Резисторы, ток и напряжение
Как получить 12В из подручных средств
Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.
Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.
Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.
Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.
Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео по теме:
Наверняка вы не знаете:
- Как выпаивать радиодетали из плат
- Как проверить диодный мост
- Как определить емкость конденсатора
- Маркировка резисторов по мощности и сопротивлению
Опубликовано:
08.05.2018
Обновлено: 08.05.2018
Как уменьшить вольтаж трансформатора
Как уменьшить вольтаж на трансформаторе.
Привет коллеги!
В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.
Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».
Я думаю, очень многие встречались с ним или подобным.
Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора.
На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.После того, как мы определили эти обмотки, можно приступать к разбору трансформатора. Нужно отделить друг от друга Ш-образные пластины.
Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.
Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу»
Работать нужно очень осторожно, так как легко можно порезаться о пластины
Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В.
В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение, чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.
После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.
Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное.
Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали.
(Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор, делая всё то же, что при разборке, только в обратном порядке.
Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37.
Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков).
Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».
Остаётся замерить напряжение, которое у нас получилось:
Поздравляю вас, коллеги, всё получилось отлично!
В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.
Гасящий конденсатор вместо резистора
Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости.
Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.
Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.
Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.
Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.
Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.
Это видно и из формулы для емкостного сопротивления конденсатора: |
Если в цепь переменного тока включены последовательно резистор (активная нагрузка) и конденсатор, то их общее сопротивление можно найти по формуле: |
А посколькуито
Итак, зная напряжение на нагрузке, силу тока нагрузки и напряжение на гасящем конденсаторе, можно определить емкость гасящего конденсатора, который нужно включить последовательно нагрузке для получения требуемых параметров питания: |
Рассмотрим пример: требуется запитать лампу накаливания мощностью 100 Ватт, рассчитанную на напряжение 110 вольт от розетки 220 вольт. В первую очередь найдем значение рабочего тока лампы: |
Получим значение тока лампы равное 0,91 А. Теперь можно найти требуемое значение емкости гасящего конденсатора, она будет равна 15,2 мкФ.
Следует отметить, что этот расчет верен для чисто активной нагрузки, когда имеет место эффективное значение. При использовании же выпрямителя, необходимо учесть, что эффективное значение тока будет немного меньше в силу действия пульсаций. Также следует помнить, что в качестве гасящих конденсаторов, полярные конденсаторы применять ни в коем случае нельзя.
Лучшее сочетание вакуумных и полупроводниковых характеристик — однотактный гибридный усилитель звука.
Мы не создаём иллюзий, Мы делаем звук живым!
Два простых способа снизить напряжение на электролампах
Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.
В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.
Подсчитано,что повышение напряжения всего лишь на 4% по сравнению с номинальным(то есть с 220 до 228В) сокращает срок службы электроламп на 40%, а при повышенном «питании» в 6% этот срок снижается более чем наполовину.
В то же время уменьшение напряжения на лампах всего на 8%(до 200-202В) увеличивает «стаж» их работы в 3,5 раза, при 195В он возрастает почти в 5 раз
Разумеется с понижением напряжения, снижается и яркость свечения, но во многих случаях, в частности в служебных помещениях, и в местах общего пользования, это обстоятельство не так уж и важно
Первый-включают последовательно две лампы (рис 1). А какую же лампу взять в качестве дополнительной?. Можно такую же, как и основная. Но тогда обе лампы будут светить слабо.
Лучше всего подбирать лампу так, чтобы мощности ламп отличались в 1,5-2 раза, например 40 и 75 Вт, 60 и 100 Вт и.т.д.
Тогда лампа меньшей мошности будет светиться достаточно ярко, а более мощная слабее, выполняя роль своеобразного балласта, гасящего избыточное напряжение (рис.2.).
На первый взгляд выигрыша нет-ведь приходится использовать сразу две лампы вместо одной. Но вот что показывает простейший расчет; падение напряжения на лампах при последовательном соединении распределяется обратно пропорционально их мощности.
Поэтому при напряжении в сети 220В (возьмем пару ламп на 40 и 75 Вт) на 40- ваттной лампе напряжение будет около 145В, а на её 75-ваттной «партнерше»-чуть больше 75В.
Так как долговечность зависит от величины напряжения, понятно, что менять придется в основном лампу меньшей мощности. Да и та, как показывает практика, в худшем случае служит не менее года.
В обычных условиях за это же время приходится менять от 5 до 8 ламп (имеется в виду ежесуточная работа в течении 12 часов). Как видите, экономия весьма ощутима.
Другой способ-последовательное включение лампы и полупроводникового диода. Благодаря малым размерам его можно установить в конусе выключателя между клеммой и одним из подводящих проводов. При этом варианте происходит едва заметное мерцание ламп (за счет однополупериодического выпрямления переменного тока), а среднее значение напряжения на них составляет около 155В.Теперь о выборе типа диода. Он должен иметь определенный запас по допустимому току и быть рассчитан на напряжение не ниже 400В. Из миниатюрных диодов этому требованию отвечают серии КД150 и КД209. Однако диоды марки КД105 следует применять с лампами, у которых мощность не превышает 40Вт, а диоды КД209 (с любым буквенным индексом)-для совместной работы с 75-ватными осветительными приборами. Разумеется использовать можно и более мощные диоды других типов, но тогда их придется устанавливать вне выключателя. Правильно подобранный диод служит практически неограниченное время. Теперь разберем ещё один вопрос. Как быть тем, если в доме общий выключатель на весь подъезд? В этом случае устанавливают один диод большой мощности. Его крепят на металлическом уголке, привинчивают шурупами к стене рядом с выключателем, и закрывают кожухом с веньтиляционными отверстиями. Рекомендуемые типы диодов: КД202М, Н,Р или С, КД203, Д232-Д234, Д246-248 с любым буквенным индексом. При выборе типа диода помните, что его максимально допустимый рабочий ток (указан в паспорте полупроводникового прибора) на 20-25% должен превышать суммарный ток, потребляемый одновременно всеми лампами, относящимися к данному выключателю. Если диод допускает ток всех лампочек (его нетрудно посчитать разделив общую мощность всех ламп на напряжение сети 220В ) не должен превышать 4А.
Как повышают и понижают напряжение?
Повышение и понижение напряжения осуществляют с помощью трансформаторов.
Трансформатор состоит из двух катушек изолированного провода, намотанных на общий стальной сердечник (рис. 16.4).
На одну катушку (называемую первичной обмоткой) подают переменный ток одного напряжения, а с другой катушки (вторичной обмотки) снимают переменный ток другого напряжения.
Рис. 16.4. Повышающий и понижающий трансформаторы.
Оно сосредоточено в основном внутри стального сердечника, поэтому обе обмотки пронизываются одним и тем же переменным магнитным потоком.
Поэтому вследствие явления электромагнитной индукции в каждом витке каждой обмотки возникает одна и та же ЭДС индукции.
Суммарная ЭДС в каждой из катушек равна сумме ЭДС во всех ее витках, так как витки соединены друг с другом последовательно. Поэтому отношение напряженийина вторичной и первичной обмотках равно отношению числа витков в них:Например, если во вторичной обмотке в 10 раз больше витков, чем в первичной, напряжение во вторичной обмотке будет в 10 раз больше, чем в первичной.
Если напряжение во вторичной обмотке трансформатора больше, чем в первичной, его называют повышающим, а если меньше, то понижающим.
Основными потребителями электроэнергии являются производство и транспорт. На бытовые нужды приходится не более 5-10% всей производимой электроэнергии.
Рис. 16.5. Основные этапы производства, передачи и потребления электроэнергии.
Статьи энциклопедии
Понижаем постоянное напряжение
При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.
Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.
А на плате он выглядит следующим образом:
На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.
На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.
Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.
Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.
Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.
Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:
Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!
Схема для понижения напряжения постоянного тока. Высокое или повышенное напряжение. Как понизить напряжение в сети
Внимание новинка! Стабилизатор напряжения для всего дома SKAT ST-12345 разработан специально для сетей с нестабильным сетевым напряжением. Стабилизирует напряжение в диапазоне от 125 до 290 Вольт! Имеет большую мощность 12 кВА! Гарантия — 5 лет! Видео испытания стабилизатора смотрите .
Высокое и повышенное напряжение. Причины возникновения
Как в наших в наших электросетях могут появиться высокое или повышенное напряжение. Как правило к повышению напряжения могут привести некачественные электрические сети или аварии в сетях. К недостаткам сетей можно отнести: устаревшие сети, низкокачественное обслуживание сетей, высокий процент амортизации электрооборудования, неэффективное планирование линий передач и распределительных станций, не управляемый роста количества потребителей. Это приводит к тому, что соти тысяч потребителей, получают высокое или повышенное напряжение. Значение напряжения в таких сетях может достигать 260, 280, 300 и даже 380 Вольт.
Одной из причин повышенного, как не странно, может быть пониженное напряжение потребителей, находящихся далеко от трансформаторной подстанции. В этом случае часто электрики умышленно повышают выходное напряжение электрической подстанции, что бы добить удовлетворительных показателей тока у последних в линии передач потребителей. В итоге у первых в линии напряжение будет повышенным. По этой же причине можно наблюдать повышенное напряжение в дачных поселках. Здесь изменение параметров тока связаны с сезонностью и периодичностью потребления тока. Летом мы наблюдаем рост потребления электроэнергии. В этот сезон на дачах находится много людей они используют большое количество энергии, а зимой потребление тока резко падает. В выходные дни потребление на дачных участках растет, а в рабочие дни падает. В результате имеем картину неравномерно потребления энергии. В этом случае, если установить выходное напряжение на подстанции (а они как правило не достаточной мощности) нормальным (220 Вольт), то в летом и в выходные напряжение резко просядет и будет пониженным. Поэтому электрики изначально настраивают трансформатор на повышенное напряжение. В итоге зимой и в рабочие дни напряжение в поселках высоко или повышенное.
Вторая большая группа причин появления высокого напряжения — это перекосы по фазам при подключении потребителей. Часто бывает так, что подключение потребителей происходит хаотично, без предварительного плана и проекта. Или в ходе реализации проекта или развития поселений происходит изменение значения потребления на разных фазах линии передач. Это может привести к тому, что на одной фазе напряжение будет пониженным, а на другой фазе повышенным.
Третья группа причин повышенного напряжения в сети — это аварии на линиях электропередач и внутренних линиях. Здесь следует выделить две основные причины — обрыв нуля и попадание тока высокого напряжения в обычные сети. Второй случай — это редкость, случается в городах в сильный ветер, ураган. Бывает, что линия питания электротранспорта (трамвая или троллейбуса) попадает при обрыве на линии городских сетей. В этом случае в сеть может попасть и 300, и 400 Вольт.
Теперь рассмотрим, что происходит при пропадании «нуля» во внутренних домовых сетях. Этот случай бывает довольно часто. Если в одном подъезде дома используется две фазы, то при пропадании нуля (например нет контакта на нуле) происходит происходит изменение значения напряжения на разных фазах. На той фазе, где сейчас нагрузка в квартирах меньше, напряжение будет завышенным, на второй фазе заниженным. Причем напряжение распределяется обратно пропорционально нагрузке. Так если на одной фазе нагрузка именно в этот момент в 10 раз больше чем на другой, то мы можем получить на первой фазе 30 Вольт (низкое напряжение), а на второй фазе 300 Вольт (высокое напряжение). Что приведет к сгоранию электрических приборов, и возможно пожару.
Чем опасно высокое и повышенное напряжение
Высокое напряжение опасно для электрических приборов. Значительное повышение напряжения может привести к сгоранию приборов, их перегреву, дополнительному износу. Особенно критичны к высокому напряжению электронное оборудование и электромеханические приборы.
Повышенное напряжение может привести к пожару в доме, нанести большой ущерб.
Если речь идет о снижении напряжения в сети, то нахождение проблемы является более сложной задачей, поскольку она зависит от типа используемого потребителя электроэнергии. Можно выделить два основных типа потребителей: сопротивления и двигателя.
Что касается потребителя типа сопротивления, то для них снижение напряжения прямо пропорционально падению потребляемого тока (з-н Ома l = U /R). Для предохранителей слабый ток не несет никаких опасностей. Если взять сопротивление, потребляющее 300 Вт (рис. 55.2) при 240 В, то при напряжении 24 В оно будет потреблять только 3 Вт.
Что касается типа двигателя, то вначале необходимо отличать их по действию большего момента сопротивления (рис. 55.3). Так, можно сравнить поршневые (больший момент сопротивления? и приводные двигатели (меньший момент сопротивления?.
Относительно центробежных вентиляторов, то они находятся между двумя данными категориями. Преимущественно их характеристики не выдерживают значительного падения напряжения питания, в связи, с чем их относят к категории устройств с большим моментом сопротивления.
Напомним, что способность двигателя приводить в движение устройство (момент на валу) зависит от квадрата напряжения питания. То есть, если он предназначен для работы от питания 220 В, а напряжение снизится до 110 В, то крутящий момент уменьшится в 4 раза (рис. 55.4). Если при снижении напряжения момент сопротивления слишком велик, то двигатель остановится. При этом потребляемый двигателем ток, будет равен пусковому, который он будет потреблять во время вынужденной остановки. В этот момент спасти его от сильного перегрева может только встроенная защита (тепловое реле), которое быстро отключит питание.
При низком моменте сопротивления приводимого устройства снижение напряжения приведет к уменьшению скорости вращения, поскольку мотор обладает меньшей располагаемой мощностью. Данное свойство широко применяется в большинстве многоскоростных двигателей, которые вращают вентиляторы кондиционеров (рис. 55.5). При переключении на БС (большая скорость) сопротивление замкнуто на коротко и двигатель запитывается от 220 В. Скорость его вращения номинальная.
При переключении на МС (малая скорость) сопротивление соединено последовательно с обмоткой двигателя, из-за чего напряжение на нем снижается. Соответственно уменьшается и крутящий момент на валу, таким образом, вентилятор начинает вращаться с пониженной скоростью. Потребляемый ток становится меньше. Данной свойство широко применяется при изготовлении электронных регуляторов скорости (на основе тиристоров), служащих для регулирования давления конденсации, изменяя скорость вращения вентиляторов в конденсаторах с воздушным (рис. 55.6).
Данные регуляторы, называемые преобразователями или вентилями тока, функционируют, как и остальные регуляторы-ограничители, работая по принципу «срезания» частоты амплитуды переменного тока.
В первой позиции давление высокое и регулятор скорости полностью пропускает полупериоды сети. На клеммах двигателя напряжение (заштрихованная область) соответствует питанию в сети, и он начинает вращаться с максимальной скоростью, при этом потребляя номинальный ток.
Во второй позиции давление конденсации начинает снижаться. Вступает в регулятор, срезая часть каждого полупериода, поступающего на вход двигателя. Напряжение на клеммах двигателя уменьшается, вместе со скоростью и потребляемым током.
В третьей позиции напряжение слишком слабое. Поскольку крутящий момент двигателя меньше момента сопротивления вентилятора, он останавливается и начинает нагреваться. Таким образом, регуляторы скорости в основном настраиваются на предельно допустимое значение минимальной скорости.
Кроме того, метод «срезания» может применяться в однофазных двигателях, когда те используются для приводов с низким моментом сопротивления. Что касается трехфазных двигателей (используемых для привода машин с большим сопротивлением), то рекомендовано применение многоскоростных двигателей, двигателей постоянного тока или частотных преобразователей.
В повседневной жизни нам приходится часто сталкиваться с падением напряжения. Оно может быть вызвано кратковременным отключением или резким падением силы тока. Для того чтобы ограничить падение напряжения необходимо правильно подбирать сечение питающих проводов. Но в некоторых случаях снижение уровня напряжения не обусловлено снижением питания в подводящих проводах.
Для примера возьмем катушку электромагнита 24 В, управляющую небольшим контактором (рис. 55.7). Когда электромагнит срабатывает, то потребляет ток равный 3 А, а при удержании он составляет 0,3 А (10 раз меньше). Другими словами, подключенный электромагнит потребляет ток, равный десятикратному току режима удержания. Несмотря на то, что продолжительность включения невелика (20 мс), данный фактор может иметь влияние в больших командных цепях с большим количеством контакторов и реле.
На представленной схеме (рис. 55.8) установлено 20 контакторов — С1-С20. Как только ток выключается, все они находятся в ждущем режиме, а при включении одновременно срабатывают. При срабатывании каждый контактор потребляет 3 А, а это значит,что через вторичную обмотку трансформатора будет идти ток 3×20=60 А. Если сопротивление вторичной обмотки составляет 0,3 Ом, то снижение напряжения на ней при срабатывании контакторов составит 0,3×60=18 В. Поскольку напряжение контакторов достигает всего 6 В, они не смогут работать (рис. 55.9).
В этом случае трансформатор вместе с проводкой будут сильно перегреваться, а сами контакторы гудеть. И так будет продолжаться до тех пор, пока не сработает автомат защиты или не перегорит предохранитель.
Если сопротивление вторичной обмотки трансформатора составит 0,2 Ома, то при включении контакторов напряжение в ней составит 0,2×60=12 В. При этом контакторы будут запитаны от 12 В, вместо 24 В, и нет никакой вероятности, что они включатся. Их работа будет аналогичной кА в предыдущем примере, поскольку напряжение в сети аномально высокое.
Трудности с сопротивлением на вторичной обмотке объясняются значительным напряжением холостого хода на выходе трансформатора, в отличие от напряжения под нагрузкой. С увеличением потребляемого тока, выходное напряжение снижается.
В качестве примера рассмотрим трансформатор 220/24 (рис. 55.10) мощностью 120 ВА, подключенный к сети 220 В. Если трансформатор выдает ток 5 А, то выходное напряжение составит 24 В (24×5=120 ВА). Но при снижении потребляемого тока до 1 А, выходное напряжение становится большим, например, 27 В. Это спровоцировано воздействием сопротивления провода вторичной обмотки.
Как только ток начинает снижаться, выходное напряжение повышается. И обратная ситуация: как только потребляемый ток становится больше 5 А, выходное напряжение уменьшается до 24 В, в результате чего трансформатор перегревается.
Если трансформатор небольшой мощности, то могут возникнуть определенные трудности, поэтому не следует пренебрегать подбором мощности трансформатора.
Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.
В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп. Подсчитано,что повышение напряжения всего лишь на 4% по сравнению с номинальным(то есть с 220 до 228В) сокращает срок службы электроламп на 40%, а при повышенном «питании» в 6% этот срок снижается более чем наполовину.
В то же время уменьшение напряжения на лампах всего на 8%(до 200-202В) увеличивает «стаж» их работы в 3,5 раза, при 195В он возрастает почти в 5 раз. Разумеется с понижением напряжения, снижается и яркость свечения, но во многих случаях, в частности в служебных помещениях, и в местах общего пользования, это обстоятельство не так уж и важно.
Как же снизить напряжение на электролампах? Существуют два простых способа.
Первый —
включают последовательно две лампы (рис 1). А какую же лампу взять в качестве дополнительной?. Можно такую же, как и основная. Но тогда обе лампы будут светить слабо. Лучше всего подбирать лампу так, чтобы мощности ламп отличались в 1,5-2 раза, например 40 и 75 Вт, 60 и 100 Вт и.т.д. Тогда лампа меньшей мошности будет светиться достаточно ярко, а более мощная слабее, выполняя роль своеобразного балласта, гасящего избыточное напряжение (рис.2.).
На первый взгляд выигрыша нет-ведь приходится использовать сразу две лампы вместо одной. Но вот что показывает простейший расчет; падение напряжения на лампах при последовательном соединении распределяется обратно пропорционально их мощности. Поэтому при напряжении в сети 220В (возьмем пару ламп на 40 и 75 Вт) на 40- ваттной лампе напряжение будет около 145В, а на её 75-ваттной «партнерше»-чуть больше 75В.
Так как долговечность зависит от величины напряжения, понятно, что менять придется в основном лампу меньшей мощности. Да и та, как показывает практика, в худшем случае служит не менее года. В обычных условиях за это же время приходится менять от 5 до 8 ламп (имеется в виду ежесуточная работа в течении 12 часов). Как видите, экономия весьма ощутима.
Другой способ-последовательное включение лампы и полупроводникового диода. Благодаря малым размерам его можно установить в конусе выключателя между клеммой и одним из подводящих проводов. При этом варианте происходит едва заметное мерцание ламп (за счет однополупериодического выпрямления переменного тока), а среднее значение напряжения на них составляет около 155В.
Теперь о выборе типа диода. Он должен иметь определенный запас по допустимому току и быть рассчитан на напряжение не ниже 400В. Из миниатюрных диодов этому требованию отвечают серии КД150 и КД209.
Однако диоды марки КД105 следует применять с лампами, у которых мощность не превышает 40Вт, а диоды КД209 (с любым буквенным индексом)-для совместной работы с 75-ватными осветительными приборами.
Разумеется использовать можно и более мощные диоды других типов, но тогда их придется устанавливать вне выключателя. Правильно подобранный диод служит практически неограниченное время.
Теперь разберем ещё один вопрос. Как быть тем, если в доме общий выключатель на весь подъезд? В этом случае устанавливают один диод большой мощности.
Его крепят на металлическом уголке, привинчивают шурупами к стене рядом с выключателем, и закрывают кожухом с веньтиляционными отверстиями.
Рекомендуемые типы диодов: КД202М, Н,Р или С, КД203, Д232-Д234, Д246-248 с любым буквенным индексом.
При выборе типа диода помните, что его максимально допустимый рабочий ток (указан в паспорте полупроводникового прибора) на 20-25% должен превышать суммарный ток, потребляемый одновременно всеми лампами, относящимися к данному выключателю. Если диод допускает ток всех лампочек (его нетрудно посчитать разделив общую мощность всех ламп на напряжение сети 220В) не должен превышать 4А.
И последнее: подсоединяя дополнительную лампу или диод, не забывайте, что имеете дело с высоким напряжением, представляющим опасность для Вашей жизни. Поэтому обязательно обесточьте линию, а уже потом приступайте к работе. Всего доброго.
Как уменьшить силу тока не меняя напряжение
Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.
Определение физической величины
Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.
Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:
Если выразить через работу, тогда:
где A — работа, q — заряд.
Измерение напряжения
Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.
Вывод:
Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.
На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.
Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.
Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».
А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.
Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.
Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.
Что делать если напряжение не подходит для питания нагрузки
Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.
Как понизить напряжение сопротивлением?
Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.
Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:
R=(14.7-3.3)/0.02)= 570 Ом
Но резисторы отличаются по максимальной рассеиваемой мощности:
Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.
Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.
Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.
Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.
Как понизить переменное напряжение дросселем или конденсатором?
Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.
Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.
Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:
где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.
Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:
Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.
А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».
Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.
Как понизить и стабилизировать напряжение постоянного тока
Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.
Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.
Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.
Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:
Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.
Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.
Как повысить постоянное напряжение?
Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:
1. Плата на базе микросхемы XL6009
2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.
3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.
4. Плата на базе MT3608
Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.
Как повысить переменное напряжение?
Для корректировки переменного напряжения используют два основных способа:
Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.
Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.
Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.
Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.
Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:
Зарядное устройство вашего смартфона;
Блок питания ноутбука;
Блок питания компьютера.
За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).
В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.
Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.
Достоинства – простота схемы, гальваническая развязка и малые размеры.
Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.
Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.
Заключение
Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.
Многих людей интересует, как уменьшить ток в электрической цепи. Для этого необходимо знать некоторые законы физики. Изначально необходимо определить точное изменение тока. Для этого с помощью закона Ома определяют параметры цепи, а также рассчитывают необходимое сопротивление.
Предварительные работы
Прежде чем начать работу по уменьшению тока в электрической цепи, необходимо позаботиться о безопасности рабочего места. Для этого следует убедиться в том, что место полностью защищено от поражения электрическим током. Кроме того, важно запомнить, что перед началом работы необходимо обесточить все электрические цепи.
Так как сила тока зависит от двух параметров — сопротивления и напряжения, существует несколько простых способов уменьшить эту величину. Наиболее распространённым и простым методом является добавление дополнительного сопротивления в сеть или подключение какого-либо устройства в разрыв цепи, которое будет обеспечивать данную функцию.
Чтобы измерить необходимые показатели, будет нужен мультиметр. Напряжение, поданное на электрическую цепь, необходимо отключить. Для этого достаточно перевести выключатель в необходимый режим. После того как индикатор устройства или показатели мультиметра сообщат о том, что сеть обесточена, можно приступать к работе. Теперь следует определить сопротивление, которое обеспечивает вводное устройство. Переключив мультиметр в режим омметра, можно узнать данный параметр. Если нет необходимого оборудования, то узнать сопротивление можно с помощью сложения всех показателей сопротивления в данной цепи.
Расчет необходимого сопротивления
Чтобы узнать, какое сопротивление нужно добавить в электрическую цепь для уменьшения силы тока, следует воспользоваться законом Ома. Делим имеющееся напряжение в цепи на необходимую величину тока. Далее из полученного результата вычитаем то сопротивление, которое было измерено ранее. Полученное значение и будет являться тем необходимым сопротивлением, которое нужно добавить в цепь, чтобы уменьшить силу тока.
Теперь перед тем как уменьшить силу тока в цепи, необходимо подобрать специальный элемент с рассчитанным сопротивлением. Подойдет заранее подготовленный резистор либо несколько ламп накаливания. После этого следует разорвать электрическую цепь. Это можно сделать с помощью кусачек или острого ножа. Разрезаем один из проводов, который отвечает за питание, после чего зачищаем полученные концы провода. Зачищенные провода необходимо подсоединить к элементу с необходимым сопротивлением и убедиться в безопасности конструкции. После этого можно подавать напряжение и проверять работоспособность цепи.
В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.
СОДЕРЖАНИЕ (нажмите на кнопку справа):
Что такое сила тока?
Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.
Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.
В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.
Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:
I=q/t, где I — сила тока, t — время, а q — заряд.
Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).
I=U/R.
Сила тока бывает двух видов — положительной и отрицательной.
Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.
Приведем проверенные рекомендации, которые позволят решить поставленные задачи.
От чего зависит сила тока?
Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:
- Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
- Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
- Напряженности магнитного поля. Чем она больше, тем выше напряжение.
- Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
- Мощности усилия, которое передается на ротор.
- Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
- Конструкции источника питания.
- Диаметра проводов статора и якоря, числа ампер-витков.
- Параметров генератора — рабочего тока, напряжения, частоты и скорости.
Как повысить силу тока в цепи?
Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.
Рассмотрим, как повысить силу тока с помощью простых приборов.
Для выполнения работы потребуется амперметр.
По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.
К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.
Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.
Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.
Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.
В быту источники постоянного U, объединенные в одну группу, называются батарейками.
Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.
В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.
Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.
Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.
Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.
Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).
Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.
Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.
Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.
В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.
Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:
I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:
- S — сечение провода;
- l — его длина;
- ρ — удельное электрическое сопротивление проводника.
Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.
Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.
Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.
Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.
Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.
Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.
Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.
Как повысить силу тока в блоке питания?
В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.
Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.
При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.
Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.
Кроме того, возможны следующие варианты:
- Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
- При наличии защиты по току снизить номинал резистора в цепочке управления.
Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.
Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.
При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.
Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.
Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.
Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.
После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.
Как повысить силу тока в зарядном устройстве?
В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.
Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.
Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.
С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).
Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.
С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.
Для использования возможностей приложения достаточно скачать его, установить и запустить.
После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.
Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.
Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.
Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).
Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.
Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.
Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.
Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.
Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.
При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.
С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.
Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.
Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.
Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.
Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.
Как повысить силу тока в трансформаторе?
Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.
Здесь можно выделить следующие варианты:
- Установить второй трансформатор;
- Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
- Поднять U;
- Увеличить сечение сердечника;
- Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
- Купить новый трансформатор с подходящим током;
- Заменить сердечник ферромагнитным вариантом изделия (если это возможно).
В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.
Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.
С учетом сказанного выше можно сделать следующие выводы:
- Мощность трансформатора зависит от ширины постоянного магнита.
- Для увеличения тока в трансформаторе требуется снижение R нагрузки.
- Ток (А) зависит от диаметра обмотки и мощности устройства.
- В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.
Как повысить силу тока в генераторе?
Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.
Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.
Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).
Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.
Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.
Частота сети должна находиться на одном уровне (быть постоянной величиной).
Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.
Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.
Кроме того, сам диодный мост меняется на деталь большей производительности.
После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.
При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.
После припаивания место стыка изолируется термоусадкой.
Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.
Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).
После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.
Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).
Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.
Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.
Итоги
Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.
Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.
Что должен показывать амперметр при зарядке аккумулятора. Вопросы
Для начала проверим работу амперметра, чтобы убедиться, работает ли сам прибор. Включите при заглушенном моторе фары. нормальный амперметр должен отобразить процесс разряда. Прибор не показывает зарядку, если двигатель не прогрет, либо загрязнены щетки генератора. Когда генератор достигнет рабочей температуры, масляная пленка на щетках нарушается. После этого амперметр начинает отображать нормальный процесс заряда. Следует быстро протереть поверхность коллектора. Из-за сильного искрения щеток может произойти замыкание и выход из строя генератора.
Как проверить генератор
Пошаговая инструкция:
- Включите как можно больше световых приборов.
- Заведите мотор и установите небольшие обороты.
- Отключите все провода от реле регулятора.
- Пассатижами соедините концы проводников.
- Смотрите за прибором, постепенно повышайте обороты мотора. Если амперметр отображает повышение тока, значит генератор работает нормально.
Реле-регулятор требует замены. Двигатель нельзя ставить на большие обороты. Если он неожиданно остановится, то провода нужно быстро расцепить.
Порядок зарядки
Закончив в предварительной подготовкой, можно приступать непосредственно к заряду аккумулятора. Нужно учитывать тот факт, что электролит имеет свойство испаряться в процессе зарядки, поэтому производить ее в жилых помещениях крайне не рекомендуется.
Также нужно соблюсти правильную последовательность подключения, т.е. сначала лучше осуществить подключение зарядного устройства к АКБ, а потом только в сеть. Кроме того, надо следить за правильностью данного подключения устройства к батарее, ведь в случае ошибки будут повреждены предохранители ЗУ.
Отличают два метода зарядки:
- С помощью постоянного тока. Данный способ зарядки считается наиболее простым, ведь для его осуществления необходимо лишь правильно выставить силу тока при помощи регулятора. Данное значение должно составлять порядка 10% от энергоемкости АКБ. В процессе заряда батареи, данное значение будет постепенно уменьшаться. Окончательным сигналом завершения процесса будет нулевое показание стрелки амперметра. В среднем, весь процесс занимает порядка 13 часов.
- С помощью переменного тока. Данный способ более сложный, потому что необходимо задавать силу тока самому. На начальном этапе, необходимо поставить такое же значение, как и в предыдущем методе — 10% от энергоемкости АКБ. Как только напряжение достигнет 14 В, необходимо понизить силу тока ровно в два раза, после чего заряжать с такими параметрами до 15 В.Как только напряжение дойдет до 15 В, нужно снова понизить силу тока в два раза. Зарядка будет произведена после того, как напряжение будет находиться на одном уровне в течение 60 минут.
Это все, что касается зарядки аккумулятора, которая производится вне автомобиля. Однако, бывают случаи, когда заряжать аккумулятор нужно непосредственно в транспортном средстве. Чтобы правильно произвести этот процесс, лучше следовать нескольким полезным рекомендациям:
- Автомобиль должен располагаться в закрытом помещении, где температура находится на приемлемом для работы уровне. Кроме того, в помещении не должно быть повышенной влажности.
- Перед началом процесса зарядки, лучше дать аккумулятору определенное время на привыкание, т.е. достижения им температуры помещения. В среднем, это достигается за пару часов.
- Также необходимо отключить все электрооборудование, подключенное в сеть. Сделать это лучше на этапе предварительной подготовки, до заряда АКБ.
- Необходимо произвести предварительную проверку, как и в предыдущем способе, когда АКЮ вынимается из авто. То есть, проверить электролит, напряжение на клеммах и т.д.
- В остальном, процесс зарядки аккумулятора практически ничем не отличается от предыдущего способа. Необходимо следить за капотом, чтобы он не захлопнулся в самый неподходящий момент. Если это произойдет, то клеммы будут повреждены, что приводит довольно к неприятным последствиям. Следовательно, нуж?
Неисправность реле-регулятора
Если это устройство вышло из строя где-то далеко от дома, то при исправном генераторе можно подсоединить его в цепь для зарядки батареи.
- Снимите проводку с клемм генератора и реле.
- Заизолируйте провода.
- Подсоедините лампу между выводами Ш и Я реле и генератора.
- На генераторе лампу поставьте на 10 свечей. Она заменит вышедший из строя реле регулятор.
- Отключите от прибора провод, который подходит к выводу Б реле. Вместо него подключите кусок метрового провода.
- К выводу Я генератора подключите провод 2 метра 50 см.
- Зачищенные концы проводки затяните в салон.
Как отремонтировать замок задней двери ВАЗ-2109?
Алгоритм зарядки аккумулятора автомобиля
- Снять АКБ с автомобиля. Однако если есть причины, которые затрудняют это действие, можно зарядить аккумулятор, не снимая его.
Чтобы зарядка была сделана правильно, проводить ее нужно в помещении, которое хорошо проветривается.
Внимание!
Не стоит нарушать правила техники безопасности.
Заряжать АКБ нужно вдалеке от легковоспламеняющихся предметов.
Поток свежего воздуха должен быть обеспечен обязательно, так как в процессе может выделяться взрывоопасная смесь кислорода и водорода. По этой же причине нужно избегать искр и открытого огня.
Как найти причину
При движении 20 км в час надо соединить два провода, в результате аккумулятор станет брать зарядку. При движении с меньшей скоростью на 4-й передаче — провода разъединить. Иначе аккумулятор может разрядиться по цепи генератора. Таким методом можно подсоединять генератор только в экстренных случаях.
Автомобиль заглох и не заводится — что делать?
Ввиду высокого напряжения снижается срок работы приборов. После приезда домой надо быстро заменить реле и возвратить всю схему назад в прежнее состояние.
Зарядка автомобильного аккумулятора — что выбрать и как заряжать
С проблемой «севшего» аккумулятора сталкивались почти все автомобилисты. Не будем вдаваться в причины произошедшего, рассмотрим, как и чем исправить сложившуюся ситуацию. В данном случае проблему зарядки автомобильного аккумулятора можно решить двумя способами.
Способ первый
Это, так называемый, быстрый способ подзарядки аккумулятора для тех, кто ограничен во времени, а машину нужно завести как можно быстрее. Батарею в этом случае можно не снимать с автомобиля. Что же нужно сделать для зарядки автомобильный аккумулятор в таком случае?
Итак, по порядку. Отсоединяем от батареи оба провода (снимаем их с клемм и отодвигаем подальше). Подсоединяем провода выхода подзарядного устройства к клеммам аккумулятора согласно маркировке – «+» с положительной клеммой, а «-» — с минусовой. На зажимах подзарядника указана полярность, ее нельзя перепутать!
Выставляем регулятор тока на максимум и включаем зарядное в сеть питания. Минут через 20-30 отсоединяем провода зарядника и закрепляем автомобильные провода на клеммах батареи. Опять-таки, соблюдайте полярность! Следующим действием запускаем двигатель. Пускового тока вполне хватит на запуск, а дальше генератор все сделает сам. Для уверенности можно погонять двигатель минут 5-10 на больших оборотах.
Способ второй
Если времени у вас достаточно, то лучше провести полную зарядку автомобильного аккумулятора. Для этого освобождаем батарею от проводов и извлекаем ее из-под капота. Заносим ее в гараж или, за неимением такового, в квартиру. Проводить процесс подзарядки нужно проводить в сухом помещении. Подготавливаем аккумулятор к процессу – очищаем клеммы от окислов и прочищаем вентиляционные отверстия в пластмассовых пробках банок. Затем закрепляем зажимы проводов зарядного устройства, «плюс» — к плюсу, «минус» — к минусу. Выставляем зарядный ток на минимум и включаем зарядник в розетку.
Внимание! Сначала подсоединяем провода к аккумулятору, а только потом включаем в сеть, а не наоборот! Полная зарядка батареи происходит за 24 ч. При полном заряде аккумулятора на подзарядном устройстве загорится индикатор окончания процесса. Автомобильный источник питания готов к эксплуатации и его можно установить в машину.
Какой зарядник выбрать?
Как заряжать автомобильный аккумулятор мы уже знаем. Теперь рассмотрим вопросы, которые возникают при выборе устройства подзарядки. В продаже встречаются два типа зарядников. У одних на передней панели, рядом с регулятором, установлен вольтметр, у других – амперметр. Естественно, появляется вопрос – в чем разница? Для аккумулятора, в принципе, разницы нет. Он зарядится и тем и другим устройством. Разница будет в затраченном личном времени. Устройства, оборудованные амперметром, производят заряд на основе постоянной величины силы тока.
То есть, аккумулятор в 60А*ч требует для заряда ток в 6 ампер. Величина зарядного тока должна составлять 0,1 от емкости батареи. В процессе зарядки сила зарядного тока падает и необходимо периодически корректировать ее регулятором. К тому же, в конце процесса из аккумулятора происходит обильное выделение газа.
Чтобы снизить газовыделение, придется плавно снижать силу тока по мере повышения зарядного напряжения. Батарея будет считаться заряженной, если сила тока на амперметре не будет изменять свое значение на протяжении 1-2 ч. Недостаток таких устройств — они требуют постоянного вашего присутствия.
Устройства, оборудованные вольтметром, проводят заряд на основе постоянного напряжения. В этом случае на заряженность батареи напрямую влияет зарядное напряжение. Чем выше подаваемое напряжение, тем меньше времени тратится на зарядку. При напряжении в 16,4 В аккумулятор полностью заряжается в течение 24 часов. Однако нужно знать, что в момент включения подсоединенного к батарее зарядного устройства, выходной ток может быть 40-50 А (на эту величину влияет емкость аккумулятора). Поэтому все устройства для зарядки снабжены ограничителем максимального тока в пределах 25 ампер.
В процессе зарядки методом постоянства напряжение, «вольтаж» на клеммах батареи будет стремиться сравняться с напряжением зарядника, а сила тока будет снижаться, стремясь к нулю в конце процесса. В связи с этим, весь процесс зарядки проходит в автоматическом режиме. Вашего участия здесь не требуется. Об окончании зарядки просигнализирует загоревшийся зеленый индикатор на панели заряжающего устройства.
О мерах безопасности
При любой работе по обслуживанию аккумулятора нужно помнить, что в его емкостях находится кислота! Поэтому все работы нужно производит в резиновых перчатках. При прохождении электрического тока через электролит, в воздух выделяется большое количество сернистого газа. Так что, если ваш заряжающийся аккумулятор простоит ночь в коридоре, к утру, вы получите превышение всех допустимых норм по содержанию серы в воздухе.
Из этого следует, что процесс зарядки автомобильного аккумулятора нужно проводить в помещении, имеющем хорошую вентиляцию. И ни в коем случае не оставлять включенное зарядное устройство в квартире без присмотра. Бытовая электрическая сеть может не выдержать такой долгой нагрузки.
Советую прочитать — вам понравится:
Самодельная зарядка для мобильного телефона
Простой источник питания
Сделай сам паяльник на 12 вольт
Теперь посмотрите это полезное видео:
Будем благодарны, если Вы поделитесь этой статьей здесь:
Этот сайт читают уже более 950 человек! Вы тоже можете получать новые материалы по почте:
Почему при зарядке автомобильного аккумулятора, падает ток на амперметре зарядного устройства?
Действительно поинтересовавшись у нескольких автоэлектриков, узнал, что при постановке на зарядку разряженного аккумулятора поведение такое нормальное.
Когда разряженный аккумулятор начинает брать заряд и вы выставили на зарядном к примеру 2 ампера, то через время ампераж на зарядном упадёт, так как аккумулятор уже возьмёт некоторый заряд и немного сильнее будет сопротивляться дальнейшему заряжанию.
Добавлять или не добавлять, мастера точного ответа не сказали, одни за то чтоб, добавить, другие, чтоб не добавлять — но то что это нормальное явление, сошлись с выводом все!
Даже для примера такое сравнение (аналогию) накачивания шины, ведь с каждым качком насоса, вам приходится прилагать больше усилия, чтоб довести давление до нужного, так и получается с аккумулятором в начале он заряжается легко, и чем больше берёт заряд, тем больше сопротивляется.
Да и более менее современные зарядные устройства автоматически регулируют этот процесс, поэтому наблюдать его можно только на зарядных устройствах самого простого исполнения!
www.remotvet.ru
Время зарядки АКБ при постоянном токе
Формула расчета зарядного тока имеет вид: I=Q*k, где Q – емкость батареи, а k – некий коэффициент от номинала (идеальное его значение находится в границах 0,04…0,06, а оптимальное до 0,1). Исходя из такой рекомендации, подсчет времени, которое нужно для полностью посаженого аккумулятора имеет такой вид: Т= Q/ I. Подставив свои значения, вы увидите, что получается достаточно много времени, но поскольку, зачастую требуется не полная зарядка, а лишь восстановление утраченной емкости, то эта цифра будет в два или полтора раза меньше.
Для ориентировочной оценки требуемого времени на зарядку автомобильного аккумулятора постоянным током сначала необходимо определить степень разряженности батареи (в процентах), потом определить потерянную емкость (в Ач), а затем, выбрав величину зарядного тока, рассчитать время полной зарядки. Формула для расчета сколько по времени подзаряжать аккумулятор авто выглядит так:
Умножение данного соотношения в 2 раза, нужна из-за того, что КПД процесса составляет 40-50%, остальное тратится на нагрев, а также связанные с этим электрохимические процессы.
Использование расчетной формулы обязательно должно сопровождаться контролем за ходом процесса зарядки, особенно при его завершении, дабы не упустить начало бурного кипения.
Когда в течение часа на клеммах аккумулятора, при зарядке, напряжение перестает увеличиваться — аккумулятор заряжен на 100%.
Величина конечного напряжения зависит от: величины зарядного тока, температуры, внутреннего сопротивления АКБ, наличия в электролите примесей и от состава сплава решеток.
Расскажите про зарядное устройство Орион, кто пользовал.
Каждый из нас, автомобилистов, хотя бы раз в жизни оказывался или еще окажется в ситуации, когда разрядившийся аккумулятор не позволяет запустить двигатель. Особенно частое это явление для зимнего периода, поскольку при отрицательных температурах АКБ держит заряд плохо. А если автомобиль простоял на сильном морозе больше недели, проблемы с аккумулятором практически гарантированы, вплоть до полного разряда. Что делать в такой ситуации?
Хочешь стать куратором любимой темы? Автор StanislavDoljenko Раздел Мой чистый город без пробок.
Как получить постоянное напряжение из переменного
Осциллограмма постоянного напряжения
Давайте для начала уточним, что мы подразумеваем под «постоянным напряжением». Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) — это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.
Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.
Зависимость пульсаций напряжения от емкости конденсатора
Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:
Рассмотрим первый. Замеряем его номинал с помощью нашего LC — метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И цепляемся осциллографом:
Смотрим осциллограмму:
Как вы видите, пульсации все равно остались.
[quads id=1]
Ну что же, возьмем конденсатор емкостью побольше.
Получаем 0,226 микрофарад.
Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.
А вот собственно и осциллограмма
Не… почти, но все равно не то. Пульсации все равно видны.
Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
— чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.
— чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
Как подобрать радиоэлементы для выпрямителя
Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.
где
UД — действующее напряжение, В
Umax — максимальное напряжение, В
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).
Ну и напоследок, чтобы лучше запомнилось:
Показываем на примере в видео:
Как понизить напряжение с 12 до 5 вольт. Как понизить постоянное и переменное напряжение — обзор способов
Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.
Получаем 12 Вольт из 220
Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:
- Понизить напряжение без трансформатора.
- Использовать сетевой трансформатор 50 Гц.
- Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.
Понижение напряжения без трансформатора
Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:
- Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
- Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
- Использовать автотрансформатор или дроссель с подобной логикой намотки.
Гасящий конденсатор
Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:
- Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
- Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.
Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.
Схема изображена на рисунке ниже:
R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.
Или усиленный вариант первой схемы:
Номинал гасящего конденсатора рассчитывают по формуле:
С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)
С(мкФ) = 3200*I(нагрузки)/√Uвход
Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.
Конденсаторы должны быть такими – пленочными:
Или такие:
Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.
Блок питания на сетевом трансформаторе
Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.
В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:
Uвых=Uвх*Ктр
Ктр – коэффициент трансформации.
Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.
Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.
Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.
12 Вольт из 24 Вольт или другого повышенного постоянного напряжения
Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.
Схема с линейным стабилизатором упоминалась в предыдущем пункте.
К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.
Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.
Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.
Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.
Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.
12 Вольт из 5 Вольт или другого пониженного напряжения
Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.
Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.
Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.
Как получить 12В из подручных средств
Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.
Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.
Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.
Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.
Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео
Повышающий DC-DC преобразователь 5-12 вольт, проще всего собрать на LM2577, которая обеспечивает выход 12V, используя входной сигнал 5V и максимальный ток нагрузки 800 мА. М\С LM2577 — это повышающий прямоходовый импульсный преобразователь. Она доступна в трех различных версиях выходного напряжения: 12 В, 15 В и регулируемая. Вот подробная документация .
Схема на ней требует минимального количества внешних компонентов, а также такие регуляторы экономически эффективным и простые в использовании. Другие особенности: встроенный генератор на фиксированной частоте 52 кГц, который не требует никаких внешних компонентов, мягкий режим запуска для снижения пускового тока и режим регулирования по току для улучшения отклонении входного напряжения и выходной переменной нагрузки.
Характеристики преобразователя на LM2577
- Входное напряжение 5 В постоянного тока
- Выходное 12 В постоянного тока
- Нагрузочный ток 800 мА
- Функция плавного пуска
- Отключение при перегреве
Здесь применена регулируемая микросхема LM2577-adj . Для получения других выходных напряжений надо изменить величину резистора обратной связи R2 и R3. Выходное напряжение рассчитывается по формуле:
V Out = 1.23V (1+R2/R3)
В общем LM2577 стоит недорого, дроссель в этой схеме унифицированный — на 100 мкГн и предельный ток 1 А. Благодаря импульсной работе каких-то больших радиаторов для охлаждения не требуется — так что эту схему преобразователя можно смело рекомендовать для повторения. Особенно она пригодится в случаях, когда из USB выхода надо получить 12 вольт.
DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.
При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.
Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.
После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.
Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.
Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.
Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.
Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода — ноль и фаза. Это называется однофазной крайне редко используется в частном секторе и многоквартирных домах. Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования — понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики. Именно эти моменты и нужно рассмотреть.
Снижение напряжения с помощью трансформаторов
Самый простой способ — это использовать трансформатор пониженного напряжения, который совершает преобразования. Первичная обмотка содержит большее число витков, чем вторичная. Если есть необходимость снизить напряжение вдвое или втрое, вторичную обмотку можно и не использовать. Первичная обмотка трансформатора используется в качестве индуктивного делителя (если от нее имеются отводы). В бытовой технике используются трансформаторы, со вторичных обмоток которых снимается напряжение 5, 12 или 24 Вольта.
Это наиболее часто используемые значения в современной бытовой технике. 20-30 лет назад большая часть техники питалась напряжением в 9 Вольт. А ламповые телевизоры и усилители требовали наличия постоянного напряжения 150-250 В и переменного для нитей накала 6,3 (некоторые лампы питались от 12,6 В). Поэтому вторичная обмотка трансформаторов содержала такое же количество витков, как и первичная. В современной технике все чаще используются инверторные блоки питания (как на компьютерных БП), в их конструкцию входит трансформатор повышающего типа, он имеет очень маленькие габариты.
Делитель напряжения на индуктивностях
Индуктивность — это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор — это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.
Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:
- U(L1) = U1 * (L1 / (L1 + L2)).
- U(L2) = U1 * (L2 / (L1 + L2)).
В этих формулах L1 и L2 — индуктивности первой и второй катушек, U1 — напряжение питающей сети в Вольтах, U(L1) и U(L2) — падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.
Делитель на конденсаторах
Очень популярная схема, используется для снижения значения питающей сети переменного тока. Применять ее в цепях постоянного тока нельзя, так как конденсатор, по теореме Кирхгофа, в цепи постоянного тока — это разрыв. Другими словами, ток по нему протекать не будет. Но зато при работе в цепи переменного тока конденсатор обладает реактивным сопротивлением, которое и способно погасить напряжение. Схема делителя похожа на ту, которая была описана выше, но вместо индуктивностей используются конденсаторы. Расчет производится по следующим формулам:
- Реактивное сопротивление конденсатора: Х(С) = 1 / (2 * 3,14 *f * C).
- Падение напряжения на С1: U(C1) = (C2 * U) / (C1 + C2).
- Падение напряжения на С2: U(C1) = (C1 * U) / (C1 + C2).
Здесь С1 и С2 — емкости конденсаторов, U — напряжение в питающей сети, f — частота тока.
Делитель на резисторах
Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:
- U(R1) = (R1 * U) / (R1 + R2).
- U(R2) = (R2 * U) / (R1 + R2).
Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.
Практическая схема блока питания: трансформатор
Для выбора питающего трансформатора вам потребуется знать несколько основных данных:
- Мощность потребителей, которые нужно подключать.
- Значение напряжения питающей сети.
- Значение необходимого напряжения во вторичной обмотке.
S = 1,2 * √P1.
А мощность Р1 = Р2 / КПД. Коэффициент полезного действия трансформатора никогда не будет более 0,8 (или 80%). Поэтому при расчете берется максимальное значение — 0,8.
Мощность во вторичной обмотке:
Р2 = U2 * I2.
Эти данные известны по умолчанию, поэтому произвести расчет не составит труда. Вот как понизить напряжение до 12 вольт, используя трансформатор. Но это не все: бытовая техника питается постоянным током, а на выходе вторичной обмотки — переменный. Потребуется совершить еще несколько преобразований.
Схема блока питания: выпрямитель и фильтр
Далее идет преобразование переменного тока в постоянный. Для этого используются полупроводниковые диоды или сборки. Самый простой тип выпрямителя состоит из одного диода. Называется он однополупериодный. Но максимальное распространение получила мостовая схема, которая позволяет не просто выпрямить переменный ток, но и избавиться максимально от пульсаций. Но такая схема преобразователя все равно неполная, так как от переменной составляющей одними полупроводниковыми диодами не избавиться. А понижающие трансформаторы способны преобразовать переменное напряжение в такое же по частоте, но с меньшим значением.
Электролитические конденсаторы используются в блоках питания в качестве фильтров. По теореме Кирхгофа, такой конденсатор в цепи переменного тока является проводником, а при работе с постоянным — разрывом. Поэтому постоянная составляющая будет протекать беспрепятственно, а переменная замкнется сама на себя, следовательно, не пройдет дальше этого фильтра. Простота и надежность — это именно то, что характеризует такие фильтры. Также могут применяться сопротивления и индуктивности для сглаживания пульсаций. Подобные конструкции используются даже в автомобильных генераторах.
Стабилизация напряжения
Вы узнали, как понизить напряжение до нужного уровня. Теперь его нужно стабилизировать. Для этого используются специальные приборы — стабилитроны, которые изготовлены из полупроводниковых компонентов. Они устанавливаются на выходе блока питания постоянного тока. Принцип работы заключается в том, что полупроводник способен пропустить определенное напряжение, излишек преобразуется в тепло и отдается посредством радиатора в атмосферу. Другими словами, если на выходе БП 15 вольт, а установлен стабилизатор на 12 В, то он пропустит именно столько, сколько нужно. А разница в 3 В пойдет на нагрев элемента (закон сохранения энергии действует).
Заключение
Совершенно другая конструкция — это стабилизатор напряжения понижающий, он делает несколько преобразований. Сначала напряжение сети преобразуется в постоянное с большой частотой (до 50 000 Гц). Оно стабилизируется и подается на импульсный трансформатор. Далее происходит обратное преобразование до рабочего напряжения (сетевого или меньшего по значению). Благодаря использованию электронных ключей (тиристоров) постоянное напряжение преобразуется в переменное с необходимой частотой (в сетях нашей страны — 50 Гц).
Сюрпризы схем китайских блоков питания эконом класса.
Обслуживая очередной объект с щитами управления бассейном. На достаточно не бедном объекте, с удивлением обнаружил, что используемый блок питания оперативных цепей построен не на закрытом модульном БП а открытом БП в корпусе. Отчего сборщику того щита пришлось его колхозить стяжками на перекрест к дин рейке. Это какой-то китайский NoName HSM-15-12, который благополучно сдох и обесточил цепи управления. Кстати, из цепей управления питал он только одно промежуточное реле 1Вт мощности, потому причина его гибели при такой низкой нагрузки для меня неясна.Заменять на подобный нет желания, потому предложил поставить там, проверенный временем модульный MeanWell HDR-15-12 на 15Вт/12В, с таким БП проблем быть не должно.
При том, что этот блок питания дешёвый внешне он выполнен аккуратно, штамповка и сборка сделана на высоком технологическом уровне. На алюминиевых деталях, заусенцев нет, присутсвуют различные пазы, для фиксации платы, и перфорированной крышки. При сборки ничего не перекошено, и не играет в руках, внешне алюминий матовый, врннутри полированн.
В целом в руках держать приятно.
Не в последнюю очередь, по этой причине я, решил по-быстрому его отремонтировать, тем более список поломок таких БП банален:
— Электролиты, как первичных так и вторичных цепей питания.
— Силовой ключ первичной цепи + ШИМ, либо просто интегрированный ШИМ с обвязкой.
— В редких случаях первичка трансформатора.
— Оптрон ОС, и/или микросхема TL431.
Когда открыл этот БП, то выяснялось, что он построен, на автогенераторной схеме без микросхем ШИМ.
Электролиты первичной и вторичной цепи вздуты, предохранитель цел, входной диодный мост и ключ первичной цепи целы, при подключении ни каких признаков жизни не демонстрирует.
Имея определенный опыт ремонта таких изделий обольщаться простой ремонта не стал. Заменил вздутые конденсаторы проверил силовой ключ первичной цепи, мост и предохранитель — целы. Включил через балласт, чтобы избежать взрывов, если что. БП признаков жизни так и не поддал. Решил проверить оптопару, для этого надо выпаять. Но тут выяснилась первая «тупость» а точнее говоря сознательная подлость конструкции – оптопара находится под силовым трансформатором… стало быть надо выпаять и его!
Вот как это выглядело после ремонтных работ о чем будет ниже:
Ну что-ж, «надо, значить надо», аккуратно выпаиваю трансформатор и оптрон.
Подключаю его выводы 1-2 к лабороторнику, задав ограничение по напряжению в 1.2В а току в 20мА. На выводах оптрона 3-4 мерим сопротивление, и получаем – 1.2кОм (обычно порядка 40-65 Ом) значит сдохла и оптопара.
Тут я допустил оплошность, будучи уверенным в том, что все позади, запаял трансформатор на место и включил БП на прямую. Слава Богу, ничего не произошло, но БП так и не подал признаков жизни.
Пришлось делать того чего, не хотелось в рамках данного проекта — срисовывать схему по образцу платы. Так как, входные цепи были уже проверены решил сэкономить время и вычерчивать только ту часть схемы где много всякой обвязки и не очевидно, как она устроена. Где-то потихоньку начал высокую сторону реставрировать…
Но походу работы решил сделать ход конем. Подключить к выходу БП, параллельно лабораторник, и начать подымать напряжение до номинала, чтобы проверить вторичную цепь. Только начал наращивать напряжение, как лабороторник уперся в ограничение тока 1А.
Проверяю диод вторичной цепи – пробит!
Заменяю безимяный китайский 3IDQ 100E, на аналогичный по корпусу SR560.
Снова поддаю и увеличиваю напряжения.
Все хорошо, загорелся светодиод, в защиту уже не уходим, но замечаю, что при 12В потребляемый ток аж 130мА! Для 15Вт БП, это слишком лихо для холостого хода. Нащупываю плату, в первую очередь баластные резисторы, но они холодны. Тем временем где-то выделяются 1.5Вт тепла. Вдруг неожиданно обжигаю палец об поверхность платы, под… трансформатором, там где, стоит перепаянный оптрон… и парочка резисторов. Но, не оптрон горяч, а резистор возле него. Отключил все.
Выпаял трансформатор для расследования причин.
Начинаю срисовывать всю вторичку, чтобы понять, что там за резисторы стоят ну и в целом как она устроена.
Проверяю микросхему TL431А – пробит по всем направлениям. Это конечно плохо, но еще не причина потерь мощности аж в целые 1.5Вт.
И тут барабанная дробь… номинал сопротивления в цепи оптрона R11 – 100Ом, это при 12вольтах номинала напряжения! И спрятан этот резистор вместе с оптроном прямо под силовой трансформатор!
Мое мнение, что это какое-то сознательное вредительство.
И действительно, если принять падение напряжение на открытом оптроне в 1.2В, и микросхеме TL431A в 2.5В, то мы имеем ток I=(Uin-DUopt-DU431)/R11=(12-1.2-2.5)/100= 0.083А = 83mA (при сгоревшем TL431 этот ток будет выше — 108mA). При максимально допустимом токе оптрона в 50mA, очевидно что проживет, он не долго. Сколько прожил этот БП на том объекте, не знаю. Судя по чистому корпусу его поставили не давно. Поэтому перепаял сгоревший TL431A и заменил R11 со 100 на 680Ом.
Снова запаял трансформатор на место,
включил блок питания в сеть и он заработал.
Нагрузил его лентой – полет нормальный. Все!
Вот такие, вот дела. Китайцы, не просто «экономят» а тупо в цепь ОС закладывают такой резистор из-за которого впоследствии вылетит целый набор компонентов. Чтобы ремонтнику было веселее, проблемные компоненты прячутся под трансформатор!!!
По просьбе трудящихся добавляю всю принципиальную схему:
как уменьшить постоянное напряжение с помощью резисторов?
как уменьшить постоянное напряжение с помощью резисторов? — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Подписаться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 421k раз
\ $ \ begingroup \ $Как можно использовать источник питания 12 В постоянного тока для питания чего-то, что требует 4?5 В постоянного тока с использованием резисторов? Есть ли способ определить, насколько добавление резистора снизит напряжение?
Создан 10 июл.
Джон Джон46711 золотой знак44 серебряных знака66 бронзовых знаков
\ $ \ endgroup \ $ \ $ \ begingroup \ $Короткий ответ: «не делай этого.«
Напряжение, падающее на резисторе, определяется законом Ома: V = I R.
Итак, если вы точно знаете, какой ток будет потреблять ваше устройство, вы можете выбрать резистор, который будет понижать ровно 7,5 В, и оставить 4,5 В для вашего устройства, когда этот ток будет проходить через него. Но если ток через ваше устройство меняется, или если вы хотите создать более одной системы, и не все устройства точно одинаковы по потребляемому току, вы не сможете постоянно получать 4,5 В на устройстве, используя только резистор.
Ваши другие варианты включают
Линейный регулятор. По сути, это переменный резистор, который будет регулировать его значение, чтобы выходной сигнал оставался там, где вы хотите. Это, вероятно, хорошее решение только в том случае, если ваше устройство потребляет очень мало энергии (возможно, до 100 мА).
Шунтирующий регулятор. Это означает использование резистора для понижения напряжения, как вы предлагаете, но затем добавление дополнительного устройства параллельно с нагрузкой для управления напряжением. Шунтирующий регулятор будет регулировать свой ток (в определенных пределах), чтобы ток через резистор оставался правильным, чтобы поддерживать желаемое выходное напряжение.
Импульсный регулятор. При этом используются некоторые уловки для создания желаемого выходного напряжения с гораздо большей энергоэффективностью, чем у линейного регулятора. Это, вероятно, лучший выбор, если вашему устройству требуется ток более 10 или 20 мА.
Создан 10 июл.
ФотонФотон11k33 золотых знака146146 серебряных знаков280280 бронзовых знаков
\ $ \ endgroup \ $ 3 \ $ \ begingroup \ $Если эти условия соблюдены, вы можете уменьшить напряжение постоянного тока с помощью резисторов (мощных алюминиевых) [> 50 Вт]
- Вашей батареи достаточно, чтобы обеспечить как минимум 20-кратный (или намного больше) ток для вашей нагрузки.
- Потеря мощности не проблема.
- (Перегрев) Нагрев не является проблемой или наличие хорошего механизма охлаждения для резисторов.
- Даже самое низкое сопротивление вашей нагрузки намного (в 20 раз и более) выше, чем сопротивление алюминия.
Примечание: 20x — это всего лишь искусственное число, фактическое число зависит от того, сколько% колебаний напряжения может выдержать ваша нагрузка.
Создан 19 дек.
электро103электро10354411 золотых знаков77 серебряных знаков1717 бронзовых знаков
\ $ \ endgroup \ $ \ $ \ begingroup \ $Можно использовать два резистора, как объяснил @ efox29, единственная проблема с этой конфигурацией — ток, проходящий через нагрузку, подключение нагрузки изменит выходное напряжение, потому что через нагрузку будет протекать некоторый ток.
Самым простым решением является повторитель напряжения , подключенный к выходу двух резисторов, это обеспечит высокий входной импеданс и, следовательно:
выходное напряжение будет постоянным 4,5 В
операционный усилитель, используемый в качестве повторителя напряжения, постарается обеспечить столько же ток в зависимости от нагрузки.
Вот изображение того, о чем я говорю:
Подключите выход между двумя резисторами к Vin в этой конфигурации, и тогда на выходе должно быть постоянное значение, и операционный усилитель будет обеспечивать нагрузку требуемым током.
Бенце Каулис6,1621212 золотых знаков3030 серебряных знаков5757 бронзовых знаков
Создан 29 июл.
Сабир МогладСабир Моглад44044 серебряных знака1919 бронзовых знаков
\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $Просто возьмите 7805 с рынка и соедините контакт номер 1 с плюсом, соедините контакт 2 с минусом и возьмите выходной сигнал с плюса с контакта номер 3 и минус с контакта номер 2, соблюдая расстояние до выходного провода 1.5 метров от выходной клеммы питания до нагрузки.
Скачок напряжения ♦59.7k2929 золотых знаков6363 серебряных знака165165 бронзовых знаков
Создан 02 фев.
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $Посмотрите на схему electro103 выше.Вам нужно знать четыре числа: максимальный ток, который может потреблять ваше устройство, минимальный ток, который оно потребляет, максимальное напряжение, которое оно может выдержать, не превращаясь в пахнущее облако, и минимальное напряжение, необходимое для работы. Без этих четырех чисел невозможно разработать резистивный делитель напряжения.
Обратите внимание, что такое расположение очень неэффективно и может привести к большому нагреву в резисторах сброса напряжения.
Создан 06 июл.
Ричард1941Ричард194157122 серебряных знака 77 бронзовых знаков
\ $ \ endgroup \ $ 2 Очень активный вопрос .Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование репутации помогает защитить этот вопрос от спама и отсутствия ответов. Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Как уменьшить напряжение постоянного тока? — AnswersToAll
Как уменьшить напряжение постоянного тока?
Напряжение, падающее на резисторе, определяется законом Ома: V = I R.Поэтому, если вы точно знаете, какой ток будет потреблять ваше устройство, вы можете выбрать резистор, который будет падать ровно на 7,5 В, и оставить 4,5 В для вашего устройства, когда этот ток будет проходить через него.
Как уменьшить напряжение с 12 В до 5 В?
Преобразователь 12 В в 5 В с использованием стабилитрона: Вы можете использовать эту схему понижающего преобразователя 12 В в 5 В постоянного тока в сочетании с другой цепью на выходе стабилитрона (с батареей 12 В в качестве входа). На стабилитроне получается примерно 5 В.
Как уменьшить напряжение с 12 В до 6 В?
Можно понизить напряжение с 12 до 6 вольт, включив в схему пару резисторов сопротивлением 10 000 Ом. Отрежьте два отрезка провода и снимите с каждого провода изоляцию толщиной 1/2 дюйма с каждого конца. Подсоедините один конец первого провода к положительной клемме источника питания.
Как уменьшить напряжение с 6 В до 3 В?
Лучший способ получить 3 В постоянного тока от источника 6 В постоянного тока для подключения выходных клемм источника 6 В постоянного тока к понижающему преобразователю или к цепи понижающего прерывателя.. управляя рабочим циклом (альфа), вы можете изменять выходное напряжение постоянного тока… ТАКИМ ОБРАЗОМ, ВЫ МОЖЕТЕ ПОЛУЧИТЬ 3 В ПОСТОЯННОГО ТОКА ОТ ИСТОЧНИКА 6 В ПОСТОЯННОГО ТОКА ..
Как преобразовать 5 В постоянного тока в 1,5 В постоянного тока?
В схеме мы используем Регулятор постоянного напряжения LM317. Чтобы снизить входное напряжение 5 В от порта USB до 1,5 В при максимальном выходе 1,5 А…. Как работает схема преобразователя 5 В в 1,5 В
- Vref = 1,25 В.
- Обычно сопротивление R1 составляет 220 Ом или 240 Ом, как указано в таблице данных, но теперь это 470 Ом.
- Резисторы R2 100 Ом
Как уменьшить 9 вольт до 3 вольт?
Чтобы уменьшить батарею 9 В до 3.3 вольта используйте стабилитрон, например 1N746 или 1N4728A. Выберите подходящий, исходя из того, сколько мощности он может рассеять. 1N4728A имеет номинальную мощность 3,3 В и 1 Вт. Он может обеспечивать в среднем стабильное напряжение 3,3 В на цепь или другой компонент.
Как разделить напряжение постоянного тока?
Чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно любые 2 резистора равного номинала, а затем установить перемычку между резисторами. В этом месте, где размещается перемычка, напряжение будет составлять половину значения напряжения, подаваемого в цепь.5 В теперь 2,5 В. VCC делится пополам.
Как уменьшить напряжение 5 В до 3,7 В?
Чтобы преобразовать 5 В в 3,7 В при фиксированной нагрузке, нам просто нужно добавить постоянный резистор. От 5 до 3,7, это означает, что наш последовательный резистор должен создавать на нем падение напряжения 1,3 В. Для нагрузки 0,5 А, R = 2,6 Ом и номинальной мощности 0,65 Вт. Идея использования стабилитрона хороша с резистором малой серии.
Как уменьшить напряжение с 9В до 5В?
Стабилизатор напряжения с 9 В на 5 В может быть реализован с понижающим преобразователем напряжения LM7805.Он используется для приложений среднего и высокого тока (от 10 мА до 1 А и более). Уникальность этой схемы заключается в ее способности обеспечивать тот же выходной ток, что и на входе.
Как резисторы уменьшают напряжение постоянного тока?
Короткий ответ: «не делай этого». Напряжение, падающее на резистор, определяется законом Ома: V = I R. Итак, если вы точно знаете, какой ток будет потреблять ваше устройство, вы можете выбрать резистор, который будет падать ровно на 7,5 В, и оставить 4,5 В для вашего устройства, когда этот ток проходит через него.
Как уменьшить напряжение с 5В до 4В?
От 5 В до 4 В (иш) все, что вам нужно, это простой и дешевый кремниевый диод. Вы упадете примерно на 0,7 В на диод, который, вероятно, достаточно близок? Просто убедитесь, что диод рассчитан на необходимую вам мощность.
Как вы регулируете напряжение?
Для поддержания постоянного уровня напряжения независимо от величины тока, потребляемого от источника питания, источник питания может включать в себя схему регулятора напряжения. Регулятор напряжения контролирует ток, потребляемый нагрузкой, и соответственно увеличивает или уменьшает напряжение, чтобы поддерживать постоянный уровень напряжения.
Как диоды уменьшают постоянное напряжение?
Измерьте падение прямого напряжения на диоде
- Подсоедините отрицательную клемму (черный провод) держателя аккумулятора к полосе заземления.
- Подсоедините положительный полюс (красный провод) держателя аккумулятора к полосе питания.
- Проверьте проводку.
- Поместите четыре свежие батареи в батарейный отсек.
Как уменьшить 24В до 12В?
- Простое падение напряжения неэффективно, а эффективное падение напряжения непросто.
- Правильное решение — это импульсный стабилизатор от 24 до 12 В на конце провода, как вы уже догадались.
- Вы можете подключить реле к таймеру, чтобы переключаться между батареями каждые пять минут или около того.
Могу ли я запустить двигатель постоянного тока 24 В от сети 12 В?
Итак, если вам подходит половинная скорость и если у вас небольшая нагрузка, то двигатель 24 В при 12 В будет работать нормально. Но если важна работа на полной скорости, тогда вам нужно запустить двигатель 24 В при 24 В, а не 12 В, особенно если нагрузка велика (что еще больше замедлит двигатель).
Можно ли преобразовать 12 В в 24 В?
Большинство электрических систем автомобилей, грузовиков и лодок работают от 12 вольт постоянного тока, но увеличение этого напряжения до 24 может иметь несколько явных преимуществ. Это означает, что удвоение выходного напряжения до 24 В позволит вам использовать провода калибра, которые вдвое меньше (и стоят) традиционных 12-вольтных систем. …
Как сделать мой 12В быстрее?
Наш лучший вариант — поставить две батареи вместо одной. В данном случае это будут две батареи по 6 вольт, которые в сумме составляют до 12 вольт.Теперь не нужно быть гением, чтобы понять, что если аккумулятор удвоить, двигатель будет вращаться в два раза быстрее, что приведет к тому, что автомобили с мощностью 12 В будут двигаться с такой же скоростью.
Как быстро вращается силовое колесо на 12 В?
От 4 до 5 миль / ч
24 В быстрее, чем 12 В?
Автомобили с батареями и двигателями 12 В способны развивать скорость до 4 миль в час, а автомобили с напряжением 24 В могут двигаться со скоростью до 6 миль в час, хотя это только в том случае, если они оснащены двигателем на 24 В. Во многих детских электромобилях с батареями 24 В используются двигатели 12 В, дополнительная мощность продлевает срок службы батареи.
Какова скорость 48 вольт в миль / ч?
Любая машина любого веса при напряжении 48 вольт разгонится до 0 миль в час.
Насколько быстро работает eBike мощностью 3000 Вт?
50 миль / ч
Получить более низкое напряжение постоянного тока от источника питания с более высоким напряжением
Вы можете использовать схему на рисунке 1, чтобы получить низкое регулируемое напряжение, такое как 5 В постоянного тока, от более высокого напряжения, выпрямленного, синусоидального источника напряжения, не прибегая к электрически шумным преобразователям постоянного / постоянного тока или тратя ватт на понижающий резистор.Для этого приложения требуется стабилизированный источник 5 В постоянного тока, но трансформатор подает 18 В действующее значение на двухполупериодный мостовой выпрямитель. Во время фазы зарядки два электролитических конденсатора одинаковой емкости, C 1 и C 2 , получают зарядный ток при последовательном соединении через диоды с прямым смещением D 1 и D 2 . Расширенный P-канальный MOSFET-транзистор Q 1 , международный выпрямитель IRF9530, остается выключенным, потому что его затвор получает слегка положительное напряжение обратного смещения затвора из-за падения прямого напряжения на стабилитроне D 4 .Каждый конденсатор заряжается примерно до половины пикового значения выпрямленного напряжения за вычетом прямых падений напряжения, которые присутствуют в D 1 и D 2 . Двухполупериодный мостовой выпрямитель D 5 или мост Гретца производит эти падения (Ссылка 1).
Когда начинается фаза разряда, D 1 получает обратное смещение, а конденсатор C 2 разряжается через нагрузку, которую представляет регулятор напряжения IC 1 . Впоследствии анодное напряжение диода D 1 продолжает уменьшаться, напряжение затвор-исток Q 1 становится отрицательным, и транзистор проводит ток, позволяя C 1 разряжаться в нагрузку через диод с прямым смещением. Д 3 .Фактически, два конденсатора заряжаются последовательно и разряжаются параллельно в нагрузку, уменьшая вдвое исходное выпрямленное напряжение и пульсирующее напряжение на входе IC 1 . Во время разряда C 1 стабилитрон D 4 защищает Q 1 , ограничивая его напряжение затвор-исток в пределах его максимального номинального значения.
Для правильной работы цепи требуется минимальный ток нагрузки; тока покоя регулятора обычно достаточно. В противном случае конденсатор C 2 заряжается до пикового напряжения, доступного из D 5 .Значения C 1 и C 2 и номиналы остальных компонентов зависят от максимального требуемого тока нагрузки. Номиналы резисторов R 1 и R 2 не критичны. Обратите внимание, что Q 1 работает как переключатель; выбор устройства с низкими пределами сопротивления в открытом состоянии Q 1 рассеиваемая мощность.
Основная теория цепей постоянного тока | Глава 1 — Напряжение, ток, энергия и мощность
Взаимосвязь напряжения и тока
Земля — динамичное место.Объекты движутся, происходят химические реакции, температура повышается и понижается. Это изобилие вечной активности связано с концепцией энергии . Различные формы энергии — тепловая, механическая, химическая и т. Д. — являются проявлениями фундаментальной сущности, которая приводит к физическим изменениям при передаче от одного объекта к другому.
Электричество — это форма энергии, которая возникает в результате существования и движения заряженных частиц, называемых электронами.Когда накопление электронов создает разницу в электрической потенциальной энергии между двумя точками, мы получаем напряжение (в уравнениях напряжение обозначается как V). Если эти две точки соединены проводящим материалом, электроны естественным образом перейдут от более низкого напряжения к более высокому; этот механизм называется , электрический ток , обозначается I.
Электричество — это особенно удобный и универсальный вид энергии, и это сделало его мощным инструментом в руках бесчисленных умных людей, которые спроектировали все, от большого электрического оборудования до крошечных электронных устройств.Удивительно представить себе разнообразную и сложную функциональность, которая начинается с электрической энергии, которая может передаваться через два небольших медных провода.
Сравнение напряжения и тока
Текущий | Напряжение | |
Символ | Я | В |
Отношения | Ток не может течь без напряжения | Напряжение может существовать без тока |
Измерено с | Амперметр | Вольтметр |
Установка | А или амперы или сила тока | В или вольт или напряжение |
Единица СИ | 1 ампер = 1 кулон в секунду | 1 вольт = 1 джоуль / кулон (В = W / C) |
Поле | Магнитный | электростатический |
Последовательное соединение | Ток одинаков для всех | Напряжение распределяется по компонентам |
Параллельное соединение | Ток распределяется по компонентам | Напряжения одинаковы для всех компонентов |
Мощность в электронике и способы ее расчета
В научном контексте мощность означает скорость передачи энергии.Таким образом, электрическая мощность — это скорость, с которой передается электрическая энергия. Единица измерения — Вт (Вт), где один ватт равен передаче одного джоуля (Дж) энергии за одну секунду (с).
`1 \ W = 1 \ \ frac {J} {s}`
Электрическая мощность в ваттах равна напряжению в вольтах, умноженному на ток в амперах.
`\ text {power} = \ text {напряжение} \ \ times \ text {current}`
Единица измерения вольт (В) определяется как джоуль на кулон, то есть передает энергию (в джоулях) на кулон заряда. ампер (А) — это кулоны в секунду, то есть сколько кулонов заряда проходит через заданную точку за одну секунду. Мы можем использовать эту информацию, чтобы подтвердить, что единица измерения электроэнергии соответствует приведенной выше формуле:
`\ frac {\ text {джоули}} {\ text {second}} = \ frac {\ text {joules}} {\ text {coulomb}} \ times \ frac {\ text {coulombs}} {\ text { второй}} `
В правой части уравнения два «кулоновских» члена сокращаются, и мы остаемся с джоулями в секунду.
Когда мы анализируем схемы, мы обычно обсуждаем мощность, используя термин «рассеиваемая» или «потребляемая» вместо «переданная».Это подчеркивает тот факт, что мощность покидает электрическую систему или используется электрическим компонентом. Мы не говорим «передан», потому что, как правило, конечное состояние или местоположение энергии не имеет значения.
Например, если напряжение на резисторе составляет 5 В, а ток через резистор составляет 0,5 А, резистор передает 2,5 Вт мощности (в виде тепла) в окружающую среду. Однако в большинстве случаев мы не собираемся передавать энергию. Мы просто хотим спроектировать функциональную схему и, следовательно, думаем о том, сколько мощности теряется (т.е., рассеянный) или использованный (т. е. потребленный).
Два распространенных типа напряжения: постоянный и переменный ток
Существует два распространенных способа передачи электроэнергии: постоянный ток и переменный ток.
Постоянный ток (DC) может увеличиваться или уменьшаться всевозможными способами, но величина изменений обычно невелика по сравнению со средним значением. Однако наиболее фундаментальной характеристикой постоянного тока является следующее: он не меняет направление регулярно.В этом отличие от переменного тока (AC) , который регулярно меняет направление и используется во всем мире для распределения электроэнергии.
Термины «постоянный ток» и «переменный ток» стали прилагательными, которые часто используются для описания напряжения. Сначала это может немного сбить с толку: что такое напряжение постоянного или переменного тока? Это не лучшая терминология, но вполне стандартная. Напряжение постоянного тока — это напряжение, которое производит или будет производить постоянный ток, а переменное напряжение создает или будет производить переменный ток — и это создает другую терминологическую проблему.Иногда к слову «ток» добавляются «постоянный ток» и «переменный ток», хотя эти фразы означают «постоянный ток» и «переменный ток». Суть в том, что «постоянный ток» и «переменный ток» больше не являются точными эквивалентами «постоянного тока» и «переменного тока»; Постоянный ток в общем относится к величинам, которые не меняют полярность регулярно или имеют очень низкую частоту, а переменный ток в общем случае относится к величинам, которые регулярно меняют полярность на частоте, которая не является «очень низкой» в контексте данная система.
На данный момент мы сосредоточимся на цепях постоянного тока. Цепи переменного тока немного сложнее и будут обсуждаться позже в этой главе.
Символы напряжения
Что такое напряжение постоянного тока?
Пожалуй, самый известный источник постоянного напряжения — это аккумулятор. Аккумулятор — это устройство, преобразующее химическую энергию в электрическую; он выдает напряжение, которое не меняется быстро или не меняет полярности, но оно постепенно уменьшается по мере разряда батареи.
Напряжение постоянного тока можно измерить с помощью вольтметра или (чаще) многофункционального устройства, известного как мультиметр (сокращенно DMM, где D означает «цифровой»). Мультиметры могут измерять, помимо прочего, напряжение, ток и сопротивление.
Рисунок 1. Измерение напряжения, отображаемое на цифровом дисплее мультиметра.Вольтметр обеспечивает самый простой способ определения точного значения постоянного напряжения, хотя в некоторых случаях он не может передать важную информацию, поскольку не может четко отображать быстрые изменения.В настоящее время это важное соображение, потому что многие напряжения постоянного тока генерируются импульсными регуляторами, которые приводят к высокочастотным колебаниям, называемым пульсациями .
Что такое постоянный ток?
Когда между двумя клеммами присутствует постоянное напряжение и к клеммам подключен провод или резистивный элемент, протекает постоянный ток. Самый распространенный резистивный элемент — резистор; мы узнаем больше об этом компоненте на следующей странице. Лампа накаливания также является резистивным элементом.
Ток можно измерить с помощью устройства, называемого амперметром (или функции амперметра мультиметра), но измерение тока менее удобно, чем измерение напряжения. Щупы вольтметра просто помещаются в контакт с двумя проводящими поверхностями (т.е. без изменения схемы), тогда как щупы амперметра должны быть вставлены в токопроводящую дорожку:
Рис. 2. В этой схеме используется переключатель для установления пути тока во время нормальной работы и прерывания пути тока, когда необходимо вставить амперметр или цифровой мультиметр.Обычный расход тока по сравнению с Электронный поток
Очень важно понимать разницу между обычным потоком тока и потоком электронов . Электроны имеют отрицательный заряд, и, следовательно, они переходят от более низкого напряжения к более высокому. Однако на рисунке 2 стрелка указывает, что ток течет от положительного полюса аккумулятора к отрицательному полюсу аккумулятора — другими словами, от более высокого напряжения к более низкому напряжению.
Обычный ток изначально был основан на предположении, что электричество связано с движением положительно заряженных частиц. Теперь мы знаем, что это неверно, но в контексте анализа цепей модель обычного протекания тока не является неверной. Это совершенно справедливо, потому что при последовательном применении всегда дает точные результаты. Кроме того, он имеет преимущество создания интуитивно понятной ситуации, в которой ток течет от более высокого напряжения к более низкому напряжению, точно так же, как жидкость течет от более высокого давления к более низкому давлению, а вода падает с более высокой отметки на более низкую.
В мире электротехники схемы обсуждаются и анализируются с использованием обычного тока, а не электронного.
Как измерить постоянный ток
Рассмотрим простой случай, когда аккумулятор питает две лампочки разного сопротивления.
Рисунок 3. Базовая схема, состоящая из батареи 3 В и двух резистивных элементов.Когда через лампочку протекает ток, сопротивление нити накала вызывает потерю напряжения, пропорциональную сопротивлению и величине тока.Мы называем это напряжением на лампе или падением напряжения на лампе .
Рисунок 4. Вольтметры используются для измерения напряжения на лампочках.Мы видим, что напряжение на лампочке A составляет 2 В, а напряжение на лампе B равно 1 В.
Затем мы измерим силу тока.
Рисунок 5.Амперметр вставляется таким образом, чтобы ток, протекающий через лампочки, проходил через один датчик через схему измерения тока устройства и выводился из другого датчика.Предположим, мы измеряем 1А. Мы выполнили необходимые измерения для определения рассеиваемой мощности лампочек.
Расчет мощности постоянного тока
Для расчета мощности, рассеиваемой каждой лампочкой, мы подставляем измеренные значения в формулу, приведенную выше.
Если мы хотим узнать мощность, рассеиваемую всей схемой, мы складываем мощность, рассеиваемую отдельными компонентами:
Или мы можем умножить ток, подаваемый от батареи, на напряжение батареи:
Следите за обновлениями, потому что на следующей странице мы познакомим вас с законом Ома, который выражает фундаментальную взаимосвязь между током, напряжением и сопротивлением.
Как добавить диод для снижения напряжения
Диод проводит электричество в одном направлении, от его положительного вывода (анода) к его отрицательному выводу (катоду).Диод не будет полностью проводить электричество, пока напряжение на нем не достигнет определенного значения, называемого «прямым напряжением». Для большинства кремниевых диодов с малым сигналом это значение составляет примерно 0,7 В. Напряжение, приложенное к диоду, будет уменьшено на величину, равную прямому напряжению. Это называется «прямое падение напряжения». Прямые падения напряжения на подключенных диодах складываются. Например, падение напряжения на двух последовательно соединенных диодах равно сумме их прямых напряжений — примерно 1.4 вольта для кремниевых диодов.
Подключите цепь последовательного диода
Подключите анод одного из диодов к полосе питания в верхней части макета.
Вставьте катод диода — обозначенный темной полосой на корпусе диода — в основную часть макета.
Подключите анод второго диода к катоду первого диода.
Подключите один вывод резистора к катоду второго диода.
Подключите другой вывод резистора к полосе заземления в нижней части макета.
Измерьте падение прямого напряжения на диоде
Подсоедините отрицательную клемму (черный провод) держателя батареи к полосе заземления.
Подсоедините положительный полюс (красный провод) держателя аккумулятора к полосе питания.
Поместите четыре свежие батареи в батарейный отсек.
Присоедините отрицательный щуп вольтметра к полосе заземления.
Присоедините положительный щуп вольтметра к полосе питания и отметьте напряжение, показываемое вольтметром.
Присоедините положительный щуп вольтметра к катоду первого диода — ближайшего к полоске питания. Обратите внимание на напряжение, указанное вольтметром. Оно должно быть примерно на 0,7 В ниже, чем значение на шаге 6.
Присоедините положительный щуп вольтметра к катоду второго диода. Обратите внимание на напряжение, указанное вольтметром. Оно должно быть примерно на 1,4 В ниже значения, указанного на шаге 6.
Уменьшает ли резистор напряжение или ток?
Резистор играет важную роль в мире электричества и электроники, и его можно найти в любой цепи.
Это пассивный компонент, основная задача которого — обеспечение «сопротивления» в цепи, отсюда и название резистор.
Но снижает ли резистор напряжение или ток? Резистор имеет способность уменьшать напряжение и ток при использовании в цепи. Основная функция резистора — ограничивать ток. Закон Ома гласит, что увеличение номинала резистора приведет к уменьшению тока.
Для снижения напряжения резисторы устанавливаются в конфигурации, известной как «делитель напряжения».Кроме того, с каждым компонентом в цепи резистор понижает напряжение на его выводах.
Ниже я объясню закон Ома и то, как резистор снижает ток и напряжение.
Как резистор снижает ток
Основная функция резистора заключается в ограничении или противодействии протеканию тока в цепи путем обеспечения «сопротивления».
Лучшая аналогия для этого — садовый шланг, по которому течет вода. Вода представляет собой течение.
Если вы случайно сжали садовый шланг, вы окажете «сопротивление» и ограничите поток воды.Чем больше вы его сжимаете, тем меньше воды может течь.
Вы сжимаете садовый шланг — это резистор, который делает то же самое в цепи.
Как устроен резистор, уменьшающий ток
Резистор снижает ток в основном за счет его физической конструкции и материалов, используемых внутри.
Существует множество различных типов резисторов, каждый из которых сконструирован определенным образом. Ниже приведены некоторые распространенные типы резисторов:
Углерод — этот тип резистора известен как резистор из углеродного состава (CCR).Внутри этого резистора находится твердый цилиндрический резистивный элемент, который представляет собой смесь мелко измельченного углерода и изоляционного материала. Увеличение количества углерода снижает сопротивление, поскольку углерод является хорошим проводником.
Карбоновая куча — В этом виде резистора используются наборы дисков, которые сделаны из углерода для уменьшения / противодействия току. Эти диски уплотнены внутри корпуса резистора между двумя металлическими пластинами.
Углеродная пленка — Углеродная пленка помещается на изолирующий материал с вырезанной в ней спиралью для создания длинного узкого пути, уменьшающего ток.Варьируя форму и размер, можно получить ряд значений сопротивления.
Металлическая пленка — Многие сквозные резисторы сделаны из металлопленки. Они покрыты хромоникелем (NiCr).
Оксид металла — Эти типы резисторов изготовлены из оксидов металлов, что позволяет резистору выдерживать гораздо более высокие температуры.
Проволочная обмотка — Этот резистор снижает ток за счет использования металлической проволоки, намотанной в катушку. Используемый металл обычно представляет собой нихром, намотанный на сердечник из керамики, пластика или стекловолокна.
Закон Ома, который определяет, как резистор снижает ток
Чтобы правильно понять взаимосвязь между током, сопротивлением и напряжением, нам нужно узнать о законе Ома.
Этот закон был разработан Георгом Симоном Омом в 1827 году.
Не вдаваясь в подробности, он обнаружил, что количество электрического заряда, проходящего через металлический проводник в цепи, прямо пропорционально напряжению на нем, что можно резюмировать. уравнением, показанным ниже.
Если мы изменим формулу, мы получим сопротивление, которое равно делению напряжения на ток.
Теперь вы можете видеть, что зависимость между сопротивлением и током обратно пропорциональна.
Увеличение номинала резисторов приведет к уменьшению тока, тем самым уменьшив его, в то время как уменьшение сопротивления вызовет увеличение тока.
Как резистор может снизить напряжение?
Теперь, когда мы знаем, как резистор снижает ток, мы можем посмотреть, как он снижает напряжение.
Существует несколько распространенных способов уменьшения напряжения резистором, в том числе падение напряжения на его выводах и делитель напряжения.
Первый способ, которым резистор снижает напряжение:
Падение напряжения на его выводахВ области электроники падение напряжения происходит в каждом компоненте, имеющем сопротивление. Падение напряжения на компоненте регулируется законом Ома.
Например, представьте, что у нас есть простая схема, состоящая из напряжения питания и лампы.
Здесь Лампа имеет сопротивление 10 Ом (из-за того, что все в цепи имеет определенное сопротивление).
Поскольку нам известны значения напряжения и сопротивления, мы можем рассчитать ток, используя закон Ома (I = V / R), который дает нам ток 1,2 ампера.
Итак, ток 1,2 А будет течь через лампу и питать ее. Если мы возьмем ток (1,2 А) и умножим его на сопротивление лампы (10 Ом), снова используя закон Ома (V = IR), мы получим напряжение 12 вольт.
Следовательно, на лампе падение напряжения составляет 12 В.
Теперь мы знаем, как рассчитать падение напряжения, и можем взглянуть, как эта теория применяется к резистору для уменьшения напряжения.
Если мы заменим указанную выше лампу резистором с эквивалентным сопротивлением (10 Ом), мы все равно получим такое же значение падения напряжения на нем.
Теперь мы добавим второй резистор (R2 с сопротивлением 5 Ом) последовательно с резистором 10 Ом (R1).
Как и в примере с лампой, нам нужно найти значение тока, протекающего по цепи.
На этот раз полное сопротивление складывается из двух резисторов; R1 (10 Ом) + R2 (5 Ом), что дает нам общее сопротивление RT = 15 Ом.
Теперь, используя закон Ома (I = V / RT), мы получаем ток 0,8 ампер.
Это тот же ток, который проходит через оба резистора. Таким образом, мы можем рассчитать падение напряжения на каждом резисторе, который дает нам;
R1 Падение напряжения = 0.8 x 10 = 8 вольт
R2 Падение напряжения = 0,8 X 5 = 4 вольт.
Используя закон Ома, мы можем определить, сколько напряжения резистор снижает, понижая напряжение на нем, если нам известны напряжение питания и полное сопротивление.
Падение напряжения на определенном сопротивлении зависит от тока и величины сопротивления резистора.
Резистор второго типа снижает напряжение:
Делитель напряженияВторой способ использования резистора для понижения напряжения — это использование делителя напряжения.В делителе напряжения используются два резистора в конфигурации, показанной ниже.
Выходное напряжение на Vout определяется Vin, а также значениями двух резисторов (R1 и R2). Приведенная ниже формула используется для расчета выходного напряжения.
Так, например, если Vin составляет 5 вольт, R1 составляет 10 Ом, а R2 также составляет 10 Ом, если мы воспользуемся уравнением, мы получим выходное напряжение 2,5 вольта.
Самое замечательное в этой конфигурации состоит в том, что мы можем выбрать, какое напряжение мы хотим на Vout, изменив приведенную выше формулу, чтобы вычислить значение резистора R2, чтобы получить желаемое выходное напряжение.
Допустим, вам нужно напряжение 3 вольта на Vout.
Используя преобразованную формулу, мы можем вычислить значение резистора R2, чтобы получить 3 вольта. Используя те же значения для Vin и R1 и 3 вольта для Vout, мы получаем значение 15 Ом для R2.
Итак, вы видите, это отличный способ использовать резисторы для снижения напряжения до желаемого значения.
Зачем нужен резистор для уменьшения тока?
Мир электрики и электроники наполнен множеством различных компонентов и устройств различной формы, размеров, функциональности и т. Д.
Еще одна вещь, которая меняется от одного компонента к другому, — это его рейтинги. Каждый компонент имеет максимальное номинальное напряжение и ток.
Никогда не превышайте эти значения, так как их превышение может привести к их повреждению.
Итак, резистор используется последовательно со многими компонентами, чтобы уменьшить ток и избежать их повреждения.
Примером может служить стандартный светоизлучающий диод (LED) с ограничением тока 20 мА. Если источник напряжения подключен непосредственно к светодиоду без использования токоограничивающего резистора, вы рискуете взорвать светодиод.
Токоограничивающий резистор необходимо подключить последовательно со светодиодом, чтобы снизить ток до уровня ниже 20 мА.
Зачем использовать резистор для понижения напряжения?
Возможность снижения напряжения с помощью такой конфигурации, как делитель напряжения, имеет множество применений и применений.
Некоторые распространенные применения понижения напряжения включают регулировку уровня смещения активных устройств в усилителях и измерение напряжений.
В мультиметре также используются делители напряжения.
В делителях напряжения используются резисторы фиксированного номинала для регулировки выходного напряжения. Однако, если на резисторе R2 используется переменный резистор, выходное напряжение можно изменять, регулируя переменный резистор. Отличное приложение для этого — регулировка громкости в музыкальной системе.
Какие типы резисторов используются для уменьшения тока и напряжения?
Как вы видели ранее, существует много разных способов изготовления резистора.
Резисторы бывают разных значений сопротивления, размеров, форм и номинальной мощности.
Два распространенных типа резистора: через отверстие и для поверхностного монтажа.
Выбор того, какой из них использовать, зависит от типа схемы, в которой вы их будете использовать.
Поскольку в электронике используются маломощные и мощные приложения, существуют резисторы, рассчитанные на разные номинальные мощности, чтобы они могли работать. эти полномочия.
Преобразователь постоянного тока в постоянный < Что такое преобразователь постоянного тока в постоянный? > | Основы электроники
Как следует из названия, преобразователь постоянного тока преобразует одно постоянное напряжение в другое.
Рабочее напряжение различных электронных устройств, таких как микросхемы, может варьироваться в широком диапазоне, поэтому необходимо обеспечивать напряжение для каждого устройства.
Понижающий преобразователь выдает более низкое напряжение, чем исходное напряжение, в то время как повышающий преобразователь обеспечивает более высокое напряжение.
Линейные или импульсные регуляторы
Преобразователи постоянного тока в постоянный токтакже называют линейными или импульсными регуляторами, в зависимости от метода, используемого для преобразования.
- Устройство для преобразования на более низкое напряжение
- Понижающий или понижающий преобразователь
- Устройство для преобразования на более высокое напряжение
- Повышающий или повышающий преобразователь
- Устройство, способное преобразовывать в более высокое или более низкое напряжение
- Повышающий понижающий преобразователь
- Устройство для подачи отрицательного напряжения
- Отрицательное напряжение или инвертирующий преобразователь
AC vs.DC
Что такое AC?
Сокращение от «Переменный ток», переменный ток — это ток, величина и полярность (ориентация) которого изменяется со временем.
Часто выражается в герцах (Гц), единице частоты в системе СИ, которая представляет собой количество колебаний в секунду.
Что такое DC?
DC, что означает постоянный ток, характеризуется током, полярность которого не меняется с течением времени.
Однако есть небольшие изменения по величине, которые также являются постоянным током, называемым пульсирующим током.
Управление питанием / блок питания IC Страница группы продуктов Преобразователь постоянного тока(с переключением регулятора) на страницу продукта
Линейка преобразователей постоянного тока в постоянный токROHM состоит из множества продуктов. В DC-DC преобразователях Buck используется высокоэффективная конструкция, идеально подходящая для шин с входным напряжением. Предоставляется ряд функций, включая управление текущим режимом, фиксированное время включения и управление h4Reg TM , что обеспечивает совместимость с различными требованиями. ROHM предлагает ведущие в отрасли преобразователи постоянного тока в постоянный и оценочные платы, которые позволяют клиентам разрабатывать и дифференцировать свои схемы питания.Мы даем четкое объяснение выбора идеального преобразователя постоянного тока в постоянный из нашего широкого ассортимента.
.