. Эта энергия заставляет воздух расширяться и подниматься там, где он холоднее.В этих более холодных регионах происходит больше конденсации, что, в свою очередь, поднимает облако еще выше. Такой механизм называется положительной обратной связью, поскольку процесс усиливается и ускоряется.

Рис. 5. Конвекция, сопровождающаяся фазовым переходом, высвобождает энергию, необходимую для того, чтобы загнать этот гром в стратосферу. (кредит: Херардо Гарсиа Моретти)

Эти системы иногда вызывают сильные штормы с молниями и градом и представляют собой механизм, вызывающий ураганы (рис. 5).

Движение айсбергов (рис. 6) — еще один пример конвекции, сопровождающейся фазовым переходом. Предположим, айсберг дрейфует из Гренландии в более теплые воды Атлантики. Тепло удаляется из теплой океанской воды, когда лед тает, и тепло передается на сушу, когда айсберг формируется на Гренландии.

Рис. 6. Фазовое изменение, которое происходит при таянии этого айсберга, связано с огромной теплопередачей. (кредит: Доминик Алвес)

Проверьте свое понимание

Объясните, почему использование вентилятора летом дает ощущение свежести!

Решение

Использование вентилятора увеличивает поток воздуха: теплый воздух рядом с вашим телом заменяется более холодным воздухом из других мест.Конвекция увеличивает скорость теплопередачи, так что движущийся воздух «кажется» холоднее, чем неподвижный.

Сводка раздела

Конвекция — это передача тепла за счет макроскопического движения массы. Конвекция может быть естественной или принудительной и обычно передает тепловую энергию быстрее, чем теплопроводность. В таблице 1 приведены коэффициенты охлаждения ветром, указывающие на то, что движущийся воздух имеет такой же охлаждающий эффект, как и гораздо более холодный стационарный воздух. Конвекция, возникающая вместе с фазовым переходом, может передавать энергию из холодных областей в теплые.

Концептуальные вопросы

  1. Один из способов сделать камин более энергоэффективным — это использовать внешний воздух для сжигания топлива. Другой — обеспечить циркуляцию комнатного воздуха вокруг топки и обратно в комнату. Подробно опишите методы теплопередачи в каждом из них.
  2. Холодными ясными ночами лошади будут спать под покровом больших деревьев. Как это помогает им согреться?

Задачи и упражнения

  1. При какой скорости ветра -10ºC воздух вызывает такой же коэффициент охлаждения, как и неподвижный воздух при -29ºC?
  2. При какой температуре неподвижный воздух вызывает такой же коэффициент охлаждения, как −5ºC, движущийся со скоростью 15 м / с?
  3. «Пар» над чашкой свежеприготовленного растворимого кофе — это на самом деле капли водяного пара, конденсирующиеся после испарения горячего кофе.Какова конечная температура 250 г горячего кофе при начальной температуре 90,0 ° C, если из него испаряется 2,00 г? Кофе находится в чашке из пенополистирола, поэтому другими методами передачи тепла можно пренебречь.
  4. (a) Сколько килограммов воды должно испариться женщиной с весом 60,0 кг, чтобы температура ее тела снизилась на 0,750ºC? (b) Достаточно ли это количества воды для испарения в виде потоотделения, если относительная влажность окружающего воздуха низкая?
  5. В жаркий засушливый день испарение из озера имеет достаточно теплопередачи, чтобы уравновесить 1.00 кВт / м 2 приходящего тепла от Солнца. Какая масса воды испаряется за 1,00 ч с каждого квадратного метра?
  6. В один из зимних дней система климат-контроля в большом университетском здании вышла из строя. В результате каждую минуту поступает 500 м 3 избыточного холодного воздуха. С какой скоростью в киловаттах должна происходить теплопередача, чтобы нагреть этот воздух на 10,0ºC (то есть довести воздух до комнатной температуры)?
  7. Вулкан Килауэа на Гавайях — самый активный в мире, извергающий около 5 × 10 5 м 3 лавы 1200ºC в день.Какова скорость передачи тепла от Земли за счет конвекции, если эта лава имеет плотность 2700 кг / м 3 и в конечном итоге остывает до 30ºC? Предположим, что удельная теплоемкость лавы такая же, как у гранита.

    Рис. 7. Лавовый поток на вулкане Килауэа на Гавайях. (Источник: Дж. П. Итон, Геологическая служба США)

  8. Во время тяжелых упражнений тело перекачивает 2,00 л крови в минуту на поверхность, где она охлаждается до 2,00 ° C. Какова скорость теплопередачи только от этой принудительной конвекции, если предположить, что кровь имеет такую ​​же удельную теплоемкость, что и вода, и ее плотность составляет 1050 кг / м 3 ?
  9. Человек вдыхает и выдыхает 2.00 л воздуха 37,0ºC, испаряющего 4,00 × 10 −2 г воды из легких и дыхательных путей при каждом вдохе. а) Сколько тепла происходит за счет испарения при каждом вдохе? б) Какова скорость теплопередачи в ваттах, если человек дышит со средней скоростью 18,0 вдохов в минуту? (c) Если вдыхаемый воздух имел температуру 20,0 ° C, какова скорость теплопередачи для нагрева воздуха? (d) Обсудите общую скорость теплопередачи, поскольку она соотносится с типичной скоростью метаболизма.Будет ли это дыхание основной формой передачи тепла для этого человека?
  10. Стеклянный кофейник имеет круглое дно диаметром 9,00 см, контактирующее с нагревательным элементом, который поддерживает кофе в тепле с постоянной скоростью теплопередачи 50,0 Вт. (A) Какова температура дна кофейника, если он имеет толщину 3,00 мм и внутренняя температура 60,0ºC? (б) Если температура кофе остается постоянной и вся теплопередача устраняется испарением, сколько граммов в минуту испаряется? Принять теплоту испарения 2340 кДж / кг.

Избранные решения проблем и упражнения

1. 10 м / с

3. 85,7ºC

5. 1,48 кг

7. 2 × 10 4 МВт

9. (а) 97,2 Дж; (б) 29,2 Вт; (c) 9,49 Вт; (г) Общая скорость потери тепла составит 29,2 Вт + 9,49 Вт = 38,7 Вт. Во время сна наше тело потребляет 83 Вт энергии, в то время как сидя оно потребляет от 120 до 210 Вт. Следовательно, общая скорость потери тепла от дыхания не будет серьезной формой потери тепла для этого человека.

Инфракрасный калькулятор

ИНФРАКРАСНЫЙ

Расход топлива для вашей бадкамеры
(3,5 м x 4 м x 2,3 м — goed geïsoleerd)
с инфракрасным обогревом составляет:

95 Вт / м 2

или общее потребление

1330 Вт / час

, что составляет

0,33 € / час *

или ежегодно (180 часов)

59,40 €

КОНВЕКЦИЯ

Расход топлива для вашей бадкамеры
(3,5 м x 4 м x 2,3 м — goed geïsoleerd)
с традиционным обогревателем составляет:

80 Вт / м 3

или общее потребление

2675 Ватт / час

, что составляет

€ 0,64 / час *

или ежегодно (180 часов)

€ 115,20

ГАЗОЙЛ / ГАЗ

Расход топлива для вашей бадкамеры
(3,5 м x 4 м x 2,3 м — goed geïsoleerd)
с газойлем или природным газом составляет:

105 Вт / м 3

или общее потребление

3881 Ватт / час

, что составляет

0,68 € / час *

или ежегодно (180 часов)

€ 122,40

* Стоимость электроэнергии 0,25 € / кВт

* Газойль / природный газ с номинальной стоимостью 0,20 € / кВт

Стоимость Инфракрасное отопление

Каждая инфракрасная нагревательная панель работает по принципу «подключи и работай», все, что вам нужно, — это электрическая розетка.Таким образом, вы можете значительно сэкономить на расходах на установку по сравнению с установкой центрального отопления. Кроме того, инфракрасный обогреватель потребляет меньше энергии, чем классический электрический конвектор, который в первую очередь нагревает воздух.

Инфракрасный обогреватель, когда и где это необходимо. Если в комнате никого нет, можно выключить, что тоже большая экономия.

Например, ванная комната должна быть приятно теплой в течение короткого времени. Поэтому лучистые обогреватели или зеркало SuninX — это здорово.Вы сразу чувствуете тепло, это уютное тепло. Инфракрасное излучение — это лучистое отопление. В нем не циркулирует горячий воздух, поэтому он не сушит воздух, как это делает электрический конвекционный обогреватель. Каждый прибор можно отрегулировать с помощью переключателя или пульта дистанционного управления.

Тепловыделение от радиаторов и нагревательных панелей

Тепловыделение от радиатора или нагревательной панели зависит в первую очередь от разницы температур между горячей поверхностью и окружающим воздухом.Тепловыделение можно рассчитать

P = P 50 [(t i — t r ) / ln ((t i — t a ) / (t r — t a )) 1 / 49,32] n (1)

где

P = тепловыделение от радиатора (Вт, Дж / с)

P 50 = тепловыделение радиатора при разнице температур 50 o C (Вт)

t i = температура воды на входе ( o C)

t r = температура воды на выходе ( o C)

t a = температура окружающего воздуха ( o C)

n = константа, описывающая тип радиатора (1.33 для стандартных панельных радиаторов, 1,3 — 1,6 для конвекторов)

Обратите внимание, что радиаторы обычно рассчитаны на температуру средней панели 70 o C — и температуру окружающего воздуха 20 o C (разница 50 o C )

Пример — Тепловыделение от радиатора

Теплоотдача от радиатора с номинальной *) Тепловыделение 1000 Вт при температуре воды на входе t i = 70 o C и температура на выходе t r = 50 o C можно вычислить

P = (1000 Вт) [((70 o C) — (50 o C)) / ln (( (70 o C) — (20 o C)) / ((50 o C) — (20 o C))) 1/49.32] 1,33

= 736 Вт

*) номинал при температуре воды на входе т i = 80 o C , температура воды на выходе т r = 60 o C и температура окружающего воздуха t a = 20 o C

Калькулятор тепловыделения радиатора

Тепловыделение и расход воды

Калькулятор ниже можно использовать для расчета тепловыделения и расхода воды от радиатора, работающего вне стандартных условий — например, увеличения или уменьшения температуры воды на входе или выходе или увеличения или уменьшения температуры окружающего воздуха в помещении.

Температура обратной воды и расход

Калькулятор ниже может использоваться для расчета температуры обратной воды и объемного расхода воды через радиаторы на основе фактического тепловыделения и температуры воды на входе.

Негабаритные радиаторы — довольно распространенное явление, поскольку практически невозможно адаптировать стандартный радиатор точно к требуемым тепловым потерям из комнаты. С помощью калькулятора, расположенного ниже, можно изучить последствия нестандартного тепловыделения, когда радиатор слишком большой.

При проверке теплоотдачи радиаторов учтите, что стандарты тестирования различаются. Примеры стандартов:

  • BS 3528 «Спецификация для обогревателей конвекционного типа, работающих с паром или горячей водой» (отозвана, заменена на BS EN442) — температура подачи 90 o C, температура возврата 70 o C , температура воздуха 20 o C
  • BS EN442 «Спецификация на радиаторы и конвекторы.»- температура подачи 75 o C , температура обратной воды 65 o C, температура воздуха 20 o C

Испытание того же радиатора с BS EN442 по сравнению с BS 3528 снижает тепловую мощность с приблизительно 11% .

Сколько стоит эксплуатация теплого пола?

По очевидным причинам существует много неоднозначной информации относительно эксплуатационных расходов электрического теплого пола. по правде говоря, ни одна система не будет работать точно так же, как другая.Каждый дом индивидуален, поэтому нет простых ответов или высеченных в камне цифр. Все проекты будут работать в соответствии со своими специфическими условиями. Хотя невозможно дать точные цифры, которые будут верны для какой-либо системы, эта статья может дать некоторое представление о потенциальных долгосрочных эксплуатационных расходах и о том, как они соотносятся с другими методами отопления.

Что может повлиять на расчет эксплуатационных расходов?

Для любой системы отопления существует ряд факторов, определяющих, сколько они будут стоить в эксплуатации и насколько эффективны.Вот некоторые из основных элементов, которые могут определить эффективность системы электрического теплого пола:

Изоляция пола

Установка правильной изоляции может повысить эффективность вашей системы электрического теплого пола до 50% и существенно повлиять на общие эксплуатационные расходы. Изоляция предотвращает потерю выделяемого тепла через субстрат внизу и вместо этого выталкивает его вверх в комнату наверху. Ни одна система электрического теплого пола не должна устанавливаться без соответствующей изоляции, потому что без нее вы будете иметь гораздо более длительное время нагрева и более высокое потребление энергии.

Напольное покрытие

Тип напольного покрытия, которое вы решите использовать с вашей системой, будет иметь большое влияние на ее эффективность и время нагрева. Плитка и камень являются лучшими напольными покрытиями из-за их превосходной проводимости — они быстро нагреваются, но также медленно остывают и могут достигать более высоких температур, чем другие материалы. Винил — хороший вариант, так как он быстро нагревается, но также быстро остывает. Однако дерево и ковер нагреваются гораздо медленнее, а это означает, что вам потребуется больше энергии, чтобы нагреть комнату до комфортной температуры.Ковер, в частности, действует как изолятор и сделает любую систему намного менее эффективной, поэтому вы можете рассчитывать на гораздо большие эксплуатационные расходы, если это ваше предполагаемое напольное покрытие.

Размер номера

Как и в любой другой системе отопления, чем больше площадь, тем больше энергии нужно использовать для поддержания нужной температуры. Системы теплого пола не являются исключением из этого правила, поэтому, если для обогрева с использованием комплекта 10 м² в течение четырех часов требуется 84,3 балла, это будет вдвое больше, чем для обогрева помещения площадью 25 м² с площадью 210 м².8п.

Изоляция помещений и использованная мощность Вт / м²

При установке системы теплого пола необходимо учитывать не только изоляцию пола. Недостаточная теплоизоляция помещения является основной причиной более высоких эксплуатационных расходов, потому что сквозняки теряют тепло намного быстрее, чем помещения с изоляцией, соответствующей современным стандартам. Системам с более низкой в ​​/ м² будет сложно поддерживать температуру в плохо изолированных помещениях, в результате чего система будет работать только как теплый пол — обычная проблема для систем теплого пола, которые были модернизированы в старинных зданиях.Системы с более высокой в ​​/ м² лучше подходят для помещений с высокими потерями тепла, но увеличенное количество кабеля, используемого для меньшего расстояния, означает, что долгосрочные эксплуатационные расходы могут быть выше. При этом никогда не рекомендуется выбирать слишком низкое значение в / м², так как оно будет бороться с поддержанием комфортной температуры, постоянно потребляя энергию, пытаясь бороться с потерей тепла в комнате. Вы также можете установить системы с более высокой в ​​/ м² в помещениях со стандартной изоляцией, и, поскольку сохраняется больше тепла, комната нагревается за меньшее время без реальной разницы в затратах на электроэнергию — так же, как и чайник с большей мощностью. для кипячения воды использует то же количество энергии, что и чайник с меньшей мощностью, несмотря на то, что работа выполняется вдвое быстрее.

Частота использования

Многие системы устанавливаются с намерением, что они будут использоваться только изредка или только на низком уровне, чтобы убрать край с плохих полов, когда погода становится холоднее. Если это так для вашего проекта, вы, вероятно, обнаружите, что ваши текущие расходы намного ниже, чем прогнозировалось, поскольку ваше использование будет достаточно нечастым, чтобы не повлиять на ваши счета. Подогрев пола всегда будет стоить немного дороже, если вы будете использовать его короткими сериями, потому что он будет каждый раз нагреваться от холода, поэтому вы можете найти более эффективным поддерживать отопление в течение более длительных периодов времени на заданном уровне.Вы также должны помнить о том, насколько жарко вы хотите в своих комнатах, если используете полы с подогревом в качестве основного источника тепла. Чем выше выбранная вами температура, тем больше энергии потребуется вашей системе для поддержания температуры, и тем реже термостат будет выключать вашу систему.

Стоимость электроэнергии

Наконец, еще один важный аспект, о котором вам нужно помнить, — это то, какую цену за киловатт-час вы платите за электроэнергию. Приведенные ниже расчеты основаны на средней цене в Великобритании за период с 14 февраля 2015 года.05p / кВтч — но у вас может быть меньше или больше этой цифры. Всегда рекомендуется проверять, можно ли получить более дешевый тариф, и, если вы собираетесь часто использовать теплый пол, определенно стоит постараться, чтобы убедиться, что вы получаете лучшее предложение.

Мы всегда советуем получить оценку вашего дома у специалиста по энергоэффективности перед покупкой, если вы не уверены, будет ли электрический теплый пол работать в качестве основного источника тепла для ваших комнат.

Возможные эксплуатационные расходы для системы теплого пола 150 Вт / м²

Чтобы дать вам лучшее представление о том, сколько может стоить ваша система, в таблице ниже показаны затраты на использование типичной системы 150 Вт / м² в помещениях разного размера на почасовой основе.

Время включения (ч) 1 м² 2 м² 4 м² 5 м² 10 м² 15 м² 25 м²
1 2.1п 4.2p 8.4p 10,5p 21.1п 31,6p 52,7п
2 4.2p 8.4p 17.0p 21.1п 42.2p 63.2п 105.4p
3 6.3p 12.6p 25,3п 31,6p 63.2п 94.8p 158.1п
4 8.4п 17.0p 33.7p 42.2p 84,3п 126.5p 210.8p
5 10,5p 21.0p 42.2p 52,7п 105.4p 158.1п 263,4п
6 12.6p 25,3п 50.6p 63.2п 126.5p 189,7п 316.1п
7 14.8п 29,5п 59.0p 73.8p 147,5п 221,3п 367.0п
8 16.9p 33.7p 67.4p 84,3п 168.6p 253.0p 421,5п

Эта таблица основана на системе Thermonet EZ 150 Вт / м² при использовании в качестве первичного источника тепла при условии использования подходящего уровня изоляции. Важно отметить, что не все системы мощностью 150 Вт / м² будут стоить одинаково для работы, и будут некоторые различия из-за различий в качестве, размере и эффективности кабелей, используемых разными производителями.Цифры, приведенные в этой таблице, учитывают, что система была выключена и снова включена для поддержания температуры, установленной термостатом. Из этой таблицы вы можете составить приблизительное представление о том, сколько будет стоить ваша предполагаемая система теплого пола в неделю, в зависимости от размера, который вы собираетесь установить, и предполагаемой продолжительности использования в течение дня.

Например, предположим, что вы планируете установить электрическую систему подогрева полов на кухне общей площадью 14 м² с приспособлениями 2 м² для временного ухода.Это оставит для работы площадь 12 м², а когда мы вычтем дополнительные 10%, у нас останется 10,8 м². Чрезвычайно важно вычесть эти 10%, потому что вы не должны заказывать слишком большой комплект для подогрева пола — провода нельзя обрезать, чтобы получить нужный размер, поэтому лучше проявить осторожность. Мы всегда советуем округлять до ближайшего доступного размера комплекта, поэтому мы собираемся посмотреть на текущую стоимость системы 10 м². Для первичного источника тепла выбранный нагревательный комплект должен покрывать 80% обогреваемой площади, поэтому комплекта 10 м² будет более чем достаточно для этой теоретической установки.

С точки зрения того, как часто вы собираетесь запускать свою систему, предположим, вы установите ее на один час утром и три часа вечером. Ориентировочная стоимость системы 10 м², работающей четыре часа в день, составляет 84,3 пенсов, или примерно 5,90 фунтов стерлингов, при условии, что вы будете придерживаться одного и того же распорядка в течение всей недели.

Если вы хотите увеличить это до ежемесячной суммы, это принесет вам примерно 23,60 фунта стерлингов или 141,62 фунта стерлингов на 6 месяцев. Это может дать вам лучшее представление о том, является ли этот вариант отопления доступным для вашего дома, но для дополнительной основы сравнения давайте сравним эти цифры с эксплуатационной стоимостью электрического радиатора, еще одного популярного решения в области отопления.

Стоимость установки электрического радиатора на кухне 14 м²

Когда мы говорим о текущих расходах на пол с подогревом, мы говорим о размере комплекта, необходимом для обогрева не менее 80% доступной площади пола, когда все постоянное оборудование вычтено из общей площади помещения. Отопление с помощью радиаторов совершенно другое, поскольку они используют смесь конвекции и лучистого тепла, поэтому для этих расчетов нам нужно смотреть на всю площадь комнаты.

При вычислении этого примера мы будем использовать те же условия, которые Thermogroup использовала для своих расчетов, поэтому цена за единицу электроэнергии будет 14.05p / кВтч. Для помещения площадью около 14 м² со стандартной изоляцией нам потребуется электрический радиатор мощностью 1200 Вт или 1,2 кВт. В отличие от теплого пола, при выборе мощности электрического радиатора всегда следует округлять, но в этом примере мощность, которая нам нужна, является точной цифрой. Продолжая наш четырехчасовой отопительный период, как и в предыдущем примере, мы будем использовать 4,8 кВт / ч электроэнергии в день. Если умножить эту цифру на 14,05 пенсов / кВт · ч, получится 67.44 пенсов, что дает нам суточные эксплуатационные расходы на электрический радиатор на нашей кухне площадью 14 м².

Опять же, если мы будем придерживаться одного и того же режима отопления семь дней в неделю, наши общие эксплуатационные расходы составят около 4,72 фунтов стерлингов или немногим более 18,88 фунтов стерлингов в течение всего месяца. Если рассматривать 6-месячный период отопления в более холодные месяцы, эта цифра достигает 113,30 фунтов стерлингов, что делает его почти на 20% дешевле, чем прогнозируемые эксплуатационные расходы для системы электрического теплого пола.

Вот эти цифры в сравнении:

Шкала времени Электрорадиаторы Эксплуатационная стоимость Текущие расходы на электрические теплые полы
День 67.44п 84,3п
неделя £ 4,72 £ 5,90
Месяц £ 18,88 £ 23.60
6 месяцев £ 113,30 £ 141,62
Год £ 226.60 £ 283,25

Все цифры затрат, рассчитанные для электрического радиатора, были рассчитаны исходя из того, что он будет потреблять энергию в течение всего часа, в течение которого он использовался, но весьма вероятно, что это не так.Если вы не пытались довести особенно холодную комнату до высокой температуры, радиатор может потреблять энергию только треть времени, в течение которого он используется, или, возможно, даже меньше.

Как разница в способе отопления может повлиять на стоимость

Важно учитывать, что это два совершенно разных метода нагрева. Электрические радиаторы нагреваются за счет сочетания конвекции и излучения, при этом большая часть тепла сначала поднимается, а затем циркулирует по комнате; в то время как полы с подогревом используют только лучистое тепло, поднимаясь от земли вверх и нагревая в первую очередь жилые уровни.Поскольку теплый пол обеспечивает тепло там, где это необходимо больше всего, его обычно можно использовать при температуре примерно на 2 ° C ниже, чем при других методах обогрева, при этом поддерживая комфортную температуру.

Еще один ключевой момент заключается в том, что теплый пол по своей задумке нагревает одновременно большую площадь поверхности, тогда как радиаторы работают из одной точки в комнате. Это отражают более высокие эксплуатационные расходы на полы с подогревом, но вы должны помнить, почему вы, вероятно, думаете об их установке в первую очередь — повышенный комфорт, теплые полы и незаметная система, с которой не могут сравниться никакие другие решения.Он обеспечивает гораздо более безопасный метод обогрева по сравнению с радиаторами, поскольку здесь нет горячих поверхностей, с которыми можно было бы соприкасаться, а большая площадь обогрева исключает возможность появления холодных точек в комнате.

Помните, что эти расчеты являются приблизительными и предназначены только для иллюстративных целей. Если в одном доме пол с подогревом может существенно повлиять на счет за отопление, то в другом может наблюдаться более заметное увеличение — все дело в знании ваших собственных уникальных параметров проекта и того, что может повлиять на эффективность системы.

Уделите столько времени, сколько вам необходимо, на подготовку и исследование, прежде чем приступить к какой-либо работе, и если вам понадобятся дальнейшие советы или рекомендации, наша дружная команда в Heatingpoint всегда готова помочь.

Ваше полное руководство по наиболее эффективному и эффективному обогревателю «Интернет-блог бытовой техники

Отопление дома зимой не должно стоить вам рук и ног. Конечно, эксплуатация всех обогревателей стоит денег… Но некоторые из них дешевле других, а некоторые особенно эффективны в определенных типах помещений.

Но как найти «подходящий обогреватель» для вашего уникального помещения? При таком широком диапазоне доступных опций выбор наиболее экономичного и эффективного обогрева может быть сложной задачей и потребовать много времени.
К счастью, вам не нужно делать выбор в одиночку … Есть ли у вас газ или электричество, мы поможем вам найти вариант отопления, который позволит вам чувствовать себя уютно зимой без лишних затрат.

Сначала измерьте свою комнату

Когда дело доходит до обогрева, размер имеет значение.Многие из нас недостаточно обогревают наши комнаты или выбирают обогреватель неподходящего размера для жилых помещений, что приводит к еще большим счетам за электроэнергию и создает холодную и неприветливую атмосферу.

Итак, ваш первый шаг при выборе наиболее эффективного обогревателя — это измерить пространство, которое вы хотите отапливать (в квадратных метрах). Просто умножьте длину комнаты на ее ширину и получите квадратный метр.

Затем рассчитайте мощность, необходимую вашему обогревателю

Ниже приведены формулы, которые помогут вам рассчитать мощность, необходимую вашему новому обогревателю.(Обратите внимание, что если у вас высокие потолки, большие окна или нет теплоизоляции, вам следует стремиться к немного более мощной модели, поскольку эти факторы означают, что сохраняется меньше тепла.)

Электрический

После того, как вы получите площадь вашей комнаты в квадратных метрах, умножьте ее на 100. Это даст вам приблизительную мощность обогревателя, которая вам понадобится для обогрева комнаты — 100 Вт на квадратный метр (немного больше, если вы живете в холодной части. Австралии и немного меньше, если вы живете в жарком районе).

например Комната шириной 3 м и длиной 5 м имеет площадь 15 квадратных метров (кв.м), поэтому для нее потребуется мощность 1500 Вт (1.5кВт) электронагреватель.

Газ

Если у вас есть площадь вашей комнаты в квадратных метрах, умножьте ее на 75. Это даст вам приблизительную мощность обогревателя, необходимого для обогрева комнаты — 75 Вт на квадратный метр (немного больше, если вы живете в холодной части. Австралии и немного меньше, если вы живете в жарком районе).

например Комната шириной 3 м и длиной 5 м имеет площадь 15 квадратных метров (кв.м), поэтому для нее потребуется газовый обогреватель мощностью 1125 Вт (около 1,1 кВт).

Затем выберите лучший нагреватель в этом диапазоне мощности

Вот наши рекомендации для различных размеров комнат.

Маленькие и средние комнаты (10-25 кв.м)

Для небольшого помещения вам нужно стремиться к быстрому и постоянному нагреву, а не к максимальной мощности. Если вы совершите ошибку, купив слишком мощный обогреватель, вы перегреетесь и в конечном итоге получите слишком большой счет за электроэнергию.

Рекомендации по электрике

Указанные ниже колонные нагреватели доступны по цене и отлично сохраняют тепло. Хотя они не нагреваются так быстро, как менее эффективные электрические тепловентиляторы, они отлично подходят для сохранения тепла в комнате в течение нескольких часов.

Рекомендации по газу

Излучательные и конвекторные газовые обогреватели, представленные ниже, являются отличным вариантом для прямого нагрева. Они очень просты в эксплуатации, оснащены замком от детей для безопасности и быстро отводят тепло на меньшую площадь.

Обратите внимание, что последний вариант является наиболее мощным и лучше всего подходит для больших помещений, особенно с высокими потолками и без теплоизоляции.

ВАЖНАЯ ИНФОРМАЦИЯ: Обратите внимание, что газовые обогреватели с низким уровнем выбросов сбрасывают свои выбросы низкого уровня обратно в комнату, поэтому вентиляция является обязательной.Они также могут вызывать раздражение при астме или повышенной чувствительности кожи.

Большие номера (25-40 кв.м)

Гостиные большего размера, особенно с высокими потолками или нестандартной планировкой, лучше всего обогревать с помощью более мощных газовых обогревателей и более мощных панельных обогревателей. Вместо прямого обогрева помещения они нагревают и равномерно распределяют воздух по комнате.

Рекомендации по электрике

Если вы можете изолировать свою комнату, закрыв двери и закрыв окна, панельные обогреватели, расположенные ниже, являются хорошим вариантом, поскольку они мягко нагревают и циркулируют сам воздух.По мере того, как теплый воздух со временем поднимается, панельные обогреватели равномерно и точно направляют тепло в более прохладные помещения. В противном случае вам следует подумать о кондиционере с обратным циклом для наиболее эффективных результатов в больших помещениях.

Рекомендации по газу

Указанные ниже газовые обогреватели отлично подходят для больших помещений, потому что они эффективны и эффективны, преобразуют около 90% энергии газа в тепло и обеспечивают мощное и мгновенное нагревание. Хотя они дороже, чем электрические обогреватели, газовые обогреватели значительно дешевле в эксплуатации.Обратите внимание, что последний вариант является наиболее мощным и лучше всего подходит для больших помещений, особенно с высокими потолками и без теплоизоляции.

Открытая планировка или весь дом

Варианты отопления для всего дома или больших жилых зон открытой планировки требуют более затратных затрат, но вы окупите выгоду финансово в долгосрочной перспективе, поскольку они, как правило, предлагают гораздо более широкий диапазон отопления, сохраняя при этом энергию. эффективный.

Рекомендации по электрике

Приведенные ниже кондиционеры сплит-системы с обратным циклом являются одними из самых экономичных и энергоэффективных вариантов отопления в долгосрочной перспективе.Они широко и равномерно распределяют воздух по маленьким и большим жилым помещениям, а также подходят для охлаждения в теплые месяцы. Для более точного расчета размера, подходящего для вас, ознакомьтесь с нашим Руководством по выбору размеров кондиционеров.

Рекомендации по газу

Газовые системы для всего дома, такие как жидкостные и канальные, энергоэффективны и постепенно набирают популярность, но они сопряжены со значительными затратами на установку. (Извините, мы не продаем эти товары.)

Ванные комнаты

Самым безопасным и эффективным вариантом для ванных комнат является панельный обогреватель.Наряду с компактным дизайном, многие панели считаются каплезащищенными и подходят для использования в ванных комнатах.

Наши рекомендации, приведенные ниже, были специально разработаны для использования в ванных комнатах и ​​обеспечивают хорошее окружающее тепло.

Также подумайте о…

Учитывая высокие цены на электроэнергию, размер комнаты и энергоэффективность, безусловно, являются важными факторами, которые следует учитывать, но не единственными. Вот еще несколько соображений…

Удобство

Если вам нравится просыпаться утром в заранее нагретой комнате, а вечером приходить домой в теплый дом, подумайте об обогревателе с таймером.Таким образом, вы будете использовать тепло только тогда, когда оно вам действительно нужно, вместо того, чтобы оставлять обогреватель включенным на ночь или пока вас нет, что является дорогостоящим и в конечном итоге ненужным. Многие колонки и газовые обогреватели включают программируемые таймеры, позволяющие просто установить и забыть.

Нагреватели

со встроенными термостатами также являются отличным вариантом, поскольку они поддерживают точную температуру с течением времени. Хотя в холодные ночи возникает соблазн включить термостат, постарайтесь противостоять этому побуждению, потому что каждый градус выше может существенно повлиять на ваш счет за электроэнергию.Если вы установите его в диапазоне от 18 ° C до 21 ° C, вам будет комфортно, не тратя слишком много на счета за электроэнергию.

Универсальность

Если вам нужно что-то, что можно использовать для обогрева более чем одной комнаты, подумайте о переносной, легкой модели или модели с колесиками. Многие электрические панельные и колонные обогреватели поставляются с колесиками. Обогреватели негерметичного газа также можно использовать из комнаты в комнату.

ПРЕДУПРЕЖДЕНИЕ: Использование негерметичного газового обогревателя в спальне или плохо вентилируемой комнате запрещено.

В качестве альтернативы вы можете рассмотреть кондиционер с обратным циклом. Как уже говорилось выше, они отлично подходят для открытой планировки и нестандартных планировок, так как очень экономично отапливают большие площади. Многие модели также достаточно универсальны, чтобы нагревать и охлаждать, поэтому их можно использовать круглый год.

Безопасность

Вот несколько полезных советов по безопасности при отоплении дома:

  • Если у вас молодая семья или домашние животные, и вы беспокоитесь о ожогах, избегайте лучистых обогревателей с открытыми элементами.Колонные и электрические панельные обогреватели, как правило, более безопасны, поскольку они теплые только на ощупь, поэтому не горят.
  • Никогда не используйте колонный обогреватель в ванной, так как они не предназначены для использования во влажных помещениях. Вместо этого рассмотрите панельный обогреватель; многие из них водонепроницаемы, а некоторые также можно установить на стене, чтобы они располагались заподлицо со стеной и вдали от повреждений.
  • Многие современные электрические колонные и газовые обогреватели имеют автоматическое отключение и защиту от опрокидывания, которые отключают прибор в случае перегрева или опрокидывания.
  • Если вас интересует излучающий или конвекторный газовый обогреватель, рассмотрите вариант с кислородным счетчиком. Если уровень кислорода в вашей комнате начнет снижаться, глюкометр выдаст предупреждение и в конечном итоге полностью отключит прибор, чтобы обеспечить вашу безопасность.
  • Использование неотапливаемых обогревателей в небольших или плохо вентилируемых помещениях запрещено из-за их выбросов.
  • Если вы живете в Виктории, обратите внимание на законы Виктории, регулирующие установку и использование газовых обогревателей.
Скорость

Тепловентиляторы, хотя и более дорогие в эксплуатации в течение длительного времени, быстро нагреваются. Тепловентилятор Delonghi — хороший тому пример. Он излучает быстрое и мощное тепло, что делает его идеальным для кратковременного личного использования и для обогрева небольших помещений.

Окружающая среда

Газовые лучистые и конвекторные обогреватели считаются одними из самых экологически чистых вариантов, производя низкие уровни парниковых газов и значительно меньше, чем у электрических обогревателей. Их уровень выбросов должен быть сертифицирован конкретными австралийскими стандартами.

Создайте более эффективное пространство

Теперь, когда вы определили идеальный обогреватель для вашего помещения, давайте рассмотрим несколько простых способов повысить эффективность вашего дома и обеспечить его комфортное и эффективное отопление:

  • Закрывайте окна и двери на ночь. По данным Департамента устойчивого развития правительства штата Виктория, «одно стекло может терять почти в 10 раз больше тепла, чем та же площадь изолированной стены».

  • Закройте двери между комнатами, чтобы сохранить тепло.Открытые двери резко снизят эффективность обогрева, а это значит, что вы платите больше за меньший эффект.
  • Носите теплую одежду! Это может показаться очевидным, но наслоение означает, что вы сохраните больше тепла.
  • Подумайте о приобретении дополнительных предметов, таких как пододеяльники для вашей спальни, заглушки, препятствующие проникновению холодного воздуха, или одеяла с подогревом, если вам нужно прямое, личное кратковременное тепло.
  • Установите изоляцию на крышу. В вашем доме будет прохладнее летом и теплее зимой.Это долгосрочное круглогодичное решение.
  • Если вы строите новый дом, ремонтируете или модернизируете, подумайте об установке всей системы отопления дома, например, сплит-системы с обратным циклом, газового обогревателя без дымохода или газового отопления. Не пугайтесь более высоких первоначальных затрат — вы оцените постоянные долгосрочные преимущества более высокой энергоэффективности и более широкого распределения тепла.

Заключение

Как видите, время, потраченное на выбор подходящего обогревателя, — это не просто много горячего воздуха.Мы выделили наиболее важные факторы, которые необходимо учитывать, чтобы сделать правильный выбор, когда речь идет об эффективном и рациональном отоплении дома. Если у вас есть другие вопросы и комментарии по поводу лучшего обогревателя, пожалуйста, оставьте их ниже!

Калькулятор размера помещения с электрическим отоплением

Проектирование электрического отопления

Наша простая таблица размеров помещения для электрического обогрева идеально подходит для расчета количества обогревателей, необходимого для обогрева одной или двух комнат.Если вам требуется:

  • Проект отопления для всего объекта
  • Таблица размеров помещений в старом здании с плохой изоляцией
  • Таблица размеров помещений для новостройки с очень хорошей изоляцией

Мы рекомендуем вам загрузить нашу форму запроса на проектирование отопления после заполнения, отправьте ее по электронной почте на адрес [email protected], мы ответим с точным расчетом в течение 14 рабочих дней. Для нескольких объектов, пожалуйста, пришлите нам масштабные чертежи вместе с любыми требованиями к конструкции.Если вам нужна дополнительная помощь или руководство, позвоните нам по телефону 0203 994 5470 или воспользуйтесь нашей контактной формой.

Какой тип обогревателя?

Накопительные обогреватели

идеально подходят для жилых комнат, столовых, холлов, холлов, лестничных площадок и офисов или учебы. Рекомендуемая температура для столовых и жилых комнат составляет 21 ℃, а для офисов и кабинетов — 18 ℃. Для расчетов в офисе загрузите наш справочник по отоплению. Мы настоятельно рекомендуем накопительные нагреватели Dimplex Quantum для максимальной эффективности. Нашим самым продаваемым накопительным нагревателем является серия Dimplex XLE.

Электрические радиаторы и панельные обогреватели идеально подходят для спален, также используются в ванных комнатах, подсобных помещениях, столовых, холлах, офисах, кабинетах, коридорах зимних садов и лестничных площадках. В приведенных ниже таблицах указаны размеры комнат для спален, где рекомендуемая температура составляет 18 ℃ (также применимо для офиса), для других типов комнат, пожалуйста, загрузите наше полное руководство по отоплению. Мы настоятельно рекомендуем электрические радиаторы Dimplex QRAD и панельные обогреватели Dimplex PLXE, которые являются нашими самыми продаваемыми моделями.

Как рассчитать обогреватель какого размера для комнаты?

Наш калькулятор электрического обогрева фактически работает в обратном направлении, а не измеряет скорость накопления тепла в комнате. Мы измеряем, насколько быстро тепло уходит из комнаты (известная как потеря тепла), после чего можно фактически определить правильный размер или количество электрических обогревателей. что потребуется для обогрева комнаты. Определив площадь пола, конструкцию стен и количество внешних стен, мы можем определить общее количество киловатт, необходимое для обогрева комнаты (мы предполагаем, что стандартная высота потолка равна 2.4M). Если у вас есть какие-либо отклонения, пожалуйста, свяжитесь с нами для оформления. Расчеты в наших таблицах помогут вам выбрать любой обогреватель прямого действия, такой как панельный обогреватель, конвекторный обогреватель, электрический радиатор или современный накопительный обогреватель с номинальной мощностью.

Пожалуйста, выберите тип стены комнаты из представленных ниже вариантов, чтобы найти правильную таблицу размеров отопления:

Гостиные с изолированными стенами с полыми стенками
Гостиные с глухими стенами
Гостиные с глухими стенами

Спальни с изолированными стенами
Спальни с глухими стенами
Спальни с массивными стенами

Кухни с изолированными стенками
Кухни с изолированными стенками
Кухни с массивными стенками

Коммерческое отопление, включая офисы с изолированными стенками
Коммерческое отопление, включая офисы с пустотными стенами
Коммерческое отопление, включая офисы с массивными стенами

Жилые комнаты с изолированными стенками

  • Изолированные полые стены
  • Высота потолка 2.4М
  • Комнатная температура 21 ℃
Площадь пола Количество внешних стен
м2 1 2 3
12 1,12 кВт 1,28 кВт 1,68 кВт
16 1,36 кВт 1,60 кВт 1,92 кВт
20 1.68 кВт 1,92 кВт 2,32 кВт
24 2,08 кВт 2,32 кВт 2,64 кВт
28 2,16 кВт 2,48 кВт 2,96 кВт
32 2,40 кВт 2,72 кВт 3,20 кВт

Жилые комнаты с пустотелыми стенами

  • Стенки полости
  • Высота потолка 2.4М
  • Комнатная температура 21 ℃
Площадь пола Количество внешних стен
м2 1 2 3
12 1,60 кВт 1,92 кВт 2,48 кВт
16 1,84 кВт 2,32 кВт 2,88 кВт
20 2.32 кВт 2,72 кВт 3,44 кВт
24 2,64 кВт 3,12 кВт 3,76 кВт
28 2,96 кВт 3,44 кВт 4,24 кВт
32 3,28 кВт 3,76 кВт 4,72 кВт

Жилые комнаты с массивными стенами

  • Сплошные стены
  • Высота потолка 2.4М
  • Комнатная температура 21 ℃
Площадь пола Количество внешних стен
м2 1 2 3
12 1,84 кВт 2,16 кВт 2,88 кВт
16 2,08 кВт 2,48 кВт 3,20 кВт
20 2.64 кВт 3,12 кВт 3,92 кВт
24 2,96 кВт 3,44 кВт 4,32 кВт
28 3,28 кВт 3,92 кВт 4,80 кВт
32 3,52 кВт 4,32 кВт 5,28 кВт

Спальни с изолированными стенками

  • Изолированные полые стены
  • Высота потолка 2.4М
  • Комнатная температура 18 ℃
Площадь пола Количество внешних стен
м2 1 2 3
8 0,8 кВт 0,9 кВт 1,4 кВт
12 0,8 кВт 1,4 кВт 1,8 кВт
16 0.9 кВт 1,6 кВт 2,1 кВт
20 1,0 кВт 1,8 кВт 2,4 кВт
24 1,0 кВт 1,9 кВт 2,5 кВт

Спальни с пустотелыми стенами

  • Стенки полости
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь пола Количество внешних стен
м2 1 2 3
8 0.8 кВт 1,0 кВт 1,4 кВт
12 0,9 кВт 1,4 кВт 1,8 кВт
16 1,0 кВт 1,7 кВт 2,1 кВт
20 1,2 кВт 2,0 кВт 2,4 кВт
24 1,2 кВт 2,1 кВт 2.5 кВт

Спальни с массивными стенами

  • Сплошные стены
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь пола Количество внешних стен
м2 1 2 3
8 0,8 кВт 1,3 кВт 1.7 кВт
12 0,9 кВт 1,8 кВт 2,3 кВт
16 1,2 кВт 2,1 кВт 2,7 кВт
20 1,4 кВт 2,2 кВт 3,1 кВт
24 1,5 кВт 2,3 кВт 3,4 кВт

Кухни с изолированными стенками

Для всех кухонь с изоляцией стен с полыми стенками предпочтительнее прямое отопление.

Кухни со стенками для полостей

  • Сплошные стены
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь пола Количество внешних стен
м2 1 2 3
10 1,12 кВт 1,6 кВт 1,92 кВт
12 1.36 кВт 1,84 кВт 2,32 кВт
14 1,6 кВт 2,08 кВт 2,48 кВт
16 1,68 кВт 2,32 кВт 2,72 кВт

Кухни со сплошными стенами

  • Сплошные стены
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь пола Количество внешних стен
м2 1 2 3
10 1.28 кВт 1,68 кВт 2,32 кВт
12 1,52 кВт 2,16 кВт 2,64 кВт
14 1,68 кВт 2,40 кВт 2,88 кВт
16 1,92 кВт 2,64 кВт 3,12 кВт

Коммерческое отопление, включая офисы с изолированными стенками для полостей

  • Сплошные стены
  • Высота потолка 3м
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21 ℃
Площадь пола Количество внешних стен
м2 1 2 3
15 1.68 кВт 2,08 кВт 2,64 кВт
20 2,08 кВт 2,56 кВт 3,12 кВт
25 2,40 кВт 3,04 кВт 3,60 кВт
30 2,88 кВт 3,52 кВт 4,16 кВт
40 3,92 кВт 4,48 кВт 5.36 кВт
50 4,48 кВт 5,28 кВт 6,08 кВт

Коммерческое отопление, включая офисы с пустотелыми стенами

  • Сплошные стены
  • Высота потолка 3м
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21 ℃
Площадь пола Количество внешних стен
м2 1 2 3
15 2.00 кВт 2,56 кВт 3,52 кВт
20 2,40 кВт 3,12 кВт 4,00 кВт
25 2,72 кВт 3,68 кВт 4,56 кВт
30 3,36 кВт 4,24 кВт 5,20 кВт
40 4,40 кВт 5,36 кВт 6.72 кВт
50 4,95 кВт 6,24 кВт 7,44 кВт

Коммерческое отопление, включая офисы с массивными стенами

  • Сплошные стены
  • Высота потолка 3м
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21 ℃
Площадь пола Количество внешних стен
м2 1 2 3
15 2.16 кВт 2,96 кВт 4,08 кВт
20 2,64 кВт 3,52 кВт 4,48 кВт
25 2,96 кВт 4,08 кВт 5,20 кВт
30 3,52 кВт 4,72 кВт 5,84 кВт
40 4,80 кВт 5,92 кВт 7.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Весь товар подлежит гарантии и сертифицирован!Все права защищены .RU