Как прозвонить конденсатор мультиметром на плате: Как проверять конденсаторы мультиметром не выпаивая, проверить исправность

Содержание

Как проверить конденсатор мультиметром

Мультиметр – это  электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.
Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой.
    Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Измерение в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм.

Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Модели мультиметров на Aliexpress

 

Измерение емкости конденсатора

Измерение ёмкости

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Еще одно видео:

Как проверить конденсатор мультиметром, как определить его неисправность

Наши электросети не отличаются стабильностью параметров, что часто приводит к выходу из строя техники. Чаще всего выходят из строя диоды выпрямительного моста и конденсаторы. В этой статье поговорим о том, как проверить конденсатор мультиметром, как понять что он вышел из строя.

Содержание статьи

Необходимый минимум сведений

Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.

Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий

Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы.

Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В —  проверка одинаковая.

Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

  • Красный щуп — к положительному выводу.
  • Черный щуп — к минусовому (отрицательному).

Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).

Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах

Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.

Как проверить конденсатор мультиметром без функции определения емкости

Для определения поврежденного конденсатора даже не всегда нужны приборы. Часто достаточно внешнего осмотра. Признаком того, что емкость вышла из строя, является вздутие корпуса, потеки любого цвета. Если внешние изменения есть, можно даже не измерять, а сразу менять. Это очень часто возвращает работоспособность вышедшей из строя бытовой технике и другой электрической и электронной аппаратуры.

Визуально бывает проще всего определиться с неисправностью электролитических конденсаторов импортного производства. Если конденсатор вздулся или дополнительно разгерметизировался в месте насечки, его необходимо заменить в обязательном порядке

Если внешних изменений нет, приступаем к проверке. Чаще всего у домашних радиолюбителей имеется цифровой мультиметр. Марка его не важна, но необходимо чтобы он мог мерить сопротивление и/или имел функцию проверки диодов. Можно использовать и стрелочные. Они даже удобнее — движущаяся или замершая на месте стрелка более информативна. Только помните, что это не измерения, а лишь проверки. То есть, с их помощью мы не можем измелить ёмкость конденсатора, а лишь убеждаемся в его работоспособности.

Перед тем как проверить конденсатор мультиметром, обязательно разрядите емкость. Если этого не сделать, в некоторых случаях измерительный прибор может выйти из строя.

Разрядить конденсатор можно двумя способами:

  • прикоснувшись к выводам высокоомным сопротивлением — 0,5-1 мОм;
  • при помощи лампы накаливания — центральный контакт лампы на одну ножку, корпусом прикоснуться к другой.

Безопасный и надежный способ разрядить конденсатор — замыкаем выводы при помощи обычной лампы накаливания на 220 В

Разряжать емкость при помощи обычного проводника не стоит — можно добиться выходя из строя элемента. Это может сработать без особого вреда только на емкостях, рассчитанных на невысокий вольтаж и имеющих небольшую емкость. Исправные лампы накаливания есть у всех, так что лучше используйте их.

В режиме омметра

Перед тем как проверить конденсатор мультиметром в режиме измерения сопротивлений, надо вспомнить, как изменяется его сопротивление в процессе работы. Без заряда сопротивление близко к нулю, но не ноль. По мере накопления заряда оно растет.

Еще раз: сопротивление разряженной емкости очень невелико — почти ноль. Но короткого быть не должно. То есть, если поставить мультиметр на прозвонку и прикоснуться к выводам разряженного конденсатора, звенеть не будет. Если звенит — можно дальше не тестировать, элемент не исправен.

Проверить работоспособность можно так: переводим переключатель мультиметра в режим измерения сопротивлений. Предел изменений зависит от параметров измеряемого конденсатора. Чем выше напряжение, на которое рассчитан элемент, тем выше ставим предел. Например, для 50 В выставляем 20 кОм, для 1000 В  выбираем 2 МОм. И, лучше, выставить более высокий предел, чем низкий.

Подготовив прибор, к разряженному элементу прикладываем щупы, смотрим на экран. Сначала высвечивается цифра 1, затем показания начинают расти. Это накапливается заряд. В какой-то момент рост прекращается, на экране снова цифра «1». Конденсатор зарядился.

Конденсатор заряжается, его сопротивление растет

Поменяв местами щупы, мы меняем полярность питания. На экране сразу высвечиваются цифры с «минусом» впереди, затем они уменьшаются — идет разряд. После перехода через ноль, цифры начинают расти — идет заряд, затем снова высвечивается единица. Конденсатор проверили на работоспособность и он исправен. Если «поведение испытуемого» отличается от описанного, значит элемент нерабочий. Теперь вы знаете, как проверить конденсатор мультиметром в режиме омметра.

Проверка напряжения на заряженном конденсаторе

Убедиться что заряд накоплен можно, если измерить напряжение на выводах заряженной емкости. Переводим мультиметр в режим измерения постоянного напряжения. Предел измерений выбираем в зависимости от параметров элемента. Напряжение, на которое он рассчитан указано обычно на корпусе. Для мелких деталей придется поискать в технических характеристиках. Предел измерений выставляем не меньше указанного.

Измерение напряжения на заряженном конденсаторе с помощью мультиметра

Дальше все аналогично: прикладываем щупы к выводам и следим за показаниями. Значение не меняется, но может быть как с плюсом, так и с минусом.  Это и есть напряжение на заряженной емкости. Если выводы закоротить через нагрузку, цифра начинает уменьшатся — происходит разряд. Чем закоротить? При небольшом вольтаже — до 50 В — можно одним из щупов. Для более мощных лучше использовать или все ту же лампу накаливания, или сопротивление на один мегаом. Теперь вы знаете не только как проверить конденсатор мультиметром, но и как измерить напряжение на заряженной емкости.

Что понадобится

В процессе выполнения измерения необходим мультиметр. Желательно, чтобы он измерял емкость.

Кроме этого, понадобится:

  • адаптер на 9 Вольт;
  • отвертка;
  • пинцет;
  • если конденсатор в плате, то понадобится паяльник с припоем и флюсом.

Измерение сопротивления

Проверить на 100% элемент, не выпаивая из платы, не получится. Это следует помнить, тестируя деталь на материнской плате компьютера. Правильной проверке будут мешать другие детали. Единственное, что можно сделать – убедиться в отсутствии пробоя. Для этого прикоснитесь щупами к выводам конденсатора и измерьте сопротивление.

Измерение сопротивления будет отличаться в зависимости от вида конденсатора.

Электрический конденсатор

Для того чтобы прозвонить электролитический конденсатор мультиметром, следует выполнить действия:

  1. Разрядите деталь, замкнув оба полюса пинцетом или отверткой.
  2. Поставьте мультиметр (шкалу омметра) на максимальный предел измерений и подсоедините к конденсатору, соблюдая полярность. Стрелка прибора должна отклониться на определенное значение, а затем «уйти» на бесконечность.
Керамический конденсатор

Для проверки керамического конденсатора выставьте наибольший предел измерений. Мультиметр покажет значение более 2 МоМ. Если оно меньше, прибор неисправен.

Танталовый конденсатор

Чтобы убедиться в исправности танталового элемента, подсоедините щуп к контактам конденсатора, предел поставьте максимальный. Измерять нужно в омах. Если прозвонка покажет «0», значит, компонент пробит и его нужно заменить.

SMD-конденсаторы

SMD-элементы проверяются по аналогии с керамическими деталями.

Измерение емкости мультиметром

Здесь также хорошую помощь окажет мультиметр, способный определять значение емкости конденсатора.

Для измерения следует выполнить:

  1. Переключите прибор в режим измерения.
  2. Установите соответствующий предел и присоедините щупы к контактам. Показания прибора должны соответствовать надписи на корпусе элемента.

Измерение напряжения

Чтобы проверить конденсатор мультиметром, используя постоянное напряжение, нужно:

  1. Взять адаптер и, соблюдая полярность, подключить его к выводам детали (ее нужно отпаять от платы). Через несколько секунд она зарядится.
  2. Затем подсоедините щупы тестера к детали и измерьте напряжение. В первый момент оно должно соответствовать тому, что указано на адаптере.

Как проверить без приборов

Осмотрите конденсатор, наличие следующих признаков свидетельствует о пробое элемента:

  • темные пятна;
  • вздутие и разрывы оболочки;
  • протечка электролита.

Вздувшиеся электролитические конденсаторы

Есть и другой способ проверки работоспособности, для реализации которого понадобится источник тока, а также провода и низковольтная лампочка. Зарядите конденсатор и подключите к его выводам лампочку. Она должна гореть в течение нескольких секунд, а затем погаснуть. Это говорит об исправности элемента.

 Загрузка …

Фотогалерея

Видео «Проверка конденсатора мультиметром»

На видео от пользователя Влад ЧЩ можно узнать о том, как проверить конденсатор мультиметром.

как проверить конденсатор мультиметром инструкция с фото

Для проверки работоспособности радиоэлементов существует несколько приемов и приборов. В частности, для измерения емкости и проверки состояния конденсаторов лучше всего подходит LC-метр. Однако в ситуациях, когда его нет под рукой, может выручить обычный мультиметр.

Содержание:

  1. Как он работает и зачем он нужен
  2. Подготовка перед проверкой
  3. Ход проверки
  4. Проверка на ёмкость
  5. Проверка вольтметром
  6. Проверка на короткое замыкание
  7. Проверка автомобильного конденсатора

Как работает конденсатор и зачем он нужен

Конденсатор – это пассивный электронный радиоэлемент. Его принцип действия схож с батарейкой – он аккумулирует в себе электрическую энергию, но при этом обладает очень быстрым циклом разрядки и зарядки. Более специализированное определение гласит, что конденсатор – это электронный компонент, применяемый для аккумуляции энергии или электрического заряда, состоящий из двух обкладок (проводников), разделенных между собой изолирующим материалом (диэлектриком).

простая схема конденсатора

Так каков принцип действия этого устройства? На одной пластинке (отрицательной) собирется избыток электронов, на другой — недостаток. А разница между их потенциалами будет называться напряжением. (Для строгого понимания нужно прочесть, например: И.Е. Тамм Основы теории электричества)

В зависимости от того, какой материал используется для обкладки, конденсаторы разделяют на:

  • твердотельные или сухие;
  • электролитические – жидкостные;
  • оксидно-металлические и оксидно-полупроводниковые.

По изолирующему материалу их делят на следующие виды:

  • бумажные;
  • плёночные;
  • комбинированные бумажно-плёночные;
  • тонкослойные;

Чаще всего необходимость проверки с использованием мультиметра возникает при работе с электролитическими конденсаторами.

Керамический и электролитический конденсатор

Ёмкость конденсатора находится в обратной зависимости от расстояния между проводниками, и в прямой – от их площади. Чем они больше и ближе друг к другу – тем больше ёмкость. Для её измерения используется микрофарад (mF). Обкладки изготавливаются из алюминиевой фольги, скрученной в рулон. В качестве изолятора выступает слой окисла, нанесенный на одну из сторон. Для обеспечения наибольшей ёмкости устройства, между слоями фольги прокладывается очень тонкая, пропитанная электролитом, бумага. Бумажный или пленочный конденсатор, сделанный по данной технологии, хорош тем, что обкладки разделяет слой окисла в несколько молекул, благодаря чему и удается создавать объемные элементы с большой ёмкостью.

Устройство конденсатора (такой рулон помещается в алюминиевый корпус, который в свою очередь кладется в пластиковый изолирующий короб)

На сегодня конденсаторы используются практически в каждой электронной схеме. Их выход из строя чаще всего связан с истечением срока годности. Некоторым электролитическим растворам присуще «усыхание», в процессе которого уменьшается их ёмкость. Это сказывается на работе цепи и форме сигнала, проходящего по ней. Примечательно, что это характерно даже для неподключенных в схему элементов. Средний срок службы – 2 года. С этой периодичностью и рекомендуется проводить проверку всех установленных элементов.

Обозначение конденсаторов на схеме.
Обычный, электролитический, переменный и подстроечный.

Подготовка перед проверкой

В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.

Мультиметр с аналоговой шкалой и цифровой мультиметр

Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.

Для подготовки к проверке:

  • Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
  • Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
  • Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными. Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.

Ход проверки

Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки. Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу.

Взорвавшиеся на плате конденсаторы и сработавший «защитный надрез»

Кстати, надо заметить, современное элементы снабжены специальными щелями для безопасного выхода схемы из строя. Иначе взрыв мог бы сильно испортить всю плату.

Но бывает и так

Перед тем как проверить элемент мультиметром, следует определить его тип: полярный или неполярный. Электролитические относятся к первой категории – их припаивают к контактам на схеме с соблюдением полярности: плюс – к плюсу, минус – к минусу. Соответственно, и клеммы мультиметра следует подключать согласно данному правилу. Неполярный конденсатор устанавливается без учета этих особенностей. Он, как и бумажный или керамический конденсатор, можно присоединяться к прибору в любом направлении.

Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:

  • При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
  • Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.

В обоих случаях исправность элементов уже не восстановить и их следует выбросить.

Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.

Проверка на ёмкость

Проверив сопротивление, мы лишь частично выполняем условия. Простая работоспособность элемента еще не говорит о том, что он работает правильно – в некоторых случаях очень важна точность в работе, к примеру, если проверяется конденсатор микроволновки или колебательного контура. Чтобы убедиться в том, что конденсатор накапливает и удерживает заряд, нужно проверить емкость.

Для этого нужно повернуть тумблер мультиметра на режим CX. Здесь стоит сказать, что проведение этой процедуры возможно лишь с помощью качественного цифрового прибора, но даже в таком случае точность измерений остается приблизительной. При использовании стрелочного инструмента стрелка после подключения начинает быстро отклоняться. В свою очередь это лишь косвенное доказательство исправности элемента, лишь подтверждающее то, что он набирает заряд. О том, как правильно подключать тестер к конденсатору в режиме ёмкости должно быть указано в инструкции пользователя. Не забывайте, что электролитический конденсатор необходимо присоединять, соблюдая полярность. Как правило, анодный (положительный) контакт несколько длиннее катодного (отрицательного).

Ниже размещено интересное радиолюбительское видео, где в середине проводится измерение емкости.

Предел измерения следует выбирать исходя из значения емкости, указанного на корпусе конденсатора. Так, к примеру, если номинальная емкость составляет 9,5 мкФ, необходимо измерять её, переведя тумблер на значение 20 µ. Если итоговые показатели измерений сильно отличаются от номинальных, значит радиодеталь неисправна.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

  1. Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
  2. Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
  3. Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса). После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Проверка на короткое замыкание

Обратите внимание, что данный способ относительно небезопасен и не рекомендуется его использование людьми без необходимого опыта и знаний.

  1. Для начала следует отсоединить конденсатор от схемы и ненадолго (до 4 сек) подключить к источнику питания.
  2. Отсоединив от источника питания, замкните выводы конденсатора с помощью электропроводящего инструмента (отвертка, пинцет, нож). Будьте осторожны: используйте для этого только заизолированный предмет или наденьте на руки резиновые перчатки.
  3. При замыкании выводов произойдет короткое замыкание, сопровождающееся вылетом искры, по виду которой и можно судить о состоянии элемента: если проскочила сильная и яркая искра, конденсатор в норме, тусклая и слабая искра говорит о неисправности.

А вот это видео мы настоятельно рекомендуем посмотреть, т.к. оно очень подробное и охватывает все аспекты нашей темы:

Проверка конденсатора на плате (не выпаивая)

На самом деле, механизм аналогичен, поэтому просто рекомендуем посмотреть это видео, оно должно закрыть все оставшиеся вопросы.

Проверка автомобильного конденсатора

В системах зажигания большинства современных автомобилей используется электронный коммутатор (по привычке называемый так же, как предшествующий ему механический прибор), распределяющий зажигание на свечи, которые, в свою очередь, подают искры на цилиндры двигателя. Считается, что поломка этого устройства требует его немедленной полной замены, однако, если причина неисправности в конденсаторе, используемом в конструкции, можно попробовать поменять только его. Для проверки на трамблере используется амперметр.

  1. Подключив амперметр к выводам конденсатора, включите зажигание и разомкните их.
  2. Обратите внимание на показатели амперметра – если стрелка сместилась с 2-4 А до нуля, наш элемент вышел из строя и надо его заменить.

Самостоятельно проверить автомобильный конденсатор можно и без специального оборудования. Для этого нужно подключить к контактам переносную лампочку небольшой мощности. Если радиоэлемент в порядке, то она не загорится после включения зажигания.

Как проверить конденсатор мультиметром: инструкция с полезными советами

Ходит одна байка: для проверки конденсатора мультиметр не нужен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь – шарахнет сильно. Избегайте лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.

Процесс проверки конденсатора

Увидите, проверить мультиметром конденсатор может каждый. Неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор – дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.

Проверка конденсатора

Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:

  1. Скачать в интернете нужную схему, едва ли в руках имеется готовая.
  2. Прикинуть напряжение на проверяемом конденсаторе. В блоках питания, например, удобно идти по шинам земли-питания, выясняя вопрос. Решается не для проверки конденсатора непосредственно, а знать уточнить диапазон, выставляемый мультиметром. Неправильно стоит род тока (напряжения), неверно подсоединены контакты – выход измерителя из строя гарантирован.
  3. Задача – проверить наличие напряжения на конденсаторе. Имеется – емкость зарядится.
  4. Схемой прослеживаем путь разряда: резисторы, диоды, транзисторы, включенные в правильном направлении. Оговоримся, речь ведем о крупных, мощных конденсаторах преимущественно блоков питания. Полярность не позволяет разрядиться через диод выпрямителя, включенный в обратном направлении. Резистор увеличением номинала повышает время протекания процесса, элемент станет бить током. Ученые называют временем разряда, явление характеризуется постоянной, представляющей произведение номинала резистора на емкость, выраженную фарадами. Беря тестер, ставя на постоянный диапазон, видим падающий потенциал. По времени несложно оценить величину, годность емкости.

    Тестирование мультиметром

  5. Потрудившись включить мультиметр в обратном направлении, увидите не разряд конденсатора, но выход из строя очередного детища китайской промышленности. Новичкам полезно знать одну вещь: контакты мультиметра подписаны, избегайте пренебрегать изучением внешнего вида прибора.
    1. Черный провод служит нулевым (земля, нейтраль). Подписывается Com (англ. common), помечается значком заземления.
    2. Напротив других клемм стоят пределы. Вот, в каком ведет работу, туда втыкайте. Используется для этого красный провод, некоторые мультиметры отказываются работать, если неправильно произвести подсоединение.

Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:

  • Измерение переменного напряжения понадобится большинству. Диапазон помечается знаком тильды ~. Рядом стоит английская буква V (Voltage).

    Процесс проверки

  • Постоянное напряжение помечается схожим образом, рядом стоят тире, точки. Наподобие знака равенства, у которого рассечена нижняя черта тремя более мелкими линиями.
  • Ток часто измеряется постоянный. Будьте внимательны в вопросе, избегая сжечь прибор. Помечается набор диапазонов буквой А (Ampere). В отличие от напряжений, где фигурируют тысячи вольт, мультиметр предлагает довольствоваться десятком. Меньше, нежели ток заряда автомобильного аккумулятора. Процессор ПК суммарно потребляет больше.
  • Номиналы сопротивлений знать полезно, этот сорт радиоэлементов чаще можно извлечь из старой схемы, снабдив новую. Понятно, нельзя ошибиться, или величина погрешности должна быть минимизирована. Шкала сопротивлений помечается буквой Ω (Омега) греческого алфавита. Среда профессионалов своеобразно помечает омы.
  • Самым нужным большинству пользователей покажется режим прозвонки. Нужен проверять диоды, некоторые транзисторы, гораздо чаще при помощи опции просто оценивают целостность проводов. Здесь важно, чтобы цепь не была под током. Иначе тестер сгорит. Помечается режим значком зуммера, либо общепринятым обозначением электрическими схемами диода. Прозвонкой называется, благодаря характерной особенности: пройдя удачный тест, мультиметр начнет тонко пищать.
  • Отдельной темой разговоров назовем проверку транзисторов, диодов на работоспособность при помощи специального гнезда, помечающего эмиттеры, коллекторы, базы, некоторые другие электроды электрорадиоэлементов.

Проверить емкость конденсатора мультиметром

Мультиметр

Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат – нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода – бестолковая идея. Неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.

На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Требуется, чтобы оценить параметры. К примеру, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.

Зная указанные вещи, понимаем, что делать дальше:

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
  3. Попутно сопротивлению начнёт расти от нуля до бесконечности.

Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Теперь проводим анализ. Выяснили, годен ли конденсатор, присутствуют некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.

Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:

  1. Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) – внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
  2. По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.

Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.

Известен простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, не всегда удаётся. Параллельно емкости включены резисторы, дроссели, другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.

Проведём сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли – цепь разряда барахлит. Пусковой конденсатор авто – возможно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.

как проверить конденсатор, измерение его емкости мультиметром

  1. Как проверить конденсатор мультиметром
  2. Проверка конденсатора мультиметром
  3. Как проверить конденсатор с помощью приборов
  4. Проверяем конденсатор мультиметром в режиме омметра
  5. Как проверить емкость конденсатора
  6. Как проверить конденсатор при помощи прибора ESR-METR

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Как проверить конденсатор мультиметром

Я рад снова видеть все вас на  страницах сайта «Электрик в доме».  Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор.  История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).

В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы  весь механизм прекратил выполнять свои функции.

Вот почему, в случае  неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.

Для этих целей и предназначен  недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.

С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.

Проверка конденсатора мультиметром

Для лучшего усвоения материала, начнем с небольшой теории:

  • Устройство и принцип работы мультиметра;
  • Виды и особенности конденсаторов.

Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.

Конденсаторы могут быть двух видов: полярными и неполярными.

  1. Конденсаторы полярные.

Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.

Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах  0.1 ÷ 100000 мкФ.

  1. Конденсаторы неполярные

Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад  до нескольких пикофарад).

Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!

Как проверить конденсатор с помощью приборов

Любую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки  и последующее ее вздутие.

После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот  простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.

Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.

Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель  мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит  — «1» (единицу), что укажет на неисправность конденсатора.

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор, при этом достаточно замкнуть его контакты  при помощи любого металла.

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ,  показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Как проверить емкость конденсатора

Главный показатель, основная характеристика всех конденсаторов — это «емкость».  Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.

Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?

В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)

Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:

Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы  -CX+. (не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями.

Продолжаем проверку  конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.

Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам  заявленным производителем.

Запомните,  если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.

 
Как проверить конденсатор при помощи прибора ESR-METR

Недавно я приобрел ESR-METR  и я решил выполнить им ту же самую проверку.

Методика проверки очень проста. Прибор необходимо откалибровать, в моем случае в комплекте идет специальная перемычка, при помощи которой замыкается нужная группа контактов на колодке 1-4. Нажимаем кнопку и прибор автоматический калибруется, сообщив нам об этом на своем экране. После калибровки  не забываем разрядить конденсатор и подключаем его к нужным нам разъемам. и производим измерение.

Каждый конденсатор обладает и паразитными свойствами, например сопротивлением. Из фото видно, что емкость конденсатора соответствует заявленным характеристикам, а также присутствует паразитное последовательное сопротивление номиналом 1.2 Ом, из за этого потери на данном конденсаторе составляют 0,5%.

В нашем случает этот показатель великоват, что говорит о высыхании конденсатора, устанавливать его в схему не рекомендуется.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

Как правильно проверить, работает ли конденсатор?

Конденсаторы широко применяют в технике. Их повреждения вызывают потерю работоспособности бытовых приборов, электроники, других устройств. Внешний осмотр не всегда даёт правильное заключение о неисправности, поэтому проверка конденсатора на повреждение осуществляется электроизмерительными приборами – мультиметром или тестером.

Блок: 1/4 | Кол-во символов: 328
Источник: https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost

Подготовительные работы

Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.

Блок: 2/5 | Кол-во символов: 321
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Необходимый минимум сведений

Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.

Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий

Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В —  проверка одинаковая.

Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

  • Красный щуп — к положительному выводу.
  • Черный щуп — к минусовому (отрицательному).

Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).

Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах

Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.

Блок: 2/6 | Кол-во символов: 2129
Источник: https://elektroznatok.ru/info/elektronika/proverka-kondensatora-multimetrom

Проверка без приборов

Без измерения параметров о неисправности свидетельствуют дефекты внешнего вида:

  • пятна на поверхности корпуса;
  • вздутие, деформация верхней насечки на импортных электролитических конденсаторах;
  • протечка электролита.

Другие способы контроля неисправности применяют в домашних условиях. Следует:

  • подключить к источнику питания, напряжение не должно превышать номинальное;
  • взять светодиод (низковольтную лампу с двумя проводами), дотронуться выводами светодиода до ножек конденсатора;
  • вспышка светодиода (кратковременное свечение лампы) подтвердят исправность.

Для определении работоспособности конденсатора большой ёмкости:

  • подключить к источнику питания, напряжение которого меньше номинального;
  • снять заряд металлическим предметом.

Наличие искры при разряде подтвердит годность. При снятия заряда соблюдать осторожность, принимать защитные меры, так как разряд сопровождается мощной искрой и звуком. Для уменьшения искры применяют разряд через резистор.

Блок: 3/4 | Кол-во символов: 961
Источник: https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost

Проверка конденсаторов

Как обнаружить неисправность по внешним характеристикам? Конечно, только лишь по внешним признакам невозможно достоверно судить о работоспособности какого-либо элемента. Тем не менее, таким путем можно заподозрить неисправность, опираясь на признаки:

  • отверстия на основании и вытекание электролита, из-за чего конденсатор теряет герметичность;
  • нехарактерная, раздутая форма корпуса и множество выступающих бугорков (в нормальном состоянии они имеют форму цилиндра).

Внешняя проверка особенно необходима в том случае, если вы устанавливаете в схему уже использованные конденсаторы. Тем не менее, некоторый процент брака можно обнаружить и среди новых элементов.

Здесь произошло замыкание, которое спровоцировало пробой в элементе

Если вы приобрели новый конденсатор, на котором уже имеются дефекты, то его не стоит использовать, ведь со временем это может привести к нарушению целостности всей схемы. Будет разумно приобрести и подсоединить другой элемент.

Схема конденсатора

Повреждения в виде пробоев в основном встречаются на неполярных элементах или на некоторых полярных с высокой чувствительностью к высокому напряжению.

Боковая пробоина в конденсаторе из алюминия – это редкое явление

Для того, чтобы предупредить повреждение других частей электросхемы после разрыва конденсатора, производителями была предусмотрена слабая верхняя крышка, на которой располагаются небольшие разрезы. Таким способом создается «слабое» место корпусной части. Это значит, что в случае разрыва электролит вытекает сверху, не затрагивая элементы схемы.

Вздутый конденсатор потребуется немедленно утилизировать, иначе через некоторое время все равно произойдет взрыв (как показано на изображении ниже).

Последствия взрыва конденсатора

Если у конденсатора начинает вздуваться верхняя часть, то уже не стоит проверять его дополнительными способами. Лучшим решением будет приобретение нового элемента.

На фото представлены неисправные конденсаторы — у двух из них вздувается крышка, а на других имеются прорывы

Обратить внимание следует и на другой немаловажный признак. Так, у некоторых элементов «слабая» крышка остается целой без каких-либо дефектов, но их можно заметить на нижней части – пробка становится выпуклой. Конечно, такая проблема возникает в редких случаях, но все-таки некоторым пользователям приходится с ней сталкиваться. Даже если причиной такой проблемы является брак, все равно конденсатор рекомендуется утилизировать.

Верхняя часть не повреждена, зато пробка заметно деформировалась

Стоит отметить, что даже при наличии внешних дефектов на корпусе, компонент может соответствовать требованиям после проверки прибором. Тем не менее, использовать его будет опасно.

В другом же случае, когда внешние повреждения отсутствуют, но имеются подозрения плохой функциональности конденсатора, из-за общего падения работоспособности радиосхемы, его понадобится проверить другими методами, поэтому сначала дефективный элемент выпаивают из общей схемы.

Демонтаж компонентов является обязательным шагом

Многие «умельцы» склонным к мнению, что проверить компонент можно и без выпаивания. Конечно, такой способ тестирования возможен, но он не гарантирует точных результатов, поэтому конденсаторы желательно демонтировать.

Блок: 4/8 | Кол-во символов: 3230
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/

Способ № 2 – Обойдемся без приборов

Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.

Блок: 4/5 | Кол-во символов: 498
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Особенности проверки конденсаторов разных типов

Существует множество типов радиодеталей, которые отличаются материалом диэлектрика, пластин, видом электролита, поэтому они имеют разные способы диагностики рабочего состояния.

Для проверки годности керамического конденсатора задают наибольший предел измерения омметра. Признаком исправности будет измеренное сопротивление не менее 2 МОм. При других значениях деталь меняют.

Для испытания танталового конденсатора выбирают наибольший предел измерения в омах. При сопротивлении равном 0 его меняют. Перед проверкой электролитического конденсатора большой ёмкости и высокого напряжения необходима максимальная разрядка. Остаточное напряжение испортит прибор.

SMD конденсаторы неполярные, поэтому их проверяют как керамические, определяя годность в режиме омметра.

У плёночного конденсатора с коротким замыканием показание будет равно 0. При внутреннем обрыве аналоговый мультиметр покажет бесконечность, цифровой – 1.

Проверка без выпаивания

Исследовать радиодеталь не выпаивая, нельзя, показание будет неверным от влияния других элементов схемы.Вносит погрешность в измерение соседство трансформаторов, индуктивности, предохранителей. Параллельное или последовательное соединение их будет увеличивать или уменьшать итог тестирования. Для правильной оценки состояния конденсатор выпаивают.

Без выпаивания можно приблизительно определить работу участка схемы. Для этого прикасаются щупами к ножкам детали и измеряют сопротивление. Если показание увеличивается, затем уменьшается – деталь исправна.

Необходимо помнить, что контроль конденсаторов возможен только до максимальной величины 200 мкФ. Электроизмерительные приборы не измеряют большие параметры. При значении менее 0,25 мкФ конденсаторы проверяют только на короткое замыкание.

Блок: 4/4 | Кол-во символов: 1772
Источник: https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Как проверить конденсатор тестером (стрелочным прибором)

Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.

Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать . Также особая благодарность за РЕПОСТ в соц.сетях.

Блок: 3/3 | Кол-во символов: 8106
Источник: https://electricvdome.ru/instrument-electrica/kak-proverit-kondensator-multimetrom.html

Что еще важно знать?

Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).

Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.

Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.

Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!

Также читают:

Блок: 5/5 | Кол-во символов: 1701
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Как проверить элемент без выпаивания?

Для того, чтобы провести тестирование компонента без демонтажа, понадобится использовать специальный прибор. Его отличительной особенностью является минимальный уровень напряжения на клеммах, что не позволит нанести вред другим компонентам цепочки.

Тем не менее, не у каждого мастера имеется подобное оборудования, поэтому соорудить его можно даже из стандартного мультиметра, если подключить его через специальную приставку. Схематическое строение приставок можно обнаружить на просторах интернета.

Наглядный пример создания прибора для тестирования конденсатора без предварительного демонтажа

Таблица №1. Другие методы проверки компонента без выпаивания.

Метод Описание
Частичное выпаивание Можно демонтировать компонент не до конца (один вывод). Это позволит провести стандартную проверку прибором. Правда, осуществить это можно при наличии полярного конденсатора.
Подрезка путей Эффективным способом проверки без демонтажа является подрезка дорожек, которые направляются по схеме к конденсатору. Удалить их можно острым предметом, после чего допускается без опасений проводить тестирование.Конечно, это опасный метод, ведь так вы рискуете безвозвратно испортить плату. На некоторых схемах применять такой способ недопустимо.

По завершению проверки следует восстановить целостность дорожек

Блок: 6/8 | Кол-во символов: 1330
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/

Особенности SMD конденсаторов

Современные технологии позволяют делать радиодетали очень малых размеров. С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.

SMD технологии позволяют делать миниатюрные радиоэлементы

Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.

Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета

Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).

Блок: 6/6 | Кол-во символов: 1267
Источник: https://elektroznatok.ru/info/elektronika/proverka-kondensatora-multimetrom

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Блок: 7/9 | Кол-во символов: 985
Источник: https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/

Проверка компонента замыканием: возможно ли это?

Применяют такой метод в основном только для проверки крупногабаритных компонентов с большой емкостью, которые работают на напряжении выше двухсот вольт.

Для начала компонент заряжают от сети при стандартном напряжении, после чего его разряжают с помощью замыкания выводов. В процессе тестирования можно заметить искры, которые доказывают, что элемент обладает способностью к накоплению зарядов.

При замыкании выводов крупногабаритного конденсатора появляется яркая вспышка

Тем не менее, этот метод относится к разряду опасных и его категорически запрещено применять на практике новичкам по следующим причинам:

  1. В случае неосторожности мастер может получить неслабый удар током, который представляет опасность для его жизни. Особенно опасно замыкание заряженного конденсатора двумя руками, ведь при таких обстоятельствах электрический разряд поражает сердце, и человек умирает.
  2. Кроме того, таким методом все равно не получится достоверно узнать о работоспособности компонента, ведь неопытный человек не сможет отличить искру с разницей в 100 вольт. Это значит, что тестирование заведомо безрезультатное.

Блок: 7/8 | Кол-во символов: 1151
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Блок: 8/9 | Кол-во символов: 451
Источник: https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/

Подводим итоги

Вышеперечисленные методы проверки пригодятся тем мастерам, которые занимаются ремонтом стиральных машин, микроволновых печей, кондиционеров и прочей бытовой техники. Ведь именно в таких приборах чаще всего возникает поломка конденсатора, которую требуется своевременно определить. Обращаем ваше внимание — не следует применять опасные для жизни методики тестирования, потому что невозможно исключить ошибку во время работы!

Блок: 8/8 | Кол-во символов: 454
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Еще одно видео:

Блок: 9/9 | Кол-во символов: 172
Источник: https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/

Кол-во блоков: 22 | Общее кол-во символов: 31076
Количество использованных доноров: 7
Информация по каждому донору:
  1. https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html: использовано 3 блоков из 5, кол-во символов 2520 (8%)
  2. https://electricvdome.ru/instrument-electrica/kak-proverit-kondensator-multimetrom.html: использовано 1 блоков из 3, кол-во символов 8106 (26%)
  3. https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/: использовано 5 блоков из 8, кол-во символов 8455 (27%)
  4. https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/: использовано 3 блоков из 9, кол-во символов 1608 (5%)
  5. http://electro-shema.ru/remont/kak-proverit-kondensator.html: использовано 2 блоков из 9, кол-во символов 1392 (4%)
  6. https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost: использовано 3 блоков из 4, кол-во символов 3061 (10%)
  7. https://elektroznatok.ru/info/elektronika/proverka-kondensatora-multimetrom: использовано 4 блоков из 6, кол-во символов 5934 (19%)

Поделитесь в соц.сетях:

Оцените статью:

Загрузка…

Как 5 способов проверить конденсатор мультиметром?

I Введение

Два соседних проводника зажаты слоем непроводящей изолирующей среды, образуя конденсатор. Конденсаторы — один из наиболее часто используемых электронных компонентов. Они играют важную роль в таких схемах, как настройка, обход, связь и фильтрация. Например, их часто используют в цепи настройки транзисторного радиоприемника, цепи связи и цепи обхода цветного телевизора.

Эта статья в основном знакомит с тем, как правильно использовать мультиметры для проверки конденсаторов и алюминиевых электролитических конденсаторов, включая подробные этапы работы, принципы работы, примечания и пояснения некоторых фундаментальных знаний о конденсаторах.

У нас также есть соответствующая статья о том, как проверить пусковые конденсаторы, которые могут вас заинтересовать. Не пропустите!

Как проверить конденсаторы с помощью цифрового мультиметра

Каталог

II Определение конденсатора

Конденсаторы состоят из компонентов, которые накапливают электричество и электрическую энергию (потенциальную энергию).Проводник окружен другим проводником, или все линии электрического поля, излучаемые одним проводником, заканчиваются в проводящей системе другого проводника, называемой конденсатором.

III Причины и последствия тестирования конденсаторов и характеристик выдерживаемого напряжения

3.1 Почему мы должны измерять емкость конденсатора?

Целью измерения значения емкости конденсатора в общем смысле электричества является проверка изменения его значения емкости.Сравнивая измеренное значение со значением, указанным на паспортной табличке, вы можете судить о том, правильна ли внутренняя проводка и не ухудшилась ли изоляция из-за влаги, сломался ли компонент и уменьшилась ли емкость из-за утечки масла. Так что будьте осторожны во время существенной операции.

3.2 Почему конденсаторы должны проходить испытание на выдерживаемое напряжение?

Испытание на выдерживаемое напряжение относится к испытанию способности выдерживать напряжение различных электрических устройств и конструкций.Процесс приложения высокого напряжения к изолирующему материалу или изолирующей конструкции без нарушения характеристик изоляционного материала считается испытанием на выдерживаемое напряжение. Вообще говоря, основная цель способности выдерживать напряжение — проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции продукта стандартам безопасности. проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции оборудования стандартам безопасности.

Рисунок 1. Тестирование конденсатора

IV Разница между конденсаторами разной емкости в тесте

4.1 Тест конденсатора малой емкости

Емкость конденсатора малой емкости обычно ниже 1 мкФ, потому что емкость слишком мала, зарядка Явление неочевидное, и угол руки вправо при измерении невелик. Поэтому измерить его емкость с помощью мультиметра, как правило, невозможно, а только определить, есть ли у него утечка или пробой.В нормальных условиях значение сопротивления обоих концов мультиметра R × 10 кОм должно быть бесконечным. Если определенное значение сопротивления измерено или значение сопротивления близко к 0, это означает, что в конденсаторе произошла утечка электричества или он был поврежден в результате пробоя.

Связанная рекомендация: Как проверить керамический дисковый конденсатор

4.2 Тест конденсатора большой емкости

Большую емкость обычно можно проверить с помощью 1–10 кОм, посмотрите развертку измерителя во время зарядки и значение сопротивления, указанное на последнем измерителе.Чем ближе к левому краю, тем лучше. Если сопротивление слишком мало, его нельзя использовать.

4.3 Тест суперконденсатора

Метод измерения суперконденсаторов полностью отличается от других типов конденсаторов. Суперконденсаторы имеют исключительно большие значения емкости, которые невозможно измерить напрямую с помощью стандартного оборудования. Обычными методами проверки емкости этих конденсаторов являются зарядка суперконденсаторов номинальным напряжением и разрядка суперконденсаторов нагрузкой с постоянным током.

Рисунок 2. Разные конденсаторы

В Как проверить конденсаторы мультиметром?

5.1 Прямое испытание с конденсатором

Некоторые цифровые мультиметры имеют функцию измерения емкости, и их диапазоны разделены на пять диапазонов: 2,000p, 20n, 200n, 2μ и 20μ. При измерении вы можете напрямую вставить два контакта разряженного конденсатора в гнездо Cx на плате измерителя и выбрать соответствующий диапазон для считывания отображаемых данных.

файл 2000p, подходит для измерения емкости менее 2000 пФ; Файл 20n, подходящий для измерения емкости от 2000 пФ до 20 нФ; Файл 200n, подходящий для измерения емкости от 20 до 200 нФ; Файл 2μ, подходит для измерения емкости от 200 нФ до 2 мкФ; Диапазон 20 мкФ, подходит для измерения емкости от 2 мкФ до 20 мкФ.

Опыт показал, что некоторые типы цифровых мультиметров (например, DT890B +) допускают значительную ошибку при измерении конденсаторов малой емкости ниже 50 пФ, а эталонное значение для измерения емкости ниже 20 пФ практически отсутствует.В это время емкость малого значения может быть измерена последовательным методом.

Метод: Сначала найдите конденсатор около 220 пФ, с помощью цифрового мультиметра измерьте его фактическую емкость C1, а затем подключите малый конденсатор, который нужно проверить, параллельно, чтобы измерить его общую емкость C2. Разница между ними (C1-C2) заключается в емкости тестируемых конденсаторов малой емкости.

Этот метод позволяет очень точно измерить малую емкость 1 ~ 20 пФ.

Рисунок 3. Как проверить конденсатор с помощью мультиметра

5.2 Тест с файлом сопротивления

Практика доказала, что процесс зарядки конденсаторов также можно наблюдать с помощью цифрового мультиметра, который фактически отражает изменение зарядного напряжения в дискретных цифровых величинах. . Предполагая, что скорость измерения цифрового мультиметра составляет n раз в секунду, в процессе наблюдения за зарядкой конденсатора вы можете увидеть n показаний, которые не зависят друг от друга и последовательно увеличиваются.В соответствии с этой характеристикой дисплея цифрового мультиметра можно определить качество конденсатора и оценить размер емкости.

Далее описывается метод обнаружения конденсатора с помощью измерителя сопротивления цифрового мультиметра, который имеет практическое значение для приборов без конденсатора. Этот метод подходит для измерения конденсаторов большой емкости от 0,1 мкФ до нескольких тысяч микрофарад.

5.2.1 Рабочий метод измерения

Как показано на рисунке 4, установите цифровой мультиметр на соответствующий уровень сопротивления. Красный и черный измерительные провода соответственно касаются двух полюсов проверяемого конденсатора Сх. В это время отображаемое значение будет постепенно увеличиваться с «000» до отображения символа переполнения «1». Если постоянно отображается «000», это означает, что конденсатор имеет внутреннее короткое замыкание; если он отображается постоянно, внутренние полюса конденсатора могут быть разомкнуты или выбранный уровень сопротивления может быть неподходящим.При проверке электролитических конденсаторов обратите внимание на то, что красный измерительный провод (положительный заряд) подключен к положительному электроду конденсатора, а черный измерительный провод подключен к отрицательному электроду конденсатора.

Рисунок 4. Цифровой мультиметр

5.2.2 Принцип измерения

На рисунке 5 показан принцип измерения конденсаторов с помощью файлов сопротивления. Во время измерения положительный источник питания заряжается, измеряемый конденсатор Cx проходит через стандартный резистор R0.В момент начала зарядки Vc = 0, поэтому отображается «000». По мере постепенного увеличения Vc отображаемое значение увеличивается. Когда Vc = 2VR, измеритель начинает отображать символ переполнения «1». Время зарядки t — это время, необходимое для того, чтобы отображаемое значение изменилось с «000» до переполнения. Этот временной интервал можно измерить кварцевым измерителем.

Рисунок 5. Принцип измерения

5.2.3 Измеренные данные с использованием цифрового мультиметра DT830 для оценки емкости

Принцип выбора диапазона сопротивления: при небольшой емкости следует выбирать высокое сопротивление, а при большой емкости следует выбирать низкое сопротивление.Если вы используете диапазон высокого сопротивления для оценки конденсатора большой емкости, время измерения продлится долгое время, потому что процесс зарядки идет очень медленно. Если вы используете диапазон низкого сопротивления для проверки конденсатора малой емкости, измеритель всегда будет показывать переполнение, потому что время зарядки очень короткое, и вы не можете увидеть изменения.

5.3 Тест с файлом напряжения

Обнаружение конденсаторов с помощью мультиметра постоянного тока цифрового мультиметра фактически является косвенным методом измерения.Этот метод позволяет измерять конденсаторы малой емкости от 220 пФ до 1 мкФ и точно измерять ток утечки конденсатора.

5.3.1 Методы и принципы измерения

Схема измерения показана на рисунке 6. E — внешняя сухая батарея на 1,5 В. Установите цифровой мультиметр на диапазон 2 В постоянного тока, подключите красный измерительный провод к одному электроду проверяемого конденсатора Cx, а черный измерительный провод к отрицательному полюсу батареи. Входное сопротивление диапазона 2 В составляет RIN = 10 МОм.После включения питания аккумулятор E заряжает Cx через RIN и начинает устанавливать напряжение Vc. Связь между Vc и временем зарядки t составляет

.

Рисунок 6. Схема подключения измерительного конденсатора с блоком напряжения

Здесь, поскольку напряжение на RIN является входным напряжением прибора VIN, RIN фактически выполняет функцию резистора выборки. очевидно,

VIN (t) = E-Vc (t) = Eexp (-t / RINCx) (5-2)

Рисунок 7 — это кривая изменения входного напряжения VIN (t) и напряжения зарядки Vc (t) на испытуемом конденсаторе.Из рисунка видно, что процесс изменения VIN (t) и Vc (t) прямо противоположен. Кривая VIN (t) уменьшается со временем, а Vc (t) увеличивается со временем. Хотя измеритель показывает процесс изменения VIN- (t), он косвенно отражает процесс зарядки тестируемого конденсатора Cx. Во время теста, если Cx открыт (нет емкости), отображаемое значение всегда будет «000». Если Cx имеет внутреннее короткое замыкание, отображаемое значение всегда будет напряжением батареи E и не будет изменяться со временем.

Рисунок7. Кривая изменения VIN (t) и Vc (t)

Уравнение (5-2) показывает, что когда цепь включена, t = 0, VIN = E, начальное отображаемое значение цифрового мультиметра представляет собой напряжение батареи, а затем, когда Vc (t) увеличивается, VIN (t) постепенно уменьшается. Пока VIN = 0V, процесс зарядки Cx заканчивается, в это время

Vcx (t) = E

Используя конденсатор определения уровня напряжения цифрового мультиметра, можно не только проверить конденсаторы малой емкости от 220 пФ до 1 мкФ, но также измерить ток утечки конденсатора.Пусть ток утечки измеряемого конденсатора будет ID, а стабильное значение, отображаемое измерителем в конце, будет VD (единица измерения V), тогда

Рисунок 8. Уравнение (5-3)

5.3.2 Примеры

Пример 1:

Измеренная емкость представляет собой конденсатор постоянной емкости 1 мкФ / 160 В с использованием диапазона 2 В постоянного тока цифрового мультиметра DT830 (RIN = 10 МОм). Подключите схему согласно рисунку 6. Изначально счетчик отображал 1.543V, а затем отображаемое значение постепенно уменьшалось. Примерно через 2 минуты отображаемое значение стабилизировалось на 0,003 В. Найдите ток утечки проверяемого конденсатора.

Рисунок 9. Уравнение

Ток утечки тестируемого конденсатора составляет всего 0,3 нА, что свидетельствует о хорошем качестве.

Пример 2:

Тестируемый конденсатор представляет собой полиэфирный конденсатор 0,022 мкФ / 63 В. Метод измерения такой же, как в Примере 1.Из-за небольшой емкости этого конденсатора VIN (t) быстро уменьшается во время измерения, и примерно через 3 секунды отображаемое значение уменьшается до 0,002 В. Подставив это значение в уравнение (5-3), вычисленный ток утечки составил 0,2 нА.

5.3.3 Примечания

(1) Перед измерением два контакта конденсатора следует замкнуть накоротко и разрядить, в противном случае процесс изменения показаний может не наблюдаться.

(2) Не касайтесь конденсаторного электрода обеими руками во время измерения, чтобы не допустить подскакивания измерителя.

(3) Во время измерения значение VIN (t) изменяется экспоненциально, а вначале быстро уменьшается. С увеличением времени скорость снижения будет все медленнее и медленнее. Когда емкость тестируемого конденсатора Cx меньше нескольких тысяч пикофарад, поскольку VIN (t) изначально падает слишком быстро, а скорость измерения измерителя слишком мала, чтобы отразить исходное значение напряжения, начальное отображаемое значение измерителя будет ниже, чем у батареи Напряжение E.

(4) Когда измеряемая емкость конденсатора Cx больше 1 мкФ, для сокращения времени измерения можно использовать файл сопротивления для измерения.Однако, когда емкость тестируемого конденсатора меньше 200 пФ, процесс зарядки трудно наблюдать, потому что изменение показаний очень короткое.

5.4 Тест с зуммером

Используя файл зуммера цифрового мультиметра, вы можете быстро проверить качество электролитического конденсатора. Метод измерения показан на рисунке 10. Установите цифровой мультиметр в положение зуммера и используйте два щупа для контакта с двумя контактами проверяемого конденсатора Cx.Должен быть слышен короткий звуковой сигнал, звук прекратится, и отобразится символ переполнения «1». Затем снова измерьте два измерительных провода, и зуммер должен снова прозвучать, и, наконец, отобразится символ перелива «1», который указывает на то, что проверяемый электролитический конденсатор в основном в норме. В это время вы можете установить высокое сопротивление 20 МОм или 200 МОм, чтобы измерить сопротивление утечки конденсатора и определить его качество.

Рисунок 10. Схема подключения для проверки электролитического конденсатора с зуммером

Принцип описанного выше процесса измерения заключается в следующем: в начале теста зарядный ток прибора до Cx велик, что эквивалентно длине пути, поэтому звучит зуммер.По мере того, как напряжение на конденсаторе продолжает расти, зарядный ток быстро уменьшается, и, наконец, зуммер перестает звучать.

Если во время теста зуммер продолжает звучать, это означает, что внутри электролитического конденсатора произошло короткое замыкание. Если зуммер продолжает звучать, а измеритель всегда показывает «1», когда ручка измерителя постоянно измеряется, это означает, что тестируемый конденсатор открыт или емкость исчезает.

5.5 Используйте цифровой мультиметр для измерения емкости более 20 мкФ

Для обычных цифровых мультиметров максимальное значение измерения в файле емкости составляет 20 мкФ, что иногда не соответствует требованиям измерения. По этой причине следующий простой метод можно использовать для измерения емкости более 20 мкФ с помощью файла емкости цифрового мультиметра, и можно измерить максимальную емкость в несколько тысяч микрофарад. При использовании этого метода для измерения конденсаторов большой емкости нет необходимости вносить какие-либо изменения в исходную схему цифрового мультиметра.

Принцип измерения этого метода основан на формуле C строка = C1C2 / (C1 + C2) двух последовательно соединенных конденсаторов. Поскольку два конденсатора с разной емкостью подключаются последовательно, общая емкость после последовательного соединения меньше, чем у конденсатора меньшей емкости. Следовательно, если емкость измеряемого конденсатора превышает 20 мкФ, используется только один конденсатор емкостью менее 20 мкФ. Последовательно с ним можно проводить измерения прямо на цифровом мультиметре.

По формуле двух последовательно соединенных конденсаторов легко получить C1 = C2C string / (C2-C string). Используя эту формулу, можно рассчитать значение емкости измеряемого конденсатора. Вот тестовый пример, чтобы проиллюстрировать конкретный метод использования этой формулы.

Тестируемый компонент представляет собой электролитический конденсатор с номинальной емкостью 220 мкФ и установлен на C1. Выберите электролитический конденсатор с номинальным значением 10 мкФ как C2, используйте цифровой мультиметр конденсатор емкостью 20 мкФ, чтобы измерить фактическое значение этого конденсатора как 9.5 мкФ и соедините два конденсатора последовательно, чтобы измерить строку C как 9,09 мкФ. Подставляя C2 = 9,5 мкФ и строку C = 9,09 мкФ в формулу, тогда

C1 = цепочка C2C / (цепочка C2-C) = 9,5 9,09 / (9,5-9,09) ≈211 (мкФ)


Рисунок 11. Цифровой мультиметр

Примечание: Независимо от того, какая емкость C2 выбрана, конденсатор с большей емкостью должен быть выбран при условии менее 20 мкФ, а C2 в формуле следует подставить в фактическое измеренное значение вместо номинального. значение, которое может уменьшить количество ошибок.Два конденсатора соединены последовательно и измеряются цифровым мультиметром. Из-за погрешности емкости и погрешности измерения самого конденсатора, пока фактическое измеренное значение близко к расчетному значению, измеряемый конденсатор C1 считается исправным. вместимость.

Теоретически этим методом можно измерить емкость любой емкости, но если емкость тестируемого конденсатора будет слишком большой, погрешность возрастет. Ошибка пропорциональна размеру измеряемого конденсатора.

VI Как тестировать алюминиевые электролитические конденсаторы

6.1 Физический осмотр внешнего вида

(1) Сначала проверьте, имеет ли тестируемый конденсатор официальную «Спецификацию продукта», которая включает название продукта, технические характеристики, установочные размеры , требования к процессу, технические параметры, а также название поставщика, адрес и контактную информацию для обеспечения этого. Серийную продукцию предоставляют штатные производители. Логотип на конденсаторе должен включать товарный знак, рабочее напряжение, стандартную емкость, полярность и диапазон рабочих температур.

(2) Обратитесь к параметрам процесса в «Спецификации продукта» и проверьте, соответствуют ли внешний вид, цвет и материал конденсатора указанным на нем индикаторам процесса.

(3) Используйте штангенциркуль, чтобы подтвердить установочный размер конденсатора, чтобы убедиться, что диаметр, высота, диаметр и расстояние выводных выводов находятся в пределах допуска технологического процесса, а внешние размеры должны соответствовать требования к отбору компании.

(4) Проверьте внешний вид конденсатора, чтобы убедиться, что он аккуратный, без явных деформаций, поломок, трещин, пятен, грязи, ржавчины и т. Д., А его маркировка четкая, прочная, правильная и полная.

(5) Проверьте выводные клеммы, чтобы убедиться, что их выводы прямые, не имеют окисления, ржавчины и не влияют на их проводящие свойства, а выводные выводы не имеют деформации, деформации и механических повреждений, которые могут влияет на вставку и удаление.

(6) Убедитесь, что дата изготовления, указанная на электролитическом конденсаторе, не превышает шести месяцев, и сделайте запись.

Рисунок 12. Алюминиевый электролитический конденсатор

6.2 Проверка емкости и потерь

(1) Используйте электрический мост, чтобы проверить, соответствует ли фактическая емкость номинальной емкости (электролитический конденсатор обычно имеет диапазон погрешности ± 20%). Значение тангенса угла потерь tanθ (то есть значение D) соответствует стандарту.

(2) Как использовать тестер моста Zen tech: после правильного подключения источника питания нажмите кнопку «POWER», чтобы включить рабочее напряжение тестера; нажмите кнопку «LCR», чтобы выбрать тип теста (L: индуктивность, C: емкость, R: сопротивление).

(3) Нажмите кнопки «ВВЕРХ» и «ВНИЗ», чтобы выбрать диапазон измерения (мкФ, нФ, пФ), и нажмите кнопку «FREQ», чтобы выбрать частоту тестирования (100 Гц,

(120 Гц, 1 кГц) может выбрать требуемую частоту тестирования в соответствии с техническими параметрами, предоставленными производителем, тест в этой статье выбирает «100 Гц».

(4) Нажмите «SERIES» (параллельный) и «PARALLEL» (параллельный), чтобы выбрать режим подключения для теста, малая емкость (менее 10 мкФ)

Чтобы использовать параллельный режим, используйте большой режим (10 мкФ и выше) в последовательном режиме.

(5) После завершения настройки подключите тестовые порты моста («НИЗКИЙ» и «ВЫСОКИЙ») к двум концам конденсатора и используйте этикеточную бумагу для записи значения емкости и значения потерь на дисплее соответственно. И прикрепите этикеточную бумагу к соответствующему конденсатору для последующего анализа.

6.3 Проверка пульсации напряжения

(1) Подключите схему, как показано ниже, и подключите проверяемый конденсатор к регулируемому источнику питания постоянного тока (обратите внимание, что положительный и отрицательный полюса не подключены наоборот). Подключите положительный электрод пробника осциллографа с неиндуктивным конденсатором (1 мкФ, 1200 В постоянного тока) последовательно к положительному электроду проверяемого конденсатора.

Рисунок 13. Цепь проверки пульсирующего напряжения

(2) Для настройки осциллографа сначала необходимо установить его в положение тестирования постоянного тока, а ручка точной настройки напряжения осциллографа должна быть заблокирована.

(3) Во время испытания напряжение постоянного тока следует медленно повышать до номинального с помощью регулятора напряжения, а изменения, отображаемые осциллографом, следует внимательно отслеживать. Необходимо выбрать правильный диапазон, чтобы обеспечить точное считывание напряжения с осциллограммы осциллографа.

(4) Снимите форму волны пульсации с помощью камеры и запишите диапазон и деление осциллографа с помощью этикеточной бумаги (то есть вычислите напряжение пульсации и вставьте его на соответствующий конденсатор для последующего анализа и сравнения.

(5) После завершения записи отключите источник питания постоянного тока, разрядите проверяемый конденсатор и неиндуктивный конденсатор с помощью ламповой нагрузки, а затем снимите проверяемый конденсатор с испытательного стенда.

6.4 Испытание на ток утечки

6.4.1 Первый метод косвенного измерения

Подключите, как показано ниже. Подключите резистор 1 кОм последовательно с тестируемым конденсатором и подключите его к регулируемому источнику питания постоянного тока.Используйте пробник осциллографа для подключения к обоим концам резистора. Косвенно рассчитайте ток утечки конденсатора, который необходимо измерить, путем выборки сигнала напряжения на резисторе.

Основы эксплуатации и меры предосторожности: После подключения цепи отрегулируйте регулируемый источник питания постоянного тока на номинальное напряжение конденсатора. После того, как цепь уравновесится в течение двух минут, считайте значение напряжения на резисторе. При считывании показаний осциллографа ручка регулировки напряжения должна быть заблокирована.Запишите максимальное значение кривой напряжения как значение напряжения и разделите его на значение сопротивления, чтобы получить значение тока утечки. Слишком большой ток и перегорел резистор. После испытания конденсатор следует разрядить, а затем удалить, чтобы избежать несчастных случаев.

Рисунок14. Схема

6.4.2 Второй метод косвенного измерения

Подключите проводку, как показано на рисунке, и последовательно добавьте воздушный переключатель между конденсатором и источником постоянного тока.Сначала замкните S1 и S2 соответственно и настройте регулятор напряжения на номинальное напряжение, чтобы зарядить конденсатор в течение двух минут.

Рисунок15. Схема

После этого отключаются и S1, и S2. В это время регулируемый источник питания находится на номинальном значении. Не шевелись. Добавьте миллиамперметр между S1 и S2, как показано на рисунке ниже: S1 и S2 замкнуты, и ток утечки может быть непосредственно считан миллиамперметром после одной минуты стабилизации.

Рисунок16. Схема

6.4.3 Меры предосторожности

Помните, что нельзя подключать миллиамперметр к линии напрямую, когда конденсатор не заряжен, так как начальный зарядный ток велик, миллиамперметр может сгореть случайно. В процессе разборки сначала разрядите конденсатор с помощью лампы накаливания. При разрядке сначала снимите миллиамперметр и убедитесь, что разрядный ток не проходит через испытательный резистор, чтобы предотвратить повреждение испытательного резистора и миллиметра.

6.4.4 Ток утечки при 1,2Un

Отрегулируйте напряжение постоянного тока так, чтобы оно в 1,2 раза превышало номинальное напряжение электролитического конденсатора, снова измерьте его ток утечки и сравните разные образцы.

6.5 Испытание на взрыв

6.5.1 Испытание постоянным током

Подайте обратное постоянное напряжение на проверяемый конденсатор, медленно отрегулируйте регулируемое постоянное напряжение и внимательно наблюдайте за током с помощью токоизмерительных клещей. Установка мощности постоянного тока обычно не превышает 30 В.Текущее значение устанавливается в соответствии с размером конденсатора следующим образом:

При диаметре конденсатора 6 мм ≤ 22,4 мм ток не может превышать 1 А; когда диаметр конденсатора> 22,4 мм, ток не может превышать 10 А.

6.5.2 Наблюдение за температурой поверхности конденсатора

Во время эксперимента используйте термометр, чтобы внимательно наблюдать за температурой поверхности конденсатора (чувствительный контакт термометра можно обернуть вокруг конденсатора лентой).Обратите внимание, что начальный ток очень мал и почти равен нулю. При повышении температуры конденсатора (примерно 35-40 ° C) ток значительно увеличивается. В это время следует внимательно наблюдать. Когда ток достигает или приближается к 10А, необходимо снизить напряжение, чтобы обеспечить контроль тока в пределах 10А.

6.5.3 Конденсаторный предохранительный клапан

В течение 30 минут после начала испытания предохранительный клапан конденсатора должен быть открыт.Если предохранитель конденсатора перегорел, питание следует немедленно отключить (электролитический конденсатор 350V 6800F автоматически откроется при следующих условиях, ток около 8A, температура поверхности около 45-60 ° C), если ток близок к 10А, и через 30 минут предохранитель все еще горит. Если он не включен, эта функция отсутствует.

Рисунок17. Цифровой вольтметр постоянного тока

6.6 Температурный тест

Емкость конденсатора будет изменяться в зависимости от температуры окружающей среды.Как правило, емкость увеличивается с повышением температуры. Температурный тест предназначен для проверки изменения емкости после уравновешивания при заданной температуре.

6.6.1 Высокотемпературный тест

(1) Подключите два небольших провода к выводной клемме конденсатора, который нужно проверить, соответственно, и проверьте емкость двух выводов при нормальной температуре и пометьте их для записи.

(2) Поместите конденсатор в камеру для испытаний на переменную влажность и нагрев при высоких и низких температурах и оставьте провода вне камеры для проверки емкости.

(3) Включите кнопку переключателя тестового блока, нажмите «Настройка температуры» на экране, установите температуру на 100 ° C и нажмите «Выполнить», чтобы запустить тестовый блок.

(4) Проверьте емкость еще раз примерно через 2 часа после того, как температура достигнет 100 ° C, и вычислите процентное изменение емкости (первоначальное измерение разницы).

6.6.2 Низкотемпературные испытания

(1) Поместите проверяемый конденсатор в испытательную коробку (будьте осторожны, не используйте конденсаторы, испытанные при высоких температурах, за исключением особых случаев).

(2) Включите кнопку переключателя тестового бокса, нажмите на экране «установка температуры», установите температуру на -25 ° C и нажмите «запустить».

(3) Проверьте емкость еще раз примерно через 2 часа после того, как температура достигнет -25 ° C, и вычислите изменение емкости в процентах (первоначальное измерение разницы).

6.6.3 Меры предосторожности

При испытании следует обратить пристальное внимание на то, есть ли какие-либо очевидные изменения в конденсаторе.При возникновении серьезных условий, таких как растрескивание поверхности конденсатора и открытие предохранительного клапана, испытательную камеру следует немедленно остановить. Во время испытания следует строго соблюдать рабочие процедуры испытательного бокса, и дверь испытательного бокса не должна открываться по желанию. В конце высокотемпературного испытания конденсатор можно вынуть только после того, как температура внутри испытательного бокса упадет, чтобы предотвратить несчастные случаи, такие как ожоги.

Рисунок 18.Конденсаторы

VII Рекомендации по тестированию конденсаторов

(1) При измерении с помощью мультиметра выберите редуктор в соответствии с номинальным напряжением конденсатора. Например, напряжение конденсатора, обычно используемое в электронном оборудовании, низкое, всего от нескольких вольт до нескольких десятков вольт. Если для измерения используется мультиметр RX10k, напряжение батареи в измерителе составляет 12 ~ 22,5 В, что может вызвать пробой конденсатора. Следовательно, следует использовать файл RXlk. измерения.

(2) Для конденсатора, только что снятого с линии, обязательно разрядите конденсатор перед измерением, чтобы предотвратить разряд конденсатора на счетчике и его повреждение.

(3) Для конденсаторов с высоким рабочим напряжением и большой емкостью конденсаторы должны быть достаточно разряжены, и оператор должен иметь защитные меры для предотвращения поражения электрическим током во время разряда.

8.1 Вопрос

Что делать при проверке конденсатора омметром?

8.2 Ответ

Убрать конденсатор из схемы.

Обычно легко снять пусковой или рабочий конденсатор — достаточно просто отсоединить его от жгута и отсоединить провода. Однако будьте осторожны, чтобы не прикасаться к клеммам конденсатора. Если конденсатор не разряжен, возможно, он полностью заряжен, и в таком случае вы можете получить серьезный шок.

Часто задаваемые вопросы о том, как проверить конденсатор

1. Как проверить, неисправен ли конденсатор с помощью мультиметра?

Используйте мультиметр и снимите напряжение на выводах конденсатора.Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр. Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

2. Как проверить конденсатор дома?

Настройте вольтметр на измерение постоянного напряжения (если он способен измерять как переменный, так и постоянный ток). Подключите выводы вольтметра к конденсатору. Подключите положительный (красный) провод к положительной (более длинной) клемме, а отрицательный (черный) провод к отрицательной (более короткой) клемме.Обратите внимание на начальное значение напряжения.

3. Как проверить конденсатор мультиметром?

4. Можете ли вы проверить конденсатор на плате?

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. … Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.

5. Какой тестер конденсаторов самый лучший?

Обзор лучшего измерителя емкости

:

Signstek MESR-100 V2 Автоматическое определение диапазона в цепи Конденсатор измерителя ESR LCR

Цифровой тестер конденсаторов ELIKE от 0,1 пФ до 20 мФ

Honeytek A6013l Тестер конденсаторов

Тестер цепей MESR-100, Тестер конденсаторов KKMOON mesr-100

Мультиметр Цифровой измеритель емкости Тестер конденсатора 0,1Pf до 2000 мкФ

Excelvan M6013 Цифровой автоматический измеритель емкости, тестер конденсатора

Цифровой измеритель емкости Профессиональный конденсатор 0.1Pf — 20000Uf

6. Как проверить конденсатор дешевым мультиметром?

7. Сколько Ом должен иметь конденсатор?

1000 Ом

Установите максимальное значение сопротивления (Ом), по крайней мере, 1 кОм (1000 Ом). При этой настройке измеритель генерирует небольшой ток при подключении выводов измерителя к клеммам конденсатора.

8. Что означает символ конденсатора на мультиметре?

В большинстве цифровых мультиметров для обозначения емкости используется символ, похожий на — | (-.Переместите циферблат к этому символу. Если несколько символов разделяют это место на циферблате, вам может потребоваться нажать кнопку, чтобы переключаться между ними, пока на экране не появится символ емкости.

9. Что делать, если конденсатор показывает высокий уровень?

Считывает, что на нем короткое замыкание. Если мы увидим очень высокое сопротивление на конденсаторе (несколько МОм), это признак того, что конденсатор, вероятно, тоже неисправен. Считывается, что на конденсаторе есть разрыв…. Но не 0 Ом или несколько МОм.

10. Что является первым шагом при испытании конденсатора?

Первый и самый простой — проверить конденсатор. Если он выглядит «размазанным» или опухшим, можно с уверенностью сказать, что это плохо. Хорошей практикой будет провести следующий тест, даже если он опух. Сделайте набросок проводов, подключенных к конденсатору, и запишите их цвета или числа.

Как проверить конденсатор? Использование различных методов

Как проверить конденсатор с помощью мультиметра? Различные методы проверки конденсаторов

В электронных схемах конденсатор является одним из наиболее часто используемых компонентов.При поиске неисправностей в таких схемах необходимо знать , как проверить конденсатор .

В этой статье мы обсудим, как проверить конденсатор на хорошее, короткое замыкание или разомкнутое состояние , используя разные методы.

Перед испытанием конденсатора необходимо узнать о самом конденсаторе.

Конденсатор

Конденсатор — это электронный компонент с двумя выводами, способный накапливать заряд в электрическом поле.Он состоит из двух металлических пластин, разделенных средой, известной как диэлектрик .

Когда конденсатор подключен к батарее, между металлическими пластинами возникает электрическое поле. Благодаря этому электрическому полю металлические пластины накапливают заряд.

Способность конденсатора накапливать заряд называется емкостью . Он измеряется в фарадах и обозначается F .

Клеммы конденсатора

Есть два вывода конденсатора i.е. положительный и отрицательный вывод, также известный как анод и катод соответственно.

Конденсаторы бывают двух типов в зависимости от полярности вывода.

Полярные конденсаторы Конденсаторы

Polar, также известные как электролитические конденсаторы . используют электролит в качестве одного из своих выводов для увеличения емкости накопления заряда. Он имеет большую емкость по сравнению с неполярными конденсаторами.

Его пластины поляризованы i.е. две уникальные клеммы, известные как анод (положительный) и катод (отрицательный).

При использовании полярного конденсатора очень важно проверить полярность его клеммы . Клемма анод всегда должна иметь на более высокое напряжение , чем ее клеммы катод . Изменение полярности может повредить конденсатор и даже разрушить его.

Проще говоря, всегда соединяйте положительную клемму с положительной клеммой, а отрицательную — с отрицательной клеммой аккумулятора.

Неполярный конденсатор

Неполярный конденсатор или неполяризованный конденсатор без полярности . Между его клеммами нет никакой разницы. Оба вывода могут действовать как катод и анод.

Неполярные конденсаторы имеют очень низкую емкость в диапазоне от нескольких пикофарад до нескольких микрофарад.

Также прочтите: Тест транзисторов для идентификации клемм, типа и состояния.

Нет положительных и отрицательных выводов.Клемма, подключенная к положительной клемме батареи, действует как анод. В то время как клемма, подключенная к отрицательной клемме аккумулятора, действует как катод. Изменение полярности батареи не влияет на конденсатор.

Визуальная идентификация клемм

Как известно, неполярные конденсаторы не имеют разных выводов. Таким образом, нет необходимости идентифицировать его терминалы.

Однако очень важно идентифицировать выводы полярного электролитического конденсатора.

Первый метод

При изготовлении анод ветвь полярного конденсатора делается на длиннее по сравнению с катодной ветвью. Этот метод работает только тогда, когда конденсатор не используется. Второй метод работает как с новыми, так и с использованными конденсаторами.

Второй метод

Отрицательный вывод конденсатора обозначен на его корпусе маркировкой «», указывающей на катодную ножку .

Однако полярные конденсаторы SMD имеют маркировку над положительной клеммой (анод).

Различные методы проверки конденсаторов

Для проверки конденсатора необходимо удалить конденсатор из его цепи, если он есть в какой-либо цепи. Затем разрядит конденсатор, так как он может иметь некоторый накопленный заряд. Это может повредить ваше испытательное оборудование.

Чтобы правильно разрядить конденсатора , подключите резистор между его выводами.Заряд будет рассеиваться через резистор.

A Мультиметр — важный инструмент, необходимый для проверки конденсатора . Ниже рассматриваются различные методы проверки конденсаторов с помощью мультиметра.

Проверка конденсатора с помощью проверки целостности цепи

Метод проверки целостности конденсатора показывает, является ли он разомкнутым, коротким или хорошим .

  • Удалите подозрительный конденсатор из его цепи.
  • Разрядите его с помощью резистора.
  • Установите мультиметр в режим проверки целостности .
  • Поместите красный щуп мультиметра на анод, а черный (общий) щуп на катод конденсатора.
  • Если мультиметр показывает признак обрыва цепи ( звуковой сигнал или светодиод ), а затем он останавливается (показывает OL ). Значит конденсатор хороший .

Также прочтите: Различия между конденсатором и батареей

  • Если конденсатор не показывает никаких признаков непрерывности, конденсатор разомкнут .
  • Если мультиметр издает непрерывный звуковой сигнал, конденсатор закорочен и нуждается в замене.
Проверить конденсатор с помощью теста сопротивления

Тест сопротивления также используется для проверки конденсатора. Этот тест может выполнять как цифровой, так и аналоговый мультиметр. Метод остается одинаковым для обоих мультиметров.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите ручку мультиметра в режим с высоким сопротивлением (выше 10 кОм).
  • Поместите красный щуп на анод, а черный щуп на катодный вывод конденсатора.
  • Показание сопротивления должно начинаться с некоторой точки в середине и начинаться с , увеличиваясь с до , бесконечное . Он показывает, что конденсатор хороший .

Также читайте: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

  • Если конденсатор показывает высокое сопротивление даже после разряда, конденсатор разомкнут .
  • Если конденсатор показывает 0 или очень низкое сопротивление, это короткое замыкание .

Причина увеличения сопротивления в том, что изначально конденсатор заряжал от мультиметра . Таким образом, он позволяет току проходить через него (в этом случае омметр измеряет сопротивление ). Когда конденсатор полностью зарядил , он больше не пропускал ток. Из-за чего он выглядит как открытый путь ( бесконечное сопротивление )

Испытание конденсатора в емкостном режиме

Режим измерения емкости — это уникальный режим цифровых мультиметров, используемый для измерения емкости.Если вы хотите проверить конденсатор с помощью этого метода, вам нужно знать, как считывать значение конденсатора.

Как считать значение конденсатора:

Электролитический конденсатор обычно указывает полное значение, как показано на рисунке ниже.

Однако значение керамического конденсатора записывается в виде кода. Вы можете преобразовать / расшифровать его, используя его особый метод. Пример считывания керамического конденсатора приведен ниже.

Керамический конденсатор показывает номер 103 .

  • Первые две цифры являются значащими цифрами и пишутся как есть. Например, 10 .
  • Третья цифра « 3 » показывает множитель 10 3 . Таким образом, общая емкость составляет 10 * 10 3 , что равно 10000 пФ .
  • Керамические конденсаторы измеряются в пикофарадах 10 -12 F .
  • Таким образом, емкость этого конденсатора составляет 10 нФ .

Следующий шаг — найти допуск . Он дает минимальный и максимальный диапазон, в котором емкость может отличаться от номинального значения.

Некоторые из общих значений допуска указываются буквами j, k, l, m и n для добавления / вычитания процентов от 5,10,15,20 и 30 соответственно.

Теперь перейдем к тесту измерения емкости.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите мультиметр в режим измерения емкости .
  • Некоторые модели мультиметров имеют специальные клеммы для измерения емкости.

  • Поместите щупы мультиметра на конденсатор.
  • Если измеренная емкость соответствует записанному значению (включая допуск) конденсатора, то емкость конденсатора хорошо .
Проверьте конденсатор с помощью теста напряжения:

Способность конденсатора заключается в том, чтобы накапливать заряд, который отражается как напряжение на его выводах.

Этот тест показывает, что конденсатор может удерживать заряд или нет. Если конденсатор хорошо , он будет хранить некоторый заряд. который будет отображаться как напряжение на его клемме, и мы можем измерить его с помощью вольтметра .

Перед испытанием конденсатора на испытание напряжением вам необходимо узнать о номинальном напряжении конденсатора .

Номинальное напряжение конденсатора всегда записывается рядом с его значением емкости, как показано на рисунке ниже.

При зарядке конденсатора от аккумулятора напряжение аккумулятора должно быть на ниже номинального напряжения конденсатора на . Иначе конденсатор перегорит .

В этом тесте мы используем конденсатор номиналом 63 В с 12-вольтовой батареей.

  • Удалите конденсатор из его цепи.
  • Обозначьте клеммы и разрядите конденсатор с помощью резистора.
  • Подключите положительный полюс аккумулятора к положительному, а отрицательный — к отрицательному на конденсаторе.( будьте осторожны , чтобы не касаться клемм аккумулятора вместе)

  • Дайте зарядить в течение нескольких секунд.
  • Снимите аккумулятор.
  • Установите мультиметр в диапазон настройки вольтметра постоянного тока более 12 В.
  • Запишите начальное мгновенное показание напряжения конденсатора.

  • если показание находится около 12 вольт, конденсатор хороший .
  • Если показание напряжения намного ниже 12 В, конденсатор плохой и не может хранить достаточный заряд.
Как проверить конденсатор путем вычисления постоянной времени RC

Постоянная времени RC (обозначается греческим словом tau ‘τ’ ) — это время, в течение которого конденсатор заряжается до 63,2% от его приложенного напряжения.

Постоянная времени τ вычисляется как сопротивление умноженное на емкость :

τ = R C

В этом уравнении резистор R имеет известное значение, и во время этого теста мы измерим τ .

В этом тесте мы используем батарею 12 В с резистором 10 кОм . Мы соединили их последовательно с конденсатором. Мы используем вольтметр для измерения напряжения на конденсаторе и секундомер для измерения времени.

  • Настройте схему , как показано ниже.
  • Подключите клеммы аккумулятора, чтобы начать зарядку конденсатора.
  • Включите секундомер, как только вы подключите клеммы аккумулятора.
  • Наблюдать за показаниями напряжения с помощью вольтметра.
  • Как только он достигнет 63,2% из 12v (что составляет 7,5v ). Запишите время на секундомере.

Также прочтите: Цифровой логический шлюз NAND (универсальный шлюз), его символы, схемы и детали IC

Предположим, секундомер показывает 9 секунд .

  • Используйте уравнение постоянной времени RC для расчета емкости.

C = τ / R

С = 9/10 3

C = 0,9 мФ = 900 мкФ

  • Сравните это вычисленное значение емкости с заданным значением конденсатора.
  • Если разница очень мала, включая диапазон допуска от 10% до 20%. Конденсатор хороший .
  • Если рассчитанное значение емкости слишком низкое, чем указанное значение. конденсатор плохой .
Визуальная проверка конденсатора

Вы можете определить неисправный конденсатор, просто наблюдая за его признаками.

Неисправный или поврежденный конденсатор будет иметь любой из следующих признаков.

Выпуклый верхний дефлектор:

В электролитических конденсаторах есть отверстие (на самом деле не вентиляционное отверстие, а слабые места) в форме X, K, T на его вершине. Он предназначен для сброса давления во время выхода конденсатора из строя, чтобы избежать повреждения (взрыва) любых других компонентов.

При выходе из строя электролит внутри конденсатора выделяет газ. Этот газ создает давление и разрушает верхнее вентиляционное отверстие. В результате иногда получается выпуклая верхняя часть или электролитический разряд . Разряд бывает черного, оранжевого или белого цвета в зависимости от электролитических химикатов.

Ящик с выпуклым днищем и приподнятым корпусом

Иногда при выходе из строя конденсатора не пробивается верхнее отверстие. в таком случае давление внутри проходит через нижнюю часть .Дно электролитического конденсатора покрыто резиной . Газ внутри выталкивает эту резину наружу, из-за чего нижняя часть выпирает , а также поднимает корпус над своей печатной платой.

Керамические конденсаторы и конденсаторы поверхностного монтажа

Вы можете определить неисправный керамический конденсатор по следующим признакам.

  • имеет поврежденных обсадных труб или скважин в обсадных трубах.
  • Любая из ножек повреждена рядом с корпусом.
  • Трещины в корпусе.

Вы также можете прочитать:

Capacitor Testing — Пошаговый метод тестирования конденсатора различными способами

Чтобы проверить правильность работы конденсатора, необходимо выполнить тестирование конденсатора. В этой статье мы обсудим, что вы понимаете под тестированием конденсаторов, методы пошаговой проверки конденсатора различными способами и их преимущества.

Что такое конденсатор

Конденсатор — это устройство, используемое для электростатического накопления энергии в электрическом поле.Это пассивный двухконтактный электрический компонент. Конденсатор состоит из двух близких проводников или пластин, разделенных диэлектрическим материалом. Пластины накапливают электрический заряд при подключении к источнику питания.

Рис.1 — Введение в тестирование конденсаторов

  Подробнее о конденсаторах: 
  Теория конденсаторов 
  Как работает конденсатор 
  Цикл зарядки и разрядки конденсатора 
 Маркировка номера конденсатора  - как декодировать на примере 
  Как считывать значения цветовой маркировки конденсаторов - Расчетные и идентификационные коды 
  Различные типы конденсаторов на рынке с описанием - Часть I 
  Различные типы конденсаторов на рынке с описанием - Часть II 
  Электролитический конденсатор - Свойства, применение, значение емкости и полярность 
 Керамический конденсатор  - Состав, типы, свойства и применение 
  Что такое суперконденсатор (ультраконденсатор) - характеристики, работа, типы и применение  

Как проверить конденсатор — пошаговые методы

Как и все электрические устройства, конденсатор также чувствителен к скачкам напряжения.Такие колебания напряжения могут повредить конденсаторы. Следовательно, необходимо регулярно проверять конденсаторы, следуя любому из методов, приведенных ниже. Конденсаторы различных типов показаны на рис. 2.

Рис.2 Различные типы конденсаторов

  • Тестирование конденсатора с помощью мультиметра с настройкой емкости
  • Тестирование конденсатора с помощью мультиметра без настройки емкости
  • Тестирование конденсатора путем измерения постоянной времени
  • Проверка конденсатора простым вольтметром
  • Проверка конденсатора с помощью аналогового мультиметра
  • Тестирование конденсаторов путем замыкания проводов

Конденсатор Тестирование с использованием мультиметра с настройкой емкости
  1. Конденсатор необходимо отсоединить от печатной платы, а затем полностью разрядить.
  2. Следует отметить, если номинальные параметры конденсатора видны на его корпусе.
  3. Ручка цифрового мультиметра должна быть установлена ​​на настройку емкости.
  4. Затем щупы мультиметра должны быть подключены к клеммам конденсатора.
  5. После этого необходимо проверить показания цифрового мультиметра. Если показания мультиметра ближе к фактическим значениям (указанным на конденсаторе), в этот момент конденсатор можно считать исправным.Напротив, если разница между фактическим значением и измеренным показанием существенно велика (или иногда равна нулю), то конденсатор следует заменить, так как он мертв.

Рис.3 — Изображение цифрового мультиметра

Конденсатор Тестирование с использованием мультиметра без настройки емкости
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Затем ручку мультиметра необходимо установить в положение «Ом» или «Настройки сопротивления». В случае нескольких диапазонов измерения сопротивления следует выбрать более высокий диапазон (обычно от 20 кОм до 200 кОм).
  3. Затем щупы мультиметра должны быть подключены к клеммам конденсатора. В случае электролитического конденсатора красный зонд должен быть подключен к положительной клемме конденсатора, а черный зонд должен быть подключен к отрицательной клемме конденсатора. В случае неэлектролитического конденсатора его можно подключить любым способом.
  4. После этого цифровой мультиметр отобразит на дисплее значение сопротивления. Затем он отобразит сопротивление разомкнутой цепи (т. Е. Бесконечность). Следует записать показания за этот короткий период.
  5. Затем необходимо отключить конденсатор от мультиметра и повторить испытание несколько раз.
  6. Для исправного конденсатора каждая попытка теста должна показывать аналогичный результат на дисплее. Если при дальнейших испытаниях сопротивление не изменится, то конденсатор следует заменить, так как он мертвый.

Конденсатор Тестирование путем измерения постоянной времени
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Затем необходимо последовательно подключить известный резистор (обычно резистор 10 кОм) с конденсатором.
  3. После этого цепь необходимо замкнуть, подключив блок питания известного напряжения. Эта схема представляет собой не что иное, как RC-схему, показанную на рис.4.
  4. Затем необходимо включить источник питания и измерить время, за которое конденсатор зарядится до 63,2% напряжения питания.
  5. Затем, исходя из этого времени и сопротивления, необходимо измерить емкость и сравнить ее со значением, напечатанным на конденсаторе. Если они похожи или почти равны, то конденсатор можно считать исправным. Напротив, если разница существенно большая; то следует заменить конденсатор, так как он мертв.

Рис. 4 — RC-цепь, используемая при испытании конденсатора

Конденсатор Тестирование с вольтметром
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Затем необходимо соблюдать номинальное напряжение на конденсаторе (обычно оно упоминается как 16 В, 25 В, 50 В и т. Д.). После этого выводы конденсатора должны быть подключены к источнику питания или батарее, но напряжение должно быть меньше максимального рейтинга.
  3. Затем конденсатор необходимо зарядить на короткий период (обычно 4-5 секунд), а затем его следует отключить от источника питания.
  4. Затем цифровой мультиметр должен быть настроен на настройки вольтметра постоянного тока и должно быть измерено напряжение на конденсаторе. Должны быть подключены соответствующие клеммы вольтметра и конденсатора.
  5. Для исправного конденсатора начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению. Напротив, если разница большая, то конденсатор считается неисправным.

Рис.5 — Конденсатор, подключенный к батарее

Конденсатор Тестирование с использованием аналогового мультиметра
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Затем аналоговый мультиметр следует установить в положение омметра, и если имеется несколько диапазонов, необходимо выбрать более высокий диапазон.
  3. После этого выводы конденсатора должны быть подключены к щупам мультиметра и должны быть сняты показания мультиметра.
  4. Вначале сопротивление будет низким, а затем постепенно будет увеличиваться для хорошего конденсатора. Для закороченного конденсатора сопротивление всегда будет низким. Для открытого конденсатора либо не будет движения стрелки, либо сопротивление всегда будет показывать более высокое значение.

Рис.6 — Аналоговый мультиметр

Конденсатор Тестирование путем замыкания проводов
  1. Сначала необходимо отсоединить конденсатор от печатной платы, а затем полностью разрядить.
  2. Затем выводы конденсатора необходимо подключить к клемме питания.
  3. После этого источник питания следует включить на очень короткий период времени (обычно от 1 секунды до 5 секунд), а затем выключить. Конденсатор ведет; затем необходимо отключить от источника питания.
  4. Клеммы конденсатора должны быть закорочены с помощью металлического контакта. Этот шаг необходимо сделать, приняв надлежащие изоляционные меры.
  5. Состояние конденсатора можно определить по искре от конденсатора.Для конденсатора в хорошем состоянии искра большая и сильная. Для плохого конденсатора искра маленькая и слабая.

Рис.7 — Клеммы конденсатора закорочены

Преимущества тестирования конденсаторов

К преимуществам можно отнести:

  • Тестирование предотвращает системные потери.
  • Это может предотвратить колебания тока.
  • Помогает улучшить коэффициент мощности.
  Также читают:
Что такое стабилизатор напряжения - зачем он нам, как он работает, типы и применение
Как выбрать батарею - метод и краткосрочные / долгосрочные требования к питанию 
 Микроконтроллер  - классификация, архитектура, применение, преимущества
  

Чакрастхита — B.E (Медицинская электроника) и имеет опыт работы в MatLab и Lab View Software в качестве инженера-проектировщика в BCS Innovations и в больнице Manipal в качестве инженера-биомедицина. Она — автор, редактор и партнер Electricalfundablog.

Как пользоваться мультиметром

Добавлено в избранное Любимый 57 год

Непрерывность

Тестирование непрерывности — это проверка сопротивления между двумя точками. Если сопротивление очень низкое (менее нескольких Ом), две точки соединяются электрически, и издается звуковой сигнал.Если сопротивление превышает несколько Ом, значит, цепь разомкнута, и звуковой сигнал не издается. Этот тест помогает убедиться, что соединения выполнены правильно между двумя точками. Этот тест также помогает нам определить, подключены ли две точки, которых не должно быть.

Непрерывность — возможно, самая важная функция для гуру встраиваемого оборудования. Эта функция позволяет нам проверять проводимость материалов и отслеживать, где были выполнены или не выполнены электрические соединения.

Установите мультиметр в режим «Непрерывность». Он может отличаться в зависимости от цифрового мультиметра, но ищите символ диода с распространяющимися волнами вокруг него (например, звук, исходящий из динамика).

Мультиметр установлен в режим проверки целостности цепи.

Теперь соедините щупы вместе. Мультиметр должен издать звуковой сигнал (Примечание: не все мультиметры имеют настройку непрерывности, но большинство должно). Это показывает, что очень небольшое количество тока может течь без сопротивления (или, по крайней мере, с очень маленьким сопротивлением) между датчиками.

Внимание! В общем, выключите систему перед проверкой целостности цепи.

На макетной плате, на которой не запитывается , используйте щупы, чтобы проткнуть два отдельных контакта заземления. Вы должны услышать тональный сигнал, указывающий, что они подключены. Подключите пробники от контакта VCC на микроконтроллере к VCC на источнике питания. Он должен издать звуковой сигнал, указывающий, что питание свободно течет от вывода VCC к микроконтроллеру. Если он не издает тонального сигнала, вы можете начать следовать по маршруту, по которому проходит медный провод, и определять, есть ли обрывы в линии, проводе, макетной плате или печатной плате.

Continuity — отличный способ проверить, соприкасаются ли два контакта SMD. Если ваши глаза не видят этого, мультиметр обычно является отличным вторым ресурсом для тестирования.

Когда система не работает, непрерывность — еще одна вещь, которая помогает устранить неполадки в системе. Вот шаги, которые необходимо предпринять:

  1. Если система включена, внимательно проверьте VCC и GND с настройкой напряжения, чтобы убедиться, что напряжение соответствует нужному уровню. Если система 5 В работает при 4,2 В, внимательно проверьте свой регулятор, он может быть очень горячим, что указывает на то, что система потребляет слишком большой ток.
  2. Выключите систему и проверьте целостность цепи между VCC и GND. Если есть непрерывность (если вы слышите звуковой сигнал), значит, у вас где-то короткое замыкание.
  3. Выключите систему. Убедитесь, что VCC и GND правильно подключены к контактам микроконтроллера и других устройств. Система может быть включена, но отдельные микросхемы могут быть подключены неправильно.
  4. Предположим, вы можете запустить микроконтроллер, отложить мультиметр и перейти к последовательной отладке или использовать логический анализатор для проверки цифровых сигналов.

Обрыв цепи и большие конденсаторы: При обычном поиске неисправностей. вы будете проверять целостность цепи между землей и шиной VCC. Это хорошая проверка работоспособности перед включением прототипа, чтобы убедиться, что в системе питания нет короткого замыкания. Но не удивляйтесь, если вы услышите короткий звуковой сигнал! при зондировании. Это связано с тем, что в системе питания часто присутствует значительная емкость. Мультиметр ищет очень низкое сопротивление, чтобы увидеть, подключены ли две точки.Конденсаторы будут действовать как короткое замыкание в течение доли секунды, пока не заполнятся энергией, а затем будут действовать как открытое соединение. Поэтому вы услышите короткий звуковой сигнал, а затем ничего. Ничего страшного, просто шапки заряжаются.



← Предыдущая страница
Измерение тока

Какие компоненты следует тестировать на печатной плате? — Блог Clarydon

Все электронные продукты должны быть проверены, даже если они точно спроектированы и изготовлены профессионально, поскольку они могут быть подвержены неисправностям и проблемам.Печатные платы состоят из различных электрических компонентов, которые должны правильно функционировать, и тестирование печатных плат важно для проверки того, что каждый компонент работает. Контроль качества и обеспечение качества на всех этапах проектирования и производства имеют решающее значение, особенно на ранних стадиях. На этапе проектирования можно провести тестирование печатной платы для анализа проблем и минимизации неисправностей. Такие методы, как EMI, целостность сигнала и целостность питания, могут помочь выявить проблемы на ранней стадии проектирования.

На печатной плате тестируется несколько элементов, в том числе:

Конденсаторы

Конденсаторы — это, по сути, электронные устройства, которые накапливают энергию в виде электростатического поля. Они состоят из изоляционного материала, помещенного между токопроводящими пластинами.

Для тестирования конденсатора на печатной плате необходимо снять один конец конденсатора с печатной платы. Затем важно убедиться, что источник постоянного напряжения соответствует диапазону конденсатора, чтобы предотвратить перегрузку устройства.Когда вы подаете напряжение на печатную плату, может быть несколько результатов:

  • Чтобы проверить, не закорочен ли конденсатор, вам нужно будет увидеть, отражается ли напряжение от источника питания на показаниях счетчика.
  • Чтобы проверить, может ли конденсатор течь, вы увидите скачок в высоту, за которым следует низкое падение показаний счетчика.
  • Если показания измерителя не показывают скачков при подаче напряжения, возможно, конденсатор разомкнут или емкость слишком мала, чтобы измеритель мог ее зарегистрировать.

Резисторы Резисторы

— один из важнейших элементов печатной платы. Это небольшие электронные устройства, которые вырабатывают напряжение, передавая электрические токи.

Тестирование резисторов на печатной плате можно выполнить, сначала изолировав резисторы, чтобы результаты не искажались другими компонентами на печатной плате. Затем вы можете использовать цифровой мультиметр или аналоговый измеритель для измерения результатов.Чтобы проверить резистор, просто подключите провода мультиметра к резистору и запустите тест.

Если ваши результаты завышены, это может указывать на проблему с разомкнутым резистором. Другие компоненты на печатной плате обычно вызывают снижение или уменьшение показаний, поэтому, если вы получите высокое значение, возможно, возникнет проблема.

Диоды

Диоды — это электрические устройства, передающие ток в одном направлении, и они состоят из полупроводящего материала между выводами.По сути, диоды обеспечивают ток в одном направлении, блокируя ток в противоположном направлении.

Диоды — очень чувствительные компоненты, поэтому рекомендуется соблюдать осторожность при тестировании компонентов. Перед проверкой электрооборудования рекомендуется проконсультироваться со специалистом. Чтобы проверить диод, вам нужно будет отсоединить один конец диода от печатной платы. Затем вы можете использовать цифровой или аналоговый измеритель и найти красный и черный измерительные щупы. После обнаружения зондов вы можете подключить черный зонд к катоду, а затем подключить красный зонд к аноду.Затем вы можете установить измеритель в пределах от одного до десяти Ом.

Есть несколько результатов, которых вы можете ожидать, если возникнет проблема с диодом:

  • Чтобы определить утечку в диоде, вы должны увидеть, регистрирует ли счетчик два показания.
  • Чтобы проверить, смещен ли диод в прямом направлении, вы должны увидеть некоторое сопротивление в показаниях счетчика.

Свяжитесь с Clarydon для тестирования печатных плат

Clarydon Electronic Services обладает обширным опытом в области тестирования печатных плат.Если вам требуется тестирование, изготовление или сборка печатных плат, свяжитесь с одним из наших специалистов по печатным платам, и мы будем рады помочь. Тестирование компонентов на печатной плате может быть деликатной задачей, и при неправильном выполнении может привести к повреждению ваших компонентов.

Позвоните нам по телефону 01902 606 000 или напишите нам по адресу [email protected] .

Ремонт печатных плат | Журнал Nuts & Volts


Многие мелкие ремонты плат могут быть выполнены методично с использованием основных инструментов, таких как цифровые мультиметры (цифровые мультиметры) и осциллографы, для измерения напряжений и форм сигналов в важных контрольных точках цепи.Устранение неисправностей современных, сложных, многослойных печатных плат (печатных плат) часто является сложной задачей, поскольку такие факторы, как доступная документация, играют роль в скорости ремонта. Автоматизированные системы могут оказаться рентабельными при больших ремонтных нагрузках. Любой, кто интересуется электроникой, обязательно столкнется с одной-двумя мертвыми платами, будь то их собственная или кому-то, нуждающемуся в помощи. Каков наилучший подход, когда вы сталкиваетесь с печатной платой, которая не выполняет то, что должна делать?

Печатные платы сегодня ремонтировать сложнее, чем несколько лет назад.Производственные ошибки и отказы компонентов в процессе эксплуатации стали обычным явлением. Старые печатные платы могут работать со сбоями из-за неисправных компонентов, в частности электролитических конденсаторов, но новые (при условии правильной компоновки) могут не работать из-за производственных ошибок, плохо или неправильно припаянных деталей, паяных мостов и т. Д.

В то время как простая пайка и замена компонентов могут быть подходящими для менее сложных исправлений, некоторые виды ремонта могут потребовать более экспертных подходов для поиска причин неисправности.Ремонт полных сборок печатной платы может показаться устрашающим, но методичный подход помогает быстро находить и устранять проблемы.

Было бы разумно получить отчет от конечного пользователя о том, как вышла из строя плата. Это когда-нибудь работало правильно? Они только что запустили обновление программного обеспечения и это убило его? Можете ли вы увидеть какие-либо очевидные признаки неисправности, такие как обрыв проводов или дорожек?

Обычно лучше сначала воздержаться от включения поврежденной печатной платы. Если, например, есть подозрение на простой перегоревший предохранитель, необходимо определить причину проблемы, а не просто заменять предохранитель (на более крупный!).Короткие замыкания или перегрузки обычно оставляют контрольные признаки.

Если на печатную плату было нанесено защитное покрытие для защиты от влаги и пыли, этот слой необходимо удалить (по крайней мере, в нескольких критических контрольных точках), прежде чем можно будет начать диагностику неисправностей. Конформные покрытия, возможно, потребуется удалить растворителями, отслаиванием или струйной очисткой, но в настоящее время разрабатывается новый метод, с помощью которого покрытие можно проткнуть очень острыми испытательными штырями (см. , рис. 1, ).

РИСУНОК 1. Проникающие зонды проникают сквозь конформное покрытие.


Перед тем, как приступить к ремонту, соберите вместе все соответствующие принципиальные схемы, заведомо исправные платы и соответствующее испытательное оборудование, такое как цифровой мультиметр, ручные инструменты для пайки / демонтажа, осциллограф, источники питания и т. Д. ( Рисунок 2 ), желательно на скамейка без статического электричества. Самый полезный «инструмент» для начала — это пользовательский отчет о том, как произошел сбой или какая ошибка была обнаружена.

РИСУНОК 2. Типичные настольные приборы: измеритель LCR, осциллограф, цифровой мультиметр и анализатор спектра.


Самым универсальным инструментом является мультиметр, но в зависимости от сложности печатной платы для исследования работы схемы также могут потребоваться измеритель LCR, осциллограф, источник питания и логический анализатор. ВЧ схемам могут потребоваться более сложные инструменты, такие как анализатор спектра для проверки частот и уровней сигнала.

Вот несколько стратегий, позволяющих упростить процесс переделки и ремонта печатных плат. Устранение неисправностей также намного проще, если доступна заведомо исправная плата, позволяющая проводить визуальное сравнение и сравнение сигналов.Отсутствие сравнительной платы или документации усложняет задачу.

Визуальный

Проверьте, нет ли ослабленных разъемов или компонентов в розетках, которые часто могут смещаться при транспортировке. Ищите сгоревшие или поврежденные детали или перемычки, вызывающие короткое замыкание сигнальных или силовых линий. Вот где действительно полезен мощный цифровой микроскоп (см. , рис. 3, ). Визуальный осмотр — важный первый шаг в поиске и устранении неисправностей.

РИСУНОК 3. Короткое замыкание паяльной перемычки обнаружено на микроскопе.


Осмотрите конденсаторы. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор на конденсатор аналогичного типа и номинального напряжения. Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.

Ищите сломанные выводы на компонентах. У некоторых устройств есть крошечные провода, которые могут легко оборваться на печатной плате. Ножки ИС могут погнуться во время сборки. Ищите трещины на печатной плате, ведущие к обрыву цепей или сломанным компонентам.

Компоненты или части, такие как трансформаторы, силовые выходные транзисторы, резисторы и конденсаторы, на которых видны следы прожога, могут быть легко обнаружены путем наблюдения. По видимым ожогам и коричневым пятнам (и ужасному запаху) можно определить перегретые компоненты, но вам нужно выяснить, почему они перегрелись.

Плохое паяное соединение или перемычка — еще один частый предмет, обнаруживаемый при визуальном осмотре. Хорошие паяные соединения всегда выглядят гладкими, яркими и гладкими. Тусклая поверхность может указывать на дефектный сустав.Есть ли паяные перемычки между дорожками? Обратные или неправильные компоненты?

Короткое замыкание может быть очень сложным для устранения неисправностей. Кратковременный тест на включение питания может указать на наличие короткого замыкания, но часто его местонахождение неуловимо. Вы можете потратить много времени на попытки найти одну короткую, особенно промежуточную. Кратковременное включение платы после опрыскивания морозильным спреем — способ для бедняков найти шорты, которые нагреют область низкого сопротивления в линиях электропередач.

Более сложный метод — это наблюдение с помощью тепловой (ИК) камеры, чтобы показать место, которое нагревается больше, чем окружающие компоненты (см. Рисунок 4 ).

РИСУНОК 4. Горячие точки и короткие замыкания, показанные тепловизионной камерой.


Подайте на шину напряжение ниже необходимого 3,3 В или 5,0 В и ограничьте также ток источника питания. Начните с низких вольт / ампер и медленно увеличивайте оба. Печатные платы могут иметь самоограниченный срок службы из-за плохой конструкции из-за чрезмерного нагрева компонентов, неадекватных радиаторов или радиаторов с высохшим составом радиатора.

Быстрый способ найти неисправность — сравнить тепловые изображения заведомо исправной платы с тестируемым устройством (DUT). Значительные перепады температур могут указывать на место неисправности. Используя этот подход, можно бесконтактно проверять целые сложные платы.

С помощью этого метода можно быстро обнаружить распространенные дефекты, такие как короткое замыкание на землю и неисправные компоненты. Изменение или иное цветовое представление изображения может указывать на перегрев в паяном соединении, на дорожке цепи или на неисправную часть платы.

Кропотливая проверка каждого резистора, конденсатора, диода, транзистора, катушки индуктивности, полевого МОП-транзистора, светодиода и дискретного активного компонента может выполняться с помощью мультиметра или измерителя LCR, но это не эффективный способ отладки.

Простые тесты

Если на плату можно подавать питание, цифровой мультиметр можно использовать для проверки напряжения шины на ИС, выходов регуляторов напряжения и очевидных сигналов, таких как часы, правильная / ожидаемая логика и уровни ввода / вывода. Осциллограф можно использовать для проверки формы сигналов напряжения и обмена данными на плате с питанием.Чтобы проверить наличие выхода сигнала Wi-Fi на печатной плате, может пригодиться даже мобильный телефон.

Негерметичные конденсаторы можно найти с помощью настройки сопротивления цифрового мультиметра. Установите измеритель на считывание в диапазоне высоких сопротивлений и прикоснитесь выводами измерителя к соответствующим выводам на конденсаторе; красный — к положительному, а черный — к отрицательному. Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. При больших значениях емкости нарастание будет очень медленным.

Примечание: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания.

Перед измерением электролитов отключите питание и осторожно разрядите конденсатор, подключив резистор между выводами. Когда измеритель установлен в сопротивление, между положительным и отрицательным выводами будет передаваться постоянный ток. Открытая крышка покажет открытую; закороченный покажет сопротивление, близкое к нулю.

Проверка работы элементов интерфейса HMI, таких как сенсорные панели и переключатели, может выявить функциональные проблемы из-за проблем с подключением или компонентами.

Зондирование сигнала с помощью цифрового мультиметра или осциллографа требует некоторого понимания схемы, чтобы интерпретировать результат, но сделать это намного проще, если у вас есть заведомо исправная плата для сравнения результатов от точки к точке. Испытания постоянного напряжения начинаются с измерения относительно земли. Проверяя ИС, начните с проверки контакта источника питания.

Большинство ИС можно идентифицировать по их маркировке, и многие из них могут быть протестированы в эксплуатации на соответствие опубликованным спецификациям с использованием осциллографов и логических анализаторов.Сравнение поведения ИС с заведомо исправным — это быстрый способ определить аномальное поведение.

Любимая привычка инженеров прикасаться к частям цепи с низким напряжением может изменить импедансы, которые, в свою очередь, могут изменить поведение системы (или случайно обнаружить перегрев!). Этот метод, используемый вместе с осциллографом, может помочь определить места, где требуется дополнительная емкость, например, для устранения нежелательных колебаний.

Периодические сбои — наиболее сложный и трудоемкий аспект процесса устранения неполадок.Обычные нерегулярные неисправности могут быть вызваны перегревом или ухудшением характеристик компонентов, плохой пайкой и ослабленными соединениями. Длительная память в осциллографе может быть полезна для увеличения записи сигнала для поиска редких событий. Применение спрея для морозильной камеры в правильном месте иногда может усугубить и выявить временные проблемы.

Как это делают большие мальчики?

Профессиональным ремонтным мастерским и ремонтным центрам, которые постоянно занимаются ремонтом плит, требуются лучшие решения, чем прицел и мультиметр. В ситуациях, когда неисправные печатные платы постоянно поступают, и с повышенным вниманием к эффективности и сокращению затрат, универсальные автоматизированные испытательные системы заменяют отдельные испытательные приборы.Внутрисхемные тестеры на базе ПК выполняют как внутрисхемное логическое тестирование цифровых, так и многих аналоговых ИС с питанием, а также анализ сигнатур V-I микросхем с использованием различных тестовых зажимов.

Системы автоматизированного испытательного оборудования (ATE)

, содержащие библиотеки выводов цифровых микросхем, могут помочь техническому специалисту в поиске и устранении неисправностей, а также определить схемы подключения схем, если они неизвестны. ATE могут проверять цифровую функциональность микросхем, а также выполнять анализ сигнатур как активных, так и пассивных компонентов.Неизвестные микросхемы можно идентифицировать по их логическому выводу.

Приобретение оборудования для автоматического тестирования означает, что частый ремонт может выполняться на месте с большей эффективностью, чем отправка элементов на внешний сервис. Некоторые ATE могут быть чрезвычайно дорогими и требовать сложного обучения; Это означает, что после покупки они сидят без дела на складе. ATE могут выполнять автоматизированные или компьютеризированные процедуры тестирования DUT, включая функциональное тестирование ИС, аналоговых и цифровых компонентов, готовых плат и т. Д.

Эти продукты различаются по сложности в зависимости от различных уровней тестовых возможностей, необходимых для различных потребностей платы. Компьютерные автоматизированные процедуры тестирования могут выполняться надежно и согласованно, при этом результаты тестов регистрируются автоматически, с высокой точностью, с высокой скоростью тестирования и с чрезвычайной гибкостью.

Типичные ATE включают: внутрисхемные тестеры, выполняющие тесты на уровне устройств на компонентах, установленных на печатных платах; функциональные тестеры, используемые для проверки полной функциональности плат и модулей через краевые разъемы; и тестеры граничного сканирования для продуктов, совместимых с JTAG, таких как BGA, FPGA, CPLD, или даже комплектных плат с разъемом JTAG.

Примером системы ремонта печатных плат ATE является ABI Electronics System 8: система тестирования плат, в которой используется набор модулей размера CD-привода для создания настраиваемой испытательной станции для печатных плат, управляемых ПК (, рис. 5, ).

РИСУНОК 5. Автоматизированное испытательное оборудование ABI System 8.


Встраиваемая в корпус ПК или устанавливаемая в 19-дюймовую стойку, System 8 представляет собой комбинированный набор испытательных инструментов, удовлетворяющий большинству потребностей в тестировании и поиске неисправностей. Сравнивая результаты заведомо исправной платы с процедурами автоматического поиска неисправностей, диагностика неисправностей становится возможной с помощью минимально обученного персонала.

Программное обеспечение System 8 может быть настроено для пошаговых инструкций менее подготовленных пользователей по процедуре тестирования, с пользовательскими аннотированными изображениями, инструкциями и прикрепленными таблицами данных для быстрого получения результатов «годен / не прошел». Это намного быстрее и экономичнее, чем использование традиционных осциллографов, измерителей и других методов стендовых испытаний. Модули системы 8 включают:

    Локатор сбоев платы
  • : 64 тестовых канала для нескольких методов тестирования для диагностики неисправностей и функционального тестирования цифровых ИС (в цепи / вне цепи), состояния соединений ИС и сбора напряжения, а также тестирование кривой VI компонентов без питания доски.
  • Аналоговый тестер ИС: для внутрисхемного функционального тестирования аналоговых ИС и дискретных компонентов (не требуется программирования или схемы). Существует полностью настраиваемый тестер V-I для обнаружения неисправностей на платах без питания.
  • Multiple Instrument Station: включает восемь высокотехнологичных измерительных приборов в одном модуле (частотомер, цифровой запоминающий осциллограф, функциональный генератор, цифровой плавающий мультиметр, вспомогательный блок питания и универсальный ввод / вывод).
  • Расширенный тестовый модуль
  • : предлагает мощные комбинации тестов для гибкой комплексной диагностики неисправностей, включая функциональные тесты, тесты соединений, напряжения, температуры и сигнатуры V-I.
  • Advanced Matrix Scanner: 64 канала для быстрого сбора данных для тестирования устройств с большим количеством выводов, а также полных печатных плат; частота развертки сигнала для наблюдения за откликом тестируемого устройства в диапазоне частот.
  • Источник переменного тока с тремя выходами: Обеспечивает необходимое напряжение питания для тестируемого устройства.

Приложения

ATE включают в себя: тестирование печатных плат и устранение неисправностей, цифровое / аналоговое испытание IC, цифровое / аналоговое испытание VI, визуальную короткую идентификацию со звуковой / визуальной индикацией расстояния между датчиком до короткого замыкания, сравнение плат в реальном времени, анализ производственных дефектов, включение / питание отключенное тестирование, отчетность по обеспечению качества, встроенное управление в реальном времени, расчет и регистрация, тестирование компонентов и плат, цифровые и аналоговые функциональные тесты, автоматизированные тестовые последовательности и т. д.

Тестирование напряжения / тока при отключении питания

Если питание платы невозможно безопасно включить, можно выполнить тестирование при отключении питания, такое как V / I и тестирование сигнатуры. V / I-тестирование (также известное как анализ аналоговой сигнатуры) — это метод, который отлично подходит для поиска неисправностей на печатных платах и ​​идеален, когда диаграммы и документация минимальны. Аналоговый анализ сигнатур может быть выполнен с помощью таких инструментов, как расширенный тестовый модуль System 8 ATM ABI Electronics (снова см. , рис. 5, ).

Этот метод может использоваться для поиска и устранения неисправностей электронных компонентов в сборках печатных плат.Его можно рассматривать как жизненно важный диагностический инструмент для задач ремонта печатных плат, поскольку он подходит для «мертвых» плат, которые нельзя безопасно включить.

Подача сигнала переменного тока с ограничением по току через две точки в цепи вызывает вертикальное отклонение кривой осциллографа, в то время как приложенное напряжение вызывает горизонтальное отклонение. Это формирует характеристическую сигнатуру V / I, которая может показать, является ли компонент хорошим, плохим или маргинальным.

Для того, чтобы использовать тестер V-I в полной мере в качестве инструмента диагностики неисправностей, важно сосредоточиться на различиях между кривыми исправных и подозрительных плат, а не детально анализировать значение кривых.

Большинство узлов на печатной плате будут содержать параллельные и последовательные комбинации компонентов, что затрудняет точный анализ. Большинство отказов вышедших из строя плат — это серьезные отказы, такие как короткое замыкание или разрыв цепи, которые легко обнаружить с помощью техники V-I без сложного анализа.


Напряжение на ИУ откладывается по горизонтальной оси против тока через него по вертикальной оси. Форма волны стимула обычно представляет собой синусоидальную волну. Согласно закону Ома (Z = V / I) результирующая характеристика представляет собой импеданс ИУ.Для частотно-зависимых компонентов, таких как конденсаторы и катушки индуктивности, импеданс зависит от частоты, поэтому требуется частотный стимул.

В большинстве приложений используется сравнительное аналоговое тестирование V-I, поэтому понимание отображаемой характеристики не требуется. Сравнение кривых заведомо исправной платы и подозрительной платы часто позволяет выявить неисправности с минимальными знаниями. Различные устройства в разных конфигурациях создают разные сигнатуры, в зависимости от тока, протекающего через устройство при изменении приложенного напряжения.

Короткое замыкание, например, будет отображаться в виде вертикальной линии, потому что поток тока для любого приложенного напряжения теоретически будет бесконечным (см. Ниже), тогда как при разомкнутой цепи будет отображаться горизонтальная линия, потому что ток всегда равен нулю независимо от приложенное напряжение (см. ниже ).


Чистый резистор будет давать диагональную линию, наклон которой пропорционален сопротивлению, потому что ток пропорционален приложенному напряжению.Более сложные кривые получаются с частотно-зависимыми компонентами, такими как конденсаторы и катушки индуктивности, а также для нелинейных устройств, таких как диодные и транзисторные переходы.

Сигнатуры резисторов — прямые. Значение тестируемого резистора влияет на наклон линии; чем выше значение, тем ближе линия к горизонтали (разомкнутая цепь). Импеданс источника V-I тестера следует выбирать так, чтобы наклон линии (для хорошего резистора) был как можно ближе к 45 градусам.Разница в наклоне кривой при сравнении исправной и подозрительной плат указывает на разницу в значениях резисторов на двух платах.

Конденсаторы с относительно низкими значениями имеют плоские, горизонтальные, эллиптические сигнатуры, а конденсаторы с относительно высокими значениями имеют плоские, вертикальные и эллиптические сигнатуры. Оптимальная сигнатура — это почти идеальный круг (см. Диаграмма 2 ), который может быть получен путем выбора соответствующей испытательной частоты и полного сопротивления источника.


Обычно, чем выше емкость, тем ниже сопротивление и частота при испытании. Негерметичный конденсатор будет давать наклонную кривую из-за эффективного сопротивления параллельно конденсатору.

Сводка

Выбор метода устранения неполадок зависит от сложности схемы, а также знаний и опыта лица, выполняющего поиск и устранение неисправностей. Методичное использование соответствующих инструментов тестирования помогает исследователям быстро и точно определить причину неисправности и тем самым ускорить ремонт печатной платы.


Компании, осознающие экономию на ремонте по сравнению с заменой, начали включать ATE в свою инфраструктуру поддержки, чтобы получить свои финансовые и операционные преимущества. NV


Как проверить детали мобильного телефона на наличие неисправности

Узнайте, как проверять детали мобильного телефона на наличие неисправностей во время ремонта мобильного телефона.

Здесь мы узнаем, как проверить детали мобильного телефона на наличие неисправностей при ремонте мобильного телефона.В бизнесе по ремонту мобильных телефонов вам часто придется проверять такие детали, как динамик, звонок, вибратор, катушка, повышающая монета, переключатель включения / выключения, антенный переключатель, фильтр RX, PFO, BSI, Network IC, VCO, Audio IC. , ИС питания, RTC, ИС для зарядки, ЦП, R22, интерфейс микрофона, ИС Bluetooth, ИС флэш-памяти, ОЗУ, ИС логики, UEM и т. Д.

Видео: Детали на плате мобильного телефона

Детали мобильного телефона на уровне карты

В большинстве случаев только детали уровня карты мобильного сотового телефона проверяются на наличие неисправностей, а затем ремонтируются или заменяются новыми.Компоненты уровня карты мобильного сотового телефона включают звонок, динамик, микрофон, вибратор, светодиод, разъем для зарядки, разъем для наушников, разъем для кабеля передачи данных, аккумулятор, разъем для аккумулятора, SIM-карту, разъем для SIM-карты, карту памяти, разъем для карты памяти, камеру, разъем камеры, кнопка клавиатуры, разъем клавиатуры, переключатель ВКЛ / ВЫКЛ, дисплей, разъем дисплея, внутренняя антенна и КПК.

Компоненты мобильного телефона на уровне карты

Видео: часть мобильного телефона на уровне карты

Мелкие детали мобильного телефона с уровнем микросхемы

Мелкие части мобильного телефона на уровне микросхемы включают небольшие электронные компоненты, такие как конденсаторы, резистор, диод, катушку, повышающую катушку, ответвитель, регулятор, транзисторы, которые редко или не проверяются на наличие неисправности.В основном компоненты SMD используются в мобильных телефонах и смартфонах. Если есть какая-либо неисправность в дорожке печатной платы мобильного телефона, она устраняется или устраняется перемычкой.

Мелкие детали мобильного телефона на уровне микросхемы

Инструменты для проверки частей мобильного телефона на наличие неисправностей

Вам понадобятся следующие инструменты для ремонта мобильных телефонов:

Мультиметр и источник питания постоянного тока

Видео: Как пользоваться мультиметром

Как проверить детали телефона Mobile на наличие неисправности

Как проверить звонок мобильного телефона

Чтобы проверить, неисправен ли звонок мобильного телефона, оставьте мультиметр в режиме зуммера и проверьте звонок.Значение должно быть от 8 до 10 Ом. Если значение находится в этом диапазоне, звонок исправен и не требует замены. Если значение на мультиметре 4-5 или 12-14, измените звонок.

Видео: как проверить звонок

Как проверить вибратор или мотор мобильного телефона

Чтобы проверить вибратор или мотор мобильного телефона, оставьте мультиметр в режиме зуммера и проверьте вибратор. Значение должно быть от 8 до 16 Ом. Если значение находится в пределах 8-16 Ом, вибратор хорош.В противном случае измените его.

Как проверить динамик или наушник мобильного телефона

Проверьте динамик / наушник с помощью мультиметра в режиме зуммера. Значение должно быть в диапазоне от 25 до 35 Ом. Если значение находится в этом диапазоне, динамик / наушник в порядке и не требует замены. В противном случае замените динамик / наушник.

Как проверить микрофон или микрофон мобильного телефона

Переведите мультиметр в режим зуммера и проверьте микрофон.Показания мультиметра должны находиться в диапазоне от 600 до 1800 Ом. Также мультиметр будет издавать звуковой сигнал или гудок.

Как проверить клавиатуру мобильного телефона

Переведите мультиметр в режим зуммера и проверьте строки и столбцы или клавиатуру. Если мультиметр издает звуковой сигнал или гудок, то с клавиатурой все в порядке, в противном случае она неисправна.

Колонка дорожек клавиатуры мобильного телефона

Аккумулятор Разъем

Держите мультиметр на 20 В постоянного тока и проверьте.Значение должно быть от 1,5 до 3,5 В постоянного тока.

Аккумулятор

Проверить напряжение мультиметром. Держите мультиметр на 20 В постоянного тока и проверьте. Значение должно быть 3,7 В постоянного тока или выше.

Переключатель ВКЛ / ВЫКЛ

Проверить напряжение мультиметром. Держите мультиметр на 20 В постоянного тока и проверьте. Значение должно быть от 2,5 до 3,7 В постоянного тока.

ПРИМЕЧАНИЕ: Обратите внимание, что значение будет отображаться только на одной стороне микрофона. Если мы проверим, поменяв местами красный и черный щупы / тестовые провода мультиметра, и проверим микрофон, то значение не будет.

Как проверить электронные компоненты

Катушка

Проверьте катушку SMD с помощью мультиметра в режиме зуммера. Если все в порядке, мультиметр подаст звуковой сигнал или гудок. Если звука нет, значит, неисправна катушка. Замените его новым.

Резистор или сопротивление

Проверьте мультиметром в режиме зуммера. Если все в порядке, мультиметр издает звуковой сигнал или гудок. Если звука нет, значит, неисправен SMD резистор.Замените его новым.

Конденсатор

Для проверки конденсатора SMD с помощью мультиметра в режиме зуммера. Если все в порядке, мультиметр НЕ издает звуковых сигналов или гудков. Если есть звук, значит конденсатор неисправен. Замените его новым.

Диод

Проверьте мультиметром в режиме зуммера. Если все в порядке, мультиметр НЕ издает звуковых сигналов или гудков. Если звук есть, значит неисправен диод. Замените его новым.

Светодиод

Переведите мультиметр в режим зуммера и проверьте светодиод. Если светодиод исправен, они не будут светиться, иначе — нет.

Катушка и повышающая катушка

Проверить целостность. Если есть непрерывность, то катушка или повышающая катушка исправны, в противном случае она неисправна.

Сеть IC

Используйте аналоговый источник питания постоянного тока для проверки сетевой ИС. Включите источник питания постоянного тока и позвоните по любому номеру со своего мобильного телефона.Игла Ампера постоянного тока начнет двигаться. Это показывает, что сетевая ИС исправна, а не неисправна.

ИС и процессор питания

Установите напряжение источника постоянного тока на значение 4,2. Поместите красный щуп / испытательный провод источника питания постоянного тока к « + » разъема аккумулятора мобильного телефона, а черный щуп / испытательный провод к «»:

  1. Если сила постоянного тока больше 6, значит, повреждена микросхема питания или ЦП. Проверьте, заменив Power IC и CPU по очереди.
  2. Если стрелка Ампер источника питания не движется, значит, поврежден разъем аккумулятора, трек переключателя включения / выключения, часы реального времени или сетевой кристалл. Нагрейте эти компоненты с помощью нагнетателя горячего воздуха. Если проблема не решена, проверьте, заменяя их по очереди.
  3. Если стрелка Ампера колеблется ниже 2 десятков, это может быть проблема с программным обеспечением или часами реального времени ( Часы реального времени ).
  4. Если стрелка Ампера стоит в какой-то фиксированной точке, значит, проблема с Flash IC.
  5. Если от источника питания постоянного тока раздается звуковой сигнал, значит, проблема с « + » и «», или мобильный телефон короткий.

PS : при проверке неисправного мобильного телефона с источником питания постоянного тока подключите красный зонд к « + », а черный зонд к «» разъема аккумулятора мобильного телефона.

Банкноты
  • Большинство специалистов по ремонту мобильных телефонов и технических специалистов проверяют только указанные выше детали, чтобы решить проблемы с оборудованием мобильного телефона.
  • Все остальные детали, включая электронные компоненты SMD и микросхемы, обычно не проверяются на наличие неисправностей. Для этих частей нет надежного теста. Проблема решается либо перемычкой, либо методом проб и ошибок (проверка заменой ).

Похожие сообщения: .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *