Как проверить фазировку указателем напряжения – Проверка фазировки: зачем это нужно и что нужно знать?

Содержание

Проверка фазировки: зачем это нужно и что нужно знать?

Электрооборудование трехфазного тока (трансформаторы, генераторы, кабельные линии электропередач) подлежит обязательной фазировке, перед тем как оно впервые будет включено в сеть или же по окончании очередного ремонта, в результате которого могло произойти нарушение порядка чередования, следования фаз.
Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети. Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами.
У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз.
Во всех этих случаях единственным выходом считается выполнение фазировки. Как правило, эта технологическая операция состоит из 3-х основных перечисленных ниже этапов.
Проверка и сравнение порядка чередования фаз у электрической установки и сети.

Данная операция выполняется перед непосредственным включением на параллельную работу нескольких сетей, работающих независимо, нового генератора и генератора, прошедшего капитальный ремонт, при котором могла измениться схема присоединения обмоток статора к сети.
Лишь при получении положительных результатов, полученных при фазировке, генераторы или, скажем трансформаторы синхронизируются и включаются на параллельную работу.

Проверка одноимённости или расцветки фазных проводников, которые впоследствии надо будет соединить. Эта операция ставит перед собой цель проверить правильность соединения всех элементов установки между собой. Проще говоря, выверяется правильность подвода токоведущих жил к включающему аппарату.

Проверка совпадения по фазе одноимённых напряжений, то есть отсутствия между ними угла сдвига фаз. В электрических сетях во время фазировки линий электропередач и силовых трансформаторов, которые принадлежат одной электрической системе, достаточно выполнить 2 последние операции, поскольку у всех генераторов, работающих синхронно с сетью, порядок следования фаз одинаков.

perestroika.msk.ru

Проверка фазировки. Что нужно знать?

Любое электрическое оборудование, работающее на трёхфазном токе (трансформаторы, линии электропередач, синхронные компенсаторы и др.) подлежат проверке фазировки как перед вводом в эксплуатацию, так и после ремонта, в ходе которого может возникнуть нарушение следования и чередования фаз. Также контроль фазировки производится при проведении ППР оборудования. Обычно фазировка заключается в контроле напряжения на каждой из токоведущих жил электрооборудования на предмет совпадения с напряжением на соответствующих жилах электросети.

При контроле фазировки выполняют три разные операции. В первой операции контролируется очередность следования фаз на установке и линии передачи, при этом они должны совпадать. Во второй осуществляется проверка совпадения одноимённых напряжений — чтобы отсутствовал угловой сдвиг фаз между ними. В третьей операции проверки проводится сравнивание маркировки (обычно цветовой) фаз, которые предполагается соединить. Итогом всех этих действий должно стать правильно выполненное подключение между собой каждого элемента электрооборудования так, чтобы электроаппарат правильно функционировал.

Проведение фазировки допускается осуществлять бригадой, состоящей минимум из двух человек, один из которых должен иметь группу по электробезопасности не меньше 4-й, а другие — не меньше 3-й.

Предварительная фазировка может проводится на линиях, которые ещё не находятся под напряжением. В этом случае достаточно провести «прозвонку» посредством мегаометра. Непосредственно при подключении оборудования в силовые линии производится фазировка электрическими методами. Для проведения фазировки в электроустановках до 1000 В достаточно использовать поверенный вольтметр, либо двухполюсной указатель напряжения, работающий по принципу протекания активного тока, изготовленный на заводе. При проверки фазировки жил на электроустановках 6-10 кВ требуется пользоваться специальными указателями, изготовленными на заводе, например, УВНФ-10. Также применяется «прозвонка» посредством телефонных трубок (гарнитуров), что позволяет определить одноимённую жилу на разных концах линии.

Понравилась статья? Поделиться с друзьями:

pue8.ru

Проверка фазировки РУ и их присоединений

ООО «ЭнергоАльянс»

ЭЛЕКТРОЛАБОРАТОРИЯ

 

1. ВВОДНАЯ ЧАСТЬ


1.1.               Настоящий документ устанавливает методику выполнения фазировки РУ и их присоединений.1.2.    Область применения и использования.1.2.1.   Распределительные устройства, электрооборудование.

 

2. МЕТОДЫ ФАЗИРОВКИ

 

2.1.               Фазировка может быть предварительной, выполняемой в процессе монтажа и ремонта оборудования, и при вводе в работу, производимой непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

2.2.               Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов оборудования. Так, например, при ремонте поврежденного кабеля определяют, какие жилы кабеля, находившегося в эксплуатации, и ремонтной вставки должны соединяться между собой, чтобы фазы кабельной линии и сборных шин РУ совпали. Поэтому перед соединением жил проверяют их фазировку. Предварительная фазировка производится на оборудовании, не находящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегомметра или импульсного искателя.

2.3.               Независимо от того, проводилась или не проводилась предварительная фазировка оборудования в период его монтажа или ремонта, оно обязательно фазируется при вводе в работу, так как только в этом случае можно быть уверенным в согласованности фаз всех элементов электрической цепи. Фазировка при вводе в работу производится исключительно электрическими методами. Выбор метода зависит от вида фазируемого оборудования (генератор, трансформатор, линия) и класса напряжения, на котором оно должно включаться в работу.

2.4.               Различают прямые и косвенные методы фазировки оборудования при вводе в работу.

2.5.               Прямыми методами называют такие, при которых фазировка производится на вводах оборудования, находящегося непосредственно под рабочим напряжением; эти методы наглядны и их широко применяют в установках до 330 кВ.

2.6.               Косвенными называют такие методы, при которых фазировка производится не на рабочем напряжении установки, а на вторичном напряжении трансформаторов напряжения, присоединенных к фазируемым частям установки.

2.7.               Фазировка состоит из трех операций:

2.7.1 Первая состоит в проверке и сравнении порядка чередования фаз вводимой в работу электроустановки и сети.

2.7.2.            Вторая — в проверке совпадения по фазе одноименных напряжений (отсутствия между ними углового сдвига).

2.7.3.           Третья — в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить, с целью проверки правильности подсоединения токоведущих частей к коммутационному аппарату.

2.8.                  Для      проверки     совпадения     фаз прямым           методом вэлектроустановках до 1000 В применяются вольтметры переменного тока, подсоединяемые непосредственно к выводам электрического оборудования или к токоведущим частям коммутационных аппаратов.

2.9.                  Диапазон измерения прибора должен быть рассчитан на двойное фазное или двойное линейное напряжение установки в зависимости от метода фазировки и типа фазируемого оборудования.

2.10.              При    фазировке  оборудования   напряжением 6кВ и вышекосвенным методом, вольтметр подсоединяется к вторичным обмоткам измерительных трансформаторов напряжения, установленных стационарно. Использование переносных трансформаторов напряжения не допускается.

2.11.              Для      проверки     совпадения     фаз прямым           методом вэлектроустановках выше 1000 В применяются указатели напряжения. При этом к отключенному коммутационному аппарату с двух сторон подведены фазируемые напряжения. Щупами указателя прикасаются к токоведущим частям аппарата и контролируют свечение лампы указателя.

 

3. СРЕДСТВА ИЗМЕРЕНИЙ,ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, МАТЕРИАЛЫ

 

3.1.     Мультиметр;

3.2.     Мегаомметр Е6-24, Е6-31;

3.3.     Электролаборатория передвижная ЭТЛ-35К;

3.4.     Указатель высокого напряжения УВНФ.

 

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ


4.1.     Фазирование производит персонал, численностью не менее двух человек, один из которых имеет группу по электробезопасности IV, а второй не ниже III, при работах в электроустановках выше 1000 В.

4.2.     Условия безопасности при фазировке индикаторами напряжения. Прежде чем приступить к фазировке, необходимо убедиться в выполнении как общих требований техники безопасности по подготовке рабочего места, так и специальных требований по работе с измерительными штангами на оборудовании, находящемся под напряжением.

4.3.     Электрические аппараты, на выводах которых будет производиться фазировка, еще до подачи на них напряжения должны быть надежно заперты, должны быть также приняты меры, предотвращающие их включение.

4.4.      Индикаторы напряжения перед началом работы под напряжением должны быть подвергнуты тщательному наружному осмотру, при этом обращается внимание на то, чтобы лаковый покров трубок и изоляции соединительного провода не имели видимых повреждений и царапин. Срок годности индикатора проверяется по штампу периодических испытаний. Не допускается применять индикаторы, срок годности которых истек.

4.5.      При работах с индикатором напряжения обязательно применение диэлектрических перчаток. В ходе фазировки не рекомендуется приближать соединительный провод к заземленным частям. Располагать рабочие и изолирующие части индикатора следует так, чтобы не возникла опасность перекрытия по их поверхности между фазами или на землю.

4.6.    Фазировку индикатором напряжения нельзя производить во время дождя, снегопада, при тумане, так как изолирующие части его могут увлажниться, что приведет к их перекрытию.

 

5. ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ


5.1.             Фазировка трансформаторов, имеющих обмотки НН до 380В, без установки перемычки между зажимами.

5.1.1.      Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выведенной нулевой точкой, а также измерительные трансформаторы напряжения, имеющие вторичные обмотки с заземленной нейтралью.

5.1.2.      Фазировку производят с помощью вольтметра со стороны обмотки НН. Вольтметр должен быть рассчитан на двойное фазное напряжение, так как появление такого напряжения между зажимами фазируемых трансформаторов не исключено.

5.1.3.      Фазируемые трансформаторы включают по схеме, представленной на рис. 1. Нулевые точки вторичных обмоток при этом должны быть надежно заземлены или присоединены к общему нулевому проводу, что следует проверить перед началом фазировки. Объединение нулевых точек необходимо для создания между фазируемыми трансформаторами электрической связи, образующей замкнутый контур для прохождения тока через прибор.

5.1.4.      Прежде чем приступить к фазировке, проверяют симметричность напряжений трансформаторов. Для этого вольтметр поочередно подключают к зажимам al-bl, bl-cl, cl-al, а2-Ь2, Ь2-с2, с2-а2. Если и значения измеренных напряжений сильно отличаются друг от друга, проверяют положение переключателей ответвлений обоих трансформаторов.

5.1.5.      Переключением ответвлений уменьшают разницу напряжений. Фазировка допускается, если разность напряжений не превышает 10%.

 

Рис. 1. Схема фазировки двух трансформаторов, имеющих заземленные нулевые точки вторичных обмоток (штриховой линией показан путь прохождения тока через прибор при несовпадении фаз)

5.1.6.        После проведения перечисленных операций приступают к фазировке. Сущность ее заключается в отыскании выводов, между которыми разность напряжений практически близка к нулю.

5.1.7.    Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим проводом поочередно касаются трех выводов второго трансформатора (например, измеряют напряжения между выводами а12; a— b2; a— c2).

5.1.8.    Дальнейший ход фазировки зависит от полученных результатов. Если при одном измерении (допустим, между выводами а12) показание вольтметра было близким к нулю, то эти выводы замечают, а вольтметр присоединяют ко второму выводу (например, b1) первого трансформатора и измеряют напряжение между выводами b1-b2; b

1-c2. Если опять одно из показаний вольтметра (например, между выводами b1-b2) окажется близким к нулю, то фазировку считают законченной (рис. 2, а). Однако для подтверждения полученных результатов о совпадении фаз все же производят измерение между с12

5.1.9.    Выводы, между которыми не было разности напряжений, соединяют при включении трансформаторов на параллельную работу. У каждого полюса коммутационного аппарата такие выводы должны находиться непосредственно друг против друга

 


 


Рис. 2. Векторные диаграммы напряжений обмоток НН фазируемых

трансформаторов при совпадении фаз (а) и при сдвиге векторов на 180°,
например, при группах соединений ∆YH-11 и ∆/YH-5(б)


5.1.10.     Если после измерения (a1-a2; a1-b2; a1-c2; b1-a2; b1-b2; b1-c2 ни одно из показаний вольтметра не было близким к нулю, то это говорит о том, что фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо.

5.1.11.     Фазировку на этом прекращают. На основании измерений строят векторные диаграммы и по ним судят, можно ли включать трансформаторы параллельно и какие пересоединения надо для этого выполнить.

5.1.12.     Техника построения векторных диаграмм на основании результатов измерений линейных напряжений показана на рис. 2, б. Треугольник линейных напряжений первого трансформатора строят произвольно, а точки вершин второго треугольника находят путем засечек, радиусы которых численно равны напряжениям между зажимами a1-a2; b1-a2; а1-b2; b1-b2.5.2.    Фазировка кабельных и воздушных линий 6-110 кВ.

5.2.1.    При фазировке линий напряжением 6-10 кВ пользуются индикаторами, например, типа УВН-80, УВНФ и др. Фазировка выполняется в следующей последовательности.

5.2.2.      На выводы разъединителей или выключателя подают фазируемые напряжения (рис. 3). Проверяют исправность индикатора. Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 3, а), при этом неоновая лампа должна загореться.

5.2.3.      Затем щупами обеих трубок касаются одной токопроводящей части (рис. 3, б). Лампа индикатора при этом не должна гореть.

5.2.4.      Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 3, в.

5.2.5.      Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие неисправности предохранителя). Абсолютные значения напряжения между фазой и землей здесь не играют роли, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на незначительную разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят просто по свечению лампы индикатора.

Рис. 3. Последовательность операций при фазировке линий 10 кВ индикатором типа УВНФ: а — проверка исправности индикатора при встречном включении; б — то же при согласованном; в — проверка наличия напряжения на выводах; г — фазировка


 

5.2.6.       Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (рис. 3, г). В двух случаях касаний (С –А1 и C-B2) лампа будет ярко загораться, в третьем (C-C1) гореть не будет, что укажет на одноименность фаз.

5.2.7.       После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например, А-А1 и A-BОтсутствие свечения лампы индикатора в одном касании укажет на одноименность следующей пары выводов. Совпадение фаз третьей пары выводов В-В1 проверяют только в целях контроля — фазы должны совпасть.

5.2.8.       Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителей или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

5.3.       Фазировка воздушных и кабельных линий прямым методом на напряжении 35 и 110 кВ.

5.3.1.       Для этой цели используют индикатор типа УВНФ-35-110, конструкция которого аналогична индикатору УВНФ на 10 кВ. От последнего его отличает наличие в схеме полистирольных конденсаторов вместо резистора.

5.3.2.       Фазировка производится на отключенных разъединителях (или отделителях), выводы которых находятся под напряжением: с одной стороны от шин РУ, с другой от фазируемой линии.

5.3.3.       Сначала на всех фазах разъединителей проверяют наличие напряжения прикосновением щупов указателя к фазе и к заземленной конструкции, затем на крайних фазах разъединителей проверяют совпадение напряжений по фазе (рис. 4). На средней фазе проверку не производят.

5.3.4.       Если лампа индикатора не загорается при фазировке на крайних фазах, то фазировку считают законченной — фазы совпадают.5.3.5.     При свечении лампы индикатора на обеих крайних фазах или только на одной фазировку прекращают — фазы не совпадают.

 

 


Рис. 4. Подключение индикатора к выводам разъединителей при фазировке линий 35-110 кВ

 

6. КОСВЕННЫЕ МЕТОДЫ ФАЗИРОВКИ


6.1.    Фазировка трансформаторов и линий при двойной системе шин.

6.1.1.     Этим методом фазируют трансформаторы и линии всех классов напряжения. В РУ, где обе системы шин находятся в работе, для выполнения фазировки освобождают одну систему шин, т.е. выводят ее в резерв.

6.1.2.     При включенном шиносоединительном выключателе вольтметром проверяют совпадение фаз вторичных напряжений трансформаторов напряжений рабочей и резервной систем шин.

6.1.3.    Затем отключают шиносоединительный выключатель и снимают с его привода оперативный ток. На резервную систему шин включают цепь, фазировку которой следует произвести (рис. 5).

6.1.4.     По фазируемой цепи с противоположного конца подают напряжение и производят фазировку на выводах вторичных цепей трансформаторов напряжения рабочей и резервной систем шин. Для этого вольтметром производят шесть измерений в такой последовательности: a1-a2; a1-b2; а1— с2; b12; b1-b2; b1-c2. При совпадении фаз a1 и а2, b1 и b2, с1 и с2 (нулевые показания вольтметра) фазировку заканчивают и включением шиносоединительного выключателя, защиты на котором должны находиться в положении «Отключение», сфазированную цепь включают на параллельную работу.

6.1.5.     Если при измерении напряжения между одноименными выводами будут получены не нулевые, а иные результаты, то измерения прекращают, фазируемую цепь отключают и производят пересоединение токопроводящих частей, добиваясь совпадения фаз.

6.1.6.     После этого фазировку производят заново.

6.2.    Фазировка трехобмоточных трансформаторов.

6.2.1.     Фазировку выполняют в два приема: со стороны обмотки НН и состороны СН.

6.2.2.      Сначала трансформатор включают на резервную систему шин НН и подают на него напряжение со стороны ВН. Фазировку выполняют на зажимах трансформаторов напряжения, принадлежащих шинам НН. При совпадении фаз трансформатор отключают со стороны НН, включают на резервную систему шин СН и выполняют фазировку на этом напряжении. После получения положительных результатов в обоих случаях фазировки трансформатор считают сфазированным и его включают в работу.

6.2.3.      при фазировке электрических цепей косвенным методом очень важно, чтобы предварительно были правильно сфазированы шинные трансформаторы напряжения.

 


 


Рис. 5. Схема фазировки косвенным методом на выводах вторичных обмоток
шинных трансформаторов напряжения

 

6.2.4.              При фазировке шинных трансформаторов напряжения следует считаться со схемой заземления вторичных обмоток трансформаторов напряжения, так как заземленной может быть как нейтраль, так и одна фаза.

6.2.5.           В первом случае для фазировки возможно применение вольтметра со шкалой на двойное фазное напряжение, во втором двойное линейное. Кроме того, фазировку трансформаторов напряжения, у которых заземлена фаза вторичных обмоток (например, фаза b) часто выполняют при помощи фазоуказателя. Это считается допустимым, так как фазы В фазируемых напряжений жестко соединены и требуется установить лишь совпадение напряжений одноименных фаз а, а также фаз с. Если они не совпадают, диск фазоуказателя при подаче на его выводы напряжения от первого трансформатора напряжения будет вращаться в одном направлении, а при подаче напряжения от второго трансформатора напряжения — в другом.

6.2.6.      Ни в каких других случаях фазировки трехфазных цепей пользоваться только фазоуказателем нельзя, так как при одном и том же направлении вращения диска фазоуказателя между одноименными фазами напряжений может быть сдвиг по углу даже при одном и том же порядке следования фаз.

6.2.7.      Трансформаторы напряжения одного класса напряжения следует фазировать при питании от одного источника. Например, если необходимо проверить совпадение фаз двух шинных трансформаторов напряжения, включенных со стороны ВН на разные системы шин (или секции), то для этого шины соединяют между собой включением шиносоединительного (или секционного) выключателя и затем производят фазировку этих трансформаторов напряжения со стороны их вторичных обмоток.

 

7. НЕСОВПАДЕНИЕ ПОРЯДКА ЧЕРЕДОВАНИЯ И ОБОЗНАЧЕНИЯ ФАЗ ЭЛЕКТРОУСТАНОВОК ПРИ ИХ ФАЗИРОВКЕ


7.1.      В начале, что фазировкой устанавливают совпадение: порядков следования фаз фазируемых между собой электроустановок, векторов одноименных напряжений по фазе (отсутствие между ними сдвига по углу), порядков чередования фаз на выводах коммутационного аппарата, включением которого установка должна включаться в работу, обозначений фаз (их расцветка).

7.2.      Выполнение перечисленных условий является обязательным при включении электроустановок в работу.

7.3.      Для того чтобы порядки следования фаз электроустановок совпали, например обратный порядок следования фаз одной электроустановки по отношению к другой стал прямым, на линии электропередачи изменяют порядок чередования фаз. Практически это осуществляется перемещением на линии проводов фаз на одной опоре, т. е. изменением их чередования в пространстве.

7.4.      Таким образом, изменением порядка чередования фаз на линии изменяется порядок следования фаз векторов напряжений одной электроустановки относительно другой, хотя абсолютные порядки следования фаз векторов напряжений электроустановок остаются прежними (прямым и обратным). В этом проявляется взаимозависимость понятий порядка следования и чередования фаз.

 

 


Рис. 6. Изменение порядка чередования фаз на линии при включении на параллельную работу двух электроустановок, имеющих прямой и обратный порядок следования фаз

 

7.5. На рис. 6 показана эта взаимозависимость и приведена совмещенная векторная диаграмма напряжений обоих порядков следования фаз. Из диаграммы видно, что векторы напряжения UA1 и UA2 совпадают по фазе и что никаких перемещений провода фазы А производить не требуется, а провода фаз В и С необходимо поменять местами.

7.6.       После перемещения проводов на линии электроустановки можно фазировать и синхронизировать на параллельную работу. Обозначения фаз и их расцветка в каждом сечении линии (штрихпунктирная линия /-/ на рис. 6) и на зажимах коммутационного аппарата не будут совпадать и изменить их никак нельзя. Об этих особенностях линии, соединяющей электроустановки, должен знать обслуживающий их персонал, чтобы избежать ошибок при эксплуатации и ремонте.

7.7.       Аналогичным образом поступают и при фазировке электроустановок, работающих со смещением векторов одноименных напряжений на 120 и 240°. Необходимое изменение порядка чередования фаз на линии устанавливают при этом путем построения и совмещения векторных диаграмм напряжений обеих фазируемых электроустановок

 

8. ОБРАБОТКА И КОНТРОЛЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

 

8.1.       Руководитель бригады при производстве фазировки должен проверять точность считывания с индикаторов прибора оператором.

 

9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ФАЗИРОВКИ


9.1.       Оформление протокола фазировки осуществляет один из членов бригадыпо указанию руководителя, который проверяет полноту и точность оформления результатов измерений (протокола испытаний).

9.2.       Проверив оформление результатов фазировки руководитель бригады измерений разрешает операторам, проводившим измерения, подписать протокол (и программу испытаний).

9.3.       Руководитель бригады подписывает протокол и заверяет подписи печатью ЭТЛ и регистрирует эти документы установленным порядком.

 

Электролаборатория Краснодар. Электролаборатория Краснодарский край

el-lab-23.ru

что это и как выполнить проверку?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую.  В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана  разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит  U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A  к U­B, а за ним к  C. Это означает, что фазы чередуются в порядке A, B, C.  Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность  в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности  A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности  C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A,    C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает  один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута.  Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео



www.asutpp.ru

Фазоуказатель своими руками: как проверить фазировку

Хороший, качественный измерительный инструмент под рукой — эталон быстрой работы. Конечно, также необходимо иметь с собой инструменты, с помощью которого можно производить ремонт, но определение проблемы — это уже 80 % её решений. В статье описан последовательный монтаж указателя фазы своими руками. Потребуется только точно следовать инструкциям, иметь необходимые материалы и запастись толикой терпения.

Что такое фазоуказатель

Немного теории: указатель фазы — это измерительный прибор, показывающий чередование фаз трёхфазного напряжения и тока. Следует сразу развеять надежды молодых электриков и развеять миф, что с помощью фазоуказателя можно определить где именно какая фаза находится. Аксиома: данный прибор показывает только чередование фаз.

Разновидности фазоуказателей:

  • Электромеханические приборы для определения угла фазировки. Массивные устройства, в состав которых входят асинхронные двигатели и индикаторные диски. Фазометр подобного типа также позволяет определить отсутствие одной фазы, но не указывает какой именно.
  • На неоновых лампах. Здесь уже не используются громоздкие асинхронные двигатели, так как работа устройства основана на батареях или отдельных конденсаторах. Основные индикаторы в таких приборах — неоновые лампы.
  • Электронный. Самый точный и одновременно самый дорогой прибор, принципом работы которого основан на сравнении синусоид на линии.

Существует большое количество таких приборов, выпускаемых различными производителями. Наиболее распространённые и чаще всего применяемые в работе модели: ФУ-2, ЭИ5001, VC-805, и конечно надёжный, проверенный временем И-517, который даже входил в ЗИП многих армейских дизельных электростанций. Но сейчас можно найти на рынке и вполне солидные и надёжные указатель фазы от китайских представителей.

Также существуют и более дорогие современные фазоуказатели от известных мировых производителей электронной техники, таких как Eltes или Mastech.

Современные фазоуказатели чаще сочетают в себе ещё и функцию индикатора напряжения, поэтому являются многофункциональными.

Когда действительно необходимо фазоуказатель

Определители угла опережения фаз в большом количестве занимают полки электротехнических магазинов, как отечественные, так и зарубежные модели. Но как определить тот самый угол опережения и зачем он вообще нужен, знают немногие электрики.

Хороший, качественный фазоуказатель необходим при поиске чередования фаз для того, чтобы обеспечить вращении электродвигателя в правильную сторону. Например, при включении водяного насоса в скважине, который может как транспортировать её наверх, так и бесполезно вращать лопасти крыльчатки, закреплённые на электродвигателе, и потреблять при этом лишнюю электроэнергию.

Ещё один хороший пример, которым определяется важность фазоуказателя как прибора: подключение индукционного счётчика. Если перепутать фазы, то после монтажа счётчик продолжит вращать диск даже при отключённой нагрузке. При такой работе прибора пользователя ждут дополнительные расходы, которые можно исключить, сделав качественный фазоуказатель своими руками.

Достаточно двух неправильно подключённых фаз, чтобы наблюдать такой эффект, а определение угла чередования фаз возможно только с помощью фазоуказателя. Без данного прибора правильно подключить электродвигатель невозможно, разве что методом «тыка», что не очень хорошо — можно спалить изделие.

Последовательность изготовления простого фазоуказателя

Внимание! Самостоятельное изготовление схем здесь и далее крайне опасно для жизни, так как может привести к поражению высоким напряжением, поэтому такое изготовление может быть выполнено только людьми, имеющими специальное образование и допуски!

Существует схема простого указателя фазы, с которым можно работать в трёхфазной промышленной сети, не боясь поражения электрическим током или повреждения прибора. Схема представлена ниже:

Для работы потребуются следующие элементы:

  • 3 соединительные клеммы, выполненные по типу «крокодилы».
  • 2 резистора сопротивлением 10 кОм и 18 кОм.
  • Диод типа КД105В. Допускается замена элемента на диод из серии КД209.
  • Тиристор типа Т112-25-10 (25А 1000В). Допускается замена элемента на VS-25TTS12-M3 (25А 1200В).
  • Лампа накаливания, напряжением 26 В и силой тока 0.12 А.
  • Небольшой отрезок провода сечением 1 мм² для внутреннего монтажа схемы.
  • 3 отрезка провода сечением 1.5 мм² такой длины, чтобы хватило для комфортного измерения фаз своими руками.
  • Пластиковый корпус.

Последовательность монтажа электрической цепи фазоуказателя своими руками:

  1. Выполнить соединение элементов диода, тиристора, двух резисторов и лампы накаливания с помощью пайки согласно приведённой выше схеме.
  2. Закрепить спаянные детали в пластиковом корпусе. Можно использовать эпоксидный клей, но только не на самих элементах, которые при работе могут нагреваться.
  3. Тонким сверлом просверлить в корпусе 3 отверстия и запустить в них 3 одинаковых отрезка провода сечением 1.5 мм² — это будут измерительные щупы. Закрепить провода с помощью эпоксидки — так как проводники в изоляции, то чрезмерный нагрев здесь не страшен.
  4. На концах измерительных щупов закрепить крокодилы. Для большей надёжности их можно пропаять.
  5. В верхней крышке пластикового корпуса просверлить или вырезать отверстие под патрон для сигнальной лампы. Патрон надёжно закрепить с внутренней стороны корпуса с помощью эпоксидного клея.
  6. Закрепить верхнюю крышку корпуса четырьмя небольшими саморезами.
  7. Проверка прибора на линии, в которой фазы расположены заведомо правильно.

Данный фазоуказатель имеет существенное преимущество в сравнении с дорогими промышленными моделями — простоту. Стоимость всех элементов (с учётом расходных материалов), необходимых для сборки, очень низкая и по карману не ударит. Собрать и спаять такую схему сможет любой электрик-новичок, даже впервые взявший в руки паяльник.

Принцип работы приборы очень прост: сфазированные линии включат лампу на корпусе прибора. Правильное чередование — лампа светится ярко, неправильное — очень тускло или не светится вообще. Корпус прибора можно выбрать самый простой, но только из изоляционного пластика или любого другого материала, не пропускающего электрический ток.

Более сложный фазоуказатель своими руками

Для электриков, желающих использовать более сложные приборы в трёхфазной цепи, существует ещё одна схема:

Как видно из представленной схемы, здесь потребуется большее количество элементов, да и сборка посложнее. Но при правильном монтаже, на выходе обеспечен качественный и надёжный фазоуказатель, к тому же полностью сделанный своими руками.

Необходимые для работы элементы:

  • Светодиод HB5d-448ABC-A — с зелёным светом. Допускается замена светодиодом типа АЛ307.
  • Светодиод HB5d-434FY-C — с жёлтым светом. Допускается замена светодиодом типа АЛ307.
  • 2 диода КД209А. Допускается замена элементов диодами КД209Б или КД209В.
  • 2 резистора сопротивлением 47 кОм каждый. Мощностная характеристика незначительна, но лучше брать резисторы, рассчитанные на 0.125 Вт.
  • Оптрон симисторный МОС3063. Допускается замена элемента оптроном МОС3062, МОС3082, МОС3083.
  • Небольшой отрезок провода сечением 1 мм² для внутреннего монтажа схемы.
  • 3 отрезка провода сечением 1.5 мм².
  • Небольшая макетная плата.
  • Пластиковый корпус.

Очерёдность монтажа фазоуказателя практически ничем не отличается от предыдущего прибора, изготовленного своими руками. Только увеличилось количество элементов на схеме.

Последовательность проверки фазировки данным измерительным прибором:

  1. Определить нулевой провод в линии, в которой будет проводиться поиск чередования фаз. Чаще всего это нулевая шина, но может быть и отдельная шина заземления. Можно воспользоваться индикаторной отвёрткой.
  2. Измерительный щуп «N» с помощью крокодила зацепить за нулевую шину линии.
  3. Измерительный щуп «А» с помощью крокодила зацепить за любую из фаз. Загоревшийся жёлтый светодиод покажет наличие напряжение.
  4. Острым измерительным щупом «B» коснуться фазы, идущей следом за той, на которую закреплён крокодил щупа «А». Для определения фазировки на проводе под напряжением лучше всего использовать именно острый щуп, а не крокодил.
  5. Если угол чередования фаз составляет 120 градусов, то должен загореться зелёный светодиод. Если светодиод не загорелся, то щупом «B» необходимо коснуться третьего рабочего провода.

Помимо своей простоты, данный прибор необычайно точен и позволяет за несколько минут определить фазирование в линии. Изготовив такой фазоуказатель самостоятельно, пользователь получает не только экономию средств, но и экономию личного времени при последующих измерениях чередования фаз.

Сложный фазоуказатель

Если же сборка фазоуказателя стала вызовом для начинающего электрика, то можно, используя приведённую ниже схему, смонтировать устройство, для работы которого не требуется подключение к нулевому проводнику в сети. Сразу следует уточнить, что изготовление подобного прибора будет под силу только определённому кругу специалистов, здесь требуется навык работы с паяльником и монтажными платами.

Схема достаточно тяжёлая, но на ней есть все необходимые номинальные значения элементов, следует только сделать несколько полезных в работе замечаний:

  • Микросхему К561ЛП2 допускается заменять на CD4030BE.
  • Вместо триггера К561ТМ3 используйте CD4042BE.
  • Транзисторы КТ3107А заменяются на аналогичные по своему действию модели КТ3107 или КТ361.
  • В схеме используются диоды моделей КД105В, КД105Г, КД209Б.
  • В качестве светодиодов можно использовать любые модели, главное, чтобы был соответствующий цвет свечения.

Плюсы схемы:

  • Необычайно точная сборка, которая даёт быстрый результат при определении фазировки.
  • Проверка угла между фазами занимает несколько секунд.
  • Не требуется подключение к «нулевой» шине.
  • При правильном монтаже прибор долговечен и совершенно безопасен.

К сожалению, есть и некоторые недостатки данного прибора, собранного своими руками. Во-первых, схема достаточно сложна и скорее всего правильно смонтировать её начинающему электрику будет очень трудно. Во-вторых, стоимость всех элементов может быть достаточно высокой и дешевле приобрести промышленный прибор.

Подводя итоги

Прибор для измерения угла в трёхфазной цепи — это необходимый для каждого электрика измерительный инструмент, который должен быть всегда под рукой. Самостоятельно собранное устройство сэкономит не только средства, но и личное время в будущем. Конечно, всегда остаётся вариант покупки изделия в магазине электронной техники или измерительных приборов, но намного полезнее для себя как для специалиста попробовать собрать подобное устройство самостоятельно.

Видео по теме

profazu.ru

8.2. Методы фазировки

Фазировка может быть предварительной, выполняемой в процессе монтажа И ремонта оборудования, и при вводе в работу, производимой непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов обору-дования. Так. например, при ремонте поврежденного кабеля определяют, какие жилы кабеля, находившегося в эксплуатации, и ремонтной вставки должны соединяться между собой, чтобы фазы кабельной линии и сборных шин РУ совпали. Произвольное соединение токоведущих жил может нарушить порядок чередования фаз, и это приведет к необходимости менять местами жилы у концевых муфт или изменять монтаж шин в ячейке РУ. Ясно, что обе эти операции не только нежелательны, но часто и невыполнимы. Поэтому перед соединением жил проверяют их фазировку. Предварительная фазировка производится на оборудовании, не наводящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегаомметра или импульсного искателя.

Независимо от того, проводилась или не проводилась предварительная фазировка оборудования в период его монтажа или ремонта, оно обязательно фазируется при вводе в работу, так как только в этом случае можно быть уверенным в согласованности фаз всех элементов электрической цепи. Фазировка при вводе в работу произво-дится исключительно электрическими методами. Выбор метода зависит от вида фазируемого оборудования (генератор, трансформатор, линия) и класса напряжения, на котором оно должно включаться в работу. Различают прямые (см. § 8.3) и косвенные (см. § 8.4) методы фазировки оборудования при вводе в работу. Прямыми методами называют такие, при которых фазировка производится на вводах оборудования, нахо-дящегося непосредственно под рабочим напряжением; эти методы наглядны и их широко применяют в установках до 110 кВ.

Косвенными называют такие методы, при которых фазировка производится не на рабочем напряжении установки, а на вторичном напряжении трансформаторов напряжения, присоединенных к фазируемым частям установки. Косвенные методы менее наглядны, чем прямые, но применение их не ограничивается классом на-пряжения установки.

Оперативному персоналу подстанций, как правило, не приходится иметь дело с предварительной фазировкой оборудования, поэтому методы ее проведения здесь не рассматриваются. Из прямых методов фазировки представляют интерес методы фазировки трансформаторов и линий электропередачи.

8.3. Прямые методы фазировки

Фазировка трансформаторов, имеющих обмотки НН до 380 В, без установки перемычки между зажимами.

Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выве-денной нулевой точкой, а также измерительные трансформаторы напряжения, имеющие вторичные обмотки с заземленной нейтралью. Фазировку производят с помощью вольтметра со стороны обмотки НН. Вольтметр дол-жен быть рассчитан на двойное фазное напряжение, так как появление такого напряжения между зажимами фазируемых трансформаторов не исключено.

Фазируемые трансформаторы включают по схеме, представленной на рис. 8.3. Нулевые точки вторичных обмоток при этом должны быть надежно заземлены или присоединены к общему нулевому проводу, что следует проверить перед началом фазировки. Объединение нулевых точек необходимо для создания между фазируемыми трансформаторами электрической связи, образующей замкнутый контур для прохождения тока через прибор.

Прежде чем приступить к фазировке, проверяют симметричность напряжений трансформаторов. Для этого вольтметр поочередно подключают к зажимам a1-b1; b1-c1; c1-a1; a2-b2; b2-c2; c2-a2.

Если значения измеренных напряжений сильно отличаются друг от друга, проверяют положение переключа-телей ответвлений обоих трансформаторов. Перелючением ответвлений уменьшают разницу напряжений. Фазировка допускается, если разность напряжений не превышает 10%.

После проведения перечисленных операций приступают собственно к фазировке. Сущность ее заключается в отыскании выводов, между которыми разность напряжений практически близка к нулю. Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим проводом поочередно касаются трех выводов второго трансформатора (например, измеряют напряжения между выводами a1— a2; a1-b2; a1-c2-)Дальнейший ход фазировки зависит от полученных результатов. Если при одном измерении (допустим, между выводами a1— a2 )п оказание вольтметра было близким к нулю, то эти выводы замечают, а вольтметр присое-диняют ко второму выводу (например, b1) первого трансформатора и измеряют напряжение между выводами b1-b2; b1-c2. Если опять одно из показаний вольтметра (например, между выводами b1-b2) окажется близким к нулю, то фазировку считают законченной (рис. 8.4, а). Особой необходимости в измерении напряжения между выводами c1-c2 нет, так как при двух нулевых показаниях вольтметра (a1— a2 и b1-b2) напряжение между третьей парой фаз, естественно, должно быть близким к нулю. Однако для подтверждения полученных результатов о совпадении фаз все же производят измерение между c1-c2. Выводы, между которыми не было разности напряжений, соединяют при включении трансформаторов на параллельную работу. У каждого полюса коммутационного аппарата такие выводы должны находиться непосредственно друг против друга.

Если после измерения (a1— a2; a1-b2; a1-c2; b1a2; b1b2; b1c2) ни одно из показаний вольтметра не было близким к нулю, то это говорит о том, что фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо. Фазировку на этом прекращают. На основании измерений строят векторные диаграммы и по ним судят, можно ли включать трансформаторы параллельно и какие пересоединения надо для этого выполнить.

Техника построения векторных диаграмм на основании результатов измерений линейных напряжений показана на рис. 8.4, б. Треугольник линейных напряжений первого трансформатора строят произвольно, а точки вершин второго треугольника находят путем засечек, радиусы которых численно равны напряжениям между зажимами a1— a2 и b1a2; a1-b2 и b1b2.

Фазировка кабельных и воздушных линий 6-110 кВ. При фазировке линий напряжением 6—10 кВ пользуются индикаторами, например, типа УВН-80, УВНФ и др. Фазировка выполняется в следующей последовательности. На выводы разъединителей или выключателя подают фазируемые напряжения (рис. 8.5).

Проверяют исправность индикатора. Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 8.5,а), при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной токопроводящей части (рис. 8.5, б). Лампа индикатора при этом не должна гореть. Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 8.5, в. Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие неисправности предохранителя). Абсолютные значения напряжения между фазой и землей здесь не играют роли, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на незначительную разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят просто по свечению лампы индикатора.

Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например фазы с а щупом другой трубки — поочерёдно трех выводов со стороны фазируемой линии (рис. 8.5, г). В двух случаях касаний (С – А1 и С – В1) лампа будет ярко загораться, в третьем (С –С1) гореть не будет, что укажет на одноименность фаз.

После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например А – А1 и А – В1. Отсутствие свечения лампы индикатора в одном касании укажет на одноименность следующей пары выводов. Совпадение фаз третьей пары выводов В — В1 проверяют только в целях контроля — фазы должны совпасть.

Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителей или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

Фазировка воздушных и кабельных линий прямым методом возможна и на напряжении 35 и 110 кВ. Для этой цели в Мосэнерго используют индикатор типа УВНФ-35-110, конструкция которого аналогична индикатору УВНФ на 10 кВ. От последнего его отличает наличие в схеме полистирольных конденсаторов вместо резистора. Фазировка производится на отключенных разъединителях (или отделителях), выводы которых находятся под напряжением: с одной стороны от шин РУ, с другой от фазируемой линии. Сначала на всех фазах разъединителей проверяют наличие напряжения прикосновением щупов указателя к фазе и к заземленной конструкции, затем на крайних фазах разъединителей проверяют совпадение напряжений по фазе (рис. 8.6). На средней фазе проверку не производят. Если лампа индикатора не загорается при фазировке на крайних фазах, то фазировку считают законченной — фазы совпадают. При свечении лампы индикатора на обеих крайних фазах или только на одной фазировку прекращают — фазы не совпадают.

В Ленэнерго для фазировки линий 35-110 кВ применяют индикатор, в котором использован принцип сравнения напряжений на двух одинаковых делителях напряжения, собранных из резисторов (рис. 8.7). Производят фазировку, касаясь щупами индикатора проводов каждой фазы разъединителей так, как это показано на рис. 8.8. При совпадении фаз напряжений стрелка прибора не должна значительно отклоняться от нуля шкалы. Возможно лишь небольшое отклонение стрелки, что объясняется некоторой разностью фазируемых напряжений или сдвигом напряжений по углу при фазировке линий большой протяженности. При несовпадении напряжений по фазе стрелка прибора отклонится до конца шкалы.

Условия безопасности при фазировке индикаторами напряжения. Прежде чем приступить к фазировке, необходимо убедиться в выполнении как общих требований техники безопасности по подготовке рабочего места, так и специальных требований по работе с измерительными штангами на оборудовании, находящемся под напряжением.

Электрические аппараты, на выводах которых будет производиться фазировка, еще до подачи на них напряжения должны быть надежно заперты, должны быть также приняты меры, предотвращающие их включение.

Индикаторы напряжения перед началом работы под напряжением должны быть подвергнуты тщательному наружному осмотру, при этом обращается внимание на то, чтобы лаковый покров трубок и изоляции соединительного провода не имели видимых повреждений и царапин. Срок годности индикатора проверяется по штампу периодических испытаний. Не допускается применять индикаторы, срок годности которых истек.

При работах с индикатором напряжения обязательно применение диэлектрических перчаток. В ходе фазировки не рекомендуется приближать соединительный провод к заземленным частям. Располагать рабочие и изолирующие части индикатора следует так, чтобы не возникла опасность перекрытия по их поверхности между фазами или на землю.

Фазировку индикатором напряжения нельзя производить во время дождя, снегопада, при тумане, так как изолирующие части его могут увлажниться, что приведет к их перекрытию.

studfile.net

Глава 9. Фазировка электрического оборудования. «Эксплуатация электрических подстанций и распределительных устройств»

 

9.1. Общие понятия и определения

Фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз включаемой электроустановки с соответствующими фазами напряжения сети, и включает в себя следующие операции:

проверка и сравнение порядка следования фаз включаемой электроустановки и сети;

проверка совпадения по фазе одноименных напряжений, отсутствие между ними углового сдвига;

проверка одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, то есть правильности подвода токопроводящих частей к включающему аппарату.

Фаза — проводник, пучок проводов, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы (ГОСТ 24291—90).

Трехфазная система представляет собой совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты по фазе на один и тот же угол.

Под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, электродвигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.

Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный.

Трехфазные системы напряжений и токов могут отличаться друг от друга порядком следования фаз.

Если фазы следуют друг за другом в порядке А, В, С, это называется прямым порядком следования фаз. Если фазы следуют друг за другом в порядке А, С, В, это называется обратным порядком фаз.

В случаях несовпадения порядка следования фаз или порядка чередования фаз электроустановки и сети при включении выключателя происходит КЗ.

Возможен лишь единственный вариант, при котором возникновение КЗ исключено: когда совпадают и то, и другое.

Под совпадением фаз при фазировке понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов выключателя согласованы с обозначением фаз напряжений.

Фазировка может быть предварительной, выполняемой в процессе монтажа и ремонта оборудования, и при вводе его в работу, производимая непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов оборудования. Произвольное соединение токоведущих жил может нарушить порядок чередования фаз, что приведет к необходимости менять местами жилы у концевых муфт или изменять монтаж шин в ячейке РУ. Такие операции не только нежелательны, но и зачастую невыполнимы. Поэтому перед соединением жил предварительно проверяют их фазировку.

Предварительная фазировка производится на оборудовании, не находящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегаомметра или импульсного искателя.

Независимо от предварительной фазировки она обязательно проводится при вводе электрооборудования в эксплуатацию. Причем фазировка при вводе в работу электрооборудования производится только электрическими методами.

litresp.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *