Как проверить электронный балласт для люминесцентных ламп: Как проверить баластник для люминесцентных ламп, ремонт

Содержание

Как проверить баластник для люминесцентных ламп, ремонт

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Как проверить электронный балласт для люминесцентных ламп

Подключение и ремонт баластника для люминесцентных ламп

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине.

А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Проверка исправности лампы дневного света и ее элементов

Лампы этого типа (ЛДС) относятся к классу люминесцентных приборов, использующихся для освещения. Они обладают рядом преимуществ по сравнению с лампами накаливания. В то же время сама лампа является только составной частью осветительного прибора, используется в качестве излучателя и работает в составе схемы совместно с пускорегулирующей аппаратурой. Прибор является далеко не безотказным в части возникающих при его эксплуатации неисправностей. Чтобы устранять возникающие неполадки, нужно уметь проверять лампу дневного света с тестером.

Почему перегорают люминесцентные лампы?

Сама лампа представляет собой стеклянную колбу различной геометрической формы, изготовленную из хрупкого кварцевого стекла. Ее внутренние стенки покрыты люминофором – материалом, способным преобразовывать спектр излучения ультрафиолетовых длин волн в видимую часть излучения – дневную. Кварц со временем теряет свою прозрачность.

Внешние механические воздействия на колбу могут привести к появлению в ее структуре микротрещин, следствием которых может быть попадание в герметичную полость воздуха. Это приводит к перегоранию ЛДС. Для свечения необходим тлеющий разряд внутри корпуса, который обеспечивают катоды устройства, представляющие собой вольфрамовые нити накаливания в виде разогреваемых электрическим током спиралей.

Они покрыты слоем щелочного металла для продления срока службы лампы, который при частом ее включении-выключении осыпается. Это, в свою очередь, приводит к перегреву катода и выходу его из строя. Со временем уменьшается эмиссия электрода или его способность испускать электроны со своей поверхности. Их количество уже не способно поддержать тлеющий разряд.

Выявление неполадок и их устранение

Для начала надо вспомнить, что электролюминесцентный светильник выполняет свои функции освещения только тогда, когда согласованно работают все его составные части – сама лампа, балласт, который может быть либо электромеханическим, либо электронным. Таким образом, причины неисправной работы светильника могут находиться как в схеме пускорегулирующей аппаратуры, так и быть отказом работы ЛДС из-за ее старения или нарушения условий эксплуатации.

Проверять люминесцентную лампу (светильник) лучше всего удается при наличии работоспособного аналога. Надо обеспечить удобный доступ ко всем его компонентам. Таким способом можно правильно провести анализ неисправности и дать рекомендации по устранению даже при самостоятельном ремонте. Расскажем, как проверить в домашних условиях лампу дневного света.

Целостность спиралей электродов

Спирали электродов находятся внутри газонаполненной трубки ЛДС и при производстве припаяны к ножкам цоколей лампы. Они расположены в торцевых частях колбы. Таким образом, используя мультиметр в режиме измерения сопротивлений, можно прозвонить лампу дневного света.

Для этого устанавливаем на тестере минимальный предел и подключаем его щупы между электродами. Измеренная величина сопротивления каждой исправной спирали должна находиться в пределах (10-20) Ом. При оборванной нити накала мультиметр покажет бесконечно большую величину на любом пределе измерения. Так своими руками можно определить возможный обрыв. При таком дефекте ЛДС подлежит замене.

Неисправности в электронном балласте

ЭПРА или электронный балласт выполняет функции обеспечения цикла запуска поджига используемой совместно с ним люминесцентной лампы и поддержания тлеющего разряда в колбе в процессе ее работы. Нагревательные спирали ЛДС, обладающие некоторой индуктивностью, используются в схеме автогенератора в диапазоне (30-130) кГц. Применение высокой частоты исключает мигание светового потока такого светильника.

На выходе схемы используются мощные транзисторные ключи. Питание активных элементов ЭПРА постоянным током производится от встроенного выпрямительного устройства, питающегося от розетки сети 220 В 400 Гц. Электронный балласт можно включать только вместе с лампой. Схема подключения электронного балласта изображается на корпусе каждого готового изделия. Проверка на исправность выполняется включением в сетевую розетку и контролем яркости свечения, которую можно установить вручную специальным регулятором.

При возникновении неисправности пользователю можно проверить исправность ЛДС путем ее замены, не забывая «обесточивать» перед этим схему. При замене надо использовать только рекомендуемую лампу. Информация о ней содержится на корпусе изделия. В случае неудачи остается только ремонт электронного балласта специалистами из мастерской.

Как проверить дроссель люминесцентного светильника?

Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА).

На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.

После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.

Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.

Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта.

Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.

Как проверить стартер?

Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.

Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.

Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск.

Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.

Как проверить емкость конденсатора тестером?

При обесточенной схеме и присоединении щупов тестера в режиме омметра к выводам стартера, к которым подключен конденсатор, он не должен прозваниваться и иметь бесконечно большое сопротивление.

Включение люминесцентной лампы без дросселя

Для решения этого вопроса собирается схема выпрямления напряжения с ее удвоением. Выводы каждой нити накала объединяются. Постоянного напряжения такой схемы хватит для создания тлеющего разряда внутри ЛДС.

Принцип работы и схемы балласта для люминесцентных ламп

Люминесцентные лампы представляют собой запаянные колбы с заключенным внутри газом. В результате включения на электродах создается заряд, который приводит к резкому лавинообразному возрастанию тока, что, в свою очередь, приводит к резкому снижению сопротивления в конструкции.

Если не будет организован балласт, то лампа перегревается, а электроды в результате перегрузки могут быстро перегорать. Для решения этой проблемы в схему вводится дроссель, который ограничивает до определенного значения ток.

Что такое

Балласт для ламп дневного света – это пускорегулирующий аппарат. Данное устройство подсоединяется между разрядными лампами и сетью. Это делается для ограничения подачи тока и его регулировки до нужного значения. Газоразрядный источник света с отрицательным сопротивлением – отличный пример данной схемы.

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

ПлюсыМинусы
Высококлассный уровень надежности, доказанный практикой и временем.Долгий запуск – на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции.Повышенный расход электроэнергии.
Удобство эксплуатации модуля.Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей.Слышен гул работы дросселя.
Количество фирм производителей.Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
ДостоинстваНедостатки
Автоматическая настройка балласта под различные виды ламп.Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Как подобрать

  1. При выборе балласта для люминесцентной лампы необходимо обратить внимание на мощность модуля. Она должна совпадать с показателями мощности осветительного прибора. Если не соблюдать эти требования, то прибор не будет функционировать должным образом;
  2. Стоимость. Электромагнитные элементы уступают в цене электронным. Но, технически они устарели и в эксплуатации уступают дополнительными энергозатратами и громоздкостью;
  3. Стоимость на электронные балласты выше, но практичность и экономия электроэнергии перекрывает этот недостаток.

Брендовые производители включают в комплектацию качественные детали, способствующие корректной работе на протяжении долгого времени. Такие устройства смогут отработать срок гарантии.

Необходимо обратить внимание на наличие маркировки IP2, проставленной на изделиях. Это указывает на то, что прибор имеет нужный уровень защиты, а также защищен от попадания внутрь корпуса мелких элементов. Конструкция исключает прямой контакт пользователя с элементами, подводящими электроэнергию.

Температурный диапазон существенно расширен. Приборы могут функционировать при температуре от -20 °C до + 40 °C.

Лучшие производители электромагнитных аппаратов

По статистике лучшее электромагнитное устройств у известного бренда E.Next. Это неудивительно, данная компания выпускает высококлассные модули, отличающиеся своей надежностью и долговечностью. Продукция выполнена в соответствии со строгими требованиями, которые причисляются к товарам данного класса. На всю линейку товаров компания E.Next предоставляет гарантию, а также предлагает своим клиентам качественное обслуживание. Клиент может обратиться в один из множества call-центров и задать вопрос сотрудникам технической поддержки.

Европейская компания Philips не уступает своим коллегам по производству электромагнитных балластов. Изделия данной торговой марки считаются одними из самых надежных и эффективных на рынке. Поэтому выбрать необходимую модель для лампы накаливания не составит труда.

Актуальные электронные модули

Первое место данного типа оборудования, достается товарам от компании Osram. Стоимость продукции данной марки, будет значительно выше стоимости аналогов отечественного или китайского производства. Но модули этой фирмы уступают в цене конкурентам Vossloh-Schwabe или Philips.

Более бюджетный вариант,предлагает фирма Horos. Несмотря на низкие финансовые затраты, данные балласты демонстрируют хороший уровень КПД высокую степень рабочей эффективности.

Сравнительно молодая компания Feron уже успела положительно зарекомендовать себя среди множества постоянных потребителей. Важно отметить грамотное соотношение доступной цены и высокого качества изделий. В их комплектацию входит: надежный предохранитель, защищающий от внезапных перепадов напряжения и различных помех, исключается светомерцание и экономия энергозатрат до 30%.

Как проверить

Перед проверкой нужно снять трубку, после этого закоротить нити накала, а после, между ними, подключить к питанию лампу накаливания на 220 В. Специалисты рекомендуют не включать в сеть любую схему без лампочки. Работающая лампочка, после подключения системы к цепи, укажет на исправность балласта.

Основные неисправности

Как правило, причиной вышедшего из строя осветительного прибора могут стать разлады в схеме регулирующего запуск аппарата, а также износ деталей и перегорание лампы. Если грамотно определить причины поломки, то можно произвести самостоятельный ремонт прибора освещения.

Ремонт

В первую очередь стоит обратить внимание на состояние предохранителя, так как чаще всего именно его выход из строя является основной причиной неполадок в работе балласта. Однако, это может быть причиной более серьезных поломок пускорегулирующего аппарата.

Проверить диоды и транзисторы, нужно при помощи мультиметра. Специалисты рекомендуют выпаять их из платы, чтобы сопротивление других элементов не искажало показания. Важно! Новые элементы необходимо паять с осторожностью, они довольно чувствительны к перегреву.

Схемы электронного

В зависимости от типа конкретной лампочки элементы ЭПРА могут иметь различную реализацию, как по электронной начинке, так и по встраиваемости. Ниже будут рассмотрены несколько вариантов для приборов с различной мощностью и конструкцией.

Схема ЭПРА для ламп дневного света с мощностью 36 Вт

В зависимости от применяемых электронных деталей по типу и техническим показателям у балластников электрическая схема может существенно отличаться, однако выполняемые ими функции будут такими же.

На приведенном выше рисунке в схеме используются такие элементы:

  • диоды VD4–VD7 предназначены для выпрямления тока;
  • конденсатор С1 предназначен для фильтрации тока, проходящего через систему диодов 4-7;
  • конденсатор С4 начинает зарядку после подачи напряжения;
  • динистор CD1 пробивается в момент достижения напряжением показателя 30 В;
  • транзистор T2 открывается после пробития 1 динистора;
  • трансформатор TR1 и транзисторы T1, T2 запускаются в результате активации на них автогенератора;
  • генератор, дроссель L1 и последовательные конденсаторы С2, С3 на частоте примерно 45–50 кГц начинают резонировать;
  • конденсатор С3 включает лампу после достижения на нем пусковой величины заряда.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 36 Вт

В приведенной схеме есть одна особенность – колебательный контур встраивается в конструкцию самого осветительного прибора, что обеспечивает резонанс прибора до момента появления в колбе разряда.

Таким образом, частью контура будет выступать нить накала лампы, что в момент появления разряда в газовой среде сопровождается изменением в колебательном контуре соответствующих параметров. Это выводит его с резонанса, что сопровождается снижением до рабочего уровня напряжения.

Схема ЭПРА для ЛДС с мощностью 18 Вт

Лампы, которые оснащены Е27 и Е14 цоколем сегодня получили наибольшее распространение среди потребителей. В этом приборе балласт встраивается прямо в конструкции устройства. Выше приведена соответствующая схема.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 18 Вт

Необходимо учитывать особенность строения автогенератора, в основу которого входит пара транзисторов.

Из повышающей обмотки, обозначенной на схеме 1-1 трансформатора Тр, поступает питание. Частями последовательного колебательного контура выступает дроссель L1 и конденсатор С2, резонансная частота которого от генерируемой автогенератором существенно отличается. Приведенная выше схема используется для настольных осветительных приборов бюджетного класса.

Схема ЭПРА в более дорогих устройствах для ЛДС с мощностью 21 Вт

Необходимо отметить, что более простые схемы балласта, которые применяются для осветительных приборов типа ЛДС, не смогут гарантировать длительную эксплуатацию лампы, поскольку подвергаются большим нагрузкам.

У дорогих изделий такой контур обеспечивает стабильное функционирование на протяжении всего эксплуатационного срока, поскольку все используемые элементы соответствуют более серьезным техническим требованиям.

Блок питания из балласта

Переоборудование балласта в блок питания заключается в следующем:

Демонтаж корпуса балласта происходит при помощи отвертки. Необходимо применять минимальное усилие, чтобы не увеличивать силу давления на колбу.
Разделить жилки контактов самой лампы от платы, отматывая их с четырех штырей.
После извлечения платы штырьки соединяют при помощи перемычек.
Далее стоит посмотреть, какой именно трансформатор будет использован в новой схеме, а именно: уже имеющийся дроссель, или новый трансформатор.

Чтобы грамотно подобрать нужный балласт для люминесцентной лампы, нужно :

  • понимать принцип устройства данного элемента и его функции;
  • при подборе балласта полагаться на проверенного производителя;
  • обратить внимание на стоимость и фирму;
  • мощность модуля должна совпадать с мощностью осветительного прибора.

В люминесцентных лампах используются электронные и магнитные балласты разной схемы. По большей части такие устройства определяют стоимость осветительного прибора, поскольку способные длительное время поддерживать работоспособность прибора.

В недорогих изделиях не только применяются упрощенные схемы, но и элементы несоответствующего качества, которые физически не способны выдержать создаваемые током цепи нагрузки. Поэтому выбор ламп должен основываться именно на схеме балласта, гарантийном сроке работы изделия и его качестве.

Способы проверки работоспособности лампы дневного света

Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.

В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.

Люминесцентная лампа к содержанию ↑

Принцип работы

Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.

Строение люминесцентной лампы

Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.

Электромеханический дроссель

Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.

Схема люминесцентного светильника с ЭмПРА

Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.

Предъявляемые к балластному сопротивлению требования:

  • минимальные потери мощности;
  • малые вес и размер;
  • отсутствие гула;
  • температура накала не выше 600 градусов по Цельсию.

Другой значимый элемент ЭмПРА – стартер тлеющего разряда.

Стартер тлеющего разряда

Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.

Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.

Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.

Схема подключения электронного балласта

Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.

Электронный балласт

Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.

Почему перегорают люминесцентные лампы

Часто лампы дневного света перегорают, что делает их похожими на обычные лампы накаливания. Во время включения светильника в колбе возникает электрическая дуга и происходит сильный нагрев спиральных электродов из вольфрама. Высокая температура приводит к разрушению нитей и перегоранию.

Для продления срока эксплуатации вольфрамовую нить покрывают слоем активного щелочного металла. Это стабилизирует тлеющий разряд между электродами и понижает температуру, сохраняя целостность нити на долгое время. Частое включение-выключение светильника разрушает защитное покрытие, оно осыпается. Разряд, проходя через оголенные части нити, точечно нагревает спираль, что приводит к перегоранию. Это видно на старых трубках как потемнение люминофора.

Перегоревшая лампа дневного света

Перегоревшая лампа дневного светаКолба не должна иметь повреждений, иначе лампа сгорит. Если на концах трубки обнаруживается оранжевое свечение, а лампа не загорается, – внутрь ЛДС попадает воздух. ЛЛ нужно менять.

Выявление неполадок и их устранение

Неисправность лампы дневного света выражается в:

  1. Полном отсутствии включения.
  2. Кратковременных мерцаниях лампы с дальнейшим включением.
  3. Продолжительном мерцании без дальнейшего включения.
  4. Гудении.
  5. Мерцании в режиме горения.

Это может неблаготворно сказаться на зрении человека, поэтому следует незамедлительно диагностировать поломку и приступить к ремонту светильника. Для этой цели понадобится мультиметр или тестер сопротивления.

Следует помнить! Чтобы понять, где неисправность, в лампе или в светильнике, нужно заменить ЛЛ на заведомо исправную. Если она загорится, это означает, что дело в лампе. Если нет – следует искать неисправность в светильнике.

Часто ЛЛ не горит из-за плохого контакта между штырьками лампы и контактами патрона. Держатели со временем изнашиваются и окисляются. Следует почистить их спиртосодержащей жидкостью, ластиком, мелкой шкуркой, а при необходимости подогнуть или заменить пластинки контактов для лучшего соприкосновения со штырьками. Следует помнить, что ЛДС не работает при температуре ниже –50 ˚С и при скачках напряжения более 7 %.

Целостность спиралей-электродов

Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой. Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась). Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.

Проверка целостности спиралей-электродов к содержанию ↑

Неисправности в электронном балласте

В лампах нового поколения используется электронная пускорегулирующая аппаратура (ЭПРА). Чтобы понять, исправен ли балласт, заменяют его на заведомо рабочий. Если светильник включился, это означает, что поломка была в нем. Старый балласт можно починить в домашних условиях. Сначала можно попробовать заменить предохранитель на аналогичный с таким же диаметром и плавкой вставкой. Если спиральные нити слабо светятся – пробит конденсатор между ними. Его нужно заменить на аналогичный, но с рабочим напряжением 2 кВ. В дешевых балластах ставят конденсаторы на 250–400 В, которые часто сгорают.

Устройство электронного балласта

Транзисторы могут перегореть из-за скачков напряжения. При работе сварочного агрегата или любой мощной техники ЛДС желательно выключать. Транзисторы можно взять из списанных балластов или подобрать по таблице. После замены любого элемента нужно проверить исправность светильника, вставив в него лампу мощностью 40 Вт.

Помните! Электронный балласт нельзя включать без нагрузки, он может быстро сломаться. Стоит уделить внимание контактам. При подключении ЭПРА нужно строго соблюдать полярность.

Как проверить дроссель люминесцентного светильника

Признаки неисправности дросселя:

  • гудение светильника из-за дребезжания пластин;
  • лампа зажигается нормально, потом темнеет по краям и гаснет;
  • перегрев ЛДС;
  • после включения внутри колбы бегают змейки;
  • сильное мерцание.

Проверка дросселя

Для проверки дросселя на исправность из светильника вынимают стартер и замыкают накоротко контакты в его патроне. Вынимают лампу и закорачивают контакты в патронах с обеих сторон. Мультиметр устанавливается в режим измерения сопротивления, щупы присоединяются к контактам в патроне лампы. Обрыв обмотки покажет бесконечное сопротивление, а межвитковое замыкание – значение (стрелка) около нуля.

Сгоревший дроссель выдаст себя паленым запахом и пятнами коричневого цвета. Неисправный элемент не подлежит ремонту и требует замены. Новый дроссель подбирают в соответствии с мощностью лампы.

Как проверить стартер

Если при включении ЛДС мерцает, но не загорается, – неисправен стартер. Отдельно от светильника прозвонить стартер мультиметром не удастся, так как без напряжения его контакты разомкнуты. Схема проверки данного элемента включает в себя лампочку 60 Вт и стартер, подключенные последовательно к сети 220 В.

Схема проверки стартера к содержанию ↑

Как проверить емкость конденсатора тестером

Неисправный конденсатор, находящийся между проводами сети питания, снижает КПД светильника до 40%. В рабочем состоянии КПД составляет 90%, что более экономично. Для ЛЛ до 40 Вт подойдет конденсатор емкостью 4,5 мкФ. Слишком низкая емкость снижает КПД, высокая – вызовет мерцание. Исправность конденсатора проверяют мультиметром с соответствующей функцией.

Включение люминесцентной лампы без дросселя

Перегоревшим лампам можно дать вторую жизнь, если подключить их в схему без дросселя и стартера, применив постоянное напряжение. Для такой цели применяется двухполупериодный выпрямитель с удвоением напряжения. Когда яркость уменьшится со временем, нужно перевернуть лампу в светильнике, чтобы поменять полюса подключения. Следует подбирать радиоэлементы для схемы с напряжением до 900 В, такое значение достигается при пуске.

Схема подключения сгоревшей лампы к содержанию ↑

Утилизация прибора

Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.

Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.

Как проверить дроссель с мультиметром и без него. Все причины неисправности ПРА и ЭПРА.

Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?

Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.

Вот так она выглядит в разрезе.

В схемах балласт нужен для трех функций:

    контроля тока, чтобы он не превышал номинала
    образование за счет индуктивности кратковременного импульса повышенного напряжения
    сглаживания возможных пульсаций в сети 220В

Подключается он последовательно, а параллельно ему монтируется стартер.

Стартер необходим для поджига лампы.

Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.

Из-за нагрева форма электрода меняется и происходит его замыкание.

В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.

У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.

От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:

    подача 220В из розетки и замыкание контактов стартера
    разогрев спиралей электродов
    размыкание контактов стартера
    подача высоковольтного импульса от дросселя
    образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы

Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:

    сама лампочка

При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.

Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.

О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.

Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.

В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.

Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.

    если не горит совсем – в балласте обрыв, дроссель неисправен
    горит ярко – в балласте межвитковое короткое замыкание
    моргает или светит в половину накала – дроссель исправен

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.

Повреждение дросселя может быть пяти видов:

    замыкание разных обмоток
    замыкание витков в одной обмотке
    неисправность магнитопровода
    пробой на корпус

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.

Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.

Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:

а на выходе свечения нет:

то считайте что обрыв вы нашли.

Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.

Но изоляция может высохнуть или нарушиться.

Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.

Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.

Найти такое повреждение очень трудно, даже при помощи мультиметра.

Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.

Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.

Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:

    мощностью на 20Вт – сопротивление от 55 до 60 Ом
    мощностью на 40Вт – сопротивление от 24 до 30 Ом
    мощностью на 80Вт – сопротивление от 15 до 20 Ом

Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.

Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.

Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.

Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.

О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.

Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.

Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.

А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.

Все современные модели выпускаются с электронными дросселями без стартеров.

ЭПРА расшифровывается как – электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.

Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.

Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.

Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.

Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.

Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.

Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.

И сравнивайте с теми фактическими замерами, которые у вас получились.

В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.

Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.

Проверка исправности лампы дневного света и ее элементов – Почему перегорают?

С приходом электричества началась другая жизнь: появились электроплитки, холодильники, радиоприемники, телевизоры и другая техника, без которой трудно представить наше существование в окружающем мире. Для освещения придумано и придумываются различные средства. Одно из распространенных изобретений – люминесцентная лампа или лампа дневного света (ЛДС), имеющая различные формы и параметры. Она расходует во много раз меньше энергии по сравнению с лампой накаливания, давая столько же света. ЛДС имеет ряд преимуществ перед остальными светильниками:

  1. высокая степень светоотдачи;
  2. разнообразие оттенков света;
  3. большой срок эксплуатации;
  4. высокий КПД; рассеянный световой поток.

В силу некоторых причин ЛДС перестает светиться, не всегда имея видимых признаков неполадки. Пришла пора выяснить: как проверить лампу дневного света тестером (мультиметром).

Почему перегорают люминесцентные лампы

ЛДС имеют большой срок эксплуатации, но иногда перегорают. Случается такое чаще всего при включении светильника. Возникающая в колбе мощная дуга нагревает вольфрамовые спиральные электроды до высокой температуры, разрушающей металл и приводящей к перегоранию спиралей. Для увеличения сроков работоспособности нити на вольфрам наносят тонкий слой защитного металла. Он позволяет снизить температуру и продлить срок службы нити. При частом включении и выключении защитный слой выкрашивается, оголенные участки вольфрамовой нити перегорают, лампа перестает работать.

Другая причина перегорания дает о себе знать по появлению на изделии свечения, окрашенного в оранжевый цвет. Это значит, в колбу ЛДС проник воздух, светильник гореть не будет.

Выявление неполадок и их устранение

Все неисправности ЛДС сводятся к следующему:

  1. изделие не включается;
  2. светильник мерцает и выключается;
  3. мерцание длится долго, изделие не загорается;
  4. гудение без включения;
  5. ЛДС горит, но с мерцанием.

Эти проявления приводят к порче зрения, поэтому ремонтировать светильник следует немедленно. Для проверки люминесцентной лампы нужно иметь мультиметр для измерения сопротивления. Сначала меняют лампу на годную. Если она включается – дело в ней, не горит – применяем инструмент.

Распространенной причиной является ослабление контакта между электродами лампы и клеммами патрона. Их нужно почистить спиртосодержащим средством или ластиком, использовать для этого шкурку с мелким зерном или просто слегка подогнуть штырьки. Этот способ хорошо помогает при устранении неисправности в домашних условиях.

ЛДС не предназначена для работы при низких температурах окружающего воздуха и при больших скачках напряжения в сети (более 7%).

Целостность спиралей-электродов

При неполадках часто случаются причины, которые не всегда видны невооруженным глазом. В этом случае нужно прозвонить изделие мультиметром или проверить индикатором. Его переключатель нужно установить в положение, измеряющее сопротивление. Диапазон – самый малый из всех возможных. Щупами касаются штырьков и смотрят на табло. Если спираль порвана или сгоревшая – на табло светится 0, если она целая – цифры 3-16 Ом. Порванная или сгоревшая нихромовая нить не восстанавливаются, изделие требуется заменить.

Неисправности в электронном балласте

Часть светильников с ЛДС работают только с подключением электронного балласта ЭПРА (пускорегулирующая аппаратура). Ее тоже нужно проверить на исправность. Сначала желательно заменить балласт на рабочий и включить светильник. Свидетельством неисправности балласта будет свечение лампы. Неисправную аппаратуру можно привести в порядок своими руками в условиях дома.

Начинают ремонт с замены предохранителя. Если после этого нити начнут слабо светиться, это будет являться признаком пробоя конденсатора. Его заменяют на другой, рассчитанный на напряжение 2 кВ. Стандартные иногда устанавливаются на 250-400 В, при работе они сгорают.

Следующая часто выходящая из строя деталь балласта – транзистор. Он перегорает по причине скачков напряжения в сети. Эти скачки могут вызываться работой сварочных аппаратов, включенных в общую электросеть. Сгоревший транзистор меняется на подобранный из радиодеталей или снимается с подобного пускорегулирующего устройства. После выполнения всех ремонтных операций в светильник вставляется ЛДС мощностью 40 Вт и включается в сеть.

Как проверить дроссель люминесцентного светильника

ЛДС работает вместе с дросселем, который предназначен для регулировки тока и не дает возможности перегорания спиралей из-за перегрева. Это устройство представляет собой обмотку из проволоки с металлическим сердечником. Неисправность может находиться в дросселе, если:

  1. светильник сильно гудит;
  2. лампа загорается, но быстро гаснет с появлением темных пятен;
  3. ЛДС перегревается во время горения;
  4. внутри стеклянной колбы наблюдается сильное мерцание и бегающие змейки.

Неисправность чаще всего кроется в перегорании или обрыве обмотки, в потере изоляции. Для обнаружения причины нужно измерить сопротивление дросселя. Если оно бесконечное – есть обрыв обмотки. Малое сопротивление – потеря изоляции, приводящая к межвитковому замыканию.

Перед проверкой дросселя лампы дневного света мультиметром нужно вынуть стартер и закоротить контакты в патроне. На следующем этапе снять лампу и в каждом патроне замкнуть клеммы. Щупами прибора коснуться контактов. Сгоревший дроссель издает сильный характерный запах и имеет коричневые пятна на корпусе. Исправность дросселя свидетельствует о неисправности других деталей. Неисправный дроссель заменяется запасной деталью.

Проверить эту деталь можно лампой накаливания мощностью 40 Вт, которую подключают последовательно через стартер к сети. При исправном стартере лампа светится и через некоторые промежутки времени на мгновение гаснет. Процесс сопровождается щелчками контактов. При неисправном стартере ЛДС не горит или светится без моргания тусклым светом.

Как проверить емкость конденсатора тестером

При неисправности конденсатора в схеме КПД светильника снижается до 40%. Для изделий мощностью 36-40 Вт устанавливается конденсатор, имеющий емкость 4,5 мкФ. Если она ниже нормы – КПД снижается, при более высокой емкости лампа начинает мерцать. Для проведения измерений конденсатор должен прозваниваться тестером. При касании щупами выводов рабочей детали прибор показывает бесконечное сопротивление. Если оно меньше 2 Мом – это признак большой утечки тока.

Включение люминесцентной лампы без дросселя

Люминесцентные лампы имеют возможность подключения без применения стартера и балластного дросселя через выпрямитель, удваивающий напряжение. При этом могут гореть даже вышедшие из строя ЛДС. Со временем яркость свечения уменьшается. Для устранения этой причины лампа в патроне переворачивается, контакты меняются местами Схема простая, ее можно спаять самостоятельно из деталей, рассчитанных на напряжение 900 В.

Любая люминесцентная лампа наполнена парами ртути, наносящей большой вред человеческому организму и природе. Поэтому выбрасывать вышедшие из строя изделия вместе с бытовым мусором запрещено. При правильном уходе и своевременном ремонте срок их службы увеличивается.

Электронный балласт для люминесцентных ламп

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторыЭлектрическая схема ЭПРА

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРАФото типового устройства ЭПРА

Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.
Простейший светильник из двух ламп

Балласт для люминесцентных ламп: виды пусковых устройств

Люминесцентные лампы имеют популярность благодаря своей энергосберегающей составляющей. Но в отличие от ламп накаливания, схема источников дневного света довольно сложна и включает в себя дополнительные элементы, обеспечивающие пуск и стабильную работу. Одним из таких устройств является балласт для люминесцентных ламп.

Назначение и виды устройства

Основное назначение балласта заключается в поддерживании постоянного напряжения на определенном уровне, чтобы не происходило снижение эффективности свечения. В связи с назначением этот элемент относится к пускорегулирующим элементам газоразрядных ламп дневного света. Кроме этого, при необходимости, балласт выполняет функцию ограничителя тока (как пускового, так и рабочего).

В зависимости от того, какая схема была реализована при сборке балласта, эти пусковые устройства разделяют на два типа. Рассмотрим их подробнее.

Электромагнитное исполнение

Схема, по которой работает электромагнитный балласт, заключается в использовании дросселя, последовательно подключенного к колбе лампы. Также для процесса пуска необходим стартер. Этот компактный прибор в своем корпусе имеет биметаллические электроды. Стартер подключается параллельно по отношению к газоразрядной лампе.

Принцип работы такого балласта довольно прост и основывается на использовании индуктивного сопротивления:

  • При подаче напряжения на электроды стартера, они вследствие разряда замыкаются;
  • Это приводит к многократному возрастанию тока, что, в свою очередь, разогревает электроды самой лампы;
  • Выдав разряд, стартер остывает, а электроды размыкаются. При этом образуется достаточный импульс, чтобы внутри колбы произошел разряд, который зажжет газ.

Выведя лампу в рабочий режим, электромагнитный балласт остается разомкнутым, что не мешает устойчивой работе осветительного прибора.

Электронный вариант

Электронный балласт является обыкновенным преобразователем входного напряжения. При этом схема запуска источника дневного света может быть различной:

  • Один из методов подразумевает предварительный разогрев катодов газоразрядной колбы перед подачей на них пускового импульса. Благодаря этому решаются две проблемы: практически убирается мерцание разряда, а также повышается КПД лампы. Этот метод позволяет применять несколько вариантов запуска: моментальный или плавный, с постепенным увеличением яркости свечения;
  • При комбинированном методе для запуска используют колебания контура. При входе контура в резонанс, происходит разряд и рост напряжения, что обеспечивает подогрев катодов люминесцентной колбы.

Такая схема подразумевает выход колебательного контура из резонанса за счет изменения параметров вследствие разряда в колбе осветительного прибора. Следовательно, напряжение падает до рабочего состояния, а электронный балласт остается разомкнутым.

Использование электронной схемы запуска способствовало значительному уменьшению пусковой конструкции в размерах. Это привело к разработке и внедрению таких технологий в энергосберегающей компактной лампе.

Преимущества

Электронная «начинка» ЛДС имеет неоспоримые преимущества перед дроссельными пусковыми устройствами:

  • Упрощение схемы: балласт включает в себя все функции других устройств;
  • Более компактная схема подключения, которая, к тому же потребляет меньше электроэнергии;
  • Отсутствие мерцания и постороннего шума в процессе работы;
  • Возможность горячего старта, что продлевает срок эксплуатации.

Проверка и замена балласта

Основная проблема люминесцентных ламп – это их частые поломки. Но из плюсов стоит отметить, что и ремонт таких источников света довольно прост: важно определить истинную причину выхода из строя. Сегодня расскажем, как простым способом проверить балласт на работоспособность.

Перед тем как проверить светильник, отключите его от электричества.

Для этого потребуется взять обычную переноску (лампу с проводами), а на концы жил подсоединить канцелярские скрепки. Такое нехитрое приспособление позволит легко закоротить контакты, выходящие на лампу. Далее производятся такие действия:

  • С обесточенного светильника снимается прозрачная колба. Вынимается из патронов лампа;
  • Изогнутую скрепку вставляем в патрон таким образом, чтобы замкнуть оба контакта. Во второй патрон подсоединяется другой провод, идущий от переноски;
  • После этого подается напряжение на светильник.

Если нить накаливания зажглась, значит, балласт еще «живой». Следовательно, причина не в этом, и придется разбирать корпус, чтобы проверить остальные пусковые и регулировочные устройства.

Замена электронного балласта в люминесцентных светильниках производится достаточно быстро: достаточно приобрести устройство с такими же пусковыми характеристиками. При подключении должна соблюдаться предыдущая схема. В некоторых случаях даже не потребуется паять провода: соединение производится при помощи разъемных контактов.

[ads-pc-1][ads-mob-1]

Особенности ремонта

Наличие балласта обязательно не только для трубчатых конструкций люминесцентных ламп, но и для энергосберегающей компактной лампы дневного света. При этом схема компактных газоразрядных источников света более сложная, именно из-за своих небольших размеров. Это накладывает определенные ограничения для применения тех или иных конструктивных решений. Для того чтобы уместить в небольшом корпусе ЛДС все необходимые устройства, производителями используется упрощенная схема, что приводит к частым выходам из строя тех или иных элементов. Производить самостоятельный ремонт таких источников освещения очень затруднительно, опять же, из-за миниатюрных размеров всех деталей.

Мы рассмотрим некоторые нюансы, в которых заключается ремонт люминесцентных светильников.

Прежде чем начинать осмотр светильника и выявление детали, которой требуется ремонт, нужно проверить, поступает ли напряжение на лампу. Это лучше всего проверить тестером непосредственно на вводных клеммах. Чаще всего, чтобы добраться до них, требуется снять крышку и корпус светильника. Если напряжение поступает, то лампа обесточивается, и демонтируется, например, с потолка.

Ремонт ЛДС следует начинать с проверки работоспособности колбы. Для этого каждая пара контактов прозванивается тестером.

Обратите внимание! Если у вас корпус лампы на 4 колбы, то важно знать, какой тип балласта в нем установлен. Если стоит электронный балласт, то при выходе из строя одной колбы, не будут работать все лампы. А при установке дроссельного – только одна пара.

Далее ремонт продолжается визуальным осмотром на предмет выявления почерневших деталей или оплавленных проводов. Если этого не выявлено, следует прозвонить каждое устройство.

Типовые неисправности

В электромагнитных устройствах чаще всего требуют ремонт следующие элементы:

  1. Стартер. Самый простой способ проверить его работоспособность, параллельно подключить 100% рабочий стартер. Здесь важно использовать аналогичный прибор по мощности и рабочему напряжению;
  2. Дроссель. В случае если замена стартера не решила проблему, потребуется произвести прозвонку обмотки дросселя. Можно сразу заменить новым устройством с такими же параметрами.

Ремонт светильника, имеющего электронный пуск, заключается в замене балласта, который мы описывали выше.

Теперь вы знаете не только устройство основных типов пускорегулирующих устройств ламп дневного света, но также знаете, как проверить и произвести ремонт основных элементов люминесцентных светильников.

Что такое электронный балласт для люминесцентных ламп и его виды

Что такое электронный балласт, принцип работы и его преимущества. Схемы электронных балластов для люминесцентных ламп, а также их ремонт.

Что такое балласт и для чего он нужен

Чтобы разобраться, для чего нужен балласт, необходимо понимать принцип работы люминесцентной лампы (ЛЛ). Рассмотрим ее устройство. Конструктивно любая люминесцентная лампа – стеклянная колба в виде трубки, в концы которой запаяны тугоплавкие спирали накаливания, являющиеся электродами. Колба заполнена инертным газом с небольшим добавлением металлической ртути. Изнутри она покрыта люминофором – веществом, способном излучать видимый свет при облучении его ультрафиолетом.

Конструкция и принцип работы ЛЛ

При подаче напряжения на электроды в колбе возникает тлеющий разряд. Поток электронов активирует атомы ртути, и те начинают излучать в ультрафиолетовом диапазоне. Ультрафиолет воздействует на люминофор, заставляя его ярко светиться в видимом спектре.

Сам ультрафиолет поглощается люминофором и стеклом колбы. Он не покидает пределов лампы. Это исключает вредное воздействие ультрафиолетового излучения на человека.

Теоретически все просто. На самом деле в холодной выключенной лампе при подаче рабочего напряжения на электроды разряда не произойдет, поскольку ртуть находится в конденсированном состоянии, а сопротивление инертного газа между электродами слишком велико. При запуске ртуть начинает испаряться, сопротивление газового промежутка между электродами резко падает, и тлеющий разряд в колбе переходит в неуправляемый дуговой. Для нормальной работы лампы необходимо выполнение двух условий:

  1. Запуск.
  2. Поддержание рабочего тока через колбу.

Этим и занимаются балласты, или пускорегулирующие аппараты (ПРА). Без них ни одна люминесцентная лампа работать не может.

к содержанию ↑

Источник: http://lampaexpert.ru/vidy-i-tipy-lamp/lyuminestsentnaya/ballast-dlya-lamp

Что такое

Балласт для ламп дневного света – это пускорегулирующий аппарат. Данное устройство подсоединяется между разрядными лампами и сетью. Это делается для ограничения подачи тока и его регулировки до нужного значения. Газоразрядный источник света с отрицательным сопротивлением – отличный пример данной схемы.

Источник: http://osvescheniepro.com/lampy/lyuminestsentnye/ballast.html

Что-то не так?


Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

Источник: http://qrz.ru/schemes/contribute/technology/ballast.shtml

Особенности подключения ЛЛ к сети

Люминесцентная лампа – практичный и экономный модуль, предназначенный для организации осветительных систем в бытовых, промышленных и технических помещениях.

Единственная сложность состоит в том, что напрямую подключить прибор к централизованным электроподающим коммуникациям не представляется возможным.

Электромагнитный балласт потребляет около 25% мощности осветительного прибора, таким образом на четверть снижая его эффективность и уровень КПД

Это обусловлено тем, что создание стойкого активирующего разряда в лампах люминесцентного типа и последующее ограничение возрастающего тока требуют организации некоторых специфических физических условий. Именно эти проблемы решает установка балластного прибора.

Источник: http://sovet-ingenera.com/elektrika/svetylnik/ballast-dlya-lyuminescentnyx-lamp.html

Введите данные для входа

Новый пользователь?

Зарегистрироваться

Либо войдите через сервисы:

Источник: http://growerline.ru/ballasts/epra_600/

Виды

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Мнение эксперта

Виктор Гольштейн

Эксперт по медицинскому оборудованию. Начинающий блогер.

Задать вопрос эксперту

Особенность: сокращение максимального сопротивления дросселя. При остывшем стартере биметаллические электроды размыкаются. После размычки люминесцентной цепи, в индукционную катушку поступает импульс высокого напряжения. В процессе происходит розжиг лампы.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

Плюсы Минусы
Высококлассный уровень надежности, доказанный практикой и временем. Долгий запуск – на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции. Повышенный расход электроэнергии.
Удобство эксплуатации модуля. Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей. Слышен гул работы дросселя.
Количество фирм производителей. Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

Мнение эксперта

Виктор Гольштейн

Эксперт по медицинскому оборудованию. Начинающий блогер.

Задать вопрос эксперту

ВАЖНО: Балластник представляет собой легкое устройство, которое еще называют электронным пускорегулирующим аппаратом (ЭПРА).

Существуют следующие преимущества применения в качестве детали к люминесцентным лампам блоков ЭПРА:

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства Недостатки
Автоматическая настройка балласта под различные виды ламп. Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Источник: http://osvescheniepro.com/lampy/lyuminestsentnye/ballast.html

Для чего нужен балласт?

Газоразрядные лампы, в большинстве, за приятным исключением
некоторых типов ксеноновых ламп, которые не используются в аквариумах, имеют отрицательное
сопротивление, т.е. увеличение тока, приводит к уменьшению напряжения на лампе.
Поэтому, приходится в схему лампы вводить балласт, ограничивающий ток. Также балласт
служит и для создание напряжения зажигания лампы, если напряжение питающей сети
недостаточно для этого.

По принципу действия балласты для
и схожи. Безусловно,
это не значит, что они взаимозаменяемы. При выборе балласта надо смотреть на тип
лампы.

Ниже рассмотрены основные типы и параметры балласта. Данный
раздел не является исчерпывающим описанием устройств работы балластов и другой
регулирующей аппаратуры и предназначена для того, чтобы дать общее представление
о схемах включения ламп.

 
назад к оглавлению 

Источник: http://odstroy.ru/elektronnyj-ballast-dla-luminescentnyh-lamp-cto-eto-takoe-i-shemy-podklucenia/

Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Источник: http://lampagid.ru/vidy/lyuminestsentnye/elektronnyj-ballast

Регистрация

Уже зарегистрированы?

Авторизоваться

+7 (495) 191-9420

г. Москва, улица Кусковская дом 16

  • Каталог
  • Бренды
  • Гроугид
  • Готовые решения
  • Акции

Корзина0

Избранное0

Сравнение0

  • Главная страница
  • Освещение для растений
  • Электронные (ЭПРА)
  • ЭПРА 600 Вт
Фильтр

Источник: http://growerline.ru/ballasts/epra_600/

Варианты схем подключения

Схему подключения люминесцентной лампы через электромагнитное пускорегулирующее устройство мы рассмотрели. Она стандартная и без вариаций. Обычно дополняется конденсатором, подключаемым параллельно светильнику. Он служит для снижения реактивной мощности, которую потребляет любая реактивная нагрузка, в том числе дроссель.

Схема люминесцентного светильника с ЭмПРА и компенсационным конденсатором

К одному дросселю можно подключить две люминесцентные лампы. При этом необходимо выполнить следующие условия:

  1. ЛЛ имеют одинаковую мощность.
  2. Мощность балласта равна сумме мощностей ЛЛ.
  3. ЛЛ рассчитаны на рабочее напряжение 110 В (при питании от сети 220 В).
  4. Стартеры рассчитаны на рабочее напряжение 110 В.

Схема подключения двух ламп к одному дросселю выглядит так (мощности дросселя 36 W  и ламп 2х18 W условные):

Схема светильника с двумя люминесцентными лампами на одном ЭмПРА

Важно! Для эффективной компенсации реактивной мощности необходимо подобрать конденсатор соответствующей емкости. Она зависит от мощности светильника. К примеру, для лампы 18 Вт необходим конденсатор емкостью 4.5 мкФ. В светильник с лампой 60 Вт устанавливается емкость 7 мкФ. Конденсаторы должны быть неполярными и рассчитаны на рабочее напряжение не ниже 400 В. Обычно используют бумажные конденсаторы МБГО и МГП.

Поскольку электронный балласт, как правило, имеет в составе пусковое устройство, подключить к нему ЛЛ проще. Для сборки светильника понадобятся лишь провода. Самый простой пример – одна лампа, один ЭПРА.

Стандартная схема подключения ЛЛ через электронный балласт

Существуют балласты, работающие с несколькими лампами. Для примера ниже приведены схемы подключения ЭПРА на 2 ЛЛ.

Варианты подключения ЭПРА для двух ламп

Схема подключения балласта, рассчитанного на работу с четырьмя ЛЛ, выглядит так:

Схема подключения балласта на 4 люминесцентные лампочки

Универсальные приборы в зависимости от схемы включения могут работать с произвольным количеством ЛЛ разной мощности.

Универсальный балласт и схемы его включения

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все приведенные схемы являются общими. Каждый ЭПРА может включаться особым образом. Поэтому прежде чем взяться за монтаж, необходимо выяснить схему включения. Она есть в сопроводительной документации и, как правило, наносится на корпус прибора. Там же указана мощность ламп и диапазон питающих напряжений.

Схема подключения ЭПРА находится на его корпусе к содержанию ↑

Источник: http://lampaexpert.ru/vidy-i-tipy-lamp/lyuminestsentnaya/ballast-dlya-lamp

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Источник: http://lampagid.ru/vidy/lyuminestsentnye/elektronnyj-ballast

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Источник: http://lampagid.ru/vidy/lyuminestsentnye/elektronnyj-ballast

Как проверить

Перед проверкой нужно снять трубку, после этого закоротить нити накала, а после, между ними, подключить к питанию лампу накаливания на 220 В. Специалисты рекомендуют не включать в сеть любую схему без лампочки. Работающая лампочка, после подключения системы к цепи, укажет на исправность балласта.

Более подробно об определении неисправностей люминесцентных ламп.

Источник: http://osvescheniepro.com/lampy/lyuminestsentnye/ballast.html

Плюсы и минусы.

Подводя итоги, можно сказать, что, как и любое электронное изделие, электронный пускатель обладает достоинствами и недостатками.

Плюсы

  • Больший срок эксплуатации лл.
  • Больший КПД, меньшие потери (как минимум, отсутствует постоянное перемагничивание сердечника дросселя). Экономия до 30 процентов.
  • Нет реактивных выбросов в сеть питания. Не создают помехи другой аппаратуре.
  • Отсутствие мерцания при пуске и эффекта стробирования при работе.
  • Автоматика отключается при выходе лампы из строя.
  • Плавный прогрев электродов.
  • Стабильный световой поток при скачках напряжения.
  • Возможность работы и на постоянном токе (не все модели).
  • Имеют защиту от короткого замыкания.
  • Отсутствие характерного шума.
  • Возможен запуск ламп при низких температурах окружающей среды.

Минусы

  • Некачественные, дешевые электронные балласты – недолговечны.
  • Главный недостаток – цена (они окупаются со временем).
  • Часть моделей не совместимы со светодиодными аналогами люминесцентных ламп.

Источник: http://vamfaza.ru/epra/

Схемы ЭПРА

Вряд ли имеет смысл собирать электронный балласт своими руками. Даже качественные модели стоят не так много, чтобы оправдать затраты времени на сборку. Разве что вам хочется сделать что-то самостоятельно. Работающая самостоятельно сделанная вещь, безусловно, приносит моральное удовлетворение. В сети есть масса схем, но многие из них абсолютно нерабочие. В этом пункте приведем рабочие — на базе микросхем или без них.

Схема электронного балласта для ламп дневного света на базе транзисторных ключей

ЭПРА на базе микросхемы IR2520D фирмы IR с диапазоном рабочей частоты от 35 кГц до 80 кГц

Схема электронного балласта на микросхеме UBA2021 фирмы NXP. Рабочая частота 39 кГц

Балласт с микросхемой ICB1FL02G и частотой 40 кГц

Источник: http://odstroy.ru/elektronnyj-ballast-dla-luminescentnyh-lamp-cto-eto-takoe-i-shemy-podklucenia/

способы реализации электронного балласта для люминесцентных ламп, схемы устройства

Основным фактором нормальной работы люминесцентных ламп является вид электрического тока. Так как эти осветительные устройства работают от постоянного электротока, в их схему приходится устанавливать пускорегулирующий аппарат (ПРА) или балласт. Наиболее популярным является electronic ballast, обладающий рядом преимуществ перед электромагнитным агрегатом.

Основные разновидности

Сегодня существует два типа балласта – электромагнитный и электронный. Они отличаются принципом работы, поэтому стоит познакомиться с каждым из них.

Электромагнитный балласт

Этот вид реализации предполагает последовательное подключение дросселя к лампе. Также для работы электромагнитного ПРА требуется стартер, с помощью которого регулируется процесс зажигания светильника. Эта деталь представляет собой газоразрядную лампу, внутри колбы которой находятся биметаллические электроды.

Работает устройство следующим образом:

  1. Когда на стартер поступает напряжение, биметаллические электроды замыкаются от нагрева. Это приводит к увеличению силы тока, так как ограничивать его может лишь внутреннее сопротивление обмоток дросселя.
  2. С ростом показателя электротока начинают разогреваться электроды люминесцентной лампы.
  3. При остывании стартера размыкаются биметаллические электроды.
  4. В момент разрыва цепи стартером в катушке дросселя возникает импульс высокого напряжения, что и приводит к зажиганию осветительного прибора.

Когда люминесцентное устройство переходит в штатный режим работы, напряжение на нем и стартере оказывается на 50% меньше сетевого, а этого недостаточно для срабатывания второго элемента. В результате стартер переходит в отключенное состояние и перестает влиять на работу осветительного прибора.

Электромагнитный балласт отличается низкой стоимостью и простой конструкцией. Длительное время эти устройства активно использовались при изготовлении светильников, однако они имеют ряд недостатков:

  1. Для перехода люминесцентного устройства в рабочий режим требуется около 3 секунд.
  2. Осветительные приборы с электромагнитным балластом во время работы мерцают, что негативно влияет на органы зрения.
  3. Расход энергии у этих устройств значительно выше по сравнению с электронным балластом.
  4. Дроссель шумит во время работы.

Из-за этих недостатков сегодня электромагнитный балласт для ламп используется крайне редко.

Электронная реализация

Электронные устройства представляют собой преобразователи напряжения, с помощью которых обеспечивается питание люминесцентных ламп. Хотя создано много вариантов электронного балласта, в большинстве случаев используется единая блок-схема. При этом производители могут вносить в нее определенные изменения, например, добавить схему управления яркостью осветительного прибора.

Перевод люминесцентного светильника лампы в штатный режим работы с помощью электронного ПРА чаще всего осуществляется одним из двух способов:

  1. До момента подачи на катоды лампы зажигающего напряжения они предварительно нагреваются. Это позволяет избавиться от мерцания, а также увеличить КПД осветительного прибора.
  2. В конструкцию светильника установлен колебательный контур, который входит в резонанс до того, как в колбе лампы появится разряд.

При использовании второго способа схема электронного балласта реализована так, что нить накала лампочки является частью контура. Как только в газовой среде появляется разряд, изменяются параметры колебательного контура, после чего он выходит из резонанса. В результате напряжение снижается до рабочего.

Схема пускорегулирующего аппарата для ламп 36w.

Сегодня большое распространение получили компактные люминесцентные устройства с цоколем Е14 и Е27. В них балласт устанавливается непосредственно в конструкцию прибора. Пример схемы электронного балласта для люминесцентных ламп 18w приведен ниже.

Поиск неисправностей и ремонт

Если возникли проблемы с работой газоразрядных ламп, часто ремонт может быть проведен самостоятельно. Основной задачей в такой ситуации является определение источника проблемы – осветительный прибор либо балласт. Для проверки электронной схемы необходимо предварительно удалить линейную лампочку, замкнуть электроды и подключить обыкновенную лампу. Если она начала светиться, то проблема не в балласте.

Для поиска неисправности в люминесцентных осветительных устройствах сначала требуется поочередно прозвонить все элементы начиная с предохранителя. Если эта деталь оказалась рабочей, необходимо переходить к проверке конденсатора и диодов. Если все элементы пускорегулирующего аппарата оказались исправными, стоит проверить дроссель. Своевременный ремонт осветительного устройства позволит увеличить срок его эксплуатации.

Как проверить люминесцентную лампу мультиметром?

Проверка исправности лампы дневного света и ее элементов

Лампы этого типа (ЛДС) относятся к классу люминесцентных приборов, использующихся для освещения. Они обладают рядом преимуществ по сравнению с лампами накаливания. В то же время сама лампа является только составной частью осветительного прибора, используется в качестве излучателя и работает в составе схемы совместно с пускорегулирующей аппаратурой. Прибор является далеко не безотказным в части возникающих при его эксплуатации неисправностей. Чтобы устранять возникающие неполадки, нужно уметь проверять лампу дневного света с тестером.

Почему перегорают люминесцентные лампы?

Сама лампа представляет собой стеклянную колбу различной геометрической формы, изготовленную из хрупкого кварцевого стекла. Ее внутренние стенки покрыты люминофором – материалом, способным преобразовывать спектр излучения ультрафиолетовых длин волн в видимую часть излучения – дневную. Кварц со временем теряет свою прозрачность.

Внешние механические воздействия на колбу могут привести к появлению в ее структуре микротрещин, следствием которых может быть попадание в герметичную полость воздуха. Это приводит к перегоранию ЛДС. Для свечения необходим тлеющий разряд внутри корпуса, который обеспечивают катоды устройства, представляющие собой вольфрамовые нити накаливания в виде разогреваемых электрическим током спиралей.

Они покрыты слоем щелочного металла для продления срока службы лампы, который при частом ее включении-выключении осыпается. Это, в свою очередь, приводит к перегреву катода и выходу его из строя. Со временем уменьшается эмиссия электрода или его способность испускать электроны со своей поверхности. Их количество уже не способно поддержать тлеющий разряд.

Выявление неполадок и их устранение

Для начала надо вспомнить, что электролюминесцентный светильник выполняет свои функции освещения только тогда, когда согласованно работают все его составные части – сама лампа, балласт, который может быть либо электромеханическим, либо электронным. Таким образом, причины неисправной работы светильника могут находиться как в схеме пускорегулирующей аппаратуры, так и быть отказом работы ЛДС из-за ее старения или нарушения условий эксплуатации.

Проверять люминесцентную лампу (светильник) лучше всего удается при наличии работоспособного аналога. Надо обеспечить удобный доступ ко всем его компонентам. Таким способом можно правильно провести анализ неисправности и дать рекомендации по устранению даже при самостоятельном ремонте. Расскажем, как проверить в домашних условиях лампу дневного света.

Целостность спиралей электродов

Спирали электродов находятся внутри газонаполненной трубки ЛДС и при производстве припаяны к ножкам цоколей лампы. Они расположены в торцевых частях колбы. Таким образом, используя мультиметр в режиме измерения сопротивлений, можно прозвонить лампу дневного света.

Для этого устанавливаем на тестере минимальный предел и подключаем его щупы между электродами. Измеренная величина сопротивления каждой исправной спирали должна находиться в пределах (10-20) Ом. При оборванной нити накала мультиметр покажет бесконечно большую величину на любом пределе измерения. Так своими руками можно определить возможный обрыв. При таком дефекте ЛДС подлежит замене.

Неисправности в электронном балласте

ЭПРА или электронный балласт выполняет функции обеспечения цикла запуска поджига используемой совместно с ним люминесцентной лампы и поддержания тлеющего разряда в колбе в процессе ее работы. Нагревательные спирали ЛДС, обладающие некоторой индуктивностью, используются в схеме автогенератора в диапазоне (30-130) кГц. Применение высокой частоты исключает мигание светового потока такого светильника.

На выходе схемы используются мощные транзисторные ключи. Питание активных элементов ЭПРА постоянным током производится от встроенного выпрямительного устройства, питающегося от розетки сети 220 В 400 Гц. Электронный балласт можно включать только вместе с лампой. Схема подключения электронного балласта изображается на корпусе каждого готового изделия. Проверка на исправность выполняется включением в сетевую розетку и контролем яркости свечения, которую можно установить вручную специальным регулятором.

При возникновении неисправности пользователю можно проверить исправность ЛДС путем ее замены, не забывая «обесточивать» перед этим схему. При замене надо использовать только рекомендуемую лампу. Информация о ней содержится на корпусе изделия. В случае неудачи остается только ремонт электронного балласта специалистами из мастерской.

Как проверить дроссель люминесцентного светильника?

Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА).

На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.

После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.

Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.

Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта.

Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.

Как проверить стартер?

Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.

Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.

Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск.

Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.

Как проверить емкость конденсатора тестером?

При обесточенной схеме и присоединении щупов тестера в режиме омметра к выводам стартера, к которым подключен конденсатор, он не должен прозваниваться и иметь бесконечно большое сопротивление.

Включение люминесцентной лампы без дросселя

Для решения этого вопроса собирается схема выпрямления напряжения с ее удвоением. Выводы каждой нити накала объединяются. Постоянного напряжения такой схемы хватит для создания тлеющего разряда внутри ЛДС.

Как тестером проверить лампу дневного света (люминесцентную) в домашних условиях

Лампы дневного света по-прежнему являются одними из самых популярных. Причина кроется в меньшем потреблении энергии по сравнению с аналогом, оснащенным нитью накала и более низкой ценой.

Однако, как и у большинства механизмов, рано или поздно в работе прибора возникают сбои.

Существует несколько способов того, как проверить люминесцентную лампу и выявить причину поломки, а также специальные методы для диагностики ее отдельных конструкционных элементов.

Что и как можно проверить

Люминесцентная лампа отличается не самой сложной конструкцией и довольно простым принципом работы. Это энергосберегающий вид источника света, который может выдавать одинаковую степень яркости с лампами накаливания, но при этом потреблять в 6-7 раз меньше энергии.

Колба прибора подвергается вакуумированию и закачиванию в освободившееся пространство инертного газа с небольшой каплей ртути (30 мг). Рядом с основанием располагаются электроды. Каждое газоразрядное устройство оснащено стартером, пускорегулирующей аппаратурой и дросселем.

Первоначально электрический ток, возникающий в пусковом устройстве люминесцентной лампы, накаляет биметаллические контакты, затем разогревает электроды, после чего размыкает цепь. В тот же момент дроссель подает дуговой разряд на электроды, в результате чего возникает ультрафиолетовое излучение. Проходя через люминофорное покрытие, УФ-лучи становятся видимыми для человеческого глаза.

Таким образом, основной причиной поломки люминесцентной лампы может считаться выход из строя:

Проблема также может заключаться в малой емкости конденсатора или перегоревших вольфрамовых нитях.

Важно: при наличии в конструкции ЭПРА стартер в ней не предусмотрен.

Для выявления поломки используется ряд приборов. Однако чаще всего это простой мультиметр или индикаторная отвертка.

Электромагнитная пускорегулирующая аппаратура

Электронная пуско-регулирующая аппаратура представляет собой плату с напаенными на нее различными элементами. Самый простой способ проверки – это замена данного элемента на рабочий и включение прибора в сеть. Если лампа работает, значит, проблема была именно в балласте.

Прозвонить мультиметром всю плату с 2-ух концов не получится. Потребуется проверять каждый элемент по отдельности. Алгоритм работ будет следующим:

  1. Предохранитель. Для того чтобы убедиться в его работоспособности понадобится проверить его целостность.
  2. Конденсаторы. Повреждение данных элементов люминесцентной лампы можно определить визуально, по вздутию нижней секции «бочонков». Также следует уделить внимание местам пайки, которые могут быть нарушены и как следствие, контакт будет потерян.
  3. Транзистор. Эта деталь ЭПРА чаще всего перегорает из-за внезапных скачков напряжения в электросети. Проверить работоспособность транзистора можно с помощью мультиметра. Для его замены достаточно снять такой же с другой платы или приобрести его в отделе радиодеталей.
  4. Диоды. Один из самых простых элементов устройства, который также можно прозвонить любым мультиметром с соответствующим режимом проверки.

Сравнить полученные прибором данные можно с таблицей сопротивлений взятой из интернета.

Как проверить дроссель

Основное предназначение дросселя – это регулировка электротока и предотвращение перегорания спирали из-за высокого перегрева. Внешне он выглядит как обмотка из тонкой проволоки, дополненная сердечником из металла. Включение в работу происходит последовательно. Установка проводится параллельно пусковому устройству.

О неисправности детали свидетельствует:

  • сильное гудение светильника;
  • быстрое загорание люминесцентной лампы с последующим угасанием и проявлением темных пятен на ее колбе;
  • сильный нагрев колбы с момент работы;
  • наличие мерцания.

Провести проверку дросселя можно и дома, используя мультиметр. Чаще всего причиной повреждения выступает:

  1. Обрыв. Это означает, что в обмотке один из проводов был оборван. Выявляется данная проблема с помощью тестера. Для этого достаточно выставить режим «сопротивление» и присоединить его щупы к выводам ограничителя. Значение «бесконечность» будет означать обрыв провода.
  2. Замыкание 2-ух обмоток. Некоторые модели оборудованы 2-мя обмотками, которые изолируются друг от друга, но при нарушении этого условия могут замыкаться. О замыкании свидетельствуют малые значения сопротивления на экране мультиметра.
  3. Замыкание витков на 1-ой обмотке. Обнаружить эту неисправность можно только при оплавлении нескольких проводов в обмотке. Чтобы определить дефект необходимо знать основные значения мощности и соответствующего ему сопротивления. Так при показателях в 20 ВТ – сопротивление должно варьироваться от 55 до 60 Ом, при 40 Вт – 24-30 Ом, а при 80 Вт – не более 20 Ом.
  4. Дефект магнитопровода. Металлический сердечник дросселя изготовлен из ферромагнитов. При активной или неправильной эксплуатации на их поверхности могут возникнуть сколы или трещинки, что негативно скажется на индуктивности.
  5. Металлические части корпуса. Свидетельство этой поломки – нулевое сопротивление катушки относительно корпуса. Испытание проводится мультиметром с помощью щупов, подносимых к металлическим элементам корпуса. Проверка производится в выставленном режиме «прозвон цепи».

Важно! Если же дроссель исправен, то причину неработоспособности люминесцентной лампы нужно искать в другом.

Как проверить стартер

Стартер осуществляет выполнение 2-ух основных функций: замыкание и разрыв цепи. В первом случае происходит нагрев электродов, во втором – образование импульса повышенного напряжения (после размыкания цепи).

Поломка стартера является наиболее частой причиной выхода из строя люминесцентной лампы. О дефекте в работе этой детали свидетельствует мигание лампы во время эксплуатации или полое отсутствие ее включения.

Самый простой способ проверки на исправность – это замена на аналогичный работающий прибор. Однако далеко не всегда можно найти запчасть той же мощности под рукой. Проверить работоспособность детали можно даже без наличия измерительного прибора. Достаточно организовать простейшую электроцепь из лампы накаливания мощностью 40 Вт и стартера с питанием, заведенным на розетку в 220 В.

Если лампочка загорится, и будет работать с «подмигиванием» в долю секунды, значит, элемент находится в рабочем состоянии. В ином случае (если не загорится или будет гореть не прерываясь) – пусковое устройство неисправно.

Важно! При работе в данной схеме должны быть слышны периодические щелчки, свидетельствующие об исправной работе контактов.

Проверить стартер на сопротивления невозможно. Связано это с его особым строением.

Проверка емкости конденсатора

Снижение КПД более чем на 30-40% свидетельствует о проблемах в работе конденсатора. Средний показатель емкости при мощности 35-40 Вт равен 4,5 мкФ. Ее понижение приводит к уменьшению яркости, а увеличение – к появлению эффекта мерцания.

Проверить работоспособность этой составляющей лампы дневного света можно тестером. Если при соприкосновении выводов с щупами, на экране всплывает значение менее 2 МОм – это прямое свидетельство существенной утечки тока.

Можно ли проверить мультиметром в домашних условиях

Самый простой способ проверки – это использование аналогичного светильника с установкой в него люминесцентной лампы и последующим включением в сеть. Но далеко не всегда есть прибор с таким же видом патрона на замену. Кроме того, винтовая резьба цоколя и патрона может не совпасть, в итоге электрические контакты просто не замкнутся.

В этом случае, в домашних условиях здорово выручает весьма распространенный измерительный прибор – мультиметр. Среди его режимов можно найти «прозвонку», которая легко определяет целостность электрической цепи.

Проводится проверка очень просто:

  • выбирается соответствующий режим;
  • первый щуп ставится на центральный контакт, а второй – на боковой;
  • снимаются показания с прибора.

Второй режим, часто используемый для диагностики – это «сопротивление». В ходе проверки также применяются щупы и исходные значения сравниваются с теми, что выявляет мультиметр. Небольшая погрешность в измерениях может проявляться за счет слабого касания контактов щупами.

Выявление неисправностей лампы

Определить неисправность лампы дневного света можно и по внешним признакам, а также по особенностям ее работы.

Признак Причина
Потемнение боковых частей колбы Полная отработка срока эксплуатации
Лампа светится на концах, но полного зажигания не происходит Выход из строя стартера или конденсатора
Мигание и свечение лампы только с одного конца Неисправность в держателе или в проводке
Изменение спектра свечения Нарушение целостности слоя или свойств люминофорного покрытия
Гудение работающего светильника Неисправность дросселя
Перегрев балластников Нарушение изоляции пластин
Снижение светового потока Проблемы с конденсатором
Оранжевое свечение на концах лампы Разгерметизация колбы
Включение защиты при запуске Пробой на входе компенсирующего конденсатора
Загорание и быстрое угасание лампы, начиная с ее концов Неисправность дросселя
Загорание и отключение Проблемы с пусковым устройством

И все же любую из возможных причин стоит дополнительно диагностировать и проверить с помощью применения специального оборудования или построения простейшей электроцепи.

Основные выводы

Проверка газоразрядного устройства сложнее диагностики обычной лампы накаливания. В первую очередь, это связано с ее более сложным устройством и наличием дополнительных элементов.

  1. Причиной выхода из строя лампы может быть поломка одного из ее элементов: ограничителя, стартера, ЭПРА или конденсатора.
  2. Проверить их исправность в большинстве случаев можно с помощью тестера-мультиметра.
  3. По ряду внешних признаков можно диагностировать причину поломки люминесцентной лампы.

Выяснить, почему люминесцентная лампа перестала работать можно и дома, не прибегая к помощи специалиста. Для этого достаточно иметь под рукой измерительный прибор и сводную таблицу значений сопротивления.

Проверка исправности лампы дневного света и ее элементов – Почему перегорают?

С приходом электричества началась другая жизнь: появились электроплитки, холодильники, радиоприемники, телевизоры и другая техника, без которой трудно представить наше существование в окружающем мире. Для освещения придумано и придумываются различные средства. Одно из распространенных изобретений – люминесцентная лампа или лампа дневного света (ЛДС), имеющая различные формы и параметры. Она расходует во много раз меньше энергии по сравнению с лампой накаливания, давая столько же света. ЛДС имеет ряд преимуществ перед остальными светильниками:

  1. высокая степень светоотдачи;
  2. разнообразие оттенков света;
  3. большой срок эксплуатации;
  4. высокий КПД; рассеянный световой поток.

В силу некоторых причин ЛДС перестает светиться, не всегда имея видимых признаков неполадки. Пришла пора выяснить: как проверить лампу дневного света тестером (мультиметром).

Почему перегорают люминесцентные лампы

ЛДС имеют большой срок эксплуатации, но иногда перегорают. Случается такое чаще всего при включении светильника. Возникающая в колбе мощная дуга нагревает вольфрамовые спиральные электроды до высокой температуры, разрушающей металл и приводящей к перегоранию спиралей. Для увеличения сроков работоспособности нити на вольфрам наносят тонкий слой защитного металла. Он позволяет снизить температуру и продлить срок службы нити. При частом включении и выключении защитный слой выкрашивается, оголенные участки вольфрамовой нити перегорают, лампа перестает работать.

Другая причина перегорания дает о себе знать по появлению на изделии свечения, окрашенного в оранжевый цвет. Это значит, в колбу ЛДС проник воздух, светильник гореть не будет.

Выявление неполадок и их устранение

Все неисправности ЛДС сводятся к следующему:

  1. изделие не включается;
  2. светильник мерцает и выключается;
  3. мерцание длится долго, изделие не загорается;
  4. гудение без включения;
  5. ЛДС горит, но с мерцанием.

Эти проявления приводят к порче зрения, поэтому ремонтировать светильник следует немедленно. Для проверки люминесцентной лампы нужно иметь мультиметр для измерения сопротивления. Сначала меняют лампу на годную. Если она включается – дело в ней, не горит – применяем инструмент.

Распространенной причиной является ослабление контакта между электродами лампы и клеммами патрона. Их нужно почистить спиртосодержащим средством или ластиком, использовать для этого шкурку с мелким зерном или просто слегка подогнуть штырьки. Этот способ хорошо помогает при устранении неисправности в домашних условиях.

ЛДС не предназначена для работы при низких температурах окружающего воздуха и при больших скачках напряжения в сети (более 7%).

Целостность спиралей-электродов

При неполадках часто случаются причины, которые не всегда видны невооруженным глазом. В этом случае нужно прозвонить изделие мультиметром или проверить индикатором. Его переключатель нужно установить в положение, измеряющее сопротивление. Диапазон – самый малый из всех возможных. Щупами касаются штырьков и смотрят на табло. Если спираль порвана или сгоревшая – на табло светится 0, если она целая – цифры 3-16 Ом. Порванная или сгоревшая нихромовая нить не восстанавливаются, изделие требуется заменить.

Неисправности в электронном балласте

Часть светильников с ЛДС работают только с подключением электронного балласта ЭПРА (пускорегулирующая аппаратура). Ее тоже нужно проверить на исправность. Сначала желательно заменить балласт на рабочий и включить светильник. Свидетельством неисправности балласта будет свечение лампы. Неисправную аппаратуру можно привести в порядок своими руками в условиях дома.

Начинают ремонт с замены предохранителя. Если после этого нити начнут слабо светиться, это будет являться признаком пробоя конденсатора. Его заменяют на другой, рассчитанный на напряжение 2 кВ. Стандартные иногда устанавливаются на 250-400 В, при работе они сгорают.

Следующая часто выходящая из строя деталь балласта – транзистор. Он перегорает по причине скачков напряжения в сети. Эти скачки могут вызываться работой сварочных аппаратов, включенных в общую электросеть. Сгоревший транзистор меняется на подобранный из радиодеталей или снимается с подобного пускорегулирующего устройства. После выполнения всех ремонтных операций в светильник вставляется ЛДС мощностью 40 Вт и включается в сеть.

Как проверить дроссель люминесцентного светильника

ЛДС работает вместе с дросселем, который предназначен для регулировки тока и не дает возможности перегорания спиралей из-за перегрева. Это устройство представляет собой обмотку из проволоки с металлическим сердечником. Неисправность может находиться в дросселе, если:

  1. светильник сильно гудит;
  2. лампа загорается, но быстро гаснет с появлением темных пятен;
  3. ЛДС перегревается во время горения;
  4. внутри стеклянной колбы наблюдается сильное мерцание и бегающие змейки.

Неисправность чаще всего кроется в перегорании или обрыве обмотки, в потере изоляции. Для обнаружения причины нужно измерить сопротивление дросселя. Если оно бесконечное – есть обрыв обмотки. Малое сопротивление – потеря изоляции, приводящая к межвитковому замыканию.

Перед проверкой дросселя лампы дневного света мультиметром нужно вынуть стартер и закоротить контакты в патроне. На следующем этапе снять лампу и в каждом патроне замкнуть клеммы. Щупами прибора коснуться контактов. Сгоревший дроссель издает сильный характерный запах и имеет коричневые пятна на корпусе. Исправность дросселя свидетельствует о неисправности других деталей. Неисправный дроссель заменяется запасной деталью.

Как проверить емкость конденсатора тестером

При неисправности конденсатора в схеме КПД светильника снижается до 40%. Для изделий мощностью 36-40 Вт устанавливается конденсатор, имеющий емкость 4,5 мкФ. Если она ниже нормы – КПД снижается, при более высокой емкости лампа начинает мерцать. Для проведения измерений конденсатор должен прозваниваться тестером. При касании щупами выводов рабочей детали прибор показывает бесконечное сопротивление. Если оно меньше 2 Мом – это признак большой утечки тока.

Принцип работы

Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.

Строение люминесцентной лампы

Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.

Электромеханический дроссель

Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.

Схема люминесцентного светильника с ЭмПРА

Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.

Предъявляемые к балластному сопротивлению требования:

  • минимальные потери мощности;
  • малые вес и размер;
  • отсутствие гула;
  • температура накала не выше 600 градусов по Цельсию.

Другой значимый элемент ЭмПРА – стартер тлеющего разряда.

Стартер тлеющего разряда

Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.

Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.

Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.

Схема подключения электронного балласта

Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.

Электронный балласт

Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.

Почему перегорают люминесцентные лампы

Часто лампы дневного света перегорают, что делает их похожими на обычные лампы накаливания. Во время включения светильника в колбе возникает электрическая дуга и происходит сильный нагрев спиральных электродов из вольфрама. Высокая температура приводит к разрушению нитей и перегоранию.

Для продления срока эксплуатации вольфрамовую нить покрывают слоем активного щелочного металла. Это стабилизирует тлеющий разряд между электродами и понижает температуру, сохраняя целостность нити на долгое время. Частое включение-выключение светильника разрушает защитное покрытие, оно осыпается. Разряд, проходя через оголенные части нити, точечно нагревает спираль, что приводит к перегоранию. Это видно на старых трубках как потемнение люминофора.

Перегоревшая лампа дневного света

Перегоревшая лампа дневного светаКолба не должна иметь повреждений, иначе лампа сгорит. Если на концах трубки обнаруживается оранжевое свечение, а лампа не загорается, – внутрь ЛДС попадает воздух. ЛЛ нужно менять.

Выявление неполадок и их устранение

Неисправность лампы дневного света выражается в:

  1. Полном отсутствии включения.
  2. Кратковременных мерцаниях лампы с дальнейшим включением.
  3. Продолжительном мерцании без дальнейшего включения.
  4. Гудении.
  5. Мерцании в режиме горения.

Это может неблаготворно сказаться на зрении человека, поэтому следует незамедлительно диагностировать поломку и приступить к ремонту светильника. Для этой цели понадобится мультиметр или тестер сопротивления.

Следует помнить! Чтобы понять, где неисправность, в лампе или в светильнике, нужно заменить ЛЛ на заведомо исправную. Если она загорится, это означает, что дело в лампе. Если нет – следует искать неисправность в светильнике.

Часто ЛЛ не горит из-за плохого контакта между штырьками лампы и контактами патрона. Держатели со временем изнашиваются и окисляются. Следует почистить их спиртосодержащей жидкостью, ластиком, мелкой шкуркой, а при необходимости подогнуть или заменить пластинки контактов для лучшего соприкосновения со штырьками. Следует помнить, что ЛДС не работает при температуре ниже –50 ˚С и при скачках напряжения более 7 %.

Целостность спиралей-электродов

Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой. Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась). Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.

Проверка целостности спиралей-электродов к содержанию ↑

Неисправности в электронном балласте

В лампах нового поколения используется электронная пускорегулирующая аппаратура (ЭПРА). Чтобы понять, исправен ли балласт, заменяют его на заведомо рабочий. Если светильник включился, это означает, что поломка была в нем. Старый балласт можно починить в домашних условиях. Сначала можно попробовать заменить предохранитель на аналогичный с таким же диаметром и плавкой вставкой. Если спиральные нити слабо светятся – пробит конденсатор между ними. Его нужно заменить на аналогичный, но с рабочим напряжением 2 кВ. В дешевых балластах ставят конденсаторы на 250–400 В, которые часто сгорают.

Устройство электронного балласта

Транзисторы могут перегореть из-за скачков напряжения. При работе сварочного агрегата или любой мощной техники ЛДС желательно выключать. Транзисторы можно взять из списанных балластов или подобрать по таблице. После замены любого элемента нужно проверить исправность светильника, вставив в него лампу мощностью 40 Вт.

Помните! Электронный балласт нельзя включать без нагрузки, он может быстро сломаться. Стоит уделить внимание контактам. При подключении ЭПРА нужно строго соблюдать полярность.

Как проверить дроссель люминесцентного светильника

Признаки неисправности дросселя:

  • гудение светильника из-за дребезжания пластин;
  • лампа зажигается нормально, потом темнеет по краям и гаснет;
  • перегрев ЛДС;
  • после включения внутри колбы бегают змейки;
  • сильное мерцание.

Проверка дросселя

Для проверки дросселя на исправность из светильника вынимают стартер и замыкают накоротко контакты в его патроне. Вынимают лампу и закорачивают контакты в патронах с обеих сторон. Мультиметр устанавливается в режим измерения сопротивления, щупы присоединяются к контактам в патроне лампы. Обрыв обмотки покажет бесконечное сопротивление, а межвитковое замыкание – значение (стрелка) около нуля.

Сгоревший дроссель выдаст себя паленым запахом и пятнами коричневого цвета. Неисправный элемент не подлежит ремонту и требует замены. Новый дроссель подбирают в соответствии с мощностью лампы.

Как проверить стартер

Если при включении ЛДС мерцает, но не загорается, – неисправен стартер. Отдельно от светильника прозвонить стартер мультиметром не удастся, так как без напряжения его контакты разомкнуты. Схема проверки данного элемента включает в себя лампочку 60 Вт и стартер, подключенные последовательно к сети 220 В.

Схема проверки стартера к содержанию ↑

Как проверить емкость конденсатора тестером

Неисправный конденсатор, находящийся между проводами сети питания, снижает КПД светильника до 40%. В рабочем состоянии КПД составляет 90%, что более экономично. Для ЛЛ до 40 Вт подойдет конденсатор емкостью 4,5 мкФ. Слишком низкая емкость снижает КПД, высокая – вызовет мерцание. Исправность конденсатора проверяют мультиметром с соответствующей функцией.

Включение люминесцентной лампы без дросселя

Перегоревшим лампам можно дать вторую жизнь, если подключить их в схему без дросселя и стартера, применив постоянное напряжение. Для такой цели применяется двухполупериодный выпрямитель с удвоением напряжения. Когда яркость уменьшится со временем, нужно перевернуть лампу в светильнике, чтобы поменять полюса подключения. Следует подбирать радиоэлементы для схемы с напряжением до 900 В, такое значение достигается при пуске.

Схема подключения сгоревшей лампы к содержанию ↑

Утилизация прибора

Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.

Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.

Проверка исправности лампы дневного света и дросселя

Один из наиболее востребованных источников искусственного освещения – люминесцентные лампы. Они потребляют в 5-6 раз меньше энергии, нежели стандартные лампы накаливания, но при этом светят с той же яркостью. Светодиодные светильники с драйверами являются более экономичными, но в силу своей дороговизны им не удалось вытеснить с рынка лампы дневного света (ЛДС). При длительной эксплуатации люминесцентные лампы могут утратить свою работоспособность. Устранить такие неполадки можно, но для этого нужно знать, как проверить лампу дневного света, в том числе при помощи мультиметра.

Устройство и принцип работы ламп дневного света

Масса достоинств ЛДС обусловлена тем, что они представляют собой приборы газоразрядного типа, в которых ультрафиолетовое излучение формируется благодаря электрическим разрядам в испарениях ртути.

Особенность здесь одна – видимое освещение от лампы возникает только после того, как ультрафиолетовое излучение модифицируется. Такое преобразование возможно лишь при применении тех соединений, в которых содержится галофосфат кальция или иные составы с наличием люминофоров.

По принципу функционирования ЛДС можно приравнять к источникам освещения газоразрядного типа. В колбу из стекла помещают инертный газ, предварительно откачав из неё воздух, а после добавляют в газ 30 мг ртути. В оба края сосуда устанавливаются спиралевидные электроды, схожие с нитью накаливания. Они с каждой стороны припаиваются к 2 контактным ножкам, которые помещаются в пластины диэлектрического типа. Внутреннюю поверхность трубки покрывает слой люминофора.

Включается дневной светильник при помощи пускорегулирующего устройства – электромагнитного или электронного типа. Электромагнитное устройство включает в себя основной элемент – дроссель. Это сопротивление балластного типа в форме индуктивной катушки с сердечником из металла, которое последовательно соединено с люминесцентной лампой.

Дроссель необходим для поддержки равномерности разряда и корректировки тока при надобности. Когда лампочка включается, дроссель подавляет пусковой ток до того момента, пока спиралевидные нити не разогреются, а после выдаёт максимальное напряжение от самоиндукции, вследствие чего ЛДС зажигается.

Причины перегорания люминесцентных ламп

Нередко ЛДС перегорает, что придаёт ей схожести с традиционной лампой накаливания. При включении в колбе формируется дуга из электричества, вследствие чего спиралевидные электроды из вольфрама сильно нагреваются. Скачки высокой температуры влекут за собой разрушение и перегорание нитей.

Чтобы продлить эксплуатационный срок, на нить из вольфрама наносят слой активного щелочного металла. Разряд между электродами стабилизируется и снижается температура, благодаря этому нить намного дольше служит.

Учащённое включение/выключение лампы влечёт за собой разрушение защитного слоя, он просто опадает. Проходящий через оголённые нити разряд греет спираль в слабых точках, вследствие чего происходит перегорание.

Проверка цифровым тестером

С помощью цифрового тестера можно проверять целостность нитей накала. Выполнить это можно как в режиме прозвонки, так и в режиме проверки сопротивления. Необходимо выставить мультиметр в нужный режим и выполнить проверку спирали с обеих краёв трубки.

В режиме прозвонки, если спираль исправна, тестер выдаст характерный звук – зуммер.

В режиме проверки сопротивления при исправной спирали индикатор мультиметра высветит значение 5-10 Ом.

Перегорание нитей нагрева – наиболее распространённая поломка дневных ламп, которую легко обнаружить при помощи цифрового тестера.

Выявление неполадок и их устранение

ЛДС неисправна в таких случаях:

  • не включается;
  • временно мерцает перед включением;
  • долго мерцает, но не включается;
  • гудит;
  • мерцает при горении.

Целостность спиралей-электродов

Прозвонить спираль-электрод на присутствие сопротивления можно с помощью мультиметра. На приборе выставляется режим замера сопротивления, а после того щупы прикладывают к ножкам колбы с обеих сторон.

Если спираль неисправна, мультиметр продемонстрирует нулевое сопротивление – нить порвана. Целая спираль всегда показывает небольшое сопротивление – до 10 Ом. Если хотя бы одна из спиралей окажется неисправной, лампу необходимо менять. Восстановлению она не подлежит.

Неисправности в электронном балласте

Чтобы проверить исправность электронного балласта, его нужно заменить на рабочий. Если лампа зажглась, значит причина поломки заключалась в нём. Сломанный балласт можно починить самостоятельно. Вначале нужно сменить предохранитель на аналогичную модель с теми же характеристиками. Если нити светятся слабо – значит в конденсаторе между ними имеется пробой. Он также заменяется схожим, но с показателем рабочего напряжения 2 кВ. слабые модели будут быстро сгорать.

Вследствие скачков напряжения могут сгореть транзисторы. Их нужно менять. Взять новые можно из старых балластов. После замены необходимо проверить люминесцентный фонарь с помощью лампы на 40 Вт.

Как проверить дроссель люминесцентного светильника

Перед тем как проверить дроссель лампы дневного света мультиметром, необходимо ознакомиться с основными признаками его поломки:

  • гудение осветительного прибора;
  • лампа включается и через время гаснет, темнея по краям;
  • ЛДС перегревается;
  • внутри трубки появляются “змейки”;
  • светильник сильно мерцает.

Чтобы проверить дроссель на работоспособность, необходимо вытащить из светильника стартер, а потом замкнуть в его патроне контакты. Затем вынимается лампа и контакты в обеих патронах также закорачиваются. Мультиметр выставляется на замер сопротивления, после чего его щупы подсоединяются к контактам в ламповом патроне. Если имеется обрыв, прибор покажет нескончаемое сопротивление. При межвитковом замыкании прибор покажет нулевое значение.

Как проверить стартер

Если светильник стал мерцать сразу после включения, но при этом так и не загорелся – вышел из строя стартер. Выполнить его прозвонку отдельно от ЛДС не получится, так как без напряжения его контакты являются разомкнутыми.

Проверка исправности стартера возможна другим методом – последовательно подсоединив его с лампой накаливания к стандартной электросети.

Основная причина выхода из строя – биметаллическая пластина сильно изнашивается.

Как проверить ёмкость конденсатора тестером

Если конденсатор ЛДС неисправен, её показатель КПД уменьшается до 35-40%. Для осветительных приборов с мощностью не более 40 Вт вполне достаточно конденсатора с ёмкостью 4,5 мкФ. Если она меньше данной нормы, КПД будет уменьшено, если больше – освещение будет мигать.

Для осуществления замера конденсатор необходимо прозвонить мультиметром. При прикосновении щупами выходов детали прибор демонстрирует нескончаемое сопротивление. Когда этот показатель меньше, чем 2 Мом – это симптоматика значительной утечки тока.

Включение люминесцентной лампы без дросселя

Сгоревшую лампу дневного света можно вернуть в работу, если подсоединить её в схему посредством постоянного напряжения, исключая стартер и дроссельный элемент. Здесь поможет использование двухполупериодного выпрямителя с удваиванием напряжения. Если через некоторое время яркость лампы снизится, её необходимо перевернуть в светильнике, вследствие чего сменятся полюса подсоединения.

Данная схема предполагает использование радиоэлементов с показателем напряжения не больше 900 В. Именно такого значения достигает ЛДС при запуске.

Схема подключения перегоревших ламп

Из-за перегорания нитей накала люминесцентные лампы нередко приходят в негодность. Вернуть вторую жизнь такой лампе можно, используя нетрадиционную схему запуска, многократно испытанную народными умельцами.

Из таблицы можно узнать номинальные значения радиоэлементов для ЛДС с разной мощностью. Ограничительные резисторы R1 в обязательном порядке должны быть из проволоки.

Отремонтировать ЛДС в домашних условиях можно, если руководствоваться схемами и следовать определённым инструкциям. Такие знания дают возможность продлить эксплуатационный период осветительного прибора.

Лучшие способы узнать, когда заменить балласт люминесцентного света


Люминесцентные лампы — это энергоэффективная альтернатива традиционным лампам накаливания, но они могут стать помехой, если начнут мигать в середине дня.

Часто причиной мерцания огней является неисправная лампочка.

Но иногда виноват сам балластный механизм. Хорошо то, что балласты люминесцентных ламп легко проверить и заменить.

Что такое балласт люминесцентного света?

Балласт в системе люминесцентного освещения — это механизм, который регулирует ток в лампах и обеспечивает правильное напряжение, необходимое для запуска ламп.

Без этого балласта не было бы ничего, что могло бы регулировать возрастающий ток, и лампочка перегорела бы за секунды после включения лампы.

Старые балласты называются магнитными балластами. Они полагаются на постепенное регулирование электричества, проходящего через лампу.Если ваша люминесцентная лампа гудит или гудит, скорее всего, из-за более старой модели балласта. Это связано с тем, что ток проходит через катушки из медной проволоки, прежде чем перейти к лампочке.

Когда ток попадает на медь, он создает магнитное поле, которое останавливает большую часть тока, который продолжал бы течь к лампочке. Таким образом, к лампочке действительно поступает только небольшой ток, и свет не перегревается и не перегорает.

Новые балласты являются электронными, что позволяет им выдавать несколько электрических частот без изменения входного напряжения.Усовершенствованная электроника в современном балласте более эффективно регулирует ток, уменьшая как мерцание, так и заметный гул, который обычно ассоциируется с люминесцентными лампами.

Три различных типа электронных балластов

Электронные люминесцентные балласты обычно производятся с одним из трех рабочих режимов: быстрый запуск, запрограммированный запуск и мгновенный запуск .

Балласты быстрого пуска

Балласты быстрого пуска основаны на методе предварительного нагрева, при котором механизм всегда остается включенным и мгновенно зажигает лампочку при включении переключателя.Проблема с этим типом заключается в том, что лампа не может включиться, если она находится в климате ниже 50 градусов. Поэтому, если вы устанавливаете люминесцентный свет в морозильную камеру, это не самый надежный балластный механизм для работы.

Программируемые пусковые балласты

Программируемые пусковые балласты являются обычным выбором, если ваши фары подключены к датчику движения. Датчики движения и запрограммированные пусковые балласты являются более энергоэффективным вариантом для офисного освещения, поскольку они могут максимизировать количество циклов включения лампы при сохранении энергии.

Балласты мгновенного запуска

Балласты мгновенного запуска не нагреваются до включения света. Эти типы балластов имеют высокое пусковое напряжение, которое помогает запустить разряд на ненагретых электродах. Этот вариант более надежен, чем балласты с быстрым запуском, потому что вы можете запустить лампу при более низких температурах.

Как узнать, когда пора менять балласт?

Некоторые из наиболее очевидных признаков неисправности балласта — это быстрое мигание или жужжание лампочек.Лампы могут быть тусклыми, хотя они не должны быть такими же, или менять цвет.

Если вы видите, что это происходит, возможно, пора заменить балласт.

Хороший способ проверить, возвращается ли балласт, — это сначала заменить лампы в приспособлении. Если вы устанавливаете новые лампочки, а фары все еще мерцают, самое время взглянуть на сам балласт.

Проверка балласта люминесцентного света

Если вам нужно проверить балласт люминесцентного света, вы можете сделать это довольно легко.Все, что вам нужно, — это крестовая или шлицевая отвертка и вольт-омметр.

Сначала отключите питание светильника, отключив его от сети или отключив питание в комнате через блок выключателя. Подождите несколько минут, чтобы весь ток, накопленный в балласте, рассеялся, затем выньте лампу из светильников.

П-образные лампы можно просто вытащить из патронов, так как они закреплены пружинами растяжения. Вам нужно будет открутить прямые люминесцентные лампы, чтобы вынуть их из розеток.

Обязательно храните лампы вдали от рабочего места, чтобы они не сломались.

Если балласт еще не открыт, снимите крышку балласта с приспособления с помощью отвертки. Дважды проверьте крышку, чтобы убедиться в отсутствии утечки масла из балласта. При наличии масла необходимо заменить весь балласт, поскольку внутреннее уплотнение было повреждено из-за чрезмерного нагрева от света.

Чтобы убедиться, что балласт работает правильно, возьмите вольт-омметр и проверьте сторону высокого напряжения балласта.Вам нужно обеспечить непрерывность между проводами и розетками. Установите мультиметр в положение «Ом» и вставьте один щуп в разъем, который соединяет белые провода. Затем прикоснитесь другим щупом к концам синего, красного и желтого проводов, идущих от балласта.

Если балласт неисправен и нуждается в замене, стрелка мультиметра не двигается или на экране будет отображаться, что нет непрерывной цепи. Если балласт все еще в порядке, вы увидите движение стрелки или указание на то, что цепь непрерывна.Обязательно проверьте все пары проводов и убедитесь, что они положительные. Если есть, проверьте сторону низкого напряжения.

Чтобы проверить сторону низкого напряжения трансформатора, снимите гайки с черно-белого провода, подключенного к стороне подачи питания вашего балласта. Прикоснитесь щупами мультиметра к черному и белому проводам. Если он показывает непрерывный контур, значит, с вашим балластом все в порядке, и его не нужно заменять.

Если вы проверили обе стороны балласта, но по-прежнему возникают проблемы с мерцанием лампочек, возможно, в самих патронах ламп плохо закреплен провод.Убедитесь, что все соединения надежны, а затем соберите светильник.

Замена вышедшего из строя балласта люминесцентного света

Если вам необходимо заменить балласт после его проверки, отключите электричество от прибора и снимите крышку балласта, если вы этого еще не сделали.

В зависимости от типа крышки может потребоваться открутить болты, удерживающие ее на месте. После того, как вы сняли крышку, отрежьте старую проводку на расстоянии нескольких дюймов от конца балласта кусачками или кусачками для проволоки.Обязательно перережьте все провода, которые подключаются к старому балласту.

После того, как вы отсоединили проводку, отвинтите монтажное оборудование и опустите старый балласт из его установленного положения. Обычно необходимо открутить как минимум две крепежные гайки.

Важно взять его с собой в магазин, чтобы убедиться, что вы покупаете новый балласт, соответствующий старому. Перед покупкой необходимо убедиться, что у нового балласта соответствующие проводка, напряжение и ток.

Иногда покупка нового балласта может оказаться дороже, чем покупка совершенно нового приспособления, поэтому перед покупкой рекомендуется совершить небольшую закупку цен.

Если вы решили заменить только балласт, установка нового балласта в ваше приспособление довольно проста.

Сначала установите новый балласт с помощью монтажных гаек, затем зачистите электрическую проводку примерно на полдюйма как на новой проводке балласта, так и на исходной проводке, оставшейся от старого крепления.Подключите провода подходящего цвета и используйте скрученные соединители, чтобы обеспечить надежное соединение.

Как только это будет завершено, вы должны закончить.

Установите крышку и соберите фонарь. Включите выключатель и проверьте свет. Если все сделано правильно, значит, ваш свет должен исправно работать.

Старые балласты могут содержать ПХД или другие вредные вещества, поэтому обязательно отнесите старый балласт в местный центр утилизации для надлежащей утилизации.

Стоит ли заменять магнитный балласт на электронный?

Многие производители начинают постепенно отказываться от ламп, совместимых со старыми магнитными балластами, поэтому было бы неплохо подумать о замене их на более современные электронные.

Кроме того, магнитные балласты считаются опасными отходами, поскольку они содержат вредные вещества.

Если ваши осветительные приборы установлены таким образом, что будет затруднительно заменить весь светильник, то переход на электронный балласт может быть вашим лучшим выбором. Электронные балласты намного эффективнее и сэкономят вам много денег на счетах за электроэнергию.

Однако, прежде чем покупать новый электронный балласт, сравните цены на новый балласт с совершенно новым приспособлением.

Возможно, вы обнаружите, что проще и дешевле заменить весь осветительный прибор, а не только сам пускорегулирующий аппарат.

Поиск и устранение неисправностей балласта люминесцентного света не так сложен, как кажется.

Все, что нужно, — это базовое понимание того, как работает механизм, и несколько инструментов, и вы на правильном пути.

Так что в следующий раз, когда ваши огни начнут мерцать, не волнуйтесь.

Теперь вы знаете, как с этим справиться, и диагностика и устранение проблемы не займет много времени.

Замена балласта люминесцентного света — это просто

Теперь, когда вы знаете, как определить, неисправен ли балласт люминесцентного света, вы сможете принять обоснованное решение о том, следует ли вам его заменить.

Если он выходит из строя, его легко заменить, и это то, что вы можете сделать дома с помощью всего нескольких инструментов.

Featured Image: CC авторства SA, Денниса Брауна, через Wikimedia Commons.

Какие бывают типы балластов?

Слышали ли вы когда-нибудь жужжание лампочки?

Технически нет.Жужжание, которое вы слышите, исходит от балласта, а не от самой лампы.

Я знаю, что такое утомительное освещение. Балласты, лампочки — все равно, не правда ли?

Ну не совсем так. Если вам нужно немного узнать, что такое балласт, попробуйте прочитать эту статью «Что такое балласт?»

Если у вас уже есть основы балласта и вы готовы делать покупки, нажмите здесь, чтобы зарегистрировать свой бизнес по льготным ценам.

Магнитные балласты vs.электронные балласты

Есть два семейства ламп, которые работают с балластом: люминесцентные и HID. Причем в каждом семействе есть два типа балластов: магнитные и электронные.

Магнитные балласты — это более старая балластная технология. Что касается семейства люминесцентных ламп, то в линейных люминесцентных лампах T12 и двухконтактных люминесцентных лампах используются магнитные балласты. Для HID, в некоторых металлогалогенных лампах и HPS-лампах используются магнитные балласты.

Магнитные балласты обычно являются причиной жужжания и мерцания, поскольку они постепенно регулируют электричество.

Сегодня большинство люминесцентных и HID ламп работают от электронного балласта . Электронные балласты могут выдавать электричество на нескольких частотах без изменения входного напряжения. Это устраняет любое мерцание и жужжание.

Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?

Типы люминесцентных балластов

Флуоресцентные балласты используют три различных типа пусковых технологий: быстрый, мгновенный и программируемый.

Балласты для быстрого пуска

Балласты быстрого старта работают как разогрев духовки. Представьте, что духовка постоянно разогревается, чтобы вы могли в любой момент испечь печенье.

ПРА для быстрого пуска используют этот метод предварительного нагрева, поэтому при включении света лампа сразу включается.

Вы когда-нибудь нажимали выключатель света и получали стробоскопический эффект? Балласты быстрого запуска не мерцают, поэтому вы не получите эффекта дискотеки при включении света.

У балластов быстрого старта есть два недостатка:

  1. Балласты для быстрого пуска не очень энергоэффективны.
  2. Лампы в паре с балластами быстрого запуска не будут надежно включаться, если они находятся в климате ниже 50 градусов, например в морозильной камере, или на улице в холодном климате.

Мгновенный пуск балласта

Лампы мгновенного запуска не используют метод предварительного нагрева. Вместо этого они посылают на лампу высокое напряжение при зажигании.

Обычно балласты с мгновенным запуском потребляют на лампу на 1,5-2 Вт меньше, чем балласты с быстрым запуском. Лампы мгновенного пуска также надежно запускаются при температуре до нуля градусов.

Программируемый пуск балласта

Запрограммированные пусковые балласты обычно работают в паре с датчиками присутствия или движения. Если вы многократно включаете и выключаете люминесцентные лампы в короткие промежутки времени, вы фактически потребляете больше энергии, чем если бы вы оставили свет включенным.

Еще одно преимущество запрограммированного пускового балласта: он увеличивает количество циклов запуска лампы при сохранении энергоэффективности.

Если в вашем здании есть комната для встреч или отдыха, которая часто используется, или другое место, где в течение дня есть несколько циклов включения-выключения, запрограммированный пусковой балласт может быть лучшим сочетанием с вашим освещением.

Балласты с программируемым пуском надежны и при низких температурах.

Типы балластов HID

Есть только два типа методов запуска для балластов HID.

Пусковой балласт датчика

Пусковые балласты для пробников — это старый тип, который не очень удобен для СПРЯТАННЫХ ламп.Электроны прыгают по дуговой трубке между двумя рабочими электродами. После запуска лампы электрод пускового зонда удаляется из цепи.

Но при таком способе пуска лампам требуется много времени, чтобы прогреться и достичь полной яркости. Период повторной забастовки также намного дольше.

Импульсный пусковой балласт

Пусковые пусковые балласты не используют пусковой электрод. Вместо этого они используют воспламенитель высокого напряжения, который работает рядом с балластом.Эта технология запускает лампу импульсами.

Использование пускового балласта с импульсным запуском может действительно продлить срок службы лампы, поэтому люмены не обесцениваются так быстро. Пусковые балласты импульсного запуска также более энергоэффективны, чем пусковые балласты пробника.

Типы аварийного балласта

Аварийные балласты относятся к отдельной категории. Их цель — запитать лампу при пониженной светоотдаче до 90 минут.

Кроме того, знаете ли вы, что большинство аварийных балластов перезаряжаются после каждого использования? Это довольно интересная функция, но если балласт часто используется или подходит к концу, обязательно замените его.Перезаряжаемый аккумулятор в конечном итоге перестанет держать заряд.

Вы покупаете аварийный балласт? Вот четыре вопроса, на которые вам нужно ответить, чтобы найти нужный продукт:

  1. К какой лампе он питает?
  2. Сколько ламп он запитывает?
  3. Сколько времени нужно для питания ламп?
  4. Существуют ли требования или ограничения по размеру приспособления?

Если у вас есть ответы на эти четыре вопроса, вы сможете получить точный аварийный балласт.

Все еще не уверены, какой балласт вам нужно купить? Наши специалисты по освещению всегда готовы помочь.

Или, если вы готовы совершить покупку, зарегистрируйте свой бизнес в нашем интернет-магазине, чтобы получить скидку.

В эту статью добавлены новейшие технологии освещения. Первоначально он был опубликован в 2016 году.

Люминесцентные балласты — электрические 101

В люминесцентных лампах используется балласт, который преобразует сетевое напряжение в напряжение для запуска и работы лампы (ей).Новые люминесцентные балласты обычно рассчитаны как на 120 вольт, так и на 277 вольт. Некоторые из них рассчитаны только на 120 вольт, другие — только на 277 вольт (используются в коммерческой среде).

КЛЛ

для дома имеют встроенный балласт в основании лампы. В коммерческих КЛЛ используется отдельный балласт. У балластов есть электрическая схема, на которой показано, как они подключаются к патронам.

Есть четыре основных типа люминесцентных балластов:

Электронные балласты с мгновенным запуском используют высокое пусковое напряжение (около 600 вольт) для очень быстрого запуска (менее 0.1 секунду). Для максимальной энергоэффективности электроды не подогреваются, но лучше всего подходят для ограниченного количества переключений (от 10 000 до 15 000 циклов переключения до отказа). ПРА мгновенного пуска подключаются параллельно.

Электромагнитные балласты с быстрым пуском или пуском с триггера используются в светильниках T12 и более старых моделей T8 и подключаются последовательно.

Электронные балласты быстрого запуска нагревают электроды при подаче пускового напряжения (около 500 вольт) для быстрого запуска ламп примерно через 0.От 5 до 1,0 секунды. Нагрев электродов продолжается, пока лампы включены, и они потребляют немного больше энергии (около 2 Вт на лампу), чем пускорегулирующие балласты с мгновенным запуском. Они могут работать от 15 000 до 20 000 циклов переключения до отказа. ПРА для быстрого пуска подключаются последовательно.

Программируемый пуск Электронные балласты запускаются быстро примерно за 1,0 — 1,5 секунды. Они предварительно нагревают электроды контролируемым образом перед подачей пускового напряжения. Программируемые пусковые балласты минимизируют нагрузку на электроды и увеличивают срок службы лампы при частом запуске (зоны с датчиками присутствия).Они могут проработать до 50 000 циклов переключения до отказа. Запрограммированные пусковые балласты подключаются последовательно.

Лампы

T8 с новым электронным балластом потребляют примерно на 20– энергии на 30% меньше, чем магнитный балласт T12. При выходе из строя магнитного балласта T12 его следует заменить электронным балластом T8. ПРА Т12 доступны, но лампы Т12 сняты с производства. В зависимости от осветительной арматуры и способа ее установки может быть проще и примерно по той же цене заменить светильник вместо балласта.Новый гаражный люминесцентный светильник может стоить меньше, чем замена балласта.

Типы ламп, совместимые с этим балластом

(4) F32T8 — До четырех люминесцентных ламп, 32 Вт, лампа Т8.

(4) F25T8 — До четырех люминесцентных ламп, 25 Вт, лампа Т8.

(4) F17T8 — До четырех люминесцентных ламп, 17 Вт, лампа Т8.

Светильники с балластами иногда имеют таблички с указанием необходимого типа лампы и балласта (F32T8).

Люминесцентные этикетки балласта

На этикетке балласта показаны две важные метки.

  • Таблица совместимости ламп (типы ламп, которые могут использоваться с этим балластом)
  • Схема подключения балласта (показывает, как балласт подключается к лампам)

Диаметр люминесцентных трубок

Люминесцентные лампы имеют две общие формы: прямую и форму u-. Наиболее распространены типы T12, T8 и T5.Т обозначает трубку, а цифра обозначает диаметр в 1/8 дюйма. Диаметр лампы определяется типом балласта. В светильнике с балластом T12 должна использоваться лампа T12. В светильнике с балластом T8 должна использоваться лампа T8 и т. Д.

Подбор балласта к лампе

При подборе балласта к лампе необходимо выполнить три требования. В приведенном выше примере к лампе типа F32T8 предъявляются следующие три требования:

1. Люминесцентная лампа

2.32 Вт

3. T8.

Люминесцентные лампы T12 Снято с производства

Люминесцентные лампы T12 больше не производятся из-за низкой энергоэффективности. Хотя эти лампы все еще есть в наличии в некоторых магазинах, замена балласта на более эффективный электронный балласт T8 могла бы быть лучшим выбором.

Экономия или Фантазия? Индексная страница


Модернизация люминесцентных ламп: экономия или фантазия?

Дэйв Диецигер, руководитель проекта

Этот технический совет оценивает элементы управления освещением и реальный мир. экономия от дооснащения стандартным 4-футовым F40T12 люминесцентные лампы и магнитные балласты в Лесу Офисы обслуживания.

Закон об энергетической политике 1992 г., Указ 13123, и Положения о федеральных закупках, часть 23, раздел 704 (48 CFR 23.704) руководящие принципы федерального агентства по закупке энергоэффективной продукции. Осветительные приборы составляет от 20 до 25 процентов электроэнергии США. потребление. Установки лесной службы должны рассмотреть различные способы экономии энергии при дооснащении старые системы освещения. Дооснащение автоматическим управлением и энергоэффективных люминесцентных ламп и балластов окупаемость от 2 до 5 лет.Однако лучшая причина для модернизации старой системы освещения — увеличения производительность рабочих — часто упускается из виду.

Справочная информация о затратах

При стоимости электроэнергии 8 центов за киловатт-час типичная Люминесцентная лампа T12 мощностью 40 Вт потребляет электроэнергии на сумму 64 доллара. за свою жизнь. Закупочная цена лампочки (2 доллара) составляет всего 3 процента затрат на владение и управление системой освещения. Энергетические счета для 86 процентов стоимости (рисунок 1).Эти расчеты легко оправдывают стоимость более дорогих ламп, которые производят свет лучшего качества, экономия энергии и повышение производительности.

Влияние освещения на работоспособность и продуктивность человека сложно. Прямые эффекты плохого освещения включают: неспособность разрешить детали, усталость и головные боли. Освещение может косвенно влиять на настроение или гормональный фон человека. остаток средств.

Небольшое изменение в возможностях человека затмевает все затраты связанные с освещением.Типичные ежегодные затраты на 1 квадратных футов офисных площадей составляют:

  • Отопление и охлаждение ……………………. $ 2
  • Освещение …………………………………… $ 0,50
  • Жилая площадь ……………………………… 100 $
  • Заработная плата и льготы сотрудникам ………. 400 долларов США

Снижение потребления освещения вдвое экономит около 25 центов за квадратный фут каждый год. 1 процентное увеличение человеческого производительность будет экономить 4 доллара на квадратный фут каждый год.Затраты на лесную службу могут быть разными. Стоимость будет варьироваться от объекта к объекту, но относительные величины эти затраты вряд ли изменятся. В центре внимания необходимо обеспечивать качественное освещение для удовлетворения потребностей жителей. Однако можно улучшить качество освещения, пока снижение затрат на электроэнергию благодаря улучшениям в освещении технология.


Рисунок 1 — Распределение эксплуатационных расходов для F40T12
флюоресцентные лампы со стандартным магнитным балластом и
электричество стоимостью 8 центов за киловатт-час.

Выбор лучшей люминесцентной лампы и балласт

«Теплота» света определяется его цветовой температурой, выражается в градусах Кельвина. Чем выше коррелированный цветовая температура, тем холоднее свет. Офисы следует использовать промежуточный или нейтральный свет. Этот свет создает дружелюбная, но деловая обстановка. Нейтральный свет источники имеют коррелированную цветовую температуру 3500 ° K. Индекс цветопередачи измеряет качество света.Чем выше индекс цветопередачи, тем лучше люди видеть для данного количества света. Доступен в настоящее время 4-футовый люминесцентные лампы (рисунок 2) имеют индексы от 70 до 98. Лампы с разной коррелированной цветовой температурой и индексы цветопередачи не должны использоваться в одном и том же Космос. Укажите коррелированную цветовую температуру и цвет индекс цветопередачи при покупке ламп.


Рисунок 2 — Типичные 4-футовые люминесцентные лампы.

В таблице 1 перечислены типовые приспособления для 4-футовых люминесцентных ламп. и различные балласты, которые обычно встречаются в офисе здания. Лучшая система освещения для каждой операционной доллар реализуется с люминесцентными лампами Т8, имеющими индекс цветопередачи 80 и выше. По сравнению со стандартным Люминесцентные лампы Т12, лампы Т8 имеют лучший баланс между участками поверхности, содержащей люминофоры, которые флуоресценции и возбуждающей их дуги.Этот означает, что лампы T8 излучают больше света для заданного количество энергии. В Европе популярны лампы Т5. В Лампы Т5 более эффективны, чем лампы Т8, но стоят более чем в два раза дороже. Наличие ламп Т5 и светильники ограничены в Соединенных Штатах. Лампы Т8 в настоящее время предпочтительнее.

Быстрое сравнение светоотдачи показывает, насколько важна это указать балластный коэффициент и то, является ли балласт электронный или магнитный (таблица 1).Электронные балласты в последнюю очередь в два раза длиннее магнитных балластов, потребляют меньше энергии, имеют меньшая стоимость жизненного цикла и более низкая более высокие частоты. Рабочие люминесцентные лампы на более высоких частоты повышают их эффективность и устраняют характерное 60-тактное жужжание и стробоскопический световой эффект связанные с люминесцентными лампами. 60-тактный световой светильник Эффект может вызвать утомление глаз и головные боли. Электронные балласты особенно желательны в магазинах с вращающееся оборудование.Эффект стробоскопа на 60 циклов произведенные магнитными балластами могут вызвать вращающееся оборудование казаться неподвижным. Все новостройки и переоборудование следует использовать электронные балласты.

Люминесцентная лампа и срок службы балласта

Большинство люминесцентных ламп имеют расчетный срок службы от 12000 до 20000 часов. Расчетный срок службы — это время, необходимое на половину лампочек выйти из строя при включении в течение 3 часов и выключить на 20 минут. Выключение люминесцентных ламп и на сокращает срок службы лампы.С другой стороны, поворот выключение лампы, когда она не нужна, снизит ее работу часов и увеличить срок его службы. На электроэнергию, а не на лампы, приходится наибольший процент эксплуатационных расходов. системы освещения. Выключать люминесцентные лампы экономично. горит, если они не используются.

По данным Ассоциации сертифицированных производителей балластов, средний магнитный балласт длится около 75000 часов или от 12 до 15 лет при нормальном использовании.Оптимальный экономичный срок службы люминесцентной системы освещения с магнитным балластов обычно около 15 лет. В этот момент, увеличивается количество отказов балласта, система находится на третьем или четвертый раунд замены ламп и грязь на отражателях а линзы значительно снизили светоотдачу. Другой факторы могут сделать желательным модернизацию системы освещения до окончания 12–15-летнего жизненного цикла. Те факторы включают повышение производительности, скидки на коммунальные услуги и высокие затраты на энергию.

Таблица 1 — Характеристики люминесцентной лампы и балласта для стандартных светильников.

Кол-во ламп
–Type¹
Балласт
тип²
Балласт
фактор
Крепеж
люмен³
люмен
на ватт³
Крепеж
Вт
кВтч / год 4 кВтч 5
сэкономлено / год
долларов
сэкономлено / год 6
4 – F40T12 Std 0.88 9,126 47,53 192 499 0 $ 0
4 – F40T12 Hi – Eff 0,88 9,126 53,06 172 447 52 $ 4,16
4 – F40T12 ES Std 0,88 7 929 47.53 164 426 73 $ 5,84
4 – F40T12 ES Hi – Eff 0,88 7 929 55,06 144 374 125 10,00
4 – F32T8 Elec 0,87 8 926 78,30 114 338 161 12 долларов США.88
4 – F32T8 Elec 0,83 8,516 78,85 108 281 218 $ 17,44
3 – F40T12 Std 0.88 6 844 48,89 140 364 0 $ 0
3 – F40T12 Hi – Eff 0,88 6 844 58,00 118 307 57 $ 4,56
3 – F40T12 ES Std 0,88 5 947 48.75 122 317 47 $ 3,76
3 – F40T12 ES Hi – Eff 0,88 5 947 59,47 100 260 104 $ 8,32
3 – F32T8 Elec 0,87 6 695 76,95 87 226 138 $ 11.04
3 – F32T8 Elec 0,8 6,156 76,95 80 208 156 $ 12,48
2 – F40T12 Std 0.94 4 874 50,77 96 250 0 $ 0
2 – F40T12 Hi – Eff 0,87 4,511 52,45 86 224 26 $ 2,08
2 – F40T12 ES Std 0,87 3 919 47.79 82 213 37 2,96 долл. США
2 – F40T12 ES Hi – Eff 0,87 3,919 54,43 72 187 63 $ 5,04
2 – F32T8 Elec 1,29 6 618 118,18 56 146 104 $ 8.32
2 – F32T8 Elec 0,77 3950 75,96 52 135 115 9,20 $
1 – F40T12 Std 0.94 2,437 42,75 57 148 0 $ 0
1 – F40T12 Hi – Eff 0,87 2,255 45,1 50 130 18 1,44 доллара США
1 – F40T12 ES Std 0,87 1,960 39.2 50 130 18 1,44 доллара США
1 – F40T12 ES Hi – Eff 0,87 1,960 45,58 43 112 36 $ 2,88
1 – F32T8 Elec 0,87 2,232 74,4 30 78 70 5 долларов США.60
1 – F32T8 Elec 0,75 1 924 71,26 27 70 78 $ 6,24
— Информация любезно предоставлена ​​Стивом Лейнвебером, Лаборатория светового дизайна, Сиэтл, Вашингтон,
¹ ES означает энергосбережение.
² Стандарт относится к стандартному магнитному балласту. Hi – Eff означает высокую эффективность магнитный балласт.Elec относится к электронному балласту.
³ Эти значения включают средний износ светового потока в конце срока службы лампы. жизнь. Среднее уменьшение просвета — это частичная потеря люмен лампы, которые постепенно происходит в течение срока службы лампы. Лампы T12 имеют снижение светового потока не менее 15%, а T8 световой износ ламп в среднем составляет 10 процентов.
4 кВтч / год — это киловатт-часы, потребляемые в год, при условии, что огни горят 2600 часов в год (10 часов в день, 5 дней в неделя, 52 недель в году).
5 Экономия кВтч / год — это экономия энергии на одно приспособление по сравнению к первому светильнику каждой группы с одинаковым количеством ламп.
6 Сэкономленные деньги в год — это доллары, сэкономленные на электрооборудование. стоимостью 8 центов за киловатт-час по сравнению с первым прибором
каждая группа с таким же количеством ламп.

Экономический анализ

При рассмотрении преимуществ дооснащения больше ламп на существующее приспособление дает больше экономии энергии на приспособление, и лучшая окупаемость.Энергия выше средней или затраты на спрос или скидка на коммунальные услуги также приведут к более быстрому окупаемость.

Балластный коэффициент можно использовать для регулировки уровня освещенности. Высота балластный коэффициент увеличивает люмен (показатель светоотдачи), позволяя меньшему количеству ламп обеспечивать такое же количество свет. Например, когда электронные балласты с высоким используется балластный коэффициент, двухламповые светильники производят столько же света, сколько в трехламповых светильниках. Это снижает стоимость светильников и повышает окупаемость.Экономический Анализ модернизации трехламповых светильников и магнитных балластов на двухламповые светильники с электронным балластом с высоким балластным коэффициентом дает незначительную окупаемость более 2-х лет. Окупаемость рассчитывается с использованием Тарифы на электроэнергию MTDC, которые являются одними из самых низких в стране.

Глоссарий терминологии и подробной информации по освещению по расчету экономии энергии, отопления и охлаждения экономия и простая окупаемость системы освещения модернизация завода Missoula Technology and Development Center (MTDC) доступны в Лесной службе и Внутренняя компьютерная сеть Бюро землеустройства на сайте MTDC: http: // fsweb.mtdc.wo.fs.fed.us/pubs/htmlpubs/htm01712310/summary.htm

Управление освещением

Управление освещением — еще одно средство снижения потребления энергии потребление. При правильном использовании они могут удлиняться срок службы ламп и пускорегулирующих аппаратов. Всего освещения управления, автоматические датчики присутствия обычно сохраняют большая часть энергии. Следующее лучшее — ручное управление. Автоматическое и ручное регулирование яркости может иметь хорошую окупаемость, но экономия обычно меньше. Двумя основными типами контроллеров с автоматическим датчиком присутствия являются: пассивный инфракрасный и ультразвуковой.Некоторые гибридные контроллеры доступны.

Ультразвуковые датчики излучают отражающиеся звуковые волны от объектов. Движущиеся объекты изменяют частоту отраженные волны, которые датчики интерпретируют как присутствие. Ультразвуковые датчики предпочтительнее в областях с много препятствий, на которых датчик не имеет прямая видимость для пассажиров. Они чувствительны к любому движущемуся объекту, а не только к людям. Датчик, который установлен или отрегулирован неправильно, может циклически включаться свет и прочь в незанятой комнате.Чтобы предотвратить эту проблему, ультразвуковые датчики имеют регулировку чувствительности, которая может настраиваться после установки. Ультразвуковые датчики также оснащен временной задержкой (обычно регулируемой), которая выключить свет, когда датчик не обнаруживает движения на заранее установленное время.

Пассивные инфракрасные датчики различают тепло человека и фонового тепла комнаты. Они функция отслеживания источника тепла от одной области к другой.В отличие от ультразвуковых датчиков, пассивные инфракрасные датчики должен иметь прямую видимость для пассажиров. Когда датчик не видит движущийся источник тепла после определенный период (обычно регулируемый) датчик отключается огни. Нарушение поля зрения датчика может поворачивать выключить свет, раздражая сотрудников.

Гибридные датчики обычно содержат пассивный инфракрасный датчик. и ультразвуковой датчик. Они активируют освещение система, когда датчики обнаруживают движение.Типичный гибрид датчик будет продолжать подавать питание на свет до тех пор, пока поскольку по крайней мере один датчик обнаруживает движение. Когда ни один датчик обнаруживает движение, свет выключается после установленное время задержки. Гибридные датчики снижают вероятность того, что свет будет включен, когда в здании никого нет, или выключается, когда кто-то находится в здании.

Неправильно установленные датчики присутствия и чрезмерно сложный средства управления ограничили принятие автоматических управление освещением.В большинстве случаев проблемы с управлением освещением возникают из-за человеческих ошибок при позиционировании, настройке и программировании датчиков и элементов управления. Квалифицированные лица следует спроектировать и установить элементы управления. Вся система должны быть тщательно протестированы, прежде чем они будут приняты. Видеть Ввод в эксплуатацию существующих зданий (9871-2301-MTDC) для дополнительной информации. Несовместимость компонентов может привести к проблемам. Лучше всего выбирать полную система от одного производителя, объединяющая все компоненты управления.Также важно встретить State и местные требования.

Обслуживание

Как правило, установка освещения и все материалы должны соответствуют применимым местным нормам и национальным электротехническим требованиям. Код. Лампы и балласты должны быть совместимы. это крайне важно указать балластный коэффициент, тип балласта, коррелированная цветовая температура и индекс цветопередачи.

Агентство по охране окружающей среды принимает на себя все балласты. содержат ПХД (полихлорированные дифенилы, опасные материала), если на них нет ярлыков, указывающих, что они не содержат печатные платы (рисунок 3).Все балласты, изготовленные ранее 1 января 1979 года содержат ПХБ. Балласты с печатными платами нельзя выбрасывать на свалки. Они должны быть переработаны или утилизировать на объектах, одобренных Управлением по охране окружающей среды США. Агентство по охране.

Выводы

При проектировании или обслуживании систем освещения проектируйте инженерам и руководителям предприятий необходимо сосредоточиться на предоставлении качественный, энергоэффективный свет. Обслуживание персонал несет ответственность за обслуживание освещения система.Конечные пользователи должны попросить хорошее освещение и включить выключить свет, когда они не используются.

Автоматические датчики присутствия с готовностью ручные корректировки обычно имеют лучшую окупаемость из всех стратегии управления. Новые люминесцентные лампы Т8 с высокой индекс цветопередачи и ЭПРА должны быть используется во всех новостройках и модификациях. Такое освещение системы повышают производительность, а также экономят энергию и деньги, достойный бонус.


Рисунок 3 — Балласт люминесцентных ламп без печатных плат
(полихлорированные дифенилы, опасный материал).

Дополнительная информация о флуоресцентном освещении

Оценка вариантов люминесцентных ламп в соответствии с EPACT
Февраль 1994, Завод Инжиниринг

Освещение и возможности человека: обзор
Национальная ассоциация производителей электрооборудования
2101 L St. NW.
Вашингтон, округ Колумбия 20037

Техническое обслуживание освещения
Ноябрь 1998 г., Energy & Engineered Systems

Справочник по управлению освещением
Крэйг ДиЛуи
Fairmont Press, Inc., 1967

Веб-сайты управления освещением —

Информационная программа национального проекта освещения
http://www.lrc.rpi.edu/NLPIP/Online/sensors.html

Программа EPA Energystar Label for Buildings Program
http://www.energystar.gov

Федеральная программа управления энергетикой
http://www.eren.doe.gov/femp/greenfed/index.html

Номенклатура люминесцентного освещения

Шаблон для интерпретации названий люминесцентных ламп: FWWCCTDD где:

Ф……. Флюоресцентная лампа.

WW .. Номинальная мощность в ваттах (4, 5, 8, 12, 15, 20, 33 и т. Д.).

CC …. Цвет. W = белый, CW = холодный белый, WW = теплый белый и т. д.

T ……. лампочка трубчатая.

DD …. Диаметр трубки в восьмых долях дюйма. А Колба Т8 имеет диаметр 1 дюйм, колба Т12 имеет диаметр 1,5 дюйма и так далее.

Например, лампа F40T12 — это люминесцентная лампа мощностью 40 Вт. лампа с трубчатой ​​колбой диаметром 11⁄2 дюйма.

Техническое обслуживание, производительность и Советы по безопасности при флуоресцентном освещении Общий
  • Всегда соблюдайте применимые электрические нормы при установке: Национальные Электрические нормы, правила штата и местные нормы. Все приспособления должны соответствовать применимая лаборатория страховщика, Канадская ассоциация стандартов, и требования Американского национального института стандартов.

  • Установите приспособления, чтобы предотвратить повреждение от чрезмерного нагрева. Проконсультируйтесь производитель или дилер для конкретного применения.

  • Устанавливайте новые лампы группами на срок, рекомендованный изготовителем.

  • Ежегодно очищайте лампы и светильники.
Лампы
  • Убедитесь, что заменяемые лампы имеют такой же коррелированный цвет температура (CCT) и индекс цветопередачи (CRI) как исходный лампы.

  • Используйте только лампы той же мощности, что и балласт.

  • Отсоедините пускорегулирующие балласты ламп при снятии ламп.

  • Заменить лампы при замене балластов.

  • Немедленно замените вышедшие из строя лампы. Неисправная лампа осталась в патроне вызовет выход из строя магнитных или электронных балластов.

  • Замена ламп в наборах. Не используйте новую лампу со старой балласт.

  • Проконсультируйтесь со своим поставщиком осветительного оборудования, если устанавливаете лампы там, где температура ниже 50 ° F.

  • Никогда не устанавливайте люминесцентные лампы на обычные редукторы напряжения схемы диммирования.

  • Во избежание радиопомех, люминесцентные лампы устанавливайте на расстоянии более 10 футов от радиооборудования.
Балласты
  • Убедитесь, что запасные балласты имеют такой же балластный коэффициент.

  • Не заменяйте неисправные электронные балласты магнитными балластами.

  • ПРА в корпусе должны быть защищены от атмосферных воздействий, если они установлен снаружи.

  • Приспособления и балласты должны быть правильно заземлены. Всегда используйте высокий балласты с коэффициентом мощности (90%). Электронные балласты доступны для затемнения люминесцентных ламп.

  • Если уровень шума считается важным для приложения, обязательно использовать балласты с классом звукоизоляции «А».

  • Балласты, изготовленные до 1978 г., могут содержать полихлорированные бифенилы (ПХБ). На балластах, изготовленных без печатных плат, печатных плат не будет. ПХД являются канцерогеном для человека и должны обрабатывать и утилизировать как опасные отходы.
Освещение высокой интенсивности
  • Светильники в высокотемпературных зонах должны иметь высокотемпературные номинальные балласты или балласты сердечника и катушки. Крепления никогда не должны превышать 356 ° F.

  • Разряд высокой интенсивности (пары натрия высокого давления, кварц галогенные, металлогалогенные) лампы следует монтировать вертикально (некоторые модели доступны для горизонтального монтажа).

  • Используйте натриевые лампы высокого давления диффузного типа дольше жизнь лампы.

  • Вольфрамово-галогенные лампы (кварцевые и сверхчистое стекло) выходят из строя раньше, если испорчены отпечатками пальцев. Беритесь с лампами мягкой тканью или перчатками.
— Информация предоставлена ​​Montana Power Co.

Об авторе

Дэйв Диецигер пришел в MTDC из управления флотом Северного региона. сотрудников в 1999 году. Имеет степень бакалавра машиностроения. из Университета Айдахо и имеет лицензию профессионального инженера.Другой опыт включает в себя Американское общество инженеров-механиков. аттестация сертифицированного котельного инспектора, работа по энергосбережению в ВМФ, поступил на службу в ВМФ, работал городским пожарным.

Дополнительные единичные экземпляры этого документа можно заказать по адресу:

USDA FS, Центр технологий и разработок Миссулы
5785 Hwy. 10 Запад
Missoula, MT 59808–9361
Телефон: 406–329–3978
Факс: 406–329–3719
Электронная почта: wo_mtdc_pubs @ fs.fed.us

Электронные копии публикаций MTDC доступны в Интернете по телефону :
http://www.fs.fed.us/eng/pubs

Сотрудники Лесной службы и Бюро землеустройства могут искать документы, компакт-диски, DVD-диски и видео MTDC в своих внутренних компьютерных сетях по телефону :
http://fsweb.mtdc.wo.fs.fed.us/search/

За дополнительной информацией о модернизации люминесцентных ламп обращайтесь в MTDC:
Телефон: (406) 329-3978
Факс: 406–329–3719

Как предотвратить возгорание люминесцентного балласта

Автор: Фрэнк С.Джонсон

Все мы выросли на лампах накаливания. Когда они перегорели, свет погас, поэтому мы их заменили. Без проблем!

Люминесцентные лампы, которые можно найти в пожарных частях и большинстве других зданий, которые только можно вообразить, совершенно разные. На самом деле их нужно заменить, прежде чем они полностью прекратят работу — и представляют опасность пожара — но, похоже, никто об этом не знает, и не многие этому учат.

Понимание опасности

Люминесцентные лампы необходимо заменить, прежде чем они станут причиной возгорания.

Люминесцентная лампа была изобретена в 1930-х годах, поэтому магнитный балласт существует уже довольно давно. Сейчас они быстро заменяются гораздо более легкими и более эффективными электронными балластами.

Тем временем, в настоящее время по всей стране ежедневно возникают балластные пожары, особенно в потолочных светильниках старых зданий. Старые люминесцентные светильники, особенно F96T12 («8 футов»), устанавливаемые непосредственно на потолки из деревянных панелей, склонны к возгоранию, но это также происходит в относительно новых зданиях и с лампами F40T12 (4 фута).

Итак, что происходит и как это предотвратить? Флуоресцентная технология действительно очень проста. Во-первых, люминесцентная лампа должна соответствовать установленному балласту. Например, это означает, что нельзя устанавливать 40-ваттные лампы в светильнике с балластом, рассчитанным на 34-ваттные лампы. Во-вторых, у ламп действительно есть «ожидаемый срок службы». Производимая сегодня стандартная лампа рассчитана на срок службы около 3000 часов. При использовании восьми часов в день, пять дней в неделю, они рассчитаны на работу около шести месяцев.

По истечении этого времени происходит выгорание, называемое испарением катода. Это проявляется в потемнении концов ламп. В этот момент визуальный люмен, излучаемый лампой, падает на 40-50%, так что у вас есть только часть ранее подаваемого света. Затем лампу необходимо заменить, иначе она начнет перегружать и в конечном итоге испортит балласт. Когда вы видите черную лампу на концах, срок ее службы уже истек. Вы можете подумать, что экономите деньги, не покупая новые лампы, но на самом деле это будет стоить больше денег, если их оставить на месте, чтобы испортить балласт.Помните, что плохие лампы могут испортить хороший магнитный балласт, а плохой магнитный балласт может испортить хорошие лампы.

Это то, что происходит с балластом, когда старые лампы остаются на месте, пытаясь «работать», независимо от того, очень старый балласт или относительно новый. После того, как балласт, находящийся под напряжением, проработал в течение часа или более, он становится очень горячим, а смола внутри, заполненная печатными платами, расплавляется, замыкая цепь, и прибор перестает работать.

Пусковой режим

Через некоторое время балласт остынет достаточно, чтобы расплавленная смола превратилась в гель, и приспособление запускается или, по крайней мере, пытается снова работать. Но поскольку балласт уже не балансирует, напряжение остается в «пусковом режиме». Этот цикл повторяется снова и снова, пока не произойдет одно из двух: либо температура в потолке, чему способствует накопление тепла на чердаке, наконец, достигнет точки, когда потолок загорится, либо сам балласт взорвется. пламя, проливая расплавленную и пылающую смолу на пол.Затем здание горит сверху и снизу.

Многие люди по всей стране сообщили, что видели это. Общественность должна быть осведомлена о том, что что-то не так, если прибор сильно нагревается.

При проведении аудита мощности с использованием линейных люминесцентных ламп я использую устройство для проверки балласта, чтобы определить, является оно магнитным или электронным.Затем я визуально проверяю, не перегревается ли магнитный балласт. Если потолок слишком высок для ручной проверки, я использую термолазер для измерения температуры крышки балласта и ламп. Затем я пытаюсь рассказать владельцам об опасности балластных пожаров.

В дополнение к предложению регулярной программы замены лампы, мы обсуждаем замену балласта, при необходимости, по частям, на электронный балласт. При использовании с электронным балластом люминесцентные лампы просто гаснут, не повреждая лампы и не вызывая возгорания.Поддержание работы неэффективного балласта обходится дороже, и можно сэкономить энергию, поддерживая их работу с максимальной производительностью.

Существует безопасная альтернатива замене ваших ламп каждые шесть месяцев — хотя они не получили широкого распространения в нашем обществе одноразового использования и изначально стоят дороже, существуют люминесцентные лампы, которые рассчитаны на более длительный срок службы, дают более яркий свет и имеют более высокий световой поток. поддержание.

Это означает, что они сохранят такое же количество света в течение срока службы лампы, как и в новые.Эти долговечные люминесцентные лампы рассчитаны на работу от 30 000 до 40 000 часов. Учитывая целостность балласта, лампы могут легко прослужить пять-семь лет, в зависимости от ежедневного использования. Хотя первоначальные вложения в эти лампы могут быть больше, в течение их срока службы они сэкономят деньги и избавят от необходимости часто менять лампы, а также предотвратят возгорание.

Конечно, сегодня лучший выбор — это электронный балласт.Каждый должен двигаться в этом направлении в своем планировании. Если вы решите приобрести долговечные лампы с низким содержанием ртути, вам понадобится балласт с коэффициентом 0,9 или выше. Я стараюсь поддерживать коэффициент балласта 1,15 для максимальной производительности и долгого срока службы.

Об авторе

Фрэнк С. Джонсон является соучредителем EnviroLight. EnviroLight специализируется на полном спектре освещения, эквивалентном естественному дневному свету.Для получения дополнительной информации посетите www.envirolightusa.com.

Эта статья, первоначально опубликованная в 2007 году, была обновлена.

Как заменить световой балласт

Вы устали от мерцающих, гудящих люминесцентных ламп? Прежде чем выбросить весь люминесцентный светильник, подумайте о замене балласта люминесцентного света. Люминесцентным лампам нужен балласт, чтобы производить свет.Балласт регулирует количество электричества, подаваемого на люминесцентную лампу. Замена балласта вернет ваши люминесцентные лампы к оптимальной работе, и эта задача займет всего 10 минут.

Если вы не знаете, как заменить легкий балласт, не волнуйтесь! Профессионалы Mr. Electric ® помогут вам.

Как заменить балласт в люминесцентном свете

Теперь, когда вы обновили фары, пришло время заменить кондиционер или обогреватель? Наши специалисты взвешиваются.

Положитесь на Mr. Electric при ремонте и установке освещения

Независимо от того, где у вас проблемы с электричеством, вам может помочь местный мистер Электрик. Мистер Электрик — тот, кто вам нужен — от простой модернизации освещения до ремонта всего дома. Вы можете записаться на прием через Интернет или позвонить нам по телефону 844-866-1367, чтобы узнать обо всех ваших потребностях в электричестве.

Этот блог предоставлен компанией Mr. Electric в образовательных целях только для того, чтобы дать читателю общую информацию и общее понимание по указанной выше конкретной теме.Блог не должен использоваться в качестве замены лицензированного специалиста-электрика в вашем штате или регионе. Перед выполнением любого домашнего проекта сверьтесь с законами города и штата.

  1. Соберите инструменты и материалы
    • Тестер напряжения (бесконтактный)
    • Кусачки / устройства для снятия изоляции
    • Проволочные гайки
    • Торцевой ключ
    • Смартфон / камера
  2. Cut Power
    Если возможно, отключите люминесцентный светильник.Или выключите свет на автоматическом выключателе.
  3. Снимите крышку с приспособления
    На приспособлениях с прозрачными пластиковыми линзами, окружающими приспособление, снимите крышку. Если у вашего прибора крышка в рамке, поищите застежки. Они тянут вниз и позволяют открывать линзу.
  4. Снимите лампы дневного света
    Поверните лампы примерно на 90 градусов. Когда вы увидите металлический контакт, расположенный на концах лампы, осторожно потяните вниз, пока контакты не выйдут из патронов.Пока вы там, проверьте патроны, в которых крепятся лампы, при необходимости подтяните их или замените.
  5. Снимите защитную пластину
    Защитную пластину электропроводки в центре приспособления необходимо снять, чтобы оголить провода. Визуально найдите выступы, удерживающие крышку на месте, затем сожмите ее по бокам, чтобы высвободить выступы из пазов, потянув вниз, чтобы снять крышку.
  6. Проверка напряжения
    Перед тем, как прикасаться к любым проводам / соединениям, с помощью бесконтактного тестера напряжения убедитесь, что к прибору не поступает питание.
  7. Сделайте снимок
    Сделайте снимок проводов, на который затем можно ссылаться при подключении нового балласта.
  8. Отсоедините провода балласта
    Отсоедините каждый провод балласта, снимая разъемы или обрезая провода как можно ближе к балласту.
  9. Удаление балласта
    Поддерживайте балласт рукой, чтобы он не упал, при снятии монтажного оборудования с помощью торцевого гаечного ключа. Снимите балласт с приспособления.
  10. Найдите и купите запасной балласт
    Запасной балласт можно найти, указав номер детали балласта или сам балласт в магазине осветительных приборов для замены. Убедитесь, что новый балласт соответствует схеме подключения, напряжению и току старого балласта (эти данные обычно можно найти на старом балласте). По возможности выбирайте электронный балласт, который более эффективен и тише, чем старые магнитные типы.
  11. Подготовка проводов к новому балласту
    Удалите поврежденные или обжатые части проводов балласта, сняв ½-дюймовую изоляцию с концов с помощью приспособлений для зачистки проводов.
  12. Установите новый балласт
    Установите новый балласт на приспособление с помощью монтажного оборудования и торцевого ключа. Подключите новые провода балласта к приспособлению с помощью гаек, сверяясь с вашей фотографией и обеспечивая соответствие оригинальной проводки.
  13. Переустановите компоненты освещения
    Установите на место крышку проводки, затем лампы и линзу приспособления.
  14. Restore Power
    Снова включите автоматический выключатель и включите свет, проверяя правильность работы.
  15. Тщательно утилизируйте старый балласт
    Балласты, изготовленные до 1979 года, часто содержат полихлорированные бифенилы (ПХБ), известный экологический токсин. Если ваш старый балласт протекает черным смолистым веществом, обращайтесь с ним осторожно и избегайте контакта с кожей. Всегда сдавайте старые балласты на ближайшую площадку по переработке опасных отходов для надлежащей утилизации.

Полихлорированный дифенил (ПХБ), содержащий балласты люминесцентного света (ПРА) в школьных зданиях

Цель этой веб-страницы — предоставить школьным администраторам и обслуживающему персоналу информацию об опасностях, создаваемых ПХД в балластах люминесцентных ламп, содержащих ПХД, о том, как правильно обращаться с этими предметами и утилизировать их, а также как правильно модернизировать осветительные приборы в вашей школе, чтобы устранить потенциальные опасности, связанные с ПХД.

Следует отметить, что процедуры, описанные на этой странице (за исключением требований по утилизации), являются руководством для владельцев и операторов зданий.Государства могут иметь обязательные и более строгие требования, чем EPA.

На этой странице:


Какие риски?

Неповрежденный FLB от типичных печатных плат FLB

до 1979 года содержится в конденсаторах FLB и внутреннем заливочном материале старых магнитных осветительных приборов T12. Конденсатор регулирует количество электричества, поступающего в осветительную арматуру, а заливочный материал изолирует FLB и снижает «гудящий» шум.Поскольку все используемые в настоящее время FLB, содержащие ПХБ, превысили установленный срок службы, они подвержены утечкам или разрывам. Это может привести к повышенному контакту с жильцами здания. Остатки из этих источников трудно и дорого очищать. Кроме того, неповрежденные FLB, содержащие ПХБ, могут выделять небольшое количество ПХБ в воздух при нормальном использовании осветительных приборов. EPA рекомендует удалить все FLB, содержащие ПХД, из осветительных приборов.

ПРИМЕЧАНИЕ: EPA имеет ограниченные данные, предполагающие, что более старые балластные конденсаторы с высокоинтенсивным разрядом (HID) могут быть источником воздействия ПХД.EPA рекомендует школьным администраторам и владельцам зданий рассмотреть возможность удаления и замены балластов HID, содержащих ПХД.

В 1976 году Конгресс запретил производство ПХД в Соединенных Штатах из-за их токсического действия. В июле 1979 года EPA прекратило обработку и использование ПХД, за исключением полностью закрытого оборудования. Некоторые ПХБ, установленные до запрета 1976 г. или после 1979 г., могут содержать ПХД и могут по-прежнему использоваться в школах США.

EPA разрешило использование малогабаритных конденсаторов в FLB в 1982 году.Однако, если конденсаторы протекают, то разлив следует очистить в течение 24 часов, а протекающие FLB необходимо утилизировать надлежащим образом. Это соответствует разделу 761.125 (c) (1) Свода федеральных правил 40 (CFR) — «Требования к очистке от разливов ПХБ» и разделу 761.62 40 CFR — «Утилизация массовых отходов продукта на основе ПХД». Правила EPA также требуют, чтобы все FLB, построенные в период с 1 июля 1979 г. по 1 июля 1998 г., не содержащие ПХД, имели маркировку «Без ПХД».

ПХБ-содержащие FLB в школьных зданиях

Этот FLB вызвал пожар в школе на юге Калифорнии в 1999 году.

Школы в США, построенные до 1979 года, могут иметь ПХД-содержащие FLB. Только магнитные FLB T12 (не FLB T8 или T5) могут содержать печатные платы. Буква «T» обозначает лампу, которая идет с FLB, как «трубчатую». Число после буквы «Т» обозначает диаметр лампы в восьмых долях дюйма.

По мере старения FLB деградируют, и EPA определило, что неповрежденные и непротекающие FLB могут выбрасывать ПХД в воздух. В зависимости от количества часов работы, рабочей температуры и циклов включения / выключения типичный ожидаемый срок службы магнитного FLB составляет от 10 до 15 лет.Общая частота отказов в течение срока службы небольших конденсаторов в FLB составляет около 10 процентов (47 FR 37342, 25 августа 1982 г.). Частота отказов FLB значительно увеличивается после этого типичного ожидаемого срока службы. Все осветительные приборы, выпущенные до 1979 года, по-прежнему превышают свой типичный ожидаемый срок службы, увеличивая риск утечек, условий курения или возгорания.

У самых старых FLB, содержащих печатную плату, может отсутствовать защита от тепловой перегрузки. FLB с тепловой защитой помечены буквой «P» в соответствии с требованиями Национального электротехнического кодекса.FLB без маркировки «P» не содержат механизма предотвращения перегрева и подвержены более высокому риску выхода из строя и образования задымления. Потенциальное распространение ПХД может усугубиться неправильным обращением со стороны персонала, который не знает о наличии ПХД в ПП. FLB, который был поврежден или неправильно обращался, может увеличить воздействие на печатные платы.

Отчеты школ по всей стране показывают, что отказы FLB не редкость. Государственные школы Нью-Йорка также обнаружили удаленные шкафы FLB в коридорах 16 своих школьных зданий.Эти шкафы представляют собой большие электрические панели высокого напряжения, вмещающие до двадцати FLB.

Воздействие ПХД из FLB в школах

Чаще всего люди подвергаются воздействию ПХБ из FLB через вдыхание воздуха, загрязненного ПХД, или прикосновение к материалам, загрязненным ПХД, после утечки или возгорания FLB. Там, где они остаются, протекающие FLB могут продолжать выделять ПХБ в течение нескольких лет и создавать повышенные уровни ПХБ в воздухе. ПХД — стойкие биоаккумулятивные токсиканты.Это означает, что они наиболее вредны, когда воздействие накапливается в течение длительного периода времени.

Поскольку вероятность вреда увеличивается с дополнительным воздействием, лучшей защитой является удаление протекающих FLB. Неповрежденные конденсаторы FLB также могут привести к присутствию печатных плат в школьной среде. Остатки печатной платы от ранее вышедших из строя конденсаторов FLB могут оставаться в светильниках даже после замены FLB. Протекающие или лопнувшие конденсаторы могут значительно повысить уровень содержания ПХБ в помещениях.

Необходимо принять меры, чтобы дети и учителя не проводили постоянно время в местах с повышенным уровнем ПХБ в воздухе. Зона поражения, класс, коридор, кафетерий или аудитория должны быть закрыты для учащихся и учителей во время мероприятий по очистке и дезактивации. EPA разработало уровни воздействия для оценки ПХД в воздухе в помещении школы, чтобы помочь определить, есть ли у вас опасения по поводу воздействия вдыхания. Превышение этих уровней не означает, что возникнут побочные эффекты.Однако, поскольку уровни воздействия увеличиваются и сохраняются с течением времени, EPA меньше уверено в том, что воздействия не приведут к неблагоприятным последствиям.

Подробнее о влиянии ПХД на здоровье.


Определение FLB, которые могут содержать печатные платы

Сравнение изображений FLB, содержащих и не содержащих PCB.

Следующие критерии используются для определения FLB, которые могут содержать печатные платы:

  • FLB, изготовленные до 1 июля 1979 г., могут содержать печатные платы
  • FLB
  • , изготовленные в период с 1 июля 1979 г. по 1 июля 1998 г. и не содержащие печатных плат, должны иметь маркировку «Нет печатных плат».
  • Если FLB не имеет маркировки «Без печатных плат», лучше всего предположить, что он содержит печатные платы, если только не известно, что он произведен после 1979 года.
  • Для
  • FLB, произведенных после 1998 года, маркировка
  • не требуется.

Если FLB содержит печатные платы, они расположены внутри небольшого конденсатора внутри FLB или в заливочном материале (черная смолистая субстанция, которая покрывает внутренние электрические компоненты).В конденсаторе будет примерно от одной до половины унции ПХБ, а в заливочном материале будет меньше. Если FLB выходит из строя или перегревается, конденсатор может сломаться, что приведет к выделению из него масел и заливочных материалов.

ПХБ могут присутствовать в виде желтой маслянистой жидкости или в смолистом заливочном материале, который вытекает из FLB. Конденсатор не всегда протекает при выходе из строя FLB, а протекающий конденсатор всегда вызывает отказ FLB. Утечка или разрыв FLB может увеличить уровень ПХБ в воздухе.Поэтому следует принять меры для ограничения или предотвращения личного воздействия.

Определение наличия ПХД-содержащих FLB в школьном здании

Любая конструкция, построенная или реконструированная до 1979 года, может иметь ПХБ-содержащие FLB, если она не подверглась полной модернизации освещения после 1979 года. В некоторых случаях содержащие ПХБ FLB, которые были изготовлены до 1979 года, хранились, а затем использовались в некоторых установленных люминесцентных светильниках. или отремонтированы после 1979 года.

Чтобы определить, есть ли в вашей школе FLB, содержащие ПХД, EPA рекомендует провести визуальный осмотр FLB в репрезентативном количестве осветительных приборов (не только в лампах).В седьмой главе Руководства HUD по оценке и контролю опасностей, связанных с краской на основе свинца в жилищном строительстве, приводится пример того, как определить репрезентативное число.

Советы по идентификации ПХБ-содержащих FLB

Рисунок 1: Блок-схема того, как идентифицировать FLB, содержащие ПХД

Рисунок 1: Как определить балласты, содержащие ПХБ (щелкните, чтобы увеличить) может помочь вам определить, могут ли в вашей школе присутствовать FLB, содержащие ПХД.FLB содержатся в осветительной арматуре. Поскольку вам может потребоваться открыть приборы для просмотра FLB, выберите репрезентативное количество приборов каждого типа, используемых в школе, для проверки в первую очередь. Осмотр может быть выполнен путем удаления части приспособления, например металлической панели, закрывающей FLB. Расширьте свой осмотр, если вы обнаружите ПХБ-содержащие FLB.

EPA рекомендует следующие шаги для предотвращения воздействия при обнаружении утечек FLB:

  • Носите защитную одежду, включая химически стойкие перчатки, выбранные с учетом устойчивости к ПХБ, одноразовые бахилы и одноразовую спецодежду в соответствии с предписаниями Управления по охране труда.
  • Уберите мебель и другие предметы в классе из-под светильников.
  • Накройте пол полиэтиленовой пленкой для улавливания любых материалов, протекающих из FLB или приспособления.
  • Проветрите комнату или используйте дополнительную вентиляцию или защиту органов дыхания, чтобы снизить риск вдыхания паров.
  • Записывайте проверенные участки (например, номера классов) и расположение светильников.

Рассмотрите следующие варианты, если на FLB нет утверждения «No PCBs»:

  1. Предположим, что FLB содержит печатные платы
  2. Свяжитесь с производителем и сообщите марку светильника, номер модели и серийный номер, чтобы определить, содержит ли FLB печатные платы.Если производитель не уверен, предположите, что это так.

Определение необходимости замены FLB, содержащих печатную плату

Важно всегда учитывать последствия для здоровья, если оставить ПХБ-содержащие FLB на месте, а также то, что может произойти в случае выхода из строя FLB, утечки дыма или возгорания. Отказ FLB может произойти без предупреждения в любой момент. Инцидент также может повысить уровень ПХБ в воздухе, что может создать проблемы для здоровья сотрудников или студентов, подвергшихся воздействию. В случае утечки FLB могут быть понесены значительные затраты на покрытие следующего:

  • Наем опытного персонала по очистке
  • Перемещение учащихся и учителей из пораженной зоны во временные помещения во время очистки и дезактивации, что может нарушить школьные программы и функции
  • Очистка и дезактивация открытого оборудования и поверхностей до требуемых уровней (40 CFR раздел 761.61 или 761,79)
  • Соблюдение экологических норм для надлежащего хранения и утилизации загрязненного оборудования и материалов для очистки (40 CFR, разделы 761.65 и 761.60)

Откладывание модернизации и модернизации освещения путем оставления ПХБ-содержащих FLB на месте может привести к воздействию ПХД на ваших учеников и сотрудников и иметь дополнительные финансовые последствия (например, потерянные учебные дни, затраты на ликвидацию аварийных разливов и т. Д.).

14 июля 2009 года Министерство энергетики (DOE) издало окончательное правило, озаглавленное «Стандарты энергосбережения и процедуры испытаний для люминесцентных ламп общего назначения и рефлекторных ламп накаливания».Правило повысило стандарты энергоэффективности для некоторых люминесцентных ламп, продаваемых в США. После обнародования правила DOE производство некоторых ламп T12, используемых в светильниках, в которых используются ПХБ-содержащие FLB, было прекращено после 14 июля 2012 года. Это произошло из-за того, что они не соответствовали новым стандартам эффективности.

26 января 2015 года Министерство энергетики издало еще одно окончательное постановление о дальнейшем повышении стандартов энергоэффективности для люминесцентных ламп. В результате этих правил ожидается, что предложение ламп T12 со временем будет уменьшаться, а стоимость оставшихся — увеличиваться.Это добавляет дополнительный стимул к модернизации освещения Т12, содержащего печатные платы. В дополнение к нормативам, относящимся к люминесцентным лампам, Министерство энергетики также повысило стандарты энергоэффективности для производимых FLB (включая FLB T12). Хотя эти недавно изготовленные FLB не содержат печатных плат, стандарты энергоэффективности, согласно Министерству энергетики, усложнят производство FLB T12, что, в свою очередь, приведет к дальнейшему вытеснению люминесцентных ламп T12 с рынка.


Экономия средств, связанная с модернизацией старого освещения

Замена старых осветительных приборов может не только повысить энергоэффективность и снизить затраты на электроэнергию, но также может повысить стоимость имущества,

обеспечивает лучшее освещение (по внешнему виду и качеству света) и снижает вероятность возникновения аварийных ситуаций.Модернизация может выполняться на индивидуальной основе FLB (например, при визуальном осмотре) или как часть модернизации освещения, при которой весь осветительный прибор заменяется более новыми, более энергоэффективными приборами. Полная модернизация освещения устраняет опасности, связанные с печатными платами, и увеличивает энергоэффективность на 30-50 процентов (более подробную информацию см. На веб-сайте Energy Star).

Модернизация освещения для устранения ПХБ-содержащих FLB должна рассматриваться как компонент любых усилий по ремоделированию.Лампа T12 и соответствующий FLB менее энергоэффективны, чем другое освещение FLB (например, освещение T8 или T5). Стоимость замены этих приспособлений обычно окупается менее чем за семь лет в зависимости от часов работы и местных затрат на электроэнергию. Подробная информация о возможной экономии и потенциальном финансировании, которое может быть получено за счет инвестиций в новое освещение, доступна на веб-сайте Energy Star. На веб-сайте также представлена ​​информация о возможном финансировании замены старых приспособлений.

В большинстве штатов существует несколько агентств и организаций, имеющих финансирование для поддержки проектов по энергоэффективности или предоставления способов получения финансовой помощи для повышения энергоэффективности здания. Некоторые из этих программ предусматривают переход на более энергоэффективное освещение. Кроме того, во многих штатах, населенных пунктах и ​​коммунальных предприятиях действуют программы скидок за энергоэффективность и других льгот, которые могут включать переход на более энергоэффективное освещение. Министерство энергетики опубликовало руководство (PDF) (46pp, 1.92Мб) в апреле 2013 года для оказания помощи школам в финансировании модернизации энергоэффективности.


Рекомендуемые процедуры очистки и дезактивации

Опытный подрядчик или персонал предприятия удаляют, очищают и обеззараживают ПХБ-содержащие FLB, которые протекают, дымятся или воспламеняются. Это включает обращение с ПХБ-содержащими отходами, образующимися в результате устранения подобных инцидентов, и их удаление.

Действия по очистке и обеззараживанию после утечки, состояния курения или пожара FLB, содержащего ПХБ

Эти шаги являются руководством для владельцев и операторов зданий.В отдельных зданиях и / или помещениях могут встречаться уникальные обстоятельства. Свяжитесь с вашим региональным координатором PCB EPA, если у вас возникнут вопросы.

Препарат

  1. Изолируйте пораженное место от центральной вентиляции и проветрите это место отдельно, чтобы предотвратить распространение мусора и пыли на другие участки.
  2. Рабочие должны носить средства индивидуальной защиты (СИЗ), включая одноразовые комбинезоны, химически стойкие перчатки и одноразовые бахилы, выбранные с учетом соответствующей устойчивости к проникновению ПХД, респираторы, оборудованные фильтрами от органических паров, и защитные очки.
  3. Вытащите мебель и другие предметы в классе из-под светильников и накройте их пластиковой пленкой, чтобы задержать любой материал, который может вытекать из светильника.
  4. Выключите осветительные приборы или комнатные выключатели. Если есть, выключите и заблокируйте предохранители или блоки автоматических выключателей, управляющие переключателями.

Инспекция

  1. Снимите крышку лампы или решетку (перегородку) светильника, чтобы открыть люминесцентную лампу (лампу).
  2. Если люминесцентная лампа не загрязнена ПХД, ее можно повторно использовать или переработать как универсальные отходы.Если люминесцентная лампа загрязнена ПХД, осторожно удалите ее и поместите в контейнер, одобренный Департаментом транспорта (DOT).
  3. Визуально осмотрите открытую часть светильника на предмет возможной утечки печатной платы или остатков от пожара или курения. Если светильник показывает признаки утечки печатной платы, выполните очистку в соответствии с этапом 2 раздела «Очистка и утилизация», а затем вернитесь к этому этапу.

Удаление

  1. Снимите крышку корпуса FLB (лоток) внутри осветительной арматуры, чтобы обнажить FLB.
  2. Для визуального осмотра крышки и проводов снимите FLB, защелкнув и удалив провод с лицевой стороны FLB; и внешняя часть FLB и открытая внутренняя часть осветительной арматуры, включая корпус (с удаленным FLB).
  3. Если обнаружены протечки или пятна на FLB или осветительной арматуре, осторожно удалите их и поместите предметы непосредственно в утвержденный контейнер DOT.

Очистка и утилизация

  1. Если на осветительной арматуре не обнаружено утечек или пятен, но есть асбестосодержащий материал (ACM), такой как проволока с покрытием, его следует утилизировать как отходы ACM.В противном случае устройство не является отходом ПХБ и может быть переработано или утилизировано как твердые бытовые отходы.
  2. Удалите разливы с осветительных приборов, загрязненных ПХД, и протекающих FLB за пределами осветительной арматуры (например, полы, столы, стены и т. Д.) (40 CFR раздел 761.61 или 761.79).
  3. Выявление и надлежащее управление потоками отходов ПХД, включая утвержденные контейнеры DOT, утвержденные хранилища (40 CFR, раздел 761.65), манифесты (40 CFR, раздел 761.207) и записи (40 CFR, раздел 761.180), как показано ниже:
    1. Утечка FLB — отходы массового продукта PCB для сжигания.
    2. Светильники, загрязненные ПХД и связанными с ними отходами очистки (пластиковая пленка, СИЗ и т. Д.) — Отходы восстановления ПХД для утилизации на утвержденной свалке.
    3. Светильники, не загрязненные ПХБ с проводами ACM — отходы ACM для захоронения на утвержденной свалке.
      Люминесцентные лампы, не загрязненные ПХД — универсальные отходы для вторичной переработки.

Этапы модернизации для герметичных печатных плат, содержащих печатные платы, в школах

В этом разделе рассматриваются непротекающие или незагрязненные иным образом FLB.Если вы обнаружите FLB, содержащий ПХБ, который протек, загорелся или задымился, вернитесь к предыдущему разделу «Этапы очистки и дезактивации после утечки, состояния курения или пожара FLB, содержащего ПХБ».

Модернизация освещения должна выполнять опытный подрядчик или опытный штатный персонал. Предлагаемые шаги включают:

Препарат

  1. Выключите осветительные приборы или комнатные выключатели. Кроме того, выключите и заблокируйте предохранители или блоки автоматических выключателей, которые напрямую управляют переключателями светильников или светильников.

Инспекция

  1. Снимите крышку лампы или решетку (перегородку) светильника, чтобы открыть люминесцентную лампу (лампу).
  2. Если люминесцентная лампа не загрязнена ПХД, ее можно повторно использовать или переработать как универсальные отходы. Если люминесцентная лампа загрязнена печатными платами, осторожно удалите ее и поместите в утвержденный контейнер DOT.
  3. Визуально осмотрите открытую часть осветительной арматуры на предмет возможной утечки или остатков печатной платы. Если в осветительной арматуре появляются признаки утечки ПХД, немедленно обратитесь к разделу «Шаги по очистке и обеззараживанию» после утечки ПХБ-содержащего ПХД, состояния курения или пожара.

Удаление

  1. Снимите крышку корпуса FLB (лоток) внутри осветительной арматуры, чтобы обнажить FLB.
  2. Для визуального осмотра крышки и проводов снимите FLB, защелкнув и удалив провод с лицевой стороны FLB; и внешняя часть FLB и открытая внутренняя часть осветительной арматуры, включая корпус (с удаленным FLB).
  3. Поместите FLB непосредственно в утвержденный контейнер DOT.

Выбытие

  1. Если на осветительном приборе не обнаружено утечек или пятен, но есть ACM, утилизируйте его отходы ACM.В противном случае устройство не является отходом ПХБ и может быть переработано или утилизировано как твердые бытовые отходы.
  2. Выявление и надлежащее управление потоками отходов ПХД, включая, где это уместно, использование утвержденных контейнеров DOT, утвержденных хранилищ (40 CFR раздел 761.65), деклараций (40 CFR раздел 761.207) и записей (40 CFR раздел 761.180), как предусмотрено ниже:
    1. Утечка FLB — отходы массового продукта PCB для сжигания.
    2. Светильники, загрязненные ПХД и связанными с ними отходами очистки (пластиковая пленка, СИЗ и т. Д.)) — Отходы восстановления ПХД для захоронения на утвержденной свалке.
    3. Светильники, не загрязненные ПХБ с проводами ACM — отходы ACM для захоронения на утвержденной свалке.
      Люминесцентные лампы, не загрязненные ПХД — универсальные отходы для вторичной переработки.

Ознакомьтесь с требованиями TSCA по утилизации FLB , чтобы узнать о дополнительных вариантах утилизации для ПХД и FLB, не содержащих ПХД.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *