Как проверить позистор мультиметром – Как проверить позистор мультиметром

Содержание

маркировка деталей, этапы тестирования, прозвонка позистора

Любая электрическая цепь имеет в себе сопротивление. Поэтому в радиотехнике самым часто встречающимся элементом является резистор. При ремонте электрических приборов важно уметь тестировать такие детали. Необходимо знать, как проверить резистор мультиметром, не выпаивая элемент. Деталь чаще всего выходит из строя, если токопроводящий слой выгорает или нарушается его связь с хомутиком.

Порядок тестирования

Резисторы могут иметь различный вид, но у стандартных моделей присутствует линейная ВАХ. Проверка устройства состоит из трех этапов:

  1. Осмотр внешнего состояния прибора.
  2. Тестирование детали на обрыв.
  3. Сравнение показателей с номиналом.

Два первых пункта не составляют труда при выполнении, а с последним этапом проверки резистора мультиметром могут возникнуть трудности. Проблема заключается в определении номинального значения сопротивления. С принципиальной схемой узнать показатель несложно. Но многие современные приборы не снабжены сопутствующей документацией с техническими характеристиками. В этом случае можно определить значение номинала при помощи маркировки.

Мультиметры могут быть цифровыми и стрелочными. Последние работают без дополнительного питания, наподобие микроамперметра. Делители напряжения переключаются вместе с шунтами в определенные режимы для измерения. Цифровые модели отображают на дисплее различие между полученной величиной и эталоном. Этот тип приборов нуждается в источнике питания, который обеспечивает точность замеров, снижающуюся при разрядке батареи. Эти устройства применяются для определения состояния радиодеталей.

Типы маркировок

На советских компонентах значение номинала указывалось прямо на корпусе. В этом случае расшифровка была не нужна. Но при нарушении целостности детали, обгорании краски прочитать текст было проблематично или вовсе невозможно. Уточнить номинал можно было по принципиальной схеме, входящей в комплектацию любого бытового прибора.

Современные компоненты имеют цветовое обозначение, включающее 3−6 колец различных оттенков. Такое решение позволяет определить номинальный показатель, даже если элемент значительно поврежден. Этот момент особенно актуален при частом отсутствии принципиальной схемы у прибора.

ГОСТ 175–72 устанавливает четкие нормативы по цифровому и цветовому обозначению компонентов. Полосы располагаются рядом с одним из выводов и читаются слева направо. Цвета могут быть следующими:

  • серебристый;
  • золотой;
  • черный;
  • коричневый;
  • красный;
  • оранжевый;
  • желтый;
  • зеленый;
  • синий;
  • фиолетовый;
  • серый;
  • белый.

Допуск определяет отклонение значения серии от номинала, при котором компонент может работать. Если расчет схемы был произведен правильно, то эта величина должна учитываться, в другом случае наладка осуществляется после сборки детали.

Многие китайские производители, стараясь существенно снизить цену продукции, не устанавливают значение допуска. В результате элемент продолжает работу, пока его запас прочности не превысит предел. Если разница между номиналом и полученным показателем превышает допуск, то элемент требует обязательной замены.

Резисторы с наименьшим допустимым значением до 10% имеют 5 колец. Первые три обозначают коэффициент сопротивления, измеряемый в Ом. Четвертое соответствует множителю, а пятое — величине допуска. Приборы с отклонением больше 10% маркированы 4 полосами. Разметка аналогична предыдущему варианту, но отсутствует показатель допуска.

При максимальном отклонении в 20% резисторы отмечаются 3 кольцами. На первые два отводится значение сопротивления, а третье выступает множителем. Редко встречаются элементы с 6 полосами. Последним кольцом в них отмечается коэффициент изменения при температурных колебаниях. Он определяет сопротивление при нагреве корпуса резистора. Расшифровку цветовой маркировки удобно проводить при помощи онлайн-калькуляторов, которые подсчитывают номинал после введения необходимых данных.

Элементы для навесной установки, такие как диод, smd резистор или конденсатор, имеют малый размер, и нанести на них всю нужную информацию просто невозможно. Поэтому для их маркировки применяются зашифрованные цифровые обозначения. Обычно на корпусе указываются три цифры, две из них определяют значение, а множителем выступает последняя.

Наружная диагностика

Прежде чем проверить позистор мультиметром, его нужно осмотреть и проверить визуально на исправность. Корпус должен быть цельным, без трещин и сколов на поверхности, а выводы — иметь надежное крепление.

Если резистор неисправен, то его корпус будет обгоревшим полностью или кольцевидными очагами. Потемневшая поверхность не всегда является признаком поломки, она свидетельствует о нагреве при эпизодическом превышении допустимой мощности. Внутренний обрыв невозможно распознать по внешнему виду элемента.

Проверка на номинал и обрыв

На этом этапе тестирования проверяется соответствие полученного значения допуску и номиналу. Показатель не должен выходить за предел, заданный переключателем на приборе. Диапазон устанавливается со значением, немного превышающим номинал.

Проверить сопротивление резистора мультиметром можно следующим образом:

  1. К гнездам с маркировкой V Ω mA и COM подключаются щупы (причем к первому подсоединяется положительный красный, а ко второму — отрицательный черный).
  2. Проводится проверка работоспособности проводов. Для этого они замыкаются между собой. Тестер должен выдать значение равное или близкое к нулю. Малые величины определяются путем вычета из показаний устройства. Отличное от нуля значение часто получается при недостаточном заряде батареи.
  3. Щупы подносятся к выводам проверяемой детали. Если на приборе — бесконечный показатель сопротивления (на дисплее отображается «1»), то присутствует обрыв в резисторе.
  4. Полученные данные сопоставляются с номинальным значением (допуск также нужно учитывать). Совпадение данных говорит об исправности детали. Показания также могут незначительно отличаться из-за погрешности самого устройства, особенно при замере без выпаивания.

В процессе тестирования не следует касаться щупов руками (это частая ошибка новичков). У тела человека также имеется сопротивление и при замерах показателей резистора в килоомах результаты проверки могут исказиться.

Работа с переменным резистором

Процесс тестирования переменного элемента во многом похож на работу со стандартными моделями. Он включает следующие этапы:

  1. Проводится замер путем подключения щупов на крайние ножки. Полученный показатель сравнивается с номиналом.
  2. Один щуп подсоединяется к центральной ножке, а другой — к оставшейся свободной.
  3. Подстроечная ручка поворачивается. Показания устройства должны находиться в пределах зоны от 0 до полученной на первом этапе величины.

Можно также проводить измерения без установки предельного значения. Режим омметра позволяет задавать любые значения диапазона. Такая настройка не повредит тестер. При отображении на дисплее «1» (бесконечности) нужно повышать порог до появления нужного результата.

Обследование детали без выпаивания

Тестирование резистора на плате возможно только для низкоомных компонентов. Если их номинал превышает 80−100 Ом, то на значение могут исказить другие элементы. Чтобы отключить деталь от остальных, необходимо освободить одну ножку. Такая проверка проводится в редких случаях. Перед работой нужно проверить присутствие на схеме шунтирующих цепей. На итоговые показатели особенно сильно воздействуют полупроводниковые элементы.

Для тестирования часто используется метод прозвонки. Обозначение переключателя этого режима — диод с сигналом. Проверяемые детали должны иметь границу срабатывания не больше 50−70 Ом, иначе получится слабый сигнал, который будет сложно различить. При сопротивлении ниже предельной границы устройство будет издавать писк через динамик. Чтобы прозвонить резистор мультиметром, нужно выбрать точки схемы щупами и создать между ними напряжение. Для корректной работы прибору требуется достаточное питание.

Работать с мультиметром довольно просто, если разобраться в правилах установки предельных значений и измерения сопротивления. Нужно также уметь использовать переключатели тестера и щупы. Процесс значительно облегчается, если есть в наличии принципиальная схема, входящая в комплектацию к бытовым приборам.

220v.guru

Как проверить исправность резистора и термистора мультиметром

Резистор — это самый простой и одновременно самый распространённый элемент электронных схем. Поэтому если вам нужно будет произвести ремонт любого электроприбора или электронной платы, то вы наверняка столкнётесь с этим элементом. Кроме обычных, есть ещё термосопротивления. Давайте разберёмся, что это за электронные компоненты, и как их проверить мультиметром.

Разновидности резисторов

Резистор — электронный компонент, имеющий постоянное или переменное значение сопротивления. Внешне резистор представляет собой цилиндр, изготовленный из особого материала, который и определяет его сопротивление. Некоторые резисторы изготавливаются методом намотки тончайшей проволоки на диэлектрическое основание. На торцах цилиндра есть два вывода, которые служат для припаивания радиодетали к плате. Резисторы можно разделить на две группы:

  1. Постоянные — величина сопротивления задана при производстве и её нельзя изменить.
  2. Переменные, или подстроечные — максимальная величина сопротивления неизменна, но у них есть третий вывод. Этот вывод подключается к механическому узлу, который передвигает ползунок по поверхности резистора. Двигая этот ползунок, можно изменять сопротивление между неподвижным и подвижным контактами от нуля до его максимального значения.

Проверка электронным мультиметром

Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов. В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы.

Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.

Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.

Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.

Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:

  1. На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
  2. На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
  3. Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.

Постоянный резистор

Проверку выполняем в такой последовательности:

  • зачищаем выводы резистора от окислов и загрязнений;
  • выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
  • кладём элемент на диэлектрическую поверхность;
  • прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.

На экране мы можем увидеть три варианта показаний:

  1. Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
  2. Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
  3. Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.

Тестирование подстроечного резистора

У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:

  1. Перемещаем ручку резистора в среднее положение.
  2. Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
  3. Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
  4. Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
  5. Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.

Проверка элемента на плате

Иногда демонтаж элементов с платы сопряжён с рядом трудностей, поэтому будет полезно знать, как проверить резистор мультиметром, не выпаивая его. Это уже более сложная задача. Чтобы правильно выполнить проверку, необходимо изучить схему, в которой он установлен.

Дело в том, что различные компоненты и способы их подключения, относительно проверяемого резистора, влияют на показания тестера по-разному. Например, параллельно подключённый диод покажет нулевое сопротивление резистора, а параллельно подключённые сопротивления или катушки индуктивности сильно исказят показание прибора. Так как в мультиметре для измерений используется постоянное напряжение, то конденсатор на схеме можно приравнять к разрыву цепи.

В сложной схеме учесть все эти влияния трудно, поэтому измерить точную величину сопротивления не получится, но если вы подробно изучите схему, то сможете проверить резистор на наличие обрыва или короткого замыкания. Если у вас возникли сомнения в исправности элемента, для полной проверки придётся выпаять хотя бы один вывод.

У многих мультиметров есть режим прозвонки. В этом режиме прибор позволяет проверять электрические цепи с сопротивлением не больше сотни ом, при превышении этой величины цепь прозваниваться не будет и звукового сигнала не последует. Применение этого режима для проверки резисторов нецелесообразно, так как прозвонка показывает только наличие или отсутствие контакта между щупами, но никак не характеризует состояние радиодетали.

Типы терморезисторов и их тестирование

Отдельно нужно поговорить о том, что такое позистор и термистор, и как их проверить мультиметром.

Терморезистор — это радиодеталь, изготовленная на основе полупроводниковых материалов. Сопротивление этих элементов непостоянное и зависит от температуры. Терморезисторы разделяют на две группы:

  1. Термистор — элемент с отрицательным температурным коэффициентом сопротивления. Это значит, что при нагреве его сопротивление уменьшается.
  2. Позистор — имеет положительный температурный коэффициент сопротивления, то есть при нагреве его сопротивление увеличивается.

Как и в случае с обычными резисторами, перед началом проверки необходимо выяснить номинальное значение проверяемого образца. Сделать это можно при помощи справочных данных на основании маркировки терморезистора.

Но есть одна особенность, так как сопротивление зависит от температуры, то в справочниках может быть дана целая таблица температур и соответствующие им сопротивления. В этом случае нужно ориентироваться на величину сопротивления при температуре близкой к температуре окружающей среды.

Если в данных указана только одна величина сопротивления, то, как правило, она соответствует температуре в 25 градусов.

На практике сложно точно поддерживать определённую температуру, поэтому сопротивление исправного терморезистора будет несколько отличаться от номинальных данных, и это нужно учитывать при измерении.

Давайте пошагово разберём, как проверить позистор мультиметром, тогда и проверка термистора не вызовет у вас затруднений. Кроме тестера, потребуется источник тепла, например, паяльник или фен. Исправный позистор должен пройти все три поверки:

  1. Измеряем величину сопротивления позистора в ненагретом состоянии. Если сопротивление соответствует номинальному, то можно продолжать проверку. В противном случае элемент неисправен.
  2. На этом шаге проверки нам потребуется нагревать элемент, поэтому заранее предусмотрите, как вы будете производить измерения, например, установите зажимы на щупы. После того как вы подключили тестер к позистору, поднесите к нему нагретый паяльник. По мере нагрева величина сопротивления должна увеличиваться, если показания прибора не изменяются, радиодеталь испорчена.
  3. Прекратите нагревать позистор и дождитесь, когда он остынет до комнатной температуры. Измерьте его сопротивление, оно должно вернуться к исходной величине, измеренной в первом пункте.

Проверка термистора выполняется так же, как и проверка позистора, с тем лишь отличием, что во втором пункте при нагреве величина сопротивления должна уменьшаться.

Проверка SMD-элементов

Почти все современные электронные печатные платы, изготавливаются при помощи технологии монтажа на поверхность. Для такого монтажа изготавливают специальные элементы типа SMD (от английского Surface Mounted Device — прибор для монтажа на поверхность).

Эти элементы имеют миниатюрные размеры. Вместо выводов, они имеют контактные площадки, которыми радиодетали этого типа припаиваются к поверхности платы.

Если вам нужно будет проверить СМД-резисторы, то сделать это можно по методикам, описанным выше. При выпаивании этих элементов будьте предельно осторожны, чтобы не повредить и не перегреть радиодеталь, а в остальном эти элементы не отличаются от своих аналогов классического типа.

obinstrumentah.info

Как проверить резистор на работоспособность мультиметром не выпаивая

Резистор — это один из наиболее часто используемых элементов в современной электронике. Его название происходит от английского «resist», что означает сопротивление. С помощью резистора можно ограничить действие электрического тока и измерять его, разделять напряжение, задавать обратную связь в электрической цепи. Смело можно сказать, что без этого элемента не обходится ни одна электросхема, ни один прибор. Именно поэтому часто появляется необходимость в измерении сопротивления резистора мультиметром и проверке его работоспособности. В этом материале будет рассказано, как проверить плату на работоспособность мультиметром.

Что такое резистор

В русской научной литературе электрорезиторы часто называют просто «сопротивление». Из этого наименования сразу же становится понятно его предназначение — сопротивляться действию электрического тока. Резистор является пассивным электроэлементом, так как под его действием ток только уменьшается, в отличие от активных элементов, которые повышают его действие.

Обозначение элемента на электросхеме

Из закона Ома и второго закона Кирхгофа следует, что если ток протекает через резистор, то его напряжение падает. Величина его равна силе протекающего тока, умноженной на сопротивление резистора.

Важно! Условное обозначение резистора на схемах — это прямоугольник, так что это легко запомнить. В зависимости от вида резистора он изображается как прямоугольник с обозначением внутри.

Выводной электрорезистор

Резисторы подразделяют по методу монтажа. Они бывают:

  • Выводными, то есть монтируются сквозь микросхему с радиальными или аксиальными выводами-ножками. Этот вид использовался повсеместно несколько десятков лет назад и сейчас используется для простых устройств;
  • SMD, то есть электрорезисторы без выводов. Они имеют лишь незначительно выступающие ножки, поэтому они монтируются в саму плату. В современных приборах чаще всего используют именно их, так как при автоматической сборке платы конвейером это выгодно и быстро.

Микро SMD-резистор

Что такое мультиметр

Мультиметр — это прибор, который может производить замеры силы постоянного или переменного тока, напряжения и сопротивления. Он заменяет собой сразу три аналоговых или цифровых прибора: амперметр, вольтметр и омметр. Также он способен изменять основные показатели любой электрической сети, производить ее прозвон. Существует два вида мультиметров: цифровые и аналоговые. Первые представляют собой портативные устройства с дисплеем для отображения результатов. Большинство мультиметров на современном рынке — цифровые. Второй тип уже устарел и не пользуется былой популярностью. Он выглядит, как обычный измерительный прибор со шкалой делений и аналоговой стрелкой, показывающей значение измерений.

Современный цифровой мультиметр

Прозвон резистора

Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:

  1. Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
  2. Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
  3. Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.

При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.

Выполнение прозвонки электрорезистора

Полярность резистора

Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может. Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации. Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет. Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.

Маркировка номиналов

Номинальное сопротивление

Основной параметр любого резистора — это номинал сопротивления. Равномерностью этого сопротивления является единица измерения Ом. Номинальное значение любого приобретенного резистора маркируется на нем самом, то есть на его корпусе с помощью обозначений в виде полосочек различного цвета. Это было сделано в первую очередь для удобства конвейерного монтажа, где автоматы с машинным зрением с легкостью определяют элемент, который нужно использовать.

На некоторых резисторах указано номинальное сопротивление

Важно! Узнать номинал можно несколькими способами: с помощью специальных справочников и таблиц обозначений, а также любым измерительным прибором.

Таблицы представлены в любом справочнике по электронике и электротехнике, а также идут в комплекте с купленным набором резисторов. Второй способ определения более удобный и понятный, так как все, что нужно сделать — это измерить сопротивление собственноручно. Это поможет определить, насколько сопротивление отличается от номинального, и даст характеристику элемента.

Проверка сопротивляемости и исправности с помощью цифрового мультиметра

Проверка мультиметром

Для того чтобы проверить электрорезистор, следует действовать следующим образом:

  1. Взять требующий проверки радиоэлемент;
  2. Включить мультиметр и настроить его на измерение сопротивления;
  3. Задать шкалу измерения и ее границы;
  4. Любым способом подключить один щуп мультиметра к одной из сторон резистора, а второй — к оставшейся стороне;
  5. Зафиксировать измерения на экране или аналоговой шкале и закончить тестирование.

Внешний вид регулируемого потенциометра

Если значение равно нулю или сильно отличается от номинального, то элемент неисправен и подлежит утилизации, так как изменение значения может вывести из строя всю схему. Если значение в норме, то электрорезистор можно использоваться для создания электронных схем. При проверке значений, не выпаивая электрорезистор, следует учитывать влияние шунтирующих цепей.

Терморезистор СТ3-19 15кОм

Таким образом, был разобран вопрос: как проверить резистор мультиметром или тестером. На самом деле сложного ничего нет, так как данный радиоэлемент является одним из самых простых и распространенных среди всех и имеет всего два выхода-контакта без учета полярности. Именно поэтому проверить его сможет каждый, у кого есть мультиметр, тестер или омметр.

rusenergetics.ru

Как проверить терморезистор мультиметром

Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.

Определяем характеристики по маркировке

Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.

Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.

Позистор С831

Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит). Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение. Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).

Расшифровка основных характеристик

Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).

Рисунок 3. Таблица с основными характеристиками серии B598*1

Краткое описание:

  1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
  2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
  3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
  4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.

Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831

Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.

  1. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
  2. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Определение исправности по внешнему виду

В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.

Если внешний осмотр не дал результата, приступаем к тестированию.

Пошаговая инструкция проверки позистора мультиметром

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

  1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
  2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
  3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
  4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Резистор — это самый простой и одновременно самый распространённый элемент электронных схем. Поэтому если вам нужно будет произвести ремонт любого электроприбора или электронной платы, то вы наверняка столкнётесь с этим элементом. Кроме обычных, есть ещё термосопротивления. Давайте разберёмся, что это за электронные компоненты, и как их проверить мультиметром.

Разновидности резисторов

Резистор — электронный компонент, имеющий постоянное или переменное значение сопротивления. Внешне резистор представляет собой цилиндр, изготовленный из особого материала, который и определяет его сопротивление. Некоторые резисторы изготавливаются методом намотки тончайшей проволоки на диэлектрическое основание. На торцах цилиндра есть два вывода, которые служат для припаивания радиодетали к плате. Резисторы можно разделить на две группы:

  1. Постоянные — величина сопротивления задана при производстве и её нельзя изменить.
  2. Переменные, или подстроечные — максимальная величина сопротивления неизменна, но у них есть третий вывод. Этот вывод подключается к механическому узлу, который передвигает ползунок по поверхности резистора. Двигая этот ползунок, можно изменять сопротивление между неподвижным и подвижным контактами от нуля до его максимального значения.

Проверка электронным мультиметром

Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов. В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы.

Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.

Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.

Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.

Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:

  1. На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
  2. На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
  3. Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.

Постоянный резистор

Проверку выполняем в такой последовательности:

  • зачищаем выводы резистора от окислов и загрязнений;
  • выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
  • кладём элемент на диэлектрическую поверхность;
  • прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.

На экране мы можем увидеть три варианта показаний:

  1. Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
  2. Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
  3. Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.

Тестирование подстроечного резистора

У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:

  1. Перемещаем ручку резистора в среднее положение.
  2. Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
  3. Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
  4. Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
  5. Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.

Проверка элемента на плате

Иногда демонтаж элементов с платы сопряжён с рядом трудностей, поэтому будет полезно знать, как проверить резистор мультиметром, не выпаивая его. Это уже более сложная задача. Чтобы правильно выполнить проверку, необходимо изучить схему, в которой он установлен.

Дело в том, что различные компоненты и способы их подключения, относительно проверяемого резистора, влияют на показания тестера по-разному. Например, параллельно подключённый диод покажет нулевое сопротивление резистора, а параллельно подключённые сопротивления или катушки индуктивности сильно исказят показание прибора. Так как в мультиметре для измерений используется постоянное напряжение, то конденсатор на схеме можно приравнять к разрыву цепи.

В сложной схеме учесть все эти влияния трудно, поэтому измерить точную величину сопротивления не получится, но если вы подробно изучите схему, то сможете проверить резистор на наличие обрыва или короткого замыкания. Если у вас возникли сомнения в исправности элемента, для полной проверки придётся выпаять хотя бы один вывод.

У многих мультиметров есть режим прозвонки. В этом режиме прибор позволяет проверять электрические цепи с сопротивлением не больше сотни ом, при превышении этой величины цепь прозваниваться не будет и звукового сигнала не последует. Применение этого режима для проверки резисторов нецелесообразно, так как прозвонка показывает только наличие или отсутствие контакта между щупами, но никак не характеризует состояние радиодетали.

Типы терморезисторов и их тестирование

Отдельно нужно поговорить о том, что такое позистор и термистор, и как их проверить мультиметром.

Терморезистор — это радиодеталь, изготовленная на основе полупроводниковых материалов. Сопротивление этих элементов непостоянное и зависит от температуры. Терморезисторы разделяют на две группы:

  1. Термистор — элемент с отрицательным температурным коэффициентом сопротивления. Это значит, что при нагреве его сопротивление уменьшается.
  2. Позистор — имеет положительный температурный коэффициент сопротивления, то есть при нагреве его сопротивление увеличивается.

Как и в случае с обычными резисторами, перед началом проверки необходимо выяснить номинальное значение проверяемого образца. Сделать это можно при помощи справочных данных на основании маркировки терморезистора.

Но есть одна особенность, так как сопротивление зависит от температуры, то в справочниках может быть дана целая таблица температур и соответствующие им сопротивления. В этом случае нужно ориентироваться на величину сопротивления при температуре близкой к температуре окружающей среды.

Если в данных указана только одна величина сопротивления, то, как правило, она соответствует температуре в 25 градусов.

На практике сложно точно поддерживать определённую температуру, поэтому сопротивление исправного терморезистора будет несколько отличаться от номинальных данных, и это нужно учитывать при измерении.

Давайте пошагово разберём, как проверить позистор мультиметром, тогда и проверка термистора не вызовет у вас затруднений. Кроме тестера, потребуется источник тепла, например, паяльник или фен. Исправный позистор должен пройти все три поверки:

  1. Измеряем величину сопротивления позистора в ненагретом состоянии. Если сопротивление соответствует номинальному, то можно продолжать проверку. В противном случае элемент неисправен.
  2. На этом шаге проверки нам потребуется нагревать элемент, поэтому заранее предусмотрите, как вы будете производить измерения, например, установите зажимы на щупы. После того как вы подключили тестер к позистору, поднесите к нему нагретый паяльник. По мере нагрева величина сопротивления должна увеличиваться, если показания прибора не изменяются, радиодеталь испорчена.
  3. Прекратите нагревать позистор и дождитесь, когда он остынет до комнатной температуры. Измерьте его сопротивление, оно должно вернуться к исходной величине, измеренной в первом пункте.

Проверка термистора выполняется так же, как и проверка позистора, с тем лишь отличием, что во втором пункте при нагреве величина сопротивления должна уменьшаться.

Проверка SMD-элементов

Почти все современные электронные печатные платы, изготавливаются при помощи технологии монтажа на поверхность. Для такого монтажа изготавливают специальные элементы типа SMD (от английского Surface Mounted Device — прибор для монтажа на поверхность).

Эти элементы имеют миниатюрные размеры. Вместо выводов, они имеют контактные площадки, которыми радиодетали этого типа припаиваются к поверхности платы.

Если вам нужно будет проверить СМД-резисторы, то сделать это можно по методикам, описанным выше. При выпаивании этих элементов будьте предельно осторожны, чтобы не повредить и не перегреть радиодеталь, а в остальном эти элементы не отличаются от своих аналогов классического типа.

Дата: 12.09.2015 // 0 Комментариев

Терморезисторы делятся на два вида: позисторы и термисторы. Все они изменяют свое сопротивление в зависимости от их температуры. У позисторов сопротивление увеличивается в зависимости от температуры, а у термисторов, наоборот – уменьшается. Терморезисторы находят свое применение во многих узлах различной техники и аппаратуры, начиная от датчиков температуры, заканчивая ограничителями пусковых токов в энергосберегающих лампах, блоках питания или двигателях.

Как проверить термистор мультиметром?

Если есть подозрение, что термистор неисправен, а его визуальный осмотр не выявил различных почернений, сколов и т.п., тогда можно приступить к проверке термистора мультиметром.

Для проверки используем NTC термистор 10S050M, 5 Ом, 4 А, со старого блока питания компьютера.

Перед началом проверки, мультиметр переводим в режим измерения сопротивления.
Также необходимо выбрать диапазон измерений в зависимости от особенностей проверяемого термистора.

При комнатной температуре термистор покажет сопротивление указанное производителем, в данном случае оно составляет 5,1 Ом.

Следующим шагом станет нагревания термистора и отслеживание изменения его сопротивления.

Для нагрева используется старый советский паяльник на 90Вт, который нагревается очень медленно и даст возможность визуально отследить изменения сопротивления термистора (изменения сопротивления составляют от 4,2 Ом до 2,7 Ом).

В нашем случае подопытный термистор работает вполне исправно, его сопротивление уменьшается одновременно с нагревом паяльника.

При монтаже на платах необходимо учитывать особенность термисторов — они нагреваются, и их необходимо размещать подальше от термочувствительных радиодеталей.

«>

skoda-rapid.ru

назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить

Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов.  Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

  1. Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.
  2. Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

  1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
  2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 102С). 1 Кельвин = минус 272,15С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

<

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, Th2 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

SMD и встроенные терморезисторы

Существует также еще два вида терморезисторов, которым стоит уделить внимание:

  1. SMD — детали с особым типом монтажа (для внешнего крепления). Внешне они не сильно отличаются от конденсаторов SMD, изготовленных из керамики. Габариты соответствуют стандартному ряду — 1206, 0805, 0603 и т. д. По виду отличить такие изделия от терморезисторов SMD почти невозможно.
  2. Встроенные. Применяются в паяльных станциях (для контроля температуры жала), в том числе термовоздушного типа.

В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.

<

elektrikexpert.ru

Размагничивание кинескопа. Позистор

Размагничивание кинескопа. Позистор
Пятна на экране
Всем привет!
Довольно часто, в практике ремонта кинескопных телевизоров, встречается такая неисправность, как появление цветных пятен на экране или беспричинное, на первый взгляд, перегорание защитного предохранителя.
Цветные пятна, в основном, образовываются по углам кинескопа и появляются не одномоментно, а в течении определённого времени. Может показаться, что проявление такой неисправности говорит нам о выходе из строя кинескопа, но, спешу вас успокоить, кинескоп здесь не виноват и является вполне работоспособным. Такое «пятнистое» изображение свидетельствует о размагничивании или намагничивании экрана нашего телевизора.
Если телевизор долгое время не выключался из сети, а отключался с помощью пульта (находился в дежурном режиме), то может произойти намагничивание кинескопа. Дело в том, что в большинстве кинескопных телевизоров система размагничивания начинает работать при включении телевизора в сеть, а если аппарат постоянно находится включенным в сеть, то размагничивание при включении телевизора от пульта не происходит.
Принцип системы размагничивания таков: когда вы включаете кнопку «сеть» на телевизоре, напряжение начинает поступать на позистор, который, в свою очередь, питает петлю размагничивания кинескопа, расположенную на его бандаже, т.е. на задней части экрана. Когда телевизор размагничивается, то позистор ограничивает подачу питания на петлю. И так при каждом включении телевизора в сеть. А если ваш аппарат постоянно находится в дежурном режиме, т.е. включается и выключается только от пульта, то питание на позистор и блок питания подаётся непрерывно (это можно наблюдать глядя на светодиод на панели телевизора) и система размагничивания постоянно отключена. Именно поэтому и рекомендуется хотя бы раз в неделю отключать телевизор от сети 220 В.
«Позистор – это обыкновенный терморезистор, который в зависимости от температуры меняет сопротивление. В холодном состоянии сопротивление позистора очень мало (5 – 15 Ом), в нагретом более 10 кОм. Включается позистор непосредственно в цепь питания телевизора последовательно с петлёй размагничивания. При включении телевизора в сеть сопротивление позистора мало и через него протекает ток на петлю размагничивания. После нагрева, позистор даёт большее сопротивление, которое препятствует прохождению напряжения на петлю. По конструктивному исполнению позисторы могут отличаться, но все они взаимозаменяемы.»
Также эта неисправность может появиться, если сам позистор выходит из строя. Если вы несколько раз выключили и включили ваш телевизор из сети, а пятна не пропадают, то это указывает на выход из строя позистора, который следует заменить.
Ещё один вариант, при котором может быть виновен позистор, это когда сгорает сетевой предохранитель. При этом блок питания находится в исправном состоянии. В позисторе, в этом случае, при подаче на него напряжения происходит короткое замыкание и, соответственно, коротко замыкается вся подача напряжения на телевизор. В следствии этого и перегорает защитный предохранитель.
Замена позистора
Заменить позистор особого труда не представляет, как и особых знаний.
Нужно открутить заднюю крышку телевизора, выдвинуть плату, на которой расположены радиокомпоненты и найти вилку включения петли размагничивания. Как правило, непосредственно рядом с этой вилкой и расположен позистор. Вышедшую из строя деталь нужно выпаять и впаять на это место новую или заведомо исправную.
Вот, собственно, и всё!
Если возникли вопросы или есть какие-либо предложения и замечания, можете изложить их в комментариях.
А если вы поделитесь этой статьёй в соц.сетях, то, возможно, человек, который искал данную информацию, благодаря вам прочтёт статью и починит свой телевизор. Здорово, не правда ли?
Успехов вам!

viktorkorolev.ru

Как проверить резистор мультиметром на исправность, как прозвонить резистор?

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Переменный резистор

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


www.radioelementy.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о