Как проверить стабилитрон мультиметром: Как проверить стабилитрон мультиметром? — Diodnik

Содержание

Как проверить стабилитрон мультиметром расписано по шагам

Любой электроприбор нуждается в стабильном энергоснабжении. Для этого существуют стабилизаторы, ШИМ контроллеры и прочие разновидности блоков питания.

Какой бы простой не была схема стабилизатора, она стоит определенных денег. В некоторых случаях высокое качество питания не требуется. Чаще всего такая ситуация бывает, когда надо обеспечить часть большой электросхемы напряжением, отличным от основного, стабильного.

Самый простой элемент, обеспечивающий относительно стабильное напряжение – это стабилитрон.

Поскольку это единичная деталь, ремонт блока питания представляется несложным. Как проверить стабилитрон? Как и любую другую деталь, только есть нюансы, связанные с конструкцией.

Как работает этот элемент?

И внешне, и по реализации p-n перехода, этот элемент похож на полупроводниковый диод. Даже схематическое обозначение не сильно отличается.

Через него также протекает ток в одном направлении, при этом есть одна особенность.

Диод организует движение частиц только от анода к катоду, прохождение обратного тока является аварийной ситуацией: то есть пробоем радиоэлемента.

В стабилитроне обратный ток является нормальной ситуацией, именно эта особенность определяет его назначение. При возникновении на его выводах определенного значения вольтажа, открывается движение электронов в направлении от катода к аноду, и элемент становится обратно проводимым.

Причем это напряжение является основной характеристикой: например, стабилитрон на 12 вольт при достижении этого значения начинает пропускать ток в обратном направлении.

Рассмотрим это явление на простом примере

Допустим, у нас есть сосуд для воды со сливным патрубком на определенном уровне.

Когда жидкость достигает необходимой высоты, происходит перелив из сливного патрубка. То есть, сосуд будет заполняться только до определенного значения, которое будет оставаться стабильным до определенного напора. Если поступление воды превысит возможности сливного патрубка, сосуд переполнится или лопнет.

Переводим ситуацию в электронику.

  • напор воды – это максимальная сила тока, на которую рассчитан стабилитрон без электрического (термического) разрушения;
  • необходимый уровень – это напряжение срабатывания стабилитрона.

При достижении заданного напряжения, оно фиксируется, и «лишний» ток движется в обратную сторону. Таким образом, элемент стабилизирует напряжение. Если сила тока будет слишком высокой, стабилитрон сгорит.

Обратите внимание

Стабилитроны работают только в цепях постоянного тока, стабилизация происходит только по напряжению.

Основная цель определения работоспособности – проверка стабилитрона на напряжение стабилизации.

Как проверить стабилитрон мультиметром на исправность?

Методика аналогична классическому диоду. Выставляем переключатель в положение проверки диодов (присутствует на любом устройстве) и соединяем щупы с контактами детали. Прямое подключение показывает протекание тока, обратное – запертое состояние p-n перехода.

Важно! Напряжение на проводах прибора должно быть ниже значения срабатывания радиоэлемента. Иначе проверить стабилитрон мультиметром не получится: он будет открыт одинаково в каждом направлении.

Этот тест говорит лишь о том, что элемент не «пробит». Замерить параметры таким способом не получится.

А как проверить стабилитрон тестером на соответствие напряжения срабатывания?

Для начала надо узнать, на сколько вольт стабилитрон. Как это сделать? По маркировке. В зависимости от типа корпуса, это может быть символьное или цветовое обозначение. Таблицы маркировок есть в справочниках, подробно останавливаться на этом вопросе не будем.


Собираем несложную схему с балластным резистором (для ограничения тока, поскольку нагрузка не предусмотрена).

Важно: Обратите внимание на подключение детали: в отличие от диода плюс соединен с минусом, минус с плюсом.

Подопытный стабилитрон рассчитан на значение стабилизации 5,1 вольта. Как проверить исправность? Подать на вход различные значения напряжения с помощью регулируемого блока питания.

Сначала выставляем значение, ниже уровня срабатывания: 4 вольта. На выходе получаем тоже самое. Это означает, что p-n переход не пробит.

Постепенно повышаем входное значение. Если деталь исправна, после значения 5,1 вольта напряжение на выходе будет стабильным, и не должно превышать напряжения срабатывания.

Что мы и видим на иллюстрации:

То есть наш стабилитрон исправен.

Важно помнить (как при тестировании, так и при проверках), что сила тока не может быть бесконечно большой. Любой стабилитрон рассчитан на определенные режимы работы: как правило, на небольшие токи.

Можно ли проверить стабилитрон не выпаивая?

Да, это возможно, но тестируются не все режимы радиоэлемента. Стабилитрон всегда имеет электрические связи с остальными элементами схемы, поэтому

проверить его на пробой в составе изделия невозможно.

Вы сможете проверить стабилитрон мультиметром на плате только на стабильность напряжения питания. Для этого необходимо включить электроприбор, и соединить щупы тестера с ножками детали.

Естественно, вы должны знать исходное значение по маркировке. При этом надо замерить напряжение на входе и после стабилизатора. Если значение на входе выше или равно напряжению после стабилитрона, значит он исправен.

Как проверить двусторонний стабилитрон?

Эта деталь представляет собой два стабилитрона в одном корпусе, соединенная навстречу друг другу.


Такой элемент может работать с импульсным напряжением, и с переменной полярностью. Проверка на пробой бессмысленна, поэтому можно лишь тестировать соответствие напряжения стабилизации.

Для этого собирается схема, аналогичная описаниям выше. Для проверки необходимо также подавать на вход завышенное напряжение, только различной полярности.

В обоих случаях на выходе должно быть стабилизированное значение напряжения, в соответствии с маркировкой. Разумеется, проверка возможна и на монтажной плате, если обеспечить входное напряжение разной полярности.

Проверяем стабилитрон мультиметром — видео

About sposport

View all posts by sposport

Загрузка…

Как проверить напряжение стабилитрона мультиметром

Предлагаемая схема служит для простого определения номинала напряжения стабилизации стабилитрона с помощью вольтметра, а также для определения его исправности.

Сейчас промышленностью выпускается невероятное количество различных электронных компонентов и зачастую при сборке радиоэлектронного изделия возникает множество затруднений по определению номинала компонента. Особенно в этом плане «отличилась» отечественная промышленность – в частности стабилитроны в стеклянном корпусе имеют, порой, очень похожую маркировку, отличить которую не представляется возможным.

Хороший пример это стабилитроны КС211 и КС175 – иногда встречаются варианты маркировки, в которых оба выглядят как маленький выводной стеклянный диод с чёрной полосой. Их также можно спутать, например, со стабилитроном Д814. Так или иначе, запоминать цветовую маркировку стабилитронов не самая лучшая идея, учитывая насколько просто их можно проверить.

Для определения напряжения стабилизации понадобится простая схема:

Обычно диапазон рабочего тока маломощных стабилитронов лежит в пределах 1-10 мА, поэтому сопротивление резистора выбрано 2.2 кОм. Это оптимально для проверки маломощных стабилитронов. Для проверки мощных стабилитронов сопротивление возможно придётся уменьшить – для этого в схеме предусмотрена перемычка. Для проверки маломощных стабилитронов перемычку нужно ставить в верхнее положение, для проверки мощных – в нижнее.

Оптимальное напряжение питания – 25В.

Если стабилитрон подсоединён правильно – анодом к X1, катодом к X2, то вольтметр покажет его напряжение стабилизации, а если неправильно – какое-то очень малое напряжение около нуля.

Если при одном подключении мультиметр показывает минимум напряжения, а при другом – максимальное, равное напряжению источника питания, значит испытуемый радиоэлемент либо простой диод, либо стабилитрон с напряжением стабилизации выше напряжения источника питания. Если вы уверены что это стабилитрон – нужно увеличить напряжение источника до предполагаемой величины и проверить ещё раз.

Если вольтметр показывает минимальное напряжение, либо напряжение питания при любом подключении – значит данный стабилитрон или диод неисправен.

Если напряжение стабилизации показывается при любом подключении – значит это двусторонний стабилитрон.

Аналогичным способом можно проверять исправность диодов и светодиодов, только полярность будет противоположная. Способ хорош тем, что позволяет узнать падение напряжения, что бывает очень важно. Проверяя светодиоды необходимо помнить, что некоторые светодиоды очень чувствительны к завышенному обратному напряжению, поэтому напряжение источника при их проверке желательно выставлять не выше 9В.

Любой электроприбор нуждается в стабильном энергоснабжении. Для этого существуют стабилизаторы, ШИМ контроллеры и прочие разновидности блоков питания.

Какой бы простой не была схема стабилизатора, она стоит определенных денег. В некоторых случаях высокое качество питания не требуется. Чаще всего такая ситуация бывает, когда надо обеспечить часть большой электросхемы напряжением, отличным от основного, стабильного.

Самый простой элемент, обеспечивающий относительно стабильное напряжение – это стабилитрон.

Поскольку это единичная деталь, ремонт блока питания представляется несложным. Как проверить стабилитрон? Как и любую другую деталь, только есть нюансы, связанные с конструкцией.

Как работает этот элемент?

И внешне, и по реализации p-n перехода, этот элемент похож на полупроводниковый диод. Даже схематическое обозначение не сильно отличается.

Через него также протекает ток в одном направлении, при этом есть одна особенность. Диод организует движение частиц только от анода к катоду, прохождение обратного тока является аварийной ситуацией: то есть пробоем радиоэлемента.

В стабилитроне обратный ток является нормальной ситуацией, именно эта особенность определяет его назначение. При возникновении на его выводах определенного значения вольтажа, открывается движение электронов в направлении от катода к аноду, и элемент становится обратно проводимым.

Причем это напряжение является основной характеристикой: например, стабилитрон на 12 вольт при достижении этого значения начинает пропускать ток в обратном направлении.

Рассмотрим это явление на простом примере

Допустим, у нас есть сосуд для воды со сливным патрубком на определенном уровне.

Когда жидкость достигает необходимой высоты, происходит перелив из сливного патрубка. То есть, сосуд будет заполняться только до определенного значения, которое будет оставаться стабильным до определенного напора. Если поступление воды превысит возможности сливного патрубка, сосуд переполнится или лопнет.

Переводим ситуацию в электронику.

  • напор воды – это максимальная сила тока, на которую рассчитан стабилитрон без электрического (термического) разрушения;
  • необходимый уровень – это напряжение срабатывания стабилитрона.

При достижении заданного напряжения, оно фиксируется, и «лишний» ток движется в обратную сторону. Таким образом, элемент стабилизирует напряжение. Если сила тока будет слишком высокой, стабилитрон сгорит.

Основная цель определения работоспособности – проверка стабилитрона на напряжение стабилизации.

Как проверить стабилитрон мультиметром на исправность?

Методика аналогична классическому диоду. Выставляем переключатель в положение проверки диодов (присутствует на любом устройстве) и соединяем щупы с контактами детали. Прямое подключение показывает протекание тока, обратное – запертое состояние p-n перехода.

Этот тест говорит лишь о том, что элемент не «пробит». Замерить параметры таким способом не получится.

А как проверить стабилитрон тестером на соответствие напряжения срабатывания?

Для начала надо узнать, на сколько вольт стабилитрон. Как это сделать? По маркировке. В зависимости от типа корпуса, это может быть символьное или цветовое обозначение. Таблицы маркировок есть в справочниках, подробно останавливаться на этом вопросе не будем.

Собираем несложную схему с балластным резистором (для ограничения тока, поскольку нагрузка не предусмотрена).

Сначала выставляем значение, ниже уровня срабатывания: 4 вольта. На выходе получаем тоже самое. Это означает, что p-n переход не пробит.

Постепенно повышаем входное значение. Если деталь исправна, после значения 5,1 вольта напряжение на выходе будет стабильным, и не должно превышать напряжения срабатывания.

Что мы и видим на иллюстрации:

То есть наш стабилитрон исправен.

Важно помнить (как при тестировании, так и при проверках), что сила тока не может быть бесконечно большой. Любой стабилитрон рассчитан на определенные режимы работы: как правило, на небольшие токи.

Можно ли проверить стабилитрон не выпаивая?

Да, это возможно, но тестируются не все режимы радиоэлемента. Стабилитрон всегда имеет электрические связи с остальными элементами схемы, поэтому проверить его на пробой в составе изделия невозможно.

Вы сможете проверить стабилитрон мультиметром на плате только на стабильность напряжения питания. Для этого необходимо включить электроприбор, и соединить щупы тестера с ножками детали.

Естественно, вы должны знать исходное значение по маркировке. При этом надо замерить напряжение на входе и после стабилизатора. Если значение на входе выше или равно напряжению после стабилитрона, значит он исправен.

Как проверить двусторонний стабилитрон?

Эта деталь представляет собой два стабилитрона в одном корпусе, соединенная навстречу друг другу.

Такой элемент может работать с импульсным напряжением, и с переменной полярностью. Проверка на пробой бессмысленна, поэтому можно лишь тестировать соответствие напряжения стабилизации.

Для этого собирается схема, аналогичная описаниям выше. Для проверки необходимо также подавать на вход завышенное напряжение, только различной полярности.

В обоих случаях на выходе должно быть стабилизированное значение напряжения, в соответствии с маркировкой. Разумеется, проверка возможна и на монтажной плате, если обеспечить входное напряжение разной полярности.

Проверяем стабилитрон мультиметром – видео

Стабилитрон (Диод Зенера) по внешнему сходству напоминает диод. Однако его функции отличаются от диода по вольт-амперной характеристике (ВАХ). Диод Зенера обладает высоким сопротивлением, но при воздействии на него определённым напряжением, возникает пробой. Из-за этого возрастает протекающий через него ток. В режиме пробоя величина напряжения на стабилитроне с широким диапазоном токов поддерживается с указанной точностью.

Проверка стабилитрона мультиметром

Для того чтобы проверить стабилитрон мультиметром, необходимо обладать определенными знаниями.

Измерение с помощью мультиметра аналогично проверке диода. Рабочим состоянием стабилитрона можно охарактеризовать его способность пропускать ток только в одном направлении.

На измерительном приборе это может выглядеть следующим образом:

  1. Если измерения проводятся цифровым прибором, с присоединением плюсового щупа к катодному выводу, обозначенному полоской, а минусового щупа к анодному выводу, значит, на приборе должны быть отражены показания в виде цифр (например, проверка стабилитрона 5,1 В отображается на табло мультиметра показания 688 Ом). Если же поменять щупы местами, то на приборе отобразится бесконечное сопротивление, что характерно указывает про исправный радиоэлемент. Когда при соединении на мультиметре указано в обоих направлениях бесконечное сопротивление, то это указывает на обрыв элемента. В случае если сопротивление в обоих направлениях равняется нулю, то такой элемент является пробитым.
  2. Аналогично измерение можно проводить стрелочным прибором, где в одном направлении вместо цифр стрелка указывает сопротивление, а в другом бесконечное сопротивление.

В полупроводниковой технике могут примениться двухсторонние стабилитроны (КС175А), а также прецизионные (Д818). Их нельзя проверить методом, описанным выше, поскольку в обоих направлениях их сопротивление является бесконечным. Для проверки этих элементов можно применить способ, приведённый ниже.

Измерение по схеме стабилизатора

Этот способ позволяет провести замеры параметров радиоэлементов путём включения их в схему и приложенного напряжения источника питания. В зависимости от напряжения стабилизации проверяемого компонента, необходимо иметь делитель состоящего из одного и более резисторов. Источник питания подключается непосредственно к заранее собранной электрической схеме, включённой с общим минусом или общим плюсом. Эта схема является параметрическим стабилизатором напряжения:

  1. Рассмотрим включение схемы в общим минусом. Положительный провод источника питания присоединяется к выводу 1 делителя которым служит резистор R, а испытуемый стабилитрон подключается катодом к выводу 2 резистора R. Анодный вывод стабилитрона соединён с минусовым выводом источника питания и является общей шиной питания. Резистор делителя выбирается таким образом, чтобы приложенное напряжение от источника питания достигло такого уровня, что позволит на выводе 2 резистора получить ток пробоя стабилитрона, при котором он откроется.
  2. Мультиметр переключается в режим измерения постоянного напряжения, после чего плюсовой вывод вольтметра соединяется к выводу 2 резистора, а минусовый вывод подключён к общей шине, это минус источника питания+анод испытываемого элемента. Источник питания желательно иметь с плавной регулировкой, что придаёт этому способу возможность осуществлять испытание широкого спектра стабилизируемых напряжений.

На примере рассмотрим диод Зенера со стабилизацией 12 В. Для этого необходимо приложить напряжение таким образом, чтобы на выводе 1 делителя оно составляло около 11 В, при сопротивлении делителя выбранным примерно 100Ом. Вольтметр на выводе 2 резистора (без нагрузки). Напряжение перед делителем и после него остаётся неизменным, в зависимости от выбранного сопротивления. Если на вывод 1 делителя приложить выше 12 В или выше, то при этом на выходе делителя вывода второе напряжение не должно превышать 12 В, что указывает на его исправность.

Делитель R выбирается таким образом, чтобы ток источника на выводе 2 не превышал максимальный ток стабилитрона, что чревато выходом из строя последнего.

Если же исследуемый элемент является пробитым или неправильно включен в схему, то напряжение на вольтметре равняется нулю, а также произойдёт нагрев делителя. Если же элемент в обрыве, то приложенная величина на входе делителя, будет выше чем 12 В, то испытываемый элемент можно считать неисправным.

Прецизионные и двухсторонние устройства

Аналогичным способом проверяются прецизионные стабилитроны. Двухсторонние стабилитроны подключаются к выводам источника питания без соблюдения полярности.

Для проверки стабилизатора, необходимо переключить мультиметр в режим измерения постоянного тока, соблюдая полярность. Изначально проверяется величина подводящего питания к стабилизатору.

Если напряжение в норме, тогда мультиметр непосредственно подключается к выходу стабилизатора, измеряя величину напряжения уже на выходе.

Как проверить диод мультиметром — подробная инструкция

Диоды относятся к популярным и широко применяемым электронным элементам, обладающим различным уровнем проводимости.

Перед тем, как проверить диод мультиметром (прозвонить диод и стабилитрон тестером), нужно узнать особенности такого тестирующего прибора и наиболее важные правила его использования.

Классификация

Диоды представляют собой электропреобразующие и полупроводниковые устройства, имеющие один электрический переход и два выхода в виде р-n-перехода.

Общепринятая в настоящее время классификация таких устройств, следующая:
  • в соответствии с назначением, диоды чаще всего бывают устройствами выпрямительного, высокочастотного и сверхвысокочастотного, импульсного, туннельного, обращенного, опорного типа, а также варикапами;
  • в соответствии с конструктивно-технологическим характеристиками диоды бывают представлены плоскостными и точечными элементами;
  • в соответствии с исходным материалом диоды могут быть германиевого, кремниевого, арсенидо-галлиевого и другого типа.

В соответствии с классификацией, самые важные параметры и характеристики диодов представлены:

  • предельно допускаемыми показателями обратного уровня напряжения постоянного типа;
  • предельно допускаемыми показателями обратного уровня напряжения импульсного типа;
  • предельно допускаемыми показателями прямого тока постоянного типа;
  • предельно допускаемыми показателями прямого тока импульсного типа;
  • номинальными показателями прямого тока постоянного типа;
  • прямым токовым напряжением постоянного типа в условиях номинальных показателей, или так называемым «падением напряжения»;
  • постоянным током обратного типа, указываемым в условиях максимально допускаемого обратного напряжения;
  • разбросом рабочих частот и ёмкостными показателями;
  • уровнем напряжения пробивного типа;
  • уровнем теплового корпусного сопротивления, в зависимости от типа установки;
  • предельно возможными показателями рассеивающей мощности.

В зависимости от уровня мощности, полупроводниковые элементы могут быть маломощными, мощными или среднего уровня мощности.

При выборе диода нужно помнить, что условное обозначение таких элементов может быть представлено не только стандартной маркировкой, но и УГО, наносимым на электрические схемы, имеющие принципиальное значение.

Проверка выпрямительного диода и стабилитрона

В плане самостоятельного диодного тестирования мультиметром, особый интерес представляет проверка:

  • обычных диодов на основе p-n-перехода;
  • диодных элементов Шоттки;
  • стабилитронов, стабилизирующих потенциал.

Обычное тестирование, в этом случае, позволяет определить только целостность p-n-перехода, и именно по этой причине в таких устройствах рабочая точка должна быть смещена.

Схема простейшего метода проверки напряжения стабилитрона

Достаточно использовать простенькую схему, включающую в себя обычный источник питания и резистор для ограничения тока. Мультиметр при нестандартной проверке применяется для замера напряжения, в условиях плавного повышения питающего потенциала.

Если в условиях повышения напряжения питания отмечается постоянная, а также равная заявленным показателям разница потенциалов, то диодное устройство принято считать рабочим, не подлежащим замене.

Сборка схемы

Стандартная схема, выполняемая посредством навесного монтажа, состоит из нескольких основных элементов, представленных:

  • блоком питания на 16-18 В;
  • резистором на 1,5-2 кОм;
  • цифровым или стрелочным вольтметром;
  • проверяемым устройством.

Как проверить диод шоттки мультиметром

Особенностью некоторых мультиметров является наличие функции «проверка диода». В таких условиях на приборе отображаются фактические показатели прямого диодного напряжения при токовой проводимости.

Тестер, оснащенный специальной функцией, регистрирует немного заниженный уровень прямого напряжения, что обусловлено незначительной токовой величиной, которая задействована при проверке.

В магазине можно встретить самые разные светодиодные лампы для дома. Как выбрать качественный прибор, знают не все. Если интересно, читайте подробную информацию.

Инструкция по сборке светодиодного фонаря своими руками представлена здесь.

Многие выбрасывают светодиодную лампу, если она сломалась. На самом деле большинство таких приборов можно починить. Все о ремонте светодиодных ламп вы можете почитать по ссылке.

Настройка мультиметра

Тестирование полупроводникового элемента посредством цифрового мультиметра потребует переключения прибора в режим проверки диодов. Альтернативным вариантом, при отсутствии переключения в положение «проверка диода», является тестирование в режиме сопротивления, при диапазоне не более 2,0 кОм.

В таком случае выполняется прямое подключение: красный провод подводится на анод, а черный – на катод. При такой настройке мультимера, замеры показывают сопротивление, равное нескольким сотням Ом, в обратное направление фиксирует разрыв цепи.

Мультиметр UNI-T

Следует отметить, что разные типы диодных устройств могут в значительной степени отличаться показателями прямого напряжения.

Например, для германиевых устройств характерно наличие напряжения в пределах 0,3-0,7 В, а для кремниевых элементов допустимы показатели в 0,7-1,0 В.

Как показывает практика, некоторые виды приборов-тестеров при проверке диодных элементов показывают более низкие значения уровня прямого напряжения.

Менее распространенные сдвоенные диоды отличаются наличием в одном корпусе трёх выводов, общего анода или катода, но проверка таких элементов не имеет отличий от тестирования стандартного диодного устройства.

Включение блока питания

Если проверка работоспособности диодов мультиметром предполагает переключение тестера в положение на значок «диод» с подключением черного щупа на вывод «СОМ», а красного — на вывод «V ΩmA», то наличие блока питания заключается в выявлении следующих неполадок:

  • подключение блока сопровождается «дерганьем» питания вентилятора, остановкой, отсутствием выходного напряжения и блокировкой источника питания;
  • подключение блока сопровождается пульсацией напряжения на выходе и срабатыванием защиты без блокирования источника питания.

Измерение переменного тока

Достаточно часто признаком утечки на диодах Шоттки становится самопроизвольное отключение питающего блока. Также очень важно учитывать, что неправильная схемотехника на блоках питания, может спровоцировать утечку диодных выпрямителей и перегрузку первичной цепи.

Тестирование заключается в установке предела измерений на значение в 20 К, и замере обратного диодного сопротивления. При таком способе исправный диод показывает на приборе бесконечно большой уровень сопротивления.

Подключение мультиметра

Основные, наиболее распространённые диодные неисправности, могут быть представлены:
  • пробоем, сопровождаемым токовой проводимостью вне зависимости от направления, а также фактическим отсутствием сопротивления;
  • обрывом, сопровождаемым отсутствием токового проведения;
  • утечкой, сопровождаемой наличием незначительного обратного тока.

Методика настройки прибора для проверки и последовательного тестирования является очень простой.

Соединение анода и щупа мультиметра на «+», а также катода и p-n-перехода на «-» должны быть открытыми. В этом случае прибор подаёт характерный звуковой сигнал. Обратный вариант подключения с закрытым p-n-переходом индицируется единицей.

Знаете ли вы, что светодиодные лампы могут иметь разное устройство? Устройство светодиодных ламп на 220 Вольт – типы приборов и способы сборки.

Инструкция по замене люминесцентных ламп на светодиодные представлена тут.

Как показываем практика самостоятельного тестирования, токовое прохождение, независимо от показателей полярности подключения, чаще всего сопровождает короткое замыкание, а отсутствие прозвона в обе стороны наблюдается при разрыве в цепи.

Видео на тему

Как проверить стабилизатор напряжения

Любой электроприбор нуждается в стабильном энергоснабжении. Для этого существуют стабилизаторы, ШИМ контроллеры и прочие разновидности блоков питания.

Какой бы простой не была схема стабилизатора, она стоит определенных денег. В некоторых случаях высокое качество питания не требуется. Чаще всего такая ситуация бывает, когда надо обеспечить часть большой электросхемы напряжением, отличным от основного, стабильного.

Самый простой элемент, обеспечивающий относительно стабильное напряжение – это стабилитрон.

Поскольку это единичная деталь, ремонт блока питания представляется несложным. Как проверить стабилитрон? Как и любую другую деталь, только есть нюансы, связанные с конструкцией.

Как работает этот элемент?

И внешне, и по реализации p-n перехода, этот элемент похож на полупроводниковый диод. Даже схематическое обозначение не сильно отличается.

Через него также протекает ток в одном направлении, при этом есть одна особенность. Диод организует движение частиц только от анода к катоду, прохождение обратного тока является аварийной ситуацией: то есть пробоем радиоэлемента.

В стабилитроне обратный ток является нормальной ситуацией, именно эта особенность определяет его назначение. При возникновении на его выводах определенного значения вольтажа, открывается движение электронов в направлении от катода к аноду, и элемент становится обратно проводимым.

Причем это напряжение является основной характеристикой: например, стабилитрон на 12 вольт при достижении этого значения начинает пропускать ток в обратном направлении.

Рассмотрим это явление на простом примере

Допустим, у нас есть сосуд для воды со сливным патрубком на определенном уровне.

Когда жидкость достигает необходимой высоты, происходит перелив из сливного патрубка. То есть, сосуд будет заполняться только до определенного значения, которое будет оставаться стабильным до определенного напора. Если поступление воды превысит возможности сливного патрубка, сосуд переполнится или лопнет.

Переводим ситуацию в электронику.

  • напор воды – это максимальная сила тока, на которую рассчитан стабилитрон без электрического (термического) разрушения;
  • необходимый уровень – это напряжение срабатывания стабилитрона.

При достижении заданного напряжения, оно фиксируется, и «лишний» ток движется в обратную сторону. Таким образом, элемент стабилизирует напряжение. Если сила тока будет слишком высокой, стабилитрон сгорит.

Основная цель определения работоспособности – проверка стабилитрона на напряжение стабилизации.

Как проверить стабилитрон мультиметром на исправность?

Методика аналогична классическому диоду. Выставляем переключатель в положение проверки диодов (присутствует на любом устройстве) и соединяем щупы с контактами детали. Прямое подключение показывает протекание тока, обратное – запертое состояние p-n перехода.

Этот тест говорит лишь о том, что элемент не «пробит». Замерить параметры таким способом не получится.

А как проверить стабилитрон тестером на соответствие напряжения срабатывания?

Для начала надо узнать, на сколько вольт стабилитрон. Как это сделать? По маркировке. В зависимости от типа корпуса, это может быть символьное или цветовое обозначение. Таблицы маркировок есть в справочниках, подробно останавливаться на этом вопросе не будем.

Собираем несложную схему с балластным резистором (для ограничения тока, поскольку нагрузка не предусмотрена).

Сначала выставляем значение, ниже уровня срабатывания: 4 вольта. На выходе получаем тоже самое. Это означает, что p-n переход не пробит.

Постепенно повышаем входное значение. Если деталь исправна, после значения 5,1 вольта напряжение на выходе будет стабильным, и не должно превышать напряжения срабатывания.

Что мы и видим на иллюстрации:

То есть наш стабилитрон исправен.

Важно помнить (как при тестировании, так и при проверках), что сила тока не может быть бесконечно большой. Любой стабилитрон рассчитан на определенные режимы работы: как правило, на небольшие токи.

Можно ли проверить стабилитрон не выпаивая?

Да, это возможно, но тестируются не все режимы радиоэлемента. Стабилитрон всегда имеет электрические связи с остальными элементами схемы, поэтому проверить его на пробой в составе изделия невозможно.

Вы сможете проверить стабилитрон мультиметром на плате только на стабильность напряжения питания. Для этого необходимо включить электроприбор, и соединить щупы тестера с ножками детали.

Естественно, вы должны знать исходное значение по маркировке. При этом надо замерить напряжение на входе и после стабилизатора. Если значение на входе выше или равно напряжению после стабилитрона, значит он исправен.

Как проверить двусторонний стабилитрон?

Эта деталь представляет собой два стабилитрона в одном корпусе, соединенная навстречу друг другу.

Такой элемент может работать с импульсным напряжением, и с переменной полярностью. Проверка на пробой бессмысленна, поэтому можно лишь тестировать соответствие напряжения стабилизации.

Для этого собирается схема, аналогичная описаниям выше. Для проверки необходимо также подавать на вход завышенное напряжение, только различной полярности.

В обоих случаях на выходе должно быть стабилизированное значение напряжения, в соответствии с маркировкой. Разумеется, проверка возможна и на монтажной плате, если обеспечить входное напряжение разной полярности.

Проверяем стабилитрон мультиметром – видео

Представленный здесь прибор — это стабилитронометр для тестирования значения напряжения неизвестного стабилитрона. Стабилитрон — это радиоэлектронный компонент, который поддерживает постоянное напряжение на его контактах, причём напряжение источника Vs должно быть больше, чем собственное напряжение стабилитрона Vz, а ток ограничивается с помощью сопротивления Rs, чтоб его текущее значение всегда было меньше, чем его максимальная мощность.

Схема простейшего метода проверки напряжения стабилитрона

Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.

Параметры прибора

  • Питание 220 В.
  • Цифровая индикация Vz
  • Меряет стабилитроны на напряжения от 1 В до 50 В
  • Два токовых режима — 5 мА и 15 мА

Схема устройства для проверки стабилитронов

Как видно, схема проста. Напряжение с трансформатора с двумя вторичными обмотками 24V, выпрямляется и фильтруется для получения постоянного напряжения около 80 В, затем поступает на стабилизатор напряжения, образованный элементами (R1, R2, D1, D2 и Q1), который снижает напряжение до 52V, чтобы избежать превышения максимального предела рабочего напряжения микросхемы LM317AHV.

Обратите внимание на буквенный индекс микросхемы. У LM317AHV входное напряжение, в отличии от LM317T, может достигнуть максимума 57V.

На LM317AHV собран генератор постоянного тока, куда добавлен выключатель (S2) совместно с резистором (R4), чтобы выбрать два тестовых режима (5 мА и 15 мА) в качестве источника тока для испытуемого стабилитрона.

Этот тестер легко собрать из стандартных компонентов. Готовый импульсный блок питания от какого-нибудь DVD или тюнера спутниковой системы, а вольтметр либо в виде промышленного модуля на микроконтроллере, либо взять мультиметр D-830 .

Стабилизаторы напряжения – это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов.

В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться 220 вольтам.

Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле. В этом случае реле имеют достаточно большой шаг, и он всегда будет показывать 220 В. По факту на выходе будет совсем другое значение.

Как проверить электрический стабилизатор

Эта проверка выполняется довольно просто. Для этого необходимо взять следующие устройства:

  • Две настольные лампы.
  • Стабилизатор.
  • Электрическую плитку.
  • Удлинитель питания с 3-мя гнездами.
  1. Вставить вилку удлинителя в домашнюю розетку.
  2. Стабилизатор подключить к удлинителю.
  3. К стабилизатору подключить настольную лампу на 60 Вт.
  4. Подключить электрическую плитку к удлинителю.

Если стабилизатор функционирует нормально, то работа плитки не повлияет на свет лампочки, а ели лампу подключить напрямую к удлинителю, то при включении плитки свет станет слабее. Это объясняется тем, что мощный потребитель в виде плитки значительно снижает напряжение и лампа, подключенная к сети до прибора, станет выдавать меньше света. Но лампа, питающаяся после стабилизатора напряжения, не будет реагировать на повышение нагрузки.

Случается, и такая ситуация, когда люди не понимают работу стабилизатора, и сетуют на его плохую работу, хотя дело совершенно не в этом. Это получается так, что стабилизатор обесточивает нагрузку неожиданно, при стирке белья в машине автомате. Но в этом нет никаких неисправностей. Стиральная машина-автомат является мощным потребителем электрической энергии, но ее мощность распределяется неравномерно. При нагревании воды мощность может достигать до 5 кВт, а при обычной стирке уменьшается до 2 кВт. Из уроков физики средней школы известно, что если на входе трансформатора уменьшить напряжение, а на выходе увеличить напряжение, то выходная мощность также значительно снизится. Смотрите статью про стабилизатор для стиральной машины.

Поэтому может возникнуть такая ситуация, что при уменьшении напряжения на выходе стабилизатора напряжения мощности будет достаточно для вращения барабана, но недостаточно для нагревания воды. В этом случае необходимо выключить все лишние потребители и налить в машину, отдельно нагретую воду.

Проверка стабилитрона мультиметром

Такой электронный элемент, как стабилитрон, внешне похож на диод, но использование его в радиотехнике несколько другое. Чаще всего стабилитроны применяют для стабилизации питания в маломощных схемах. Они включаются по параллельной схеме к нагрузке. При работе с чрезмерно высоким напряжением стабилитрон через себя пропускает ток, сбрасывая напряжение. Эти элементы не способны работать при больших токах, так как они начинают греться, что приводит к тепловому пробою.

Порядок проверки

Весь процесс сводится к тому, как проверяют диоды. Это делается обычным мультиметром в режиме проверки сопротивления или диода. Исправный стабилитрон может проводить ток в одном направлении, по аналогии с диодом.

Рассмотрим пример проверки двух стабилитронов КС191У и Д814А, один из них неисправный.

Сначала проверяем диод Д814А. При этом стабилитрон по аналогии с диодом пропускает ток в одну сторону.

Теперь проверяем стабилитрон КС191У. Он заведомо неисправен, так как совсем не может пропускать ток.

Проверка микросхемы стабилизатора

Требуется собрать стабилизирующие цепи для питания устройства на микроконтроллере PIC 16F 628, который нормально работает от 5 В. Для этого берем микросхему PJ 7805, и на ее базе по схеме из даташита выполняем сборку. Подается напряжение, а на выходе получается 4,9 В. Этого хватает, но упрямство берет верх.

Достали коробку с интегральными стабилизаторами, и будем измерять их параметры. Чтобы не сделать ошибки, кладем перед собой схему. Но при проверке микросхемы оказалось, что на выходе всего 4,86 В. Здесь необходим какой-либо пробник, чем и займемся.

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения. Диод 1N 4148 не дает возможность конденсатору разрядиться. Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

Остальные элементы пробника выглядят следующим образом:

Контактные площадки стали местом монтажа элементов схемы. Корпус получился компактным.

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

На этом пробник готов. Он является своеобразной приставкой к мультиметру. Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике. Прибор сработал, на экране отображается 9,91 вольта.

Как проверить стабилитрон простую схему. Как проверить стабилитроны

Всего несколько часов потребуется, чтобы изготовить это устройство. Оно предназначено для проверки исправности. определения цоколевки и напряжения стабилизации стабилитронов. Но с его помощью можно проверять и другие полупроводниковые приборы, например, определить напряжение пробоя эмиттерного перехода транзистора, которые иногда используются в качестве стабилитронов.

И так, как же проверить стабилитрон? При проверке не ставилась задача определять зависимость напряжения стабилизации от протекающего тока. Схема устройства показана на рис. 1. В его состав входят повышающий , собранный на микросхеме DD1 и транзисторе VT1, а также специализированный модуль F08508G. В Интернете этот модуль (рис. 2) позиционируется как тестер аккумуляторной батареи автомобиля и представляет собой трехразрядный измеритель напряжения с цифровым светодиодным индикатором. Он позволяет измерять постоянное напряжение до 99,9 В

На логических элементах DD1.1 — DD1.3 собран генератор импульсов, элемент DD1.4 — буферный. Частоту задают параметры элементов С2 и R1, и для указанных на схеме она — примерно 9 кГц. Импульсы с его выхода через резистор R2 поступают на базу транзистора VT1, который работает в ключевом режиме. Когда он открыт, через дроссель L1 протекает ток и энергия накапливается в его магнитном поле.

Когда транзистор закрывается, на коллекторе возникает ЭДС самоиндукции и формируется импульс напряжения амплитудой около 60 В, который затем выпрямляется диодом VD1, и конденсатор СЗ заряжается до этого напряжения. Через токоограничивающий резистор R3 это напряжение поступает на испытываемый стабилитрон и на вход модуля. С помощью переключателя SA2 изменяют полярность напряжения на стабилитроне, но не на входе модуля.
Снимая показания с индикатора модуля, можно определить напряжение стабилизации и цоколёвку стабилитрона.

Печатная плата устройсто для проверки стабилитронов

При этом следует учесть, что, если стабилитрон обычный, в его состав входит один p-n переход (VD1 на рис. 3). Поэтому при напряжении обратной полярности (плюс — на катод, минус — на анод) будет индицироваться напряжение пробоя, для стабилитрона это и есть напряжение стабилизации. При смене полярности на р-n переходе будет прямое напряжение, если он кремниевый, то это около 0,6 В. Если стабилитрон симметричный (VD2 рис. 2), при смене полярности напряжение стабилизации меняется незначительно. Но есть еще и так называемые термокомпенсированные стабилитроны, в состав которых входит дополнительный диод (VD3 на рис. 3).

В этом случае при одной полярности подключения на вход модуля А1 поступит напряжение стабилизации, а при другой — выходное напряжение преобразователя. Генератор импульсов можно собрать и на других микросхемах, фрагменты схемы устройства в случае применения микросхем К561ЛН2 и К561ЛА7 (К561ЛЕ5) показаны на рис. 4 и рис. 5 соответственно.
Элементы устройства смонтированы на макетной плате (рис. 6) с использованием проводного монтажа. Применён резистор МЛТ, С223, оксидные конденсаторы — импортные, конденсатор С2 — К1017. Транзистор — любой из серий КТ815 и КТ817. Выключатель питания и переключатель — малогабаритные любого типа. Дроссель — штатный дроссель от КЛЛ, который намотан на Ш-образном ферритовом магнитопроводе (рис. 7).

Обычная индуктивность таких дросселей — несколько миллигенри. Для подключения исследуемых приборов можно использовать зажимы «крокодил» (XS1, XS2). Взамен модуля можно применить цифровой мультиметр в режиме измерения постоянного напряжения. Налаживание сводится к изменению частоты генератора для получения выходного напряжения (без нагрузки) около 60 В. Сделать это можно подборкой конденсатора С2 (увеличивая или уменьшая ёмкость) или резистора R1 (только в сторону увеличения сопротивления). Питается устройство от батареи 6F22 (Крона), максимальный потребляемый ток — 38 мА.

Последние сообщения

Популярные сообщения

Информация для начинающих радиолюбителей:
функции проверки стабилитронов в мультиметрах нет.

И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.

Собрать решил устройство как приставку к мультиметру, причём компактную. Корпус от упаковки безопасных лезвий «Schick ». Розетка для оконечника телефонного кабеля подошла и по размеру и по цвету, а к ней удалось приладить кнопку включения питания. Учитывая некоторое своеобразие корпуса, сборку пришлось выполнять, так сказать, «пошаговым» способом.


Шаг первый


Шаг второй — уборка в нишу корпуса всего выше перечисленного и установка по месту штырей (образующих импровизированную вилку для соединения пробника с мультиметром) путём использования на них резьбового соединения и двух гаек М4 на каждый. Расстояние между центров штырей 18,5 мм.


Шаг третий — установка светодиодов и ограничительных резисторов.


Спрятал содержимое «от глаз подальше» и сверху прикрутил подходящие контакты для подсоединения проверяемых стабилитронов. Контакты можно поворачивать вокруг своей оси и тем самым менять расстояние между ними в зависимости от длины проверяемого компонента. Пробую в деле:

Импортный стабилитрон BZX85C18 — чуток не дотянул до заявленного параметра.

Зато отечественный КС515А не подкачал, как говориться «в яблочко». И вот теперь имею в арсенале Schick арный тестер стабилитронов.))

Видео

Сам мультиметр конечно можно заменить любым, даже стрелочным, вольтметром — это будет полезно, если по ходу работы в мастерской вам часто приходится проверять такие детали. Желаю успехов, Babay. Россия, Барнаул.

Здравствуйте уважаемые посетители. За сорок лет увлечения радиотехникой скопилась целая куча стабилитронов и отечественных, и импортных, и с маркировкой и без, в связи с этим появилась необходимость в изготовлении приставки для мультиметра для определения целостности и параметров стабилитронов. По крайней мере напряжения стабилизации. На изготовление приставки ушло пару часов, это с травлением платы. За основу взял схемку стабилизатора тока (см. рис. 1)из документации на микросхему LM431, аналог 142ЕН19.

Схема получившейся приставки представлена на рисунке 2. На транзисторе VT1 и микросхеме DA1 142ЕН19 собран стабилизатор тока, при номиналах резисторов, указанных на схеме, ток стабилизации равен примерно семнадцати миллиамперам. В качестве индикатора прохождения тока при измерении с схему включен светодиод. Можно использовать любой светодиод с прямым током не менее 20ма. Для изготовления приставки потребуется сетевая вилка от какой ни будь не нужной китайской хрени(см. фото 1, 2).


Вернее запчасть от нее, показанная на фото 2. Приставка собрана на небольшой печатной платке из стеклотекстолита. Внешний вид платы показан на фото 3 и 4. Конструкция приставки надеюсь тоже понятна. Что бы контактные штыри бывшей сетевой вилки свободно входили в гнезда прибора, припаивают их к платке будучи вставленными в них.

На схеме указано максимально возможное входное напряжение для данных элементов – 35В. Но если при этом напряжении проверять, например стабистор КС107А, то на нем упадет напряжение 0,7В, а 34,3В — I Ur2 упадет на транзисторе VT1. Где I Ur2 – падение напряжения на резисторе R2 = 0,017А 200 = 3,4В. 34,3 – 3,4 = 30,9В – это такое напряжение упадет на транзисторе VT1, отсюда мощность коллектора транзистора составит U I = 30,9В 0,017А? 0,525Вт. Мощность коллектора транзистора КТ503 – 0,35Вт. Так, что замер надо производить очень быстро или заменить транзистор более мощным, или уменьшить напряжение питания приставки, что уменьшит количество марок проверяемых стабилитронов. Ну я думаю вы для себя это решите. Скачать рисунок печатной платы.

Да, ток стабилизации зависит от номинала резистора R2, R2 = 2,5/Iст, где Iст – величина тока стабилизации. До свидания. К.В.Ю.

Еще одно дополнение. С помощью этой приставки можно определять диоды с барьером Шоттки, у которых, как известно маленькое прямое падение напряжения. На снимке показана проверка 1N5819 — с барьером Шоттки. Uпр. = 0,24В. Отлично!


В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода , поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром? .

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод . Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 800 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод ? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт — вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны ? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

Полупроводниковый диод можно проверить и при помощи стрелочного прибора в режиме Ом-метра: стрелка должна показать проводимость лишь в одну сторону.

Какие неисправности могут быть у полупроводникового диода:

1. Обрыв. Диод не «прозванивается» ни в одну сторону.

2. Пробой. Диод показывает проводимость в обеих направлениях. При этом сопротивление очень низкое (КЗ или практически КЗ).

3. Утечка. Диод в обратном включении показывает небольшую проводимость.

Пока речь идет о полупроводниковом диоде, давайте заодно рассмотрим и его разновидности:

Как проверить светодиод.

Светодиод проверить можно достаточно легко при помощи обыкновенной батарейки (по его свечению).

Если-же вдруг под рукою батарейки не оказалось, то можно проверить и мультиметром как обыкновенный диод. Причем мы увидим не только проводимость светодиода, но так-же сможем наблюдать и его свечение (равда не очень яркое).

Свет, излучаемый такими светодиодами не видим человеческим глазом, но его очень легко можно увидеть при помощи камеры любого мобильного телефона.

Как проверить стабилитрон.

Так как стабилитрон по-сути является всего-лишь разновидностью полупроводникового диода, то и проверяется он так-же (при помощи мультиметра на проводимость в одну сторону), но с небольшой особенностью: значение падения напряжения на P-N переходе в стабилитроне как правило ниже (то есть мультиметр покажет более высокое сопротивление). Это обусловлено рабочими характеристиками самого стабилитрона: в отличие от простого диода у стабилитрона другое предназначение: он должен «пробиваться» при определенном напряжении.

Если не совсем понятно, то вот пример: если при проверке полупроводникового диода в прямом включении мультиметр показывает значение в пределах 450..550, то когда проверяем стабилитрон, мультиметр покажет 700…800.

Кстати, таким образом можно отличить диод от стабилитрона если вдруг нам «выпало счастье» иметь дело с SMD приборами…

Ну и это еще не все…

Многие стабилитроны имеют свойство «плыть». Говоря простым языком у стабилитрона может измениться напряжение стабилизации. Причем это значение можно или просто измениться (например вместо положенных 12V вдруг стало 9V) или может изменяться кратковременно.

Второй вариант дефекта самый непредсказуемый и выявляется очень тяжело.

Такие «катаклизмы» со стабилитронами чаще всего происходят из-за внешних воздействий (статика например или при «грозовых» неисправностях), но бывают случаи просто низкого качества производителей.

Как определить неизвестный стабилитрон.

Такая необходимость может возникнуть в тех случаях, когда возникли сомнения в исправности стабилитрона или просто на корпусе стабилитрона вдруг оказалось стерто название.

Ну здесь, в общем-то, можно поступить следующим образом: можно просто подключить стабилитрон к источнику напряжения через балластный резистор (если используем источник напряжения в пределах 9..12V, выбирать резистор следует в пределах от 150…500 Ом).

Напряжение на самом стабилитроне и будет его напряжение стабилизации.

Как проверить стабилизатор напряжения мультиметром

Автор: Voltmarket

Время прочтения: 5 мин

Для некоторых жителей Украины стабилизатор напряжения стал неотъемлемым помощником, позволяющим забыть о проблемах, связанных с качеством электроснабжения. Многие игнорируют данную проблему, считая, что и без стабилизатора все прекрасно работает. Только вот значительный процент неисправностей электрооборудования связан именно с перепадами напряжения в питающей сети.

Иногда, установив стабилизатор, пользователи хотят убедиться, что он действительно работает и, соответственно, защищает. Именно поэтому в интернете можно встретить вопросы по типу “как проверить стабилизатор напряжения мультиметром”. Попробуем разобраться, о чем идет речь и как это сделать.

Стабилизатор или стабилитрон?

Сразу стоит разобраться, что Вы имели в виду под стабилизатором, потому что очень часто так ошибочно называют полупроводниковый компонент — стабилитрон. Стабилитрон — это очень интересная разновидность диодов, которая всегда работает в режиме пробоя, поддерживая на выходе стабильное напряжение при достаточно широком диапазоне входных напряжений. Это прекрасно видно на вольт-амперной характеристике.

Стабилитроны используются для стабилизации постоянного тока в электронных схемах (в том числе в автомобилях для коррекции напряжения генератора и других задач) и, соответственно, никакой речи о защите домашней техники быть не может.

Кратко рассмотрим, как проверить стабилитрон мультиметром, если уж о нем пошла речь. Нужно лишь выставить прибор в режим сопротивления и приложить щупы к аноду и катоду стабилитрона. Если все хорошо, то в одном случае (когда плюсовой щуп приставлен к аноду) сопротивление будет близким к нулю, а в другом — к бесконечности, измеряемое мегаомами. Конечно, обычный прозвон не может гарантировать 100% исправность стабилитрона, как и любого другого диода, но в подавляющем большинстве случаев результат корректен.

Можно и нужно ли проверять стабилизатор мультиметром

Со стабилитроном разобрались, а вот как проверить электрический стабилизатор? Тот самый, который устанавливается дома для защиты бытовой техники и электроники.

Стабилизатор напряжения является устройством комплексным, работающим под управлением микроконтроллера. Наличие в схеме “мозгов” позволяет прибору самостоятельно контролировать свое состояние, сообщив об ошибке и обесточив нагрузку в случае неисправности. Сообщения об ошибке могут иметь самый разный формат: красный светодиод, шифр на LED-дисплее, либо полноценное сообщение на графическом или ЖК дисплее. Если со стабилизатором что-то случится, Вы об этом обязательно узнаете и без мультиметра.

Наиболее часто неисправности возникают в релейных и сервоприводных стабилизаторах, так как в первом случае что-то может случиться с реле, а во втором — с токосъемной щеткой или сервомотором. Максимум, что в этой ситуации может сделать рядовой пользователь с мультиметром в руках — это прозвонить контакты и катушки реле, хотя, по-хорошему, следует сразу же обратиться в сервис за помощью специалистов. Неумелыми действиями можно навредить не только стабилизатору, но и себе. О вмешательстве в схему управления и говорить не стоит.

Точно ли стабилизатор работает?

Другой частой причиной запросов о том, как проверить стабилизатор напряжения мультиметром, является желание пользователя разузнать, действительно ли стабилизатор выполняет свою работу, а не просто пропускает электрический сигнал транзитом. Для этого сперва проверяется напряжение в розетке, а затем на выходе стабилизатора и — о чудо! — иногда отклонение от 220В на выходе больше, чем до стабилизации. Человек, незнакомый с принципом работы ступенчатого стабилизатора, может подумать, что его просто обманули, однако это не так. Чтобы в этом разобраться, рассмотрим, как работает ступенчатый стабилизатор.

Ступенчатый — это, если быть точным, не тип стабилизатора, а принцип регулирования напряжения. Ступенчатыми бывают релейные и электронные стабилизаторы. Чаще всего пользователи, судя по отзывам, стараются выбирать стабилизаторы как раз этих двух типов. Ступенчатый принцип регулирования основан на автотрансформаторе, обмотка которого разделена на ступени. Каждая ступень соответствует определенному количеству витков вторичной обмотки относительно первичной, что, как известно из школьного курса физики, соответствующим образом сказывается на выходном напряжении. Таким образом, мы имеем автотрансформатор, у которого при одинаковом напряжении на входе будет сниматься разное напряжение на каждой из ступеней.

Из сказанного выше очевидно, что регулировка напряжения ступенчатой схемы заключается в том, чтобы скоммутировать выход к одному из выводов автотрансформатора. В релейных стабилизаторах за это отвечают реле, а в электронных — симисторы (симметричные тиристоры).

У каждого стабилизатора есть заявленная точность, которая выражается в процентном отклонении от номинального значения. У самых доступных моделей этот показатель составляет 10%, а у премиальных — менее 1%. Точность зависит от размера шага между ступенями. Шаг будет тем меньше, чем больше у стабилизатора ступеней. Если Ваш стабилизатор рассчитан на точность 10%, то отклонения от 220В не будут превышать 22В. Таким образом, вполне нормальной является ситуация, когда на входе мы имеем, скажем, 215В, а на выходе 205В. Зато когда в сети возникнут опасные колебаний, например 260В, стабилизатор удержит выходное напряжение в пределах своей точности, что в худшем случае составляет 10% (198-242В). Это абсолютно безопасный показатель для сертифицированной в Украине бытовой техники и электроники.

Таким образом, единственный случай, когда проверка стабилизатора напряжения мультиметром имеет смысл — это сверка с показаниями средств индикации (каждый стабилизатор имеет как минимум простую аналоговую индикацию выходного напряжения). В иных случаях стабилизатор сам сообщит Вам, если возникнет неисправность.

Как проверить диод мультиметром — показатели, инструкция, тесты

Автор Юлия На чтение 6 мин. Просмотров 150 Опубликовано Обновлено

Сегодня при устройстве электронных осветительных систем все чаще используются светодиодные лампочки. Они экономичны, практичны и просты в эксплуатации. Однако, как и любой светоэлемент подобного типа, диоды могут выходить из строя или просто некачественно работать.

Для устранения поломки нужно определить причину и последствия. В первую очередь речь идет о том, в каком состоянии диод: в рабочем и подлежит ремонту или в нерабочем и проще будет приобрести новый. Поэтому многие пользователи подобных осветительных приборов интересуются, как проверить диод мультиметром.

Классификация

Светодиодные ленты и прочие элементы освещения, которые работают на базе подобных светоэлеметнов, относятся к группе простых полупроводниковых радиоэлементов.

На сегодняшний день выделяют такие типы диодов:

  • выпрямленный;
  • стабилитрон;
  • варикап;
  • высоковольтные диоды;
  • светодиодные источники света.

Теперь попробуем разобраться, как проверить диоды мультиметром.

Проверка выпрямленных диодов и стабилитронов

Защитный светоэлемент, равно как и выпрямленный, проверяется с помощью мультиметра. За неимением такого оборудования можно использовать омметр.

Как проверить конденсатор мультиметром

Прозванивание светодиода мультиметром заключается в последовательном выполнении следующих действий:

  1. В первую очередь для проверки диода необходимо перевести прибор в режим прозвонки. То есть его нужно «прозвонить».
  2. После этого присоединяем щупы приспособления к выводам светоизлучающего элемента.
  3. При подключении красного проводка «+» к аноду, а черного «-» к катоду, на дисплее измерительного прибора должны отобразиться показания порогового напряжения, проверяемого светоэлемента.
  4. После того, как произвести смену полярности, мультиметр должен показать постоянно низкое сопротивление. И если проверка проходит именно по таком сценарию, то можно быть уверенным в том, что проверяемый светоэлемент полностью исправен.
  5. В том случае, если при обратном подключении прибор показывает утечку, то это означает только одно – светоизлучающее изделие нуждается в ремонте или полной замене.

Данная методика может использоваться и для тестирования светоэлементов на генераторе автомобиля и любого другого транспортного средства.

Контроль стабилитрона выполняется по идентичной схеме, единственное, что стоит отметить, с помощью такого тестирования невозможно определить, выполняется ли стабилизация показателей напряжения на том или ином уровне. В этом случае целесообразно собрать простую схему, которая состоит из источника питания, тестируемого стабилитрона и токоограничителя.

ВИДЕО: Как проверить диод с помощью тестера. Немного о структуре и назначении диодов

Принцип проверки заключается в следующем:

  1. Подключаемся к блоку питания: к «+» ведем провода проверяемого стабилитрона, а к «-» — токоограничителя, который дальше соединяется с испытываемый образцом.
  2. Устанавливаем на приборе режим, который позволяет производить замер постоянного напряжения в рамках 200 В.
  3. Дальше включаем источник питания и поэтапно добавляем напряжение до тех пор, пока амперметр на аккумуляторе не покажет, что он пропускает ток.
  4. После этого нужно подключить мультиметр таким образом, чтоб он как бы отсекал стабилитрон с двух сторон.
  5. Остается только измерить показания напряжения стабилизации и сопоставить их с номинальными.

Как проверить обычный диод и светодиод?

Стандартный диодный источник света является элементом, который проводит электроток только в одном направлении. Если же развернуть это направление, то рассматриваемый источник света закроется. Только при соблюдении этих условий светоизлучатели можно считать рабочими.

Проверка индикаторной отверткой

Большая часть мультиметров на своей базе уже имеет аналогичную функцию. Перед проверкой необходимо соединить между собой щупы тестера. Благодаря этому можно удостовериться в том, что прибор полностью исправен. После этого выбираем режим «проверка» и проводим необходимую процедуру.

Если мультиметр аналоговый, то эта операция выполняется в режиме омметра. Проверка диода, светодиода мультиметром проводится достаточно просто, поэтому даже неопытный человек может справиться с этой задачей. Чтоб удостовериться в работоспособности элемента, следует организовать прямое включение: подсоединяем анод к красному щупу («+»), а катод – к черному («-»). Об этом мы говорили немного выше. Если правильно все сделать, то вскоре на дисплее или на шкале появятся значения напряжения светоэлемента. Этот показатель должен быть в рамках от 80 до 750 мВ.

При выполнении обратного включения (при перестановке электродов), тестер должен показать значение, не выше 1. Не сложно сделать выводы, что сопротивление мультиметра большое и электрический ток через него не проходит. Если ваша проверка показала именно такие результаты, то световой элемент полностью работоспособен и готов к дальнейшей эксплуатации.

Иногда во время тестирования при подключении щупов проверяемый источник света пропускает электричество и при прямом подключении, и при обратном. А иногда вообще ток не проходит ни в одном из направлений (показания при протекании тока в обе стороны не превышают 1).

Первый случай говорит о том, что диодный светоэлемент пробит, а второй – он вышел из строя или же оборван от основной цепи. Логично, что такие электроэлементы неисправны и нужно предпринимать меры по устранению неполадки.

В случае с тестированием светодиодных лент принцип идентичен, но при этом в значительной степени упрощает процедуру тот момент, что при прямом подключении такой вид светового источника будет выдавать световой поток. Естественно, что это в разы упрощает проверку работоспособности тестируемого элемента.

Тестим варикапы

В отличие от стандартных диодных светоизлучателей, варикапы p-n обладают своеобразным переходным диодным мостом с емкостью, величина которой пропорциональна показаниям обратного напряжения. Тестирование подобных светоизлучателей выполняется по такому же принципу, как и в случае с обычными источниками света диодного типа. Для реализации проверки диода как варикапа, потребуется все тот же мультиметр, который обладает всеми необходимыми функциями для реализации подобных задач.

Чтоб проверить варикап необходимо установить на приборе соответствующий режим (внизу слева переключатель нужно поставить строго посередине) и установить световой элемент в разъем для конденсаторов.

Проверка высоковольтных диодов

Высоковольтные диодные источники света проверяются несколько по-другому, нежели в случае с тестированием обычных. Это обусловлено особенностями самих светоэлементов. Проверка светодиодов с такими светотехническими характеристиками проводится по специфической схеме, которая подключена к источнику питания в 40-45V. Если в двух словах, то проверяемый образец подключается к токоограничительному элементу и мультиметру, где первый и последний соединяются последовательно, после чего от первого цепь идет на второй.

Для контроля можно на мгновение прикасаться щупами «V/Ω/f» мультиметра, а «СОМ» к эмиттеру

Теперь вы знаете, как проверить светодиод мультиметром. Надеемся, эти советы помогут вам протестировать свою осветительную систему.

ВИДЕО: Диагностика и устранение причин поломки

Как проверить стабилитрон

Стабилитрон — это диод, предназначенный для работы в области пробоя. Эти условия разрушают нормальные диоды, но стабилитрон проводит небольшой ток. Он поддерживает постоянное напряжение на устройстве, поэтому обычно используется в качестве простого регулятора напряжения во многих схемах. Чтобы проверить один, используйте мультиметр для проверки его напряжения как внутри, так и вне цепи.

Стабилитрон 1N4734A имеет номинальную мощность 5,6 В и 1 Вт. Поставляет стабильную 5.6 вольт на цепь. Максимальный ток составляет примерно 1 Вт / 5,6 В = 179 мА. Чтобы предотвратить чрезмерный ток в испытательной цепи, используйте резистор на 200 Ом последовательно с диодом.

    Установка мультиметра на диоде. Обычно на это указывает небольшой символ диода на корпусе.

    Измерьте прямое падение напряжения на стабилитроне. Для этого подключите положительный или красный провод мультиметра к анодной стороне диода, на которой нет маркировки. Поместите отрицательный или черный провод на катодную сторону диода, отмеченную полосой.Стабилитрон сделан из кремния, поэтому неповрежденное устройство показывает от 0,5 до 0,7 В при прямом смещении.

    Измерьте напряжение обратного смещения на стабилитроне, переключив щупы мультиметра. Поместите положительный провод на сторону с маркировкой или со стороны катода, а отрицательный провод на сторону без маркировки или со стороны анода. Вы должны получить показания, указывающие на бесконечное сопротивление или отсутствие тока.

    Присоедините положительный полюс 9-вольтовой батареи к одной стороне резистора, а другой конец резистора подсоедините к катодной стороне стабилитрона, чтобы он имел обратное смещение. Затем подключите оставшуюся клемму диода к отрицательной клемме аккумулятора.

    Установите мультиметр в режим постоянного напряжения. Измерьте напряжение на диоде, поместив провод мультиметра на каждую клемму. Он должен показывать примерно 5,6 вольт, хотя значение может быть от 5,32 до 5,88 вольт. Обратите внимание, что напряжение между аккумулятором и землей остается на уровне 9 В.

Как проверить диод, светодиод и стабилитрон с помощью другого теста диодов

Как проверить диод? Методы испытаний диодов, светодиодов и стабилитронов

В проектах электроники диод является одним из самых важных компонентов.Очень важно и необходимо выполнить тест диода, прежде чем вставлять его в печатную плату. Чтобы избежать каких-либо катастроф или зря потратить ваше время, рекомендуется провести эти тесты диодов, прежде чем внедрять их в какую-либо схему. Мы проводим эти диодные испытания диодов, светодиодов и стабилитронов, чтобы увидеть, не повреждены ли они, сгорели или повреждены. Мультиметр — важный инструмент, используемый для этих испытаний диодов.

Перед установкой и поиском неисправностей любого диода, светодиода или стабилитрона необходимо иметь базовые знания об этих компонентах.В этой статье мы объяснили эти компоненты столько, сколько нам нужно для проверки диодов, светодиодов и стабилитронов.

Давайте перейдем к первому — «как проверить диод».

Как проверить диод?

Перед проверкой диода вам необходимо получить базовые знания о диоде.

Что такое диод?

Диод — это однонаправленный полупроводниковый компонент , который позволяет протекать току только в одном направлении и блокирует прохождение тока в другом направлении.если ток находится в пределах номинального значения диода.

Диод имеет очень низкое (идеально нулевое) сопротивление в одном направлении и очень высокое (идеально бесконечное) сопротивление в другом направлении.

Клеммы диода:

Диод имеет две клеммы, которые называются катодом , (отрицательная клемма) и анодом , (положительная клемма).

Катод изготовлен из полупроводника N-типа , а анод изготовлен из полупроводника P-типа .

Когда катод и анод подключены к отрицательному и положительному выводу источника питания соответственно, диод начинает проводить и, как говорят, находится в положении , прямое, , , смещение . В этой конфигурации падение напряжения на диоде составляет около 0,3 В, (в случае германиевого диода) или 0,7 В, (в случае кремниевого диода).

И когда эти соединения поменяны местами, то есть катод с положительным выводом и анод с отрицательным выводом, диод прерывает ток и, как говорят, в инвертируется смещение . В этом состоянии диод имеет очень высокое сопротивление и на нем появляется напряжение питания.

Визуальная идентификация анода и катода:

Визуальная идентификация анодных и катодных выводов диода очень проста и удобна. Белая сторона с полосами диода — это Катод , а сторона без полосок — это Анод .

Тест сопротивления диода:

При тестировании сопротивления диода вам необходимо использовать DMM (цифровой мультиметр).

  • Сначала установите цифровой мультиметр в режим сопротивления или омметра с помощью ручки.
  • Следующий шаг — это удалить диод, если он находится в какой-либо цепи.
  • Определите клеммы ( Анод и Катод ), используя приведенные выше инструкции.
  • Поместите общий зонд (черный зонд) цифрового мультиметра на катод, а красный зонд на анод диода. Это конфигурация с прямым смещением . Теперь запишите чтение.
  • Теперь поменяйте местами зонды так, чтобы красный зонд находился на катоде, а черный зонд (общий зонд) был на аноде диода. Такая конфигурация становится обратным смещением . Теперь запишите также показания.
Анализ:

В конфигурации прямого смещения диод закроется, и омметр покажет очень низкое сопротивление (в идеале — ноль).

Примечание. Во время проверки диода некоторые омметры могут иметь очень низкое испытательное напряжение для измерения сопротивления, которого может быть недостаточно для прямого смещения диода (для диода требуется 0.7 или более 0,7 В для прямого смещения).

В таком случае омметр считывает его в разомкнутом состоянии, и показание будет очень высоким. Для этих счетчиков отлично работает следующий метод

В конфигурации с обратным смещением диод открывается как и обеспечивает очень высокое сопротивление . Таким образом, омметр покажет высокое сопротивление (в идеале — бесконечное).

Заключение :
  • В прямое смещение , если показание сопротивления очень низкое (в идеале ноль), то диод находится в исправном состоянии.
  • В обратное смещение , если сопротивление очень высокое (в идеале бесконечно), тогда диод исправен .
  • Если в оба условия (прямое и обратное смещение), показание очень высокое , тогда говорят, что диод открыт, и вам необходимо его заменить.
  • Если в оба условия (прямое и обратное смещение), показание очень низкое тогда диод , вероятно, закорочен , и его также необходимо заменить.
Использование режима тестирования диодов:

Режим тестирования диодов в цифровом мультиметре специально разработан для тестирования диодов. Он может совместно использовать другие функции в разных измерителях, такие как режим проверки целостности и т. Д.

  • Установите цифровой мультиметр в режим проверки диодов .
  • Снимите диод, если он установлен в какой-либо схеме.
  • Обозначьте клеммы, используя приведенные выше инструкции.
  • Поместите общий зонд (черный зонд) на катод, а красный зонд на анод диода.Это делает его прямым смещением . Запишите чтение.

  • Теперь поменяйте местами датчик на диоде так, чтобы черный датчик соединялся с анодом, а красный датчик — с катодом. Сейчас это обратное смещение . Запишите чтение.

Заключение:
  • При прямом смещении исправный диод является замкнутым и цифровой мультиметр будет показывать менее 0,7 В (в случае кремниевого диода ) или 0. 3v (в случае германия ).
  • При обратном смещении диод будет в открытом состоянии и цифровой мультиметр покажет бесконечность ( 1 или OL , что в цифровом мультиметре показывает бесконечность или превышение предела).
  • Если показания в чем-то совпадают с показаниями, приведенными выше, то диод находится в нормальном состоянии и хорошем состоянии .
  • Если показание не находится рядом с этим, особенно в , прямое смещение , то диод, вероятно, сгорел или поврежден, и его необходимо заменить.
С помощью вольтметра

Чтобы проверить диод с помощью вольтметра , необходимо подключить диод с батареей и резистором, как показано ниже.

  • Вам необходимо последовательно подключить резистор , чтобы ограничить ток, протекающий через него.
  • Подайте напряжение, подключив его к батарее в , прямое смещение .
  • Измерьте напряжение на диоде.
  • Теперь поменяйте местами клеммы аккумулятора, чтобы установить диод в обратном смещении .

  • Измерьте напряжение на диоде.
Заключение:
  • При смещении вперед вольтметр должен показывать 0,7 В (для кремниевого диода ) или 0,3 В (для германиевого диода ).
  • При обратном смещении вольтметр должен считывать то же напряжение , что и источник питания.
  • В прямое смещение , если показание вольтметра 0v , то диод короткий .Если вольтметр показывает то же , что и , напряжение питания , то диод открыт, . В обоих случаях диод неисправен, и необходимо заменить .
  • В обратное смещение , если вольтметр считывает что-либо, кроме напряжения питания, диод неисправен .
Тестирование неисправного открытого диода:

Диод обрыв и неисправен, его необходимо заменить в следующих случаях:

  • При испытании сопротивления показания омметра показывают очень высокое сопротивление в для обеих конфигураций (прямое и обратное).
  • В режиме тестирования диодов , если показание равно бесконечное ( 1 или 0L ) в обеих конфигурациях.
  • В тесте вольтметра , если вольтметр показывает , равное напряжению питания в , обе конфигурации .
Тестирование неисправного замкнутого или закороченного диода:

Диод замкнут и неисправен, его необходимо заменить в следующих случаях:

  • Во время испытания сопротивления , если показания очень низкие в обеих конфигурациях (прямое и обратное).
  • В режиме тестирования диодов , если показания несколько соответствуют , то же в обеих конфигурациях.
  • В тесте вольтметр , если вольтметр показывает 0 В, в одной или обеих конфигурациях.

Как проверить светодиод?
Что такое светодиод?

LED — это светодиод . Это тип диода, который излучает свет, когда через него проходит ток. Как и диод, LED имеет удельное прямое падение напряжения в диапазоне от 1.От 8v до 3.3v в зависимости от цвета. Светодиод имеет две клеммы, известные как анод и катод .

Визуальная идентификация светодиодных клемм:

Обычно при производстве светодиода оконечная ножка анод делается на длиннее , а контактная ножка катода делается на короче . Итак, это один из способов распознать клеммы.

Второй способ — заглянуть внутрь LED .Плоский вывод по сравнению с другим выводом — это катод , а другой тонкий вывод — это анод .

Использование режима тестирования диодов:
  • Переведите цифровой мультиметр в режим проверки диодов с помощью ручки.
  • Отключите питание цепи от светодиода , если он находится под напряжением.
  • Обозначьте клеммы, как показано в приведенных выше инструкциях.
  • Поместите общий зонд (черный зонд) на катод и красный зонд на анод светодиода .

  • Светодиоды не работают при обратном смещении, поэтому нет необходимости проверять обратное смещение.

Если светится LED , значит хорошо . Если он не светится, значит, LED , вероятно, сгорел или поврежден .

Как проверить стабилитрон:

Что такое стабилитрон:

Стабилитрон — это особый тип диода, который обычно работает при обратном смещении .При смещении вперед он действует как общий диод . Но что отличает его от обычного диода, так это то, что он также допускает ток в с обратным смещением , когда напряжение питания достигает напряжения Зенера (напряжение пробоя).

Идентификация клемм:

Как и обычный диод, стабилитрон имеет ту же полосу над катодом , а сторона без полосок — это анод .

Тестирование Стабилитрон Диод:

Стабилитрон можно проверить двумя следующими способами. Второй способ очень важен.

Использование диодного режима:

Как мы уже говорили, стабилитрон работает так же, как и общий диод , поэтому метод тестирования диода в режиме будет таким же для стабилитрона.

Прямое смещение покажет менее 0,7 В , а обратное смещение покажет бесконечное ( 1 или OL ), потому что он будет блокировать ток, если измеритель не может обеспечить большее напряжение, чем его пробой Зенера напряжение .

Используя вольтметр:

Это важный метод проверки стабилитрона в обратном смещении . Вам необходимо узнать о напряжении пробоя стабилитрона из его таблицы данных перед его тестированием.

Допустим, у нашего стабилитрона напряжение пробоя 9в . И мы поставляем его 12v с обратным смещением . Стабилитрон должен построить на нем 9v и не превышать его.

Чтобы проверить стабилитрон, мы собираемся создать схему с резистором для ограничения тока и подключить его, как показано на рисунке ниже.

  • С помощью вольтметра проверим напряжение на нем.
  • Если показание напряжения совпадает с напряжением пробоя стабилитрона e из его таблицы данных, то стабилитрон находится в состоянии хорошее, .
  • Если напряжение увеличивается от номинального напряжения пробоя, то стабилитрон поврежден, и его необходимо заменить.

Диоды бывают разных типов, и все диоды имеют одинаковые свойства.Таким образом, эти тесты диодов можно использовать для тестирования диодов любого типа.

вы также можете прочитать:

Учебный курс Фрэнка

Стабилитроны

Стабилитроны проводят не только в прямом направлении, но и в обратном направлении, когда приложенное напряжение больше. затем напряжение стабилитрона.
Этот эффект используется для стабилизации напряжений. Стабилитроны являются частью блока питания.

Стабилитроны разные.Напряжение стабилитрона всегда напечатано на корпусе, но часто его трудно прочитать.

Стабилитрон используется в режиме обратного смещения с последовательно включенным резистором. Резистор всегда нужен для ограничения электрический ток. Падение напряжения на стабилитроне стабильно в пределах диода и достигает значения, указанного в спецификации диода. Диоды от 2,4 В до 100 В. Наиболее распространены напряжения от 2,7 В до 15 В. Номинальная мощность стабилитрона Диапазон диодов от 500 мВт до 2 Вт.

Для стабилитронов существует множество различных символов.
Приложения
Так называемый стабилитрон используется для стабилизации напряжений. Поэтому стабилитрон используется с обратным смещением. и последовательно с резистором. Когда напряжение становится выше напряжения стабилитрона, диод закорачивается и стабилизируется при этом конкретном напряжении стабилитрона. Избыточное напряжение падает на резисторе.

Напряжение на стабилитроне стабильное.Обратите внимание, что стабилитроны всегда работают в режиме обратного смещения.
Типы ZD и ZPD
Европейские типы ZD или ZPD легко идентифицировать. ZPD12 означает напряжение стабилитрона 12 В.
1N-типы
Напряжение стабилитрона американских 1N-типов не может быть распознано по типу.
Вот список некоторых распространенных типов:
0,5 Вт — Тип Напряжение
1N5226 3,3 В
1N5228 3.
1N5231 5,1 В
1N5239 9,1 В
1N5242 12 В
1N5245 15В
1N5248 18В
1N5252 24В

1 Вт — Тип Напряжение
1N4728 3.3В
1N4730 3,9 В
1N4733 5,1 В
1N4739 9,1 В
1N4742 12 В
1N4744 15В
1N4745 18В
1N4749 24В
Тестирование
Стабилитроны можно проверить как обычный диод с помощью мультиметра с диодным диапазоном. Функция стабилитрона не может проверить мультиметром.

Для проверки функции стабилитрона или определения напряжения стабилитрона неизвестного стабилитрона используется испытательная установка с мощностью питания и последовательного резистора.

Всегда разумно проверять работу стабилитрона, когда электронная плата находится под напряжением. С минусом вывод вольтметра на землю, плюс подключен к катоду. Измеренное напряжение должно быть стабилитроном. Напряжение.

Устранение неисправностей
Дефект стабилитронов встречается не очень часто.Нестабильный источник питания обычно имеет другой дефект. Наверное, последовательный транзистор создает проблемы.

Если стабилитрон неисправен, а этот диод недоступен, стабилитрон меньшего размера может быть включен последовательно, чтобы получить правильное напряжение.

Стабилитроны
можно использовать последовательно.
Цены
Стабилитроны дешевые, стандартная цена в Европе составляет около 0,05 евро
Ссылки и источники
Википедия: Стабилитрон

Тестер стабилитронов | Журнал Nuts & Volts


Когда я выбираю стабилитрон из шкафа для запчастей, я всегда хочу проверить его напряжение пробоя, прежде чем использовать его в проекте — просто чтобы убедиться, что в ящике моего шкафа не было перепутано. Эту процедуру необходимо повторить при установке неиспользуемых диодов обратно в мой шкаф или при сортировке кучи диодов, которые я подобрал на избыточной розетке.

Требуется много времени, чтобы настроить источник питания и вольтметр, выбрать последовательный резистор для ограничения тока и измерить напряжение для каждого диода. Альтернативы, такие как чтение номера детали и его поиск, или установка измерителя кривой, не быстрее. Многие ошибки, перегоревшие диоды и поврежденные проекты убедили меня, что должен быть лучший способ.Когда я экспериментировал с автоколебательными импульсными источниками питания для другого приложения, меня осенило, что эта технология была ответом на мою проблему.

Тестер, описанный в этой статье, представляет собой простую двухтранзисторную схему, работающую от батареи 9В, которая проверяет стабилитроны с пробивным напряжением до 52 вольт. Для создания, тестирования и использования схемы не требуется ничего, кроме мультиметра. Его конструкция с трансформаторной связью автоматически регулирует выходное напряжение в соответствии с напряжением проверяемого стабилитрона, одновременно регулируя ток диода для сохранения относительно постоянной мощности диода во всем диапазоне измерения.

Нет необходимости подбирать токоограничивающий резистор. Просто подключите вольтметр к диоду и измерьте его напряжение пробоя на стабильном и безопасном уровне мощности. Схема также будет безопасно проверять светодиоды, в том числе белые светодиоды, которые мультиметры не могут проверить, и другие низковольтные диоды в прямом направлении, а также MOV (металлооксидные варисторы) и другие защитные устройства с более высоким напряжением.

Подключение внешнего источника питания к тестеру позволяет также легко тестировать устройства, выходящие из строя выше 50 В.Со всеми моими проектами и множеством нестандартных устройств, валяющихся в моем магазине, этот тестер стабилитрона оказался наиболее часто используемым оборудованием на моем стенде!

Стабилитрон Фон

Если вы не знакомы с стабилитронами, уместно будет сделать введение. Зенеры настолько полезны, что их следует найти в коллекции компонентов каждого экспериментатора. Стабилитрон — это специализированный кремниевый диод, который в прямом направлении выглядит как обычный кремниевый диод. Однако в обратном направлении напряжения он демонстрирует низкий ток утечки, как обычный диод, до тех пор, пока не будет достигнуто напряжение — так называемое «напряжение стабилитрона».В этот момент он резко показывает контролируемое постоянное напряжение пробоя, несмотря на увеличивающийся ток.

Все диоды начинают сильно проводить при некотором напряжении в обратном направлении, но работают при значительном понижении этого напряжения пробоя, чтобы избежать повреждений. С другой стороны, стабилитроны предназначены для работы в области их пробоя, и этот пробой тщательно спроектирован для конкретных напряжений. Например, в семействе стабилитронов от 1N4728 до 1N4764 есть напряжения пробоя от 3.От 3 до 100 В с 37 ступенями — гораздо более широкий диапазон, чем у обычных трехконтактных IC-стабилизаторов с фиксированным напряжением. Эти диоды также можно соединить последовательно для достижения практически любого желаемого напряжения, а различные семейства диодов имеют разную мощность от 200 мВт до более 10 Вт.

Zeners обычно используются в качестве регуляторов напряжения, стандартов опорного напряжения для ОУ конструкций, а также в качестве защитных устройств к компонентам защитных от перенапряжения условий. Такие приложения, как драйверы реле или соленоидов и импульсные источники питания, подобные описанному в этой статье, обычно используют стабилитроны для защиты (например, D2 в , рис. 1, ).

РИСУНОК 1. Схема тестера .


Они также находят применение (вместо простого последовательного резистора) для понижения одного напряжения до более низкого напряжения и для ограничения формы волны переменного напряжения. Они даже используются в качестве генераторов шума в мостах с высокочастотным сопротивлением. Лучше всего — особенно для экспериментаторов с ограниченным бюджетом — типичные маломощные стабилитроны стоят всего гроши.

Тестер стабилитронов

Тестируемый диод подключается между красной и желтой клеммами, и напряжение считывается на этих клеммах при нажатии кнопки для проверки.Подключение измерителя тока между желтой и черной клеммами позволяет при желании измерять ток во время тестирования, или замена измерителя тока на внешний источник питания позволяет расширить диапазон тестера до уровня более 52 вольт.

Мигающий красный светодиод указывает на наличие напряжения на испытательных клеммах. Желтый светодиод указывает на то, что выход находится на пределе 55 В. Когда диод отсутствует или напряжение пробоя стабилитрона превышает 55 В, этот светодиод светится.Светодиод также указывает на правильное функционирование внутренней цепи для первоначального тестирования и служит напоминанием о том, что на выходных клеммах присутствует потенциально опасное напряжение. Когда тестовый переключатель отпускается, выход быстро разряжается до нуля в целях безопасности.

Внутренняя схема тестера легко модифицируется и моделируется для изменения диапазона напряжения или для использования в других приложениях. Эти модификации и моделирование обсуждаются позже в этой статье.

Описание схемы и работа

Схема тестера показана на Рисунок 1 . Ключом к простоте эксплуатации и сборки является использование трансформатора T1, который можно легко приобрести у нескольких дистрибьюторов и который предназначен для использования в небольших импульсных источниках питания. T1 имеет шесть независимых и идентичных поляризованных обмоток, четыре из которых используются в тестере: T1-L1 — это «первичная» обмотка «обратной связи», T1-L4, хранящая энергию в магнитном поле трансформатора; затем T1-L2 и T1-L3 соединяются последовательно, чтобы сформировать «вторичную», отводящую накопленную магнитную энергию в тестируемый диод (DUT).

Некоторые из вас узнают эту базовую схему как простой «блокирующий генератор», широко использовавшийся с электронными лампами для радаров во время Второй мировой войны, а позже принятый в качестве транзисторной конфигурации для самого раннего поколения твердотельных импульсных источников питания. В области источников питания это теперь называется схемой «обратного хода», возвращаясь к схемам горизонтального вывода на основе ЭЛТ / ТВ, использующих эту топологию или часто называемых «повышающей» схемой. Он прост, работает с множеством различных транзисторов и не требует специализированных интегральных схем.

S1 — это кнопочный переключатель мгновенного действия с однополюсным переключателем. Пока не будет нажата кнопка S1, батарея на 9 В отключена от цепи, а конденсатор выходного фильтра C4 разряжается через R8. При переводе S1 в положение ON или TEST R8 удаляется с выхода и подается 9 В на первичный, T1-L1, и на пусковой резистор R2. Он также включает LED1 — мигающий красный светодиод, который указывает пользователю, что цепь находится под напряжением и есть потенциально опасные напряжения на выходных клеммах.

Пусковой ток протекает через R2 (и R4), включая управляющий транзистор Q1.Когда Q1 включается, он подтягивает контакт 1 T1 к земле, что, в свою очередь, заставляет напряжение на обмотке обратной связи T1 / T1-L4 повышаться от земли до +9 В, поскольку отношение витков двух обмоток равно 1: 1. Повышающееся напряжение на T1-L4 передается на базу Q1 через C3, D1 и R3. Этот ток добавляется к току через R2, дополнительно включая Q1 и быстро переводя его в состояние насыщения.

В состоянии насыщения напряжение на Q1 составляет несколько десятых вольта, и почти полное напряжение батареи 9 В находится на T1-L1.Теперь ток через T1-L1 и R6 начинает нарастать, сохраняя магнитную энергию в сердечнике. Через D3 не протекает ток, поскольку он смещен в обратном направлении во время этой части цикла колебаний.

Когда падение напряжения на R6 превышает 0,7 В, дроссельный транзистор Q2 начинает включаться и шунтировать базовый ток Q1 на землю, заставляя Q1 выйти из насыщения, а напряжение на коллекторе Q1 повыситься. Это действие снижает напряжение на T1-L1, что, соответственно, снижает напряжение на обмотке обратной связи, T1-L4, дополнительно уменьшая базовое возбуждение до Q1 и быстро отключая Q1 посредством этого рекуперативного действия.

Когда Q1 выходит из насыщения и начинает отключаться, напряжение на его коллекторе быстро растет из-за индуктивного действия, и напряжение на T1-L1 меняется на противоположное, повышая напряжение коллектора Q1 выше 9 В. В то же время вторичное напряжение меняется на противоположное, и D3 начинает проводить.

Когда энергия, накопленная в сердечнике, полностью высвобождается через вторичную обмотку, напряжения на всех обмотках падают, снова включая Q1 через C1 (напряжение на выводе 11 идет от отрицательного напряжения к земле).Затем цикл повторяется до тех пор, пока C2 не будет заряжен до уровня напряжения, при котором тестируемое устройство начинает проводить, после чего колебания стабилизируются и продолжают подавать питание на тестируемое устройство.

Формы установившихся колебаний показаны на рис. , рис. 2 .

РИСУНОК 2. Временная диаграмма, показывающая напряжения трансформатора.


Уровни напряжения (относительно земли) показаны для общего тестируемого напряжения стабилитрона Vz. Напряжения, указанные в скобках, относятся к стабилитрону 12 В в качестве ИУ, а соответствующие фактические формы сигналов цепи показаны на , рис. 3, .

РИСУНОК 3. Осциллограф, снимающий фактическую схему, тестирующую стабилитрон 12 В.


Если во время работы схемы ИУ отсутствует, то напряжение на C4 будет продолжать расти, как и пиковое напряжение на коллекторе Q1. Напряжение на выводе 2 T1 и выходное напряжение будут расти с каждым циклом, как и пиковое напряжение (половина выходного напряжения плюс 9 В) на коллекторе Q1. Это особенность конфигурации схемы с обратным ходом, которая позволяет тестировать стабилитроны при напряжении батареи, превышающем 9 В.

Однако необходима некоторая защита, чтобы пиковое напряжение на коллекторе Q1 не превысило его максимальное номинальное напряжение коллектора 40 В. Последовательное сочетание стабилитрона D2 и желтого светодиода LED2 обеспечивает эту защиту, ограничивая пиковое напряжение и поглощая энергию магнитного поля T1, если тестируемое устройство отсутствует или если напряжение пробоя тестируемого устройства превышает максимальное выходное напряжение тестера. LED2 загорается, когда в этом состоянии через D2 проходит ток.

На рисунке 4 показаны фактические измерения тока и мощности для различных ИУ на тестере в собранном виде.Измерение этих диодов при постоянном токе и одинаковых токах дало идентичные результаты, поэтому точность измерения отличная. Следует отметить, что допуск индуктивности трансформатора составляет ± 30%, поэтому ваши результаты могут отличаться.

РИСУНОК 4. Измеренные выходная мощность и ток.


Моделирование

Вместо того, чтобы пытаться математически объяснить работу схемы, проще использовать моделирование.

Бесплатный аналоговый симулятор от Linear Technologies — LTspice® ( www.linear.com/designtools/software ) — идеально подходит для моделирования этой схемы и детального изучения ее работы при различных значениях компонентов и условиях. В симуляторе есть виртуальные приборы, которые позволяют измерять напряжение, ток и мощность в каждом проводе и компоненте в зависимости от времени.

Необходимо моделировать только те компоненты, которые сильно влияют на поведение схемы. Схема модели показана на рис. 5 , с 12-вольтовым стабилитроном в качестве тестируемого устройства.

РИСУНОК 5. Схема LTspice.


Этот файл доступен по ссылке на статью. Снимок экрана моделирования, показывающий формы выходного напряжения на выходе вторичной обмотки (при подключении к D1), показан на , рис. 6, .

РИСУНОК 6. Моделирование LTspice — форма выходного сигнала трансформатора.


Использовались компоненты из библиотеки LTspice, которые в некоторых случаях отличались от реальных компонентов на схеме .Трансформатор моделируется как набор связанных обмоток со 100% связью (K = 1 в Директиве Spice для трансформатора), и все индуктивности предполагаются линейными без какой-либо зависимости от тока. Фактически используемый трансформатор определяет снижение индуктивности на 30% при токе 420 мА через одну обмотку, что значительно превышает пиковый ток в этой конструкции, поэтому предположение о линейности является разумным. Моделируемое поведение схемы было очень близко к реальным результатам схемы и было особенно полезно для оптимизации значений компонентов.

Строительство и испытания

Схема построена на прототипе печатной платы (PCB) от RadioShack, которая также удобно помещается в стандартный пластиковый корпус от SeraPac с батарейным отсеком на 9 В (см. Список деталей ). Верхняя часть платы (, рисунок 7, ) содержит все компоненты, за исключением трансформатора T1, который установлен на нижней стороне (, рисунок 8, ). T1 сконфигурирован для поверхностного монтажа, что хорошо подходит для 100-миллиметровых центров печатной платы.

РИСУНОК 7. Верх печатной платы в сборе.


РИСУНОК 8. Нижняя часть собранной печатной платы.


Я использовал штыревые разъемы для контактов к T1 и для подключения к передней панели через плоский кабель (10-жильный) с разъемом к печатной плате ( Рисунок 9, ). Ни то, ни другое не требуется, хотя я считаю, что разъемы контактов удобны для закрепления пробников осциллографа при оценке схемы.

РИСУНОК 9. Внутри корпуса сверху.


Отдельная и легко отсоединяемая передняя панель также упрощает сборку и модификацию платы. Единственное предостережение при использовании контактных заголовков — убедиться, что контакты переключателя S1 не соприкасаются с контактами, когда верхняя и нижняя части корпуса соединены вместе.

Все компоненты на верхней стороне платы должны быть сначала установлены и проверены на целостность, а T1 припаян на нижней стороне в последнюю очередь. Окончательную проверку целостности следует выполнять при подключенной передней панели.

Особенно важно, чтобы D2 был подключен через LED2 к земле. Если это соединение разомкнуто, напряжение на коллекторе Q1 может быстро подняться до уровня, который разрушит транзистор.

После проверки целостности проводки подключите аккумулятор, оставьте выходные клеммы открытыми (без проверяемого устройства) и нажмите S1. Желтый светодиод LED2 должен загореться вместе с мигающим LED1. Это все, что вам нужно сделать, чтобы убедиться, что цепь работает. Если желтый светодиод не горит, проверьте проводку еще раз.

За исключением трансформатора, большинство компонентов схемы не являются критическими, но D3 должен быть выпрямителем с быстрым восстановлением, хотя допустимы любые диоды с быстрым восстановлением с напряжением пробоя выше 100 вольт. C4 и C5 должны иметь низкое эквивалентное последовательное сопротивление (ESR), чтобы избежать чрезмерных пульсаций в ИУ. Типы пленок в этом отношении подходят, а выбранные конденсаторы имеют ESR менее 0,1 Ом. Если вы не уверены в ESR имеющихся у вас конденсаторов, подключите несколько конденсаторов меньшего номинала (например,g., два 0,1 мкФ) и убедитесь, что они имеют соответствующее номинальное напряжение. Низкое значение (0,22 мкФ) этих конденсаторов достаточно для точности измерения, но ограничивает запасенную энергию по соображениям безопасности.

Работа с тестером

Замкните желтый контакт на черный с помощью перемычки, подключите стабилитрон к красной и желтой клеммам (сторона с полосой к красной клемме) вместе с вольтметром и снимите напряжение на диоде после нажатия S1. Вы заметите, что когда вы удерживаете S1, напряжение стабилитрона будет дрейфовать по мере нагрева диода, поэтому произведите быстрое измерение.

Также возможна проверка светодиодов и других низковольтных диодов; просто убедитесь, что положительный конец светодиода или диода подключен к красной клемме, чтобы измерить прямое падение напряжения. В противном случае высокое напряжение тестера может вывести из строя светодиод или диод из-за превышения максимального значения, указанного в спецификации обратного пробоя.

Если вы хотите измерить ток через стабилитрон, снимите перемычку между желтой и черной клеммами и вставьте миллиметр. Конденсатор C5 на этих клеммах обеспечивает путь с низким сопротивлением для импульсного тока через тестируемое устройство, так что индуктивность выводов мультиметра не влияет на точность считывания.

При измерении неизвестного стабилитрона и загорается желтый светодиод, проверьте, открыт ли диод, проверив его прямое падение напряжения с помощью мультиметра, или просто переверните его в тестере. Если желтый светодиод гаснет с стабилитроном в прямом направлении, то диод скорее всего исправен, но имеет напряжение пробоя выше 55 В. Если вы хотите измерить напряжение пробоя в этом случае, подключите внешний регулируемый источник питания к желтой и черной клеммам, при этом минусовая клемма источника питания подключена к желтой клемме.Медленно увеличивайте значение питания, пока желтый светодиод не погаснет, затем измерьте напряжение на диоде.

Таким образом я измерил стабилитроны с пробивным напряжением около 200 В, а также MOV и другие устройства защиты от высокого напряжения, не беспокоясь о чрезмерном рассеянии мощности, поскольку ток диода при выключении желтого светодиода довольно низкий.

Модификации и улучшения схемы

Конфигурация схемы на рис. 1 . надежен и может работать с различными модификациями.Вы можете поэкспериментировать с тремя переменными элементами: вторичная обмотка Т1; резистор R6, определяющий пиковый ток в Q1; и напряжение пробоя D2.

Если вы хотите, чтобы выходное напряжение имело более низкое максимальное напряжение, вы можете исключить одну обмотку во вторичной обмотке или уменьшить напряжение пробоя D2. Если вам нужно более высокое максимальное напряжение на выходе, вы можете подключить третью обмотку (две неиспользуемые обмотки на T1) последовательно с двумя показанными, или просто заменить D2 стабилитроном с более высоким напряжением.Если вы выберете этот последний путь, вам потребуется транзистор с более высоким напряжением пробоя, например MPSA06 (VCEO = 80 В против 40 В для 2N3904).

Конденсаторы

C4 и C5 рассчитаны на 520 В, а D3 имеет обратное напряжение пробоя 600 вольт, так что есть место для игры … но будьте осторожны, если вы перейдете на более высокие напряжения. Хотя C4 имеет небольшое значение (0,22 мкФ), накопление энергии увеличивается пропорционально квадрату напряжения, поэтому более высокие напряжения могут вызвать очень опасный и потенциально фатальный толчок! Будь осторожен!!

Если вы хотите увеличить или уменьшить мощность, подаваемую на DUT, уменьшите или увеличьте значение R6 соответственно.Транзисторы 2N4401 и MPSA06 могут поддерживать пиковые токи до 500 мА и могут использоваться в этой схеме.

Также было бы легко использовать больший корпус для тестера и включить цифровой панельный измеритель, который считывал бы напряжение стабилитрона, не требуя отдельного измерителя или двух для одновременного считывания напряжения и тока.

Вот и все! Я надеюсь, что эта схема подходит вам так же, как и мне! NV


Список литературы

Руководство по импульсным источникам питания , Кейт Биллингс, McGraw-Hill, 1989, стр.2,49–2,62.

Информация о трансформаторе VERSA-PAC: www.digikey.com/product-search/en?mpart=VPh3-1600-R&vendor=283

EDN Magazine , 10 июня 2010 г., Идеи дизайна, стр. 51-52, «Схема позволяет измерять напряжения стабилитрона и проверять светодиоды».

EDN Magazine , 25 ноября 2004 г., стр. 104-106, «Испытательная цепь Зенера служит источником постоянного тока».


Исправления

Список деталей обновлен. Загрузите zip-файл для обновленного списка деталей.

Загрузки

Ноябрь 2014_Hoffman-Parts

Как проверить диод

Диоды — это один из компонентов, которые можно очень легко проверить. Обычные диоды, а также стабилитроны можно проверить с помощью мультиметра. При тестировании диода режим прямой проводимости и режим обратной блокировки должны проверяться отдельно.

Проверка обычного диода цифровым мультиметром.
Чтобы проверить обычный кремниевый диод с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов.Подключите положительный вывод мультиметра к аноду, а отрицательный — к катоду диода. Если мультиметр показывает напряжение от 0,6 до 0,7, можно предположить, что диод исправен. Это тест для проверки режима прямой проводимости диода. Отображаемое значение фактически является потенциальным барьером кремниевого диода, и его значение колеблется от 0,6 до 0,7 вольт в зависимости от температуры.

Теперь подключите положительный провод мультиметра к катоду, а отрицательный — к аноду.Если мультиметр показывает бесконечное значение (вне диапазона), можно предположить, что диод исправен. Это тест для проверки режима обратной блокировки диода.

Процедура проверки германиевых диодов такая же, но на дисплее будет отображаться от 0,25 до 0,3 В, чтобы указать исправное состояние в режиме прямого смещения. Потенциальный барьер для германиевого диода составляет от 0,25 до 0,3 В. При обратном смещении мультиметр будет показывать бесконечное значение (вне диапазона), указывая на нормальное состояние.

Проверка обычного диода аналоговым мультиметром.
Чтобы проверить обычный кремниевый диод с помощью аналогового мультиметра, установите переключатель мультиметра в положение низкого сопротивления (скажем, 1 кОм). Подключите положительный вывод мультиметра к аноду диода, а отрицательный вывод мультиметра к катоду диода. Если измеритель показывает низкое сопротивление, можно предположить, что диод исправен. Это тест для проверки режима прямого смещения диода.

Теперь переведите селекторный переключатель мультиметра в положение с высоким сопротивлением (скажем, 100 кОм).Подключите положительный вывод мультиметра к катоду диода, а отрицательный — к аноду диода. Если счетчик показывает бесконечное значение, можно считать, что диод исправен. Это тест для проверки режима обратной блокировки диода. Измеритель показывает бесконечное или очень высокое сопротивление, потому что диод с обратным смещением имеет очень высокое сопротивление (обычно в диапазоне сотен кОм).

Проверка стабилитрона.
Прямые характеристики стабилитрона аналогичны обычному диоду.Таким образом, методы, используемые для проверки режима прямой проводимости любого обычного диода, применимы и к стабилитрону. Но в обратном режиме обратное напряжение пробоя имеет большое значение, и его необходимо специально проверять. Например, стабилитрон на 5,3 В должен начать проводить только тогда, когда приложенное обратное напряжение чуть превышает 5,3 В. Режим обратного смещения стабилитрона можно легко проверить с помощью схемы, представленной ниже. Сопротивление R1 обычно может составлять 100 Ом. Мультиметр должен быть в режиме напряжения.Теперь медленно увеличивайте мощность переменного источника питания и одновременно наблюдайте за напряжением, показанным на мультиметре. Показания мультиметра увеличиваются вместе с увеличением напряжения блока питания до напряжения пробоя. Кроме того, показания мультиметра остаются неизменными, несмотря на наличие напряжения питания. Это связано с тем, что стабилитрон теперь находится в области пробоя, и напряжение на нем будет оставаться постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя.Если показание мультиметра в этот момент равно напряжению пробоя, указанному производителем, можно считать, что стабилитрон исправен.

При проведении этого теста помните, что входное напряжение возбуждения не должно превышать такое значение, при котором стабилитрон рассеивает больше мощности, чем он может безопасно выдержать. Обычно ток через диод не должен превышать 10 мА.

Как проверить диод [Полное руководство]

Диоды — один из часто используемых компонентов в электронных устройствах.Таким образом, для гарантии того, что диод пригоден для конкретного (согласно требованиям) использования, важно проверить диод. Мы можем тестировать обычные диоды и стабилитроны с помощью цифрового или аналогового мультиметра.

Поскольку диоды используются в схемах защиты, выпрямления и т. Д., Именно они выходят из строя в первую очередь в случае какой-либо неисправности в системе. Несколько примеров схем могут быть двухполупериодным выпрямителем, однополупериодным выпрямителем, схемой драйвера светодиода. Эта причина дает еще более веский повод всегда проверять диод перед его использованием.Кроме того, у нас есть два режима диода, а именно режим прямой проводимости и режим обратной блокировки. Таким образом, оба из них необходимо тестировать отдельно.

Как проверить диод

Можно проверить с помощью мультиметра. В практическом диоде мы имеем сопротивление как в прямом, так и в обратном направлении. Всегда лучше проверить схему перед ее сборкой. Но если мы этого не сделаем, и результаты также не соответствуют нашим ожиданиям, мы можем запутаться в том, есть ли проблема в схеме или компоненты (диод, другие электронные устройства) не работают должным образом.

Диод лучше всего тестировать при прямом смещении. Рассчитывается падение напряжения из-за его прямого сопротивления. В состоянии прямого смещения диод действует как переключатель (если сопротивление игнорируется). Давайте теперь узнаем, как тестировать диоды.

Тестирование диодов

С цифровыми счетчиками

В настоящее время большинство цифровых мультиметров снабжено специальным диапазоном «проверки диодов». Это сделано для обеспечения идеального измерения, поскольку другие напряжения могут не преодолевать потенциал прямого перехода диодов (и, следовательно, отсутствие проводимости в прямом направлении).

Но здесь возникает один вопрос: что, если у нас нет диапазона проверки диодов в цифровом мультиметре!

Что ж, у нас есть еще один метод, который поможет проверить исправность диода. Мы могли бы установить мультиметр в режим сопротивления (метод омметра), а затем продолжить.

Разберемся с порядком проведения проверки исправности диодов обоими способами.

с диапазоном проверки диодов в мультиметре

Для проверки диода используется следующая процедура:

  • Сначала определите два вывода диода, а именно катод и анод.Также имейте в виду, что если анодное напряжение больше катодного напряжения, то диод проводит в прямом направлении, а если меньше, то в обратном смещении.
  • Убедитесь, что в цепи отключено все питание. Кроме того, если диод установлен в цепи переменного тока, он может накапливать заряды в конденсаторе или катушке индуктивности. Следовательно, их необходимо разрядить перед испытанием диода.
  • Установите ручку цифрового мультиметра в соответствии с требованиями, т. Е. Напряжением переменного или постоянного тока.
  • Удерживайте ручку в режиме проверки диодов (если есть).
  • Возьмите провода цифрового измерителя и удерживайте два вывода диода, чтобы измерить напряжение на них. Запишите наблюдение.
  • Теперь, чтобы вычислить обратное напряжение (режим обратной блокировки), поменяйте местами провода измерителя и запишите наблюдение.

Следующий шаг — как проанализировать данные и решить, готов ли диод быть частью схемы или нет. Проверяем, хорошо это или плохо!

Тестирование диодов

Проведенный анализ диодных испытаний

  • От указанного значения просто проверьте падение напряжения в прямом направлении.Если для кремния он находится в диапазоне 0,7 0,1, то диод исправен, иначе не подходит. Для германия диапазон падения, необходимый для хорошего диода, составляет 0,3 0,05.
  • При переключении диода, если он показывает OL, диод исправен (исправен). OL указывает на разомкнутый контур / цепь. Это связано с тем, что исправный диод не проводит обратное смещение. Так что это может быть еще одна проверка на исправность диода или плохого состояния здоровья
  • Если цифровой мультиметр показывает OL как в прямом, так и в обратном смещении, то диод неисправен.
  • С другой стороны, может быть случай, когда цифровой мультиметр покажет отклонение для падения напряжения в обоих условиях смещения. Такой диод представляет собой закороченный диод.

Испытательный диод в режиме сопротивления

Давайте посмотрим, как определить, исправен ли диод, обрыв (OL) или короткое замыкание. Выполните следующие шаги для проведения теста.

  • То же, что и выше, идентифицирует катодные и анодные выводы диода. Если

V Анод > V Катод — прямое смещение

В Анод Катод — обратное смещение

  • Сначала проверьте диод на наличие прямого смещения.Помните, что в этом случае требования к сопротивлению высоки. Это связано с тем, что ток течет в прямом направлении и, следовательно, требует высокого сопротивления (от 1 кОм до 10 МОм).
  • Кроме того, для обратного смещения требования к сопротивлению меньше, так как в идеале он должен быть разомкнут (без тока) при обратном.
  • Перед тем, как начать проверку диодов, убедитесь, что все источники питания ВЫКЛЮЧЕНЫ. Следовательно, на диоде не должно быть никакого напряжения, а также все подключенные конденсаторы или катушки индуктивности должны быть проверены на наличие сохраненного напряжения.Если он заряжен, разрядите его перед запуском.
  • В соответствии с требованиями схемы установите ручку мультиметра на переменный или постоянный ток.
  • Удерживайте другую ручку в режиме сопротивления ().
  • Теперь проверьте диод, подключив провода счетчика. Наблюдайте и записывайте показания.
  • Поменяйте местами выводы, чтобы получить показание в обратном направлении. Наблюдайте и записывайте.
  • Хороший диод: если

в прямом режиме, сопротивление от 1 кОм до 10 МОм

и в обратном режиме цифровой счетчик показывает OL

имеют одинаковые или близкие значения.Если показания не соответствуют вышеуказанным условиям, то это тоже плохо.

Этот метод тестирования сопротивления можно сделать более эффективным, если сравнивать показания с уже протестированным исправным диодом.

Давайте теперь узнаем о тестировании некоторых конкретных диодов.

Тест стабилитрона

Стабилитрон — это диод, который также проводит обратное смещение (если обратное напряжение больше, чем напряжение пробоя стабилитрона). Это требует некоторых изменений в предыдущей схеме тестирования.Ниже приведена процедура проверки стабилитрона:

.

Тест стабилитрона

Процедура проверки диода

  • Как и в случае диода с p-n переходом, сначала проверьте катодную и анодную клеммы диода.
  • Схема должна соответствовать показанной схеме.
  • Установите ручку цифрового мультиметра в режим напряжения и поместите клеммы измерителя на анод и катод, чтобы проверить диод.
  • Теперь медленно измените напряжение (в положительном направлении) и наблюдайте за измерителем.Наблюдаемое значение на счетчике также должно увеличиваться с увеличением входного сигнала. И при определенном значении (напряжении пробоя) значение счетчика должно достигнуть насыщения (стать постоянным). Это означает, что после напряжения пробоя, несмотря на любое изменение входного сигнала, значение на измерителе (выходе) остается на постоянном уровне.
  • Если это произойдет, то стабилитрон исправен, иначе нет.

Например, если напряжение пробоя составляет 3 В, и вы подаете питание 10 В, то счетчик также будет показывать значение около 3 В.

Светодиод (светоизлучающий диод) Тест

Этот светодиод несколько отличается от того, который мы изучили до сих пор (с точки зрения внешнего вида). Следовательно, чтобы определить его анодный и катодный выводы, нам нужно увидеть его длину. Более длинная ветвь (вывод) является анодом, а более короткая — катодом. Еще один способ проверить клеммы — это увидеть поверхность светодиода. Сторона с более плоской поверхностью — это катод, а другая сторона — очевидный анод.

Тестирование светодиодов

Процедура проверки диода

  • Если диод в цепи, убедитесь, что источник питания ВЫКЛЮЧЕН и конденсаторы разряжены.
  • С помощью описанного выше метода проверьте анодные и катодные выводы.
  • Поместите щупы мультиметра так, чтобы диод находился в прямом смещении (красный щуп к аноду, а черный к катоду).
  • Теперь вам не нужно ничего делать, кроме как посмотреть, светится ли светодиод.Если он светится, значит, он здоров, иначе — нет.

А теперь скажите, можем ли мы проверить светодиод при обратном смещении? Считать!!

Конечно, нет. Просто потому, что светодиод не работает при обратном смещении.

Тест диодов Шоттки

Как и другие обычные диоды, он также ограничивает ток в одном направлении. Но он имеет более быстрое время отклика по сравнению с другими диодами того же семейства.

Проверка диодов Шоттки

Процедура проверки диода Шоттки

  • Обеспечьте катод и анод диода Шоттки.Часть, которая находится ближе к нарисованной линии, является катодом, а другая сторона — анодом.
  • Подключите щупы измерителя к клеммам диода. Красный зонд к аноду, а черный к катоду, чтобы сделать его в прямом смещении.
  • Теперь мультиметр должен издавать «гудение» или «гудок». Если это так, значит, диод исправен, иначе неисправен.
  • Точно так же поменяйте местами подключение датчика, чтобы заставить его работать в режиме обратного смещения.Снова внимательно попробуйте прислушаться, не слышен ли звук. Если да, то диод неисправен и его необходимо заменить, а если нет, то он исправен.

Испытание диодов малой мощности

Малосигнальные диоды

Сигнальные диоды — это диоды, которые работают с меньшей мощностью и более высокой частотой. Это делает их более полезными для переключения. Тестирование этих малосигнальных диодов очень похоже на методы, описанные выше. Единственная разница в том, что на цифровом мультиметре меньше значение при подаче входного сигнала.Кроме того, диапазон входного сигнала, который может подаваться на эти диоды, меньше по сравнению с диодами с большим сигналом.

Испытания больших сигнальных диодов

Большие сигнальные диоды — это диоды, которые имеют сравнительно большую мощность и несколько меньшую частоту по сравнению с малосигнальными диодами. Следовательно, при проверке диода диапазон напряжений выше, а также вход, который может подаваться на входные клеммы, имеет более широкий диапазон.

Процедура проверки малого / большого диода

  • Обеспечьте катод и анод диода.
  • Для прямого смещения держите красный зонд на аноде, а черный — на катоде.
  • Он должен выдавать значение напряжения (в зависимости от номинала). Это показывает, что диод ведет себя как короткое замыкание, что он также должен делать. Запиши это.
  • Поменяйте местами подключение и снова проверьте значение. Если он показывает «OL», то диод в хорошем состоянии, в противном случае его необходимо заменить, т. Е. Он плохой.

Давайте теперь научимся проверять диод с помощью аналогового измерителя.

Как проверить диод с помощью аналогового мультиметра

Здесь следует отметить один важный момент: ноль на шкале напряжения и сопротивления в аналоговом измерителе перевернут. Следовательно, нам нужно перевернуть щупы измерителя. Как и для проверки диода в прямом смещении, нам нужно подключить красный зонд к катоду, а черный — к аноду. Точно так же мы можем перевернуть щупы, чтобы получить обратное смещение. Это основное отличие при тестировании диода с помощью цифрового и аналогового измерителя.

Тестирование аналоговыми счетчиками

Производитель дает аналоговый диапазон измерителя, чтобы его можно было использовать, или можно использовать уже проверенные хорошие значения диодов в качестве справочных. Еще один важный момент, который следует отметить, это то, что некоторые счетчики используют сопротивление, а некоторые — напряжение перехода. Так что вы должны следить за этим, прежде чем начинать тест.

Нравится:

Нравится Загрузка …

Вам также может понравиться

Тестирование стабилитрона — простой метод тестирования

Тестирование стабилитрона The Accurate Way

Методика проверки стабилитрона полностью отличается от тестового диода.Вам нужен аналог метр, чтобы сделать работу. Перед тем, как начать тестировать стабилитрон, вы сначала нужно понять маркировку или номер детали, а затем искать номинальное напряжение. Обратитесь к моей статье о том, как читать Данные стабилитрона. Как только вы узнаете напряжение стабилитрона от вашего любимая книга данных, такая как Philip ECG Semiconductor Master руководство по замене, то его легко проверить с помощью глюкометра, чтобы увидеть если он протекает, обрыв или короткое замыкание.

Иногда нормальный сигнал стеклянный диод, который вы можете подумать, это стабилитрон, поэтому вы не будете получить точное измерение.Если вы подтвердили, что диод у вас Если вы хотите измерить стабилитрон, вы можете приступить к использованию моего метод, чтобы точно проверить это. Насколько вам известно, стабилитрон от 2,4 до 12 вольт должны иметь два показания при испытании с аналоговый измеритель установлен на диапазон 10 кОм. Но эти показания не короткое чтение!

А 1Н4733А стабилитрон

Позвольте мне направить вас, когда вы поместите щупы измерителя на стабилитрон 2.4 вольта с помощью умножить на диапазон 10 кОм, в одном направлении будет отображаться полная шкала (красный датчик к катоду и черный датчик к аноду), что означает указатель будет указывать на шкалу 0 Ом, если теперь вы подключите зонд в другую сторону (черный зонд к катоду и красный зонд к аноду) указатель будет указывать примерно на 2-4 ом!

Если оба способа проверки вызывают указатель указывает на 0 Ом, тогда стабилитрон считается закорочен.Когда меряешь стабилитрон на 5,1 вольт, как обычно путь будет указывать на ноль Ом, в то время как другой путь покажет более высокое сопротивление которое находится в пределах от 20 до 60 Ом. Эти характеристика исправного стабилитрона и не думайте, что измеритель показывает два показания, что означает, что стабилитрон выключен. неисправен.

Если вы получите два показания, когда меряешь нормальный диод, значит диод закорочен. Как и я Упомянутое выше, проверка стабилитрона полностью отличается от проверяю нормальный диод.

При подключении зонда и измерьте напряжение стабилитрона 13 В и выше, он должен показать только одно показание с использованием диапазона 10 кОм. Это значит, когда вы прикасаетесь красным щупом к катоду и черным щупом к анод. При переворачивании датчика показания не должны отображаться. Если результат показывает два показания, тогда стабилитрон подтверждается короткое замыкание или возникла утечка. Начать измерять стабилитрон диод вынут из стойки компонента или соскребен электронная плата, сравните исправный стабилитрон и закороченный и посмотреть на себя.

Запишите это в свою книгу какие результаты вы получите при сравнении и проверке хороший и плохой стабилитрон. У вас не займет много времени ознакомиться с тестированием стабилитрона точно. Еще один совет, заменяйте только стабилитрон той же или большей мощности. Если возможно использовать точное напряжение и ватт, если вы хотите оборудование которые вы ремонтируете, чтобы прослужить дольше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *