Как понизить напряжение на выходе трансформатора: Как понизить напряжение на трансформаторе без перемотки

Содержание

Как понизить напряжение на трансформаторе без перемотки

Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками

Как уменьшить вольтаж на трансформаторе.

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора. На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.
После того, как мы определили эти обмотки, можно приступать к разбору трансформатора . Нужно отделить друг от друга Ш-образные пластины. Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу». Работать нужно очень осторожно, так как легко можно порезаться о пластины. Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В. В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение , чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

Итак, приступим к разбору. Ножом нужно отклеить пластины друг от друга и, при помощи кусачек и круглогубцев, вытаскиваем их из трансформатора. Вот так это выглядит:

После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное. Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали. (Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор , делая всё то же, что при разборке, только в обратном порядке. После этого нужно опять замерить напряжение, которое у нас получилось после уменьшения витков и высчитываем сколько витков приходится на 1В. Высчитываем так: допустим у вас был трансформатор с напряжением 35В. После того, как вы размотали примерно половину и собрали трансформатор обратно, у вас стало напряжение 18В. Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37. Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков). Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Теперь собираем трансформатор так же, как и разбирали, только в обратном порядке. Не переживайте, если у вас останется одна-две пластинки, главное чтобы они очень плотно «сидели» .Вот что должно получиться:

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

Если что-то не получилось с первого раза, не расстраивайтесь и не сдавайтесь. Только проявляя упорство и терпение, можно чему-то научиться. Если возникнут какие-то вопросы, оставляйте их в комментариях и я обязательно отвечу.

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками

Как уменьшить вольтаж на трансформаторе.

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора. На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.

После того, как мы определили эти обмотки, можно приступать к разбору трансформатора . Нужно отделить друг от друга Ш-образные пластины. Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу». Работать нужно очень осторожно, так как легко можно порезаться о пластины. Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В. В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение , чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

Итак, приступим к разбору. Ножом нужно отклеить пластины друг от друга и, при помощи кусачек и круглогубцев, вытаскиваем их из трансформатора. Вот так это выглядит:

После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное. Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали. (Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор , делая всё то же, что при разборке, только в обратном порядке. После этого нужно опять замерить напряжение, которое у нас получилось после уменьшения витков и высчитываем сколько витков приходится на 1В. Высчитываем так: допустим у вас был трансформатор с напряжением 35В. После того, как вы размотали примерно половину и собрали трансформатор обратно, у вас стало напряжение 18В. Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37. Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков). Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Теперь собираем трансформатор так же, как и разбирали, только в обратном порядке. Не переживайте, если у вас останется одна-две пластинки, главное чтобы они очень плотно «сидели» .Вот что должно получиться:

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

Если что-то не получилось с первого раза, не расстраивайтесь и не сдавайтесь. Только проявляя упорство и терпение, можно чему-то научиться. Если возникнут какие-то вопросы, оставляйте их в комментариях и я обязательно отвечу.

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

В данной статье поговорим про бестрансформаторное электропитание.

В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть 220 вольт. Если радиоприбор переносной (мобильный), то использование батарей питания себя оправдывает такой необходимостью. Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно. Для питания различных устройств низковольтным напряжением от бытовой сети 220 вольт существуют различные виды и типы преобразователей напряжения бытовой сети 220 вольт в пониженное. Как правило, это схемы трансформаторного преобразования.

Схемы трансформаторного питания строятся по двум вариантам

1. «Трансформатор – выпрямитель — стабилизатор» — классическая схема питания, обладающая простотой построения, но большими габаритными размерами;

2. «Выпрямитель — импульсный генератор – трансформатор – выпрямитель – стабилизатор» — схема импульсного источника питания, обладающая малыми габаритными размерами, но имеющая более сложную схему построения.

Самое главное достоинство указанных схем питания – наличие гальванической развязки первичной и вторичной цепи питания. Это снижает опасность поражения человека электрическим током, и предотвращает выход аппаратуры из строя по причине возможного замыкания токоведущих частей устройства на «ноль». Но иногда, возникает потребность в простой, малогабаритной схеме питания, в которой наличие гальванической развязки не важно. И тогда мы можем собрать простую конденсаторную схему питания. Принцип её работы заключается в «поглощении лишнего напряжения» на конденсаторе. Для того, чтобы разобраться в том, как это поглощение происходит, рассмотрим работу простейшего делителя напряжения на резисторах.

Делитель напряжения состоит из двух резисторов R1 и R2. Резистор R1 – ограничительный, или по другому называется добавочный. Резистор R2 – нагрузочный (), он же является внутренним сопротивлением нагрузки.

Предположим, что нам необходимо из напряжения 220 вольт получить напряжение 12 вольт. Указанные U2 = 12 вольт должны падать на сопротивлении нагрузки R2. Это означает, что остальное напряжение U1 = 220 – 12 = 208 вольт должно падать на сопротивлении R1.

Допустим, что в качестве сопротивления нагрузки мы используем обмотку электромагнитного реле, а активное сопротивление обмотки реле R2 = 80 Ом. Тогда по закону Ома, ток, протекающий через обмотку реле, будет равен: Iцепи = U2/R2 = 12/80 = 0,15 ампер. Указанный ток должен течь и через резистор R1. Зная, что на этом резисторе должно падать напряжение U1 = 208 вольт, по закону Ома определяем его сопротивление:

R1 = UR1 / Iцепи = 208/0,15 = 1 387 Ом.

Определим мощность резистора R1: Р = UR1 * Iцепи = 208 * 0,15 = 31,2 Вт.

Для того, чтобы этот резистор не грелся от рассеиваемой на нём мощности, реальное значение его мощности необходимо увеличить в раза два, это приблизительно составит 60 Вт. Размеры такого резистора довольно внушительны. И вот здесь нам пригодится конденсатор!

Мы знаем, что любой конденсатор в цепи переменного тока обладает таким параметром, как «реактивное сопротивление» — сопротивление радиоэлемента изменяющееся в зависимости от частоты переменного тока. Реактивное сопротивление конденсатора определяется по формуле:

где п – число ПИ = 3,14, f – частота (Гц), С – ёмкость конденсатора (фарад).

Заменив резистор R1 на бумажный конденсатор С, мы «забудем» что такое резистор внушительных размеров.

Реактивное сопротивление конденсатора С должно приблизительно равняться ранее рассчитанному значению R1 = Хс = 1 387 Ом.

Преобразовав формулу заменив местами величины С и Хс, мы определим значение ёмкости конденсатора:


С1 = 1 / (2*3,14*50*1387) = 2,3*10 -6 Ф = 2,3 мкФ

Это может быть несколько конденсаторов с требуемой общей ёмкостью, включенных параллельно, или последовательно.

Схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Но изображённая схема работать будет, но не так как мы планировали! Заменив массивный резистор R1 на один, или два малогабаритных конденсатора, мы выиграли в размерах, но не учли одно — конденсатор должен работать в цепи переменного тока, а обмотка реле – в цепи постоянного тока. На выходе нашего делителя переменное напряжение, и его необходимо преобразовать в постоянное. Это достигается вводом в схему диодного выпрямителя разделяющего входную и выходную цепь, а так же элементов сглаживающих пульсацию переменного напряжения в выходной цепи.

Окончательно, схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Конденсатор С2 — сглаживающий пульсации. Для исключения опасности поражения электрическим током от накопленного напряжения в конденсаторе С1, в схему введен резистор R1, который шунтирует конденсатор своим сопротивлением. При работе схемы он своим большим сопротивлением не мешает, а после отключения схемы от сети, в течение времени, определяемого секундами, через резистор R1 происходит разряд конденсатора. Время разряда определяется обыкновенной формулой:

Для того, чтобы следующий раз не делать все вышеперечисленные расчёты, выведем окончательную формулу расчёта ёмкости конденсатора схемы бестрансформаторного (конденсаторного) питания. При известных значениях входного и выходного напряжения, а также сопротивления R2 (оно же — сопротивление нагрузки ), значение сопротивления R1 находится в соответствии с пунктом 3 статьи «Делитель напряжения«:

Объединив две формулы, находим конечную формулу расчета ёмкости конденсатора схемы бестрансформаторного питания:

где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1.

Учитывая, что при работе в переменном напряжении в конденсаторе происходят перезарядные процессы, а также сдвиг фазы тока по отношению к фазе напряжения, необходимо брать конденсатор на напряжение в 1,5…2 раза больше того напряжения, которое подаётся в цепь питания. При сети 220 вольт, конденсатор должен быть рассчитан на рабочее напряжение не менее 400 вольт.

По указанной выше формуле можно рассчитать значение ёмкости схемы бестрансформаторного питания для любого устройства, работающего в режиме постоянной нагрузки. Для работы в условиях переменной нагрузки, меняется также ток и напряжение выходной цепи. Для стабилизации выходного напряжения обычно применяют стабилитроны, или эквивалентные транзисторные схемы, ограничивающие выходное напряжение на необходимом уровне. Одна из таких схем показана на рисунке ниже.

Вся схема включена в сеть 220 вольт постоянно, а реле Р1 включается в цепь и выключается с помощью выключателя S1. В качестве выключателя может быть и полупроводниковый прибор, например транзистор. Транзисторный каскад VT1 включен параллельно нагрузке, он исключает увеличение напряжения во вторичной цепи. Когда нагрузка отключена, ток течёт через транзисторный каскад. Если бы этого каскада не было, то при отключении S1 и отсутствии другой нагрузки, на выводах конденсатора С2 напряжение могло бы достигнуть максимального сетевого – 315 вольт.

Стоит отметить, что при расчёте схем автоматики с реле, необходимо учитывать, что напряжение срабатывания реле, как правило, равно его номинальному (паспортному) значению, а напряжение удержания реле во включенном состоянии приблизительно в 1,5 раза меньше номинального. Поэтому, рассчитывая схему, изображённую выше, оптимально вести расчёт конденсатора для режима удержания, а напряжение стабилизации сделать равным номинальному (или чуть выше номинального). Это позволит работать всей схеме в режиме меньших токов, что повышает надёжность. Таким образом, для расчета емкости конденсатора С1 в схеме с коммутируемой нагрузкой, параметр Uвх мы берём равным не 12 вольт, а в полтора раза меньше – 8 вольт, а для расчёта ограничительного (стабилизирующего) транзисторного каскада – номинальное 12 вольт.

С1 = 1 / ( 2 * 3,14 * 50 * ( (220 * 80) / 8 – 80 ) ) = 1,5 мкФ
В качестве стабилизирующего элемента при малых токах можно использовать стабилитрон. При больших токах стабилитрон не годится – слишком малая у него рассеиваемая мощность. Поэтому в таком случае оптимально использовать транзисторную схему стабилизации напряжения. Расчёт стабилизирующего транзисторного каскада основан на использовании порога открытия биполярного транзистора, при достижении напряжения база-эмиттер 0,65 вольта (на кристалле кремния). Но учтите, что для разных транзисторов это напряжение колеблется в пределах 0,1 вольта, не только по типам, но и по экземплярам транзисторов. Поэтому напряжение стабилизации на практике может немного отличаться от рассчитанного значения.
Расчёт делителя смещения каскада стабилизации проводится всё по тем же формулам делителя напряжения, при известных Uвх.дел. = 12 вольт, Uвых.дел. = 0,65 вольт и токе транзисторного делителя, который должен быть приблизительно в двадцать раз меньше тока протекающего через ёмкость С1. Этот ток легко найти:

Iдел. = Uвх.дел. / (20*Rн) = 12 / (20 * 80) = 0,0075 ампер,
где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1, равное 80 Ом.

Номиналы резисторов R1 и R2 определяются по формулам, ранее опубликованным в статье «Делитель напряжения«:

где Rобщ – общее сопротивление резисторов делителя смещения транзистора VT1, которое находится по закону Ома:

Итак: Rобщ = 12 / 0,0075 = 1600 Ом ;

R3 = 0,65 * 1600 / 12 = 86,6 Ом , по номинальному ряду, ближайший номинал – 82 Ом;

R2 = 1600 – 86,6 = 1513,4 Ом , по номинальному ряду, ближайший номинал – 1,5 кОм.

Зная падение напряжения на резисторах и ток делителя, не забудьте рассчитать их габаритную мощность. С запасом, габаритную мощность R2 выбираем в 0,25 Вт, а R3 – в 0,125 Вт. Вообще, вместо резистора R2 лучше поставить стабилитрон, в данном случае это может быть Д814Г, КС211(с любым индексом), Д815Д, или КС212(с любым индексом). Я научил вас рассчитывать резистор намеренно.

Транзистор выбирается также с запасом падающей на его переходе мощности. Как выбирать транзистор в подобных стабилизирующих каскадах, хорошо описано в статье «Компенсационный стабилизатор напряжения«. Для лучшей стабилизации, возможно использование схемы «составного транзистора».

Думаю, что статья своей цели достигла, «разжёвано» всё до каждой мелочи.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Как понизить напряжение переменного и постоянного тока?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос,  как понизить напряжение, следует рассматривать в  ключе каждого из них отдельно.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи.  Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить  вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

  • С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.
Рис. 3. Понижение трансформатором с отводом от средней точки
  • Автотрансформатором – это универсальная электрическая машина, которая способна не только понизить вольтаж, но и повысить его до нужного вам уровня. Для этого достаточно перевести ручку в нужное положение и проследить полученные показания на вольтметре.
Рис. 4. Использование автотрансформатора
  • Понижающим трансформатором с преобразованием 220В на нужный вам номинал или с любого другого напряжения переменной частоты. Реализовать этот метод можно как уже готовыми моделями трансформаторов, так и самодельными. За счет наличия большого количества инструментов и приспособлений, сегодня каждый может собрать трансформатор с заданными параметрами в домашних условиях. Более детально об этом вы можете узнать из соответствующей статьи: https://www.asutpp.ru/transformator-svoimi-rukami.html

Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается  делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если  вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

R = Uc/I — Rн ,

где

  • R – сопротивление резистора;
  • RН – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  •  UC – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Видео по теме

Как уменьшить напряжение вторичной обмотки трансформатора — MOREREMONTA

есть трансформатор от старого зарядного устройства схема давно не рабочая а трансформатор рабочий вход 220вольт и 4 выхода 2 выхода спаренные минус и еще 2 в одном выходе колебания от 40до 30вольт в другом 20вольт. как снизить напряжение на выходах не прибегая к различным схемам. на сколько витков отмотать вторичную обмотку и возможно ли это на данном трансформаторе. вторичная обмотка намотана алюминивой проволокой сечением 2-2,5мл. хочу просто собрать простейший зорядник на основе данного трансформатора и 4 диодов Д242Б, Д24Б просто без схем возможно добавить конденцатор.

Здесь легко и интересно общаться. Присоединяйся!

Вы не указали для чего или на какой ток и напряжение нужна зарядка. Если для авто — в любом случае безрегулировки не обойдётесь, или аккум недозарядится или диоды сгорят. Вторичной использовать обмотку с самым толстым проводом. К первичной подключить последовательно нужное количество лишних обмоток. Тогда и на вторичной напряжение упадёт. Хотите быстро — ищите электрика. Хотите уметь — заплатите электрику втрое, чтоб научил и объяснил. Удачи.

только 2 способа- намотать еще одну обмотку на 14 в или взять 20, через диодный мост пропустить и поставить делитель напряжения с выходом в 14 в

Размотать вторичную обмотку. Сосчитать при этом витки. Новую обмотку пересчитать исходя из того, сколько витков приходилось на 1 вольт в старой вторичной обмотке.

подсчитай по размеру сердечника сколько у тебя приходится витков на вольт, и отматай не нужные тебе вольты сделай вывод и наматай обратно, и будет и 12 и останбется то что есть на всякий случай У тебя же 4 катушки, ты откинь соединение и протестируй сколько вольт у тебя на катушках может там и есть такое возмйхошь с одной свои 12 и всё

Просто не получится.

Надо вольтметром определить сколько вольт приходится на 1 виток вторичной обмотки. Конец одного щупа вольтметра для измерения напряжения использовать в виде шила для аккуратного прокола бумажной изоляции верхнего провода вторичной обмотки.

Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками

Как уменьшить вольтаж на трансформаторе.

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора. На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.
После того, как мы определили эти обмотки, можно приступать к разбору трансформатора . Нужно отделить друг от друга Ш-образные пластины. Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу». Работать нужно очень осторожно, так как легко можно порезаться о пластины. Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В. В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение , чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

Итак, приступим к разбору. Ножом нужно отклеить пластины друг от друга и, при помощи кусачек и круглогубцев, вытаскиваем их из трансформатора. Вот так это выглядит:

После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное. Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали. (Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор , делая всё то же, что при разборке, только в обратном порядке. После этого нужно опять замерить напряжение, которое у нас получилось после уменьшения витков и высчитываем сколько витков приходится на 1В. Высчитываем так: допустим у вас был трансформатор с напряжением 35В. После того, как вы размотали примерно половину и собрали трансформатор обратно, у вас стало напряжение 18В. Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37. Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков). Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Теперь собираем трансформатор так же, как и разбирали, только в обратном порядке. Не переживайте, если у вас останется одна-две пластинки, главное чтобы они очень плотно «сидели» .Вот что должно получиться:

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

Если что-то не получилось с первого раза, не расстраивайтесь и не сдавайтесь. Только проявляя упорство и терпение, можно чему-то научиться. Если возникнут какие-то вопросы, оставляйте их в комментариях и я обязательно отвечу.

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

Иногда возникает ситуация, когда необходимо изменить напряжение на вторичной обмотке понижающего трансформатора всего на 10 – 15%, но очень не хочется разбирать трансформатор.

Если на каркасе есть свободное место, то можно домотать дополнительную катушку не разбирая магнитопровод, а затем включить её в фазе или противофазе, в зависимости от того, нужно ли увеличить или уменьшить выходное напряжение. На картинке слева напряжение дополнительной катушки «II» складывается с напряжением основной катушки «III», а справа вычитается.

Видео: Как удвоить напряжение трансформатора без перемотки

Видео для радиолюбителей и всем кто интересуется электроникой. Без перемотки трансформатора простым способом увеличиваем выходное напряжение с помощью конденсатора у два и больше раз.

Как уменьшить вольтаж трансформатора

Как уменьшить вольтаж на трансформаторе.

Привет коллеги!

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора. На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.
После того, как мы определили эти обмотки, можно приступать к разбору трансформатора. Нужно отделить друг от друга Ш-образные пластины. Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу». Работать нужно очень осторожно, так как легко можно порезаться о пластины. Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В. В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение, чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

Итак, приступим к разбору. Ножом нужно отклеить пластины друг от друга и, при помощи кусачек и круглогубцев, вытаскиваем их из трансформатора. Вот так это выглядит:

 После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное. Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали. (Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор, делая всё то же, что при разборке, только в обратном порядке. После этого нужно опять замерить напряжение, которое у нас получилось после уменьшения витков и высчитываем сколько витков приходится на 1В. Высчитываем так: допустим у вас был трансформатор с напряжением 35В. После того, как вы размотали примерно половину и собрали трансформатор обратно, у вас стало напряжение 18В. Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37. Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков). Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Теперь собираем трансформатор так же, как и разбирали, только в обратном порядке. Не переживайте, если у вас останется одна-две пластинки, главное чтобы они очень плотно «сидели» .Вот что должно получиться:

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

Если что-то не получилось с первого раза, не расстраивайтесь и не сдавайтесь. Только проявляя упорство и терпение, можно чему-то научиться. Если возникнут какие-то вопросы, оставляйте их в комментариях и я обязательно отвечу.

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

 

 

Высокое или повышенное напряжение. Как понизить напряжение в сети

Высокое и повышенное напряжение. Причины возникновения

Как в наших электросетях могут появиться высокое или повышенное напряжение? Как правило к повышению напряжения могут привести некачественные электрические сети или аварии в сетях. К недостаткам сетей можно отнести: устаревшие сети, низкокачественное обслуживание сетей, высокий процент амортизации электрооборудования, неэффективное планирование линий передач и распределительных станций, не управляемый рост количества потребителей. Это приводит к тому, что сотни тысяч потребителей, получают высокое или повышенное напряжение. Значение напряжения в таких сетях может достигать 260, 280, 300 и даже 380 Вольт.

Одной из причин повышенного напряжения, как ни странно, может быть пониженное напряжение потребителей, находящихся далеко от трансформаторной подстанции. В этом случае часто электрики умышленно повышают выходное напряжение электрической подстанции, чтобы добиться удовлетворительных показателей тока у последних в линии передач потребителей. В итоге, у первых в линии напряжение будет повышенным. По этой же причине можно наблюдать повышенное напряжение в дачных поселках. Здесь изменение параметров тока связаны с сезонностью и периодичностью потребления тока. Летом мы наблюдаем рост потребления электроэнергии. В этот сезон на дачах находится много людей, они используют большое количество энергии, а зимой потребление тока резко падает. В выходные дни потребление на дачных участках растёт, а в рабочие дни падает. В результате имеем картину неравномерного потребления энергии. В этом случае, если установить выходное напряжение на подстанции (а они, как правило, недостаточной мощности) нормальным (220 Вольт), то летом и в выходные напряжение резко просядет и будет пониженным. Поэтому электрики изначально настраивают трансформатор на повышенное напряжение. В итоге зимой и в рабочие дни напряжение в поселках высокое или повышенное.

Вторая большая группа причин появления высокого напряжения — это перекосы по фазам при подключении потребителей. Часто бывает так, что подключение потребителей происходит хаотично без предварительного плана и проекта. Или в ходе реализации проекта или развития поселений происходит изменение значения потребления на разных фазах линии передач. Это может привести к тому, что на одной фазе напряжение будет пониженным, а на другой фазе — повышенным.

Третья группа причин повышенного напряжения в сети — это аварии на линиях электропередач и внутренних линиях. Здесь следует выделить две основные причины — обрыв нуля и попадание тока высокого напряжения в обычные сети. Второй случай — это редкость, случается в городах в сильный ветер, ураган. Бывает, что линия питания электротранспорта (трамвая или троллейбуса) попадает при обрыве на линии городских сетей. В этом случае в сеть может попасть и 300, и 400 Вольт.

Теперь рассмотрим, что происходит при пропадании «нуля» во внутренние домовые сети. Этот случай бывает довольно часто. Если в одном подъезде дома используется две фазы, то при пропадании нуля (например, нет контакта на нуле) происходит изменение значения напряжения на разных фазах. На той фазе, где сейчас нагрузка в квартирах меньше, напряжение будет завышенным, на второй фазе — заниженным. Причем напряжение распределяется обратно пропорционально нагрузке. Так, если на одной фазе нагрузка именно в этот момент в 10 раз больше, чем на другой, то мы можем получить на первой фазе 30 Вольт (низкое напряжение), а на второй фазе — 300 Вольт (высокое напряжение). Что приведет к сгоранию электрических приборов и, возможно, пожару.

Чем опасно высокое и повышенное напряжение

Высокое напряжение опасно для электрических приборов. Значительное повышение напряжения может привести к сгоранию приборов, их перегреву, дополнительному износу. Особенно критичны к высокому напряжению электронное оборудование и электромеханические приборы.

Повышенное напряжение может привести к пожару в доме, нанести большой ущерб.

Как защититься от высокого напряжения и как понизить напряжение в сети

Чтобы защитить свои сети от повышенного напряжения, пиков высокого напряжения, скачков тока и перенапряжения необходимо использовать устройства защиты от скачков напряжения.
Подробнее смотрите в разделе «Устройства защиты от импульсных перенапряжений». Чтобы понизить напряжение, нормализовать параметры тока необходимо использовать стабилизаторы. Подробнее смотрите в разделе «Стабилизаторы напряжения».

Читайте также:

Как понизить напряжение на 1 вольт

чтобы не затронуть мощность и снижать вольты, ампера придется затронуть

придется сопротивление снижать

Допустимый выходной ток трансформатора определяется сечением его обмоток: если нагрузка потребляет слишком большой ток — обмотки греются, а могут и сгореть. Коэффициент трансформации определяется конструкцией трансформатора — числом витков первичной и вторичной обмоток. Чтобы уменьшить напряжение, возникающее на вторичной обмотке — надо во столько же раз уменьшить напряжение, подаваемое на первичную обмотку (поставив еще один трансформатор).

ищешь кандидата на нобелевскую премию

Снизить напряжение можно: 1) В сети переменного тока понижающим трансформатором. 2). В сети постоянного тока преобразователем (мультивибратор, трансформатор, выпрямитель) 3). В любой сети поможет ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ из двух резисторов, НО он ограничит и ток, и мощность, и часть энергии бесполезно затратит в нагрев делителя. Третий пункт выкинь из головы, второй сложен, первый не подходит к твоей «Кроне».

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

Зарядное устройство вашего смартфона;

Блок питания ноутбука;

Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

Зарядное устройство вашего смартфона;

Блок питания ноутбука;

Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Как понизить переменное напряжение

Напряжение электрической сети на территории России составляет 220 вольт. Однако порой возникают ситуации, когда для нормальной работы тех или иных электронных устройств требуется пониженное напряжение питания.

Большинство продающихся в России электрических приборов рассчитаны на напряжение питания 220 вольт. Те, что снабжены импульсными блоками питания – например, многие телевизоры и портативные компьютеры, работают при напряжении от 110 до 220 в. Тем не менее, иногда для питания какого-то устройства требуется пониженное напряжение.

Для понижения напряжения воспользуйтесь автотрансформатором. Вы можете приобрести как современные автотрансформаторы, так и поискать на рынках дешевые и вполне надежные автотрансформаторы советского производства. Благодаря наличию ручки регулировки вы сможете менять напряжение в достаточно широких пределах. Помните о том, что мощность автотрансформатора не должна быть ниже мощности подключаемого электроприбора.

Понизить напряжение питания ровно в два раза можно путем включения в электрическую цепь мощного диода. Этот вариант особенно удобен при использовании его с лампами освещения, имеющими нить накаливания. Поставив диод, вы срежете одну полуволну переменного тока, чем понизите напряжение до 110 вольт. Лампа при этом будет гореть слабее, но значительно вырастет срок ее службы.

Для плавной регулировки напряжения воспользуйтесь тиристорным регулятором. Вы можете собрать его самостоятельно, воспользовавшись одной из существующих схем. Например, этой: http://sovmasteru.ru/125/

Понизить напряжение можно с помощью трансформатора, в том числе самодельного. При понижении напряжения число витков во вторичной обмотке должно быть меньше количества витков в первичной обмотке. Для точного расчета трансформаторов используются достаточно сложные формулы, но для простого бытового трансформатора можно воспользоваться упрощенной формулой: n = 50/S, где n – количество витков на 1 вольт напряжения, S – площадь сечения магнитопровода. Если вы используете для изготовления трансформатора Ш-образные пластины, площадь магнитопровода определяется произведением толщины пакета пластин на ширину его среднего язычка, в сантиметрах.

Понизить напряжение можно с помощью мощного гасящего резистора, но этот способ неэкономичен, так на резисторе будет рассеиваться значительная часть мощности. Вместо гасящего резистора в каких-то ситуациях можно использовать включенную последовательно в сеть лампочку накаливания. Меняя мощность лампы накаливания, можно изменять напряжение на выходе.

Как снизить напряжение переменного тока с 17В до 15,8В?

Предполагая, что это относится к вашему другому вопросу, в котором есть ссылка на набор схематических диаграмм.

Во-первых, для этого устройства требуется трансформатор с центральным ответвлением для генерации другой шины напряжения в стереосистеме. Вам понадобятся три (или иногда две независимые обмотки, а затем четыре) выходных провода.

Естественное изменение напряжения питания, указанное в руководстве по обслуживанию, составляет около 15% в зависимости от состояния нагрузки (полной или резервной).Повышение напряжения, о котором вы спрашиваете, всего на 7% выше номинального. Большинство систем должны выдерживать это дополнительное напряжение питания, поскольку напряжение в сети уже может превышать 10% (в Европе от 220 до 240 В). В случае длинного удлинительного шнура или пика нагрева в середине зимы напряжение может упасть еще ниже, поэтому большие колебания в поставке являются нормой.

На стр. 28 сервис-мануала подробно описаны схемы регулятора напряжения. Выпрямленное выходное напряжение указано как 21.7, а с дополнительными 7% — 23,2. Конденсатор рассчитан на рабочее напряжение 25 В (см. Стр. 53) и должен работать. Стабилизаторы напряжения должны справиться с лишним, если только они не спроектированы очень близко к границам.

Ваша большая проблема заключается в том, что ваш новый трансформатор может показывать 17 В, но может быть на 10 или 20% выше напряжения без нагрузки, и это может превышать безопасные пределы конденсаторов в режиме ожидания и при достижении пикового напряжения.

Удаление витков из трансформатора — это большая работа, и вам придется удалить их с обеих частей катушки с отводом по центру (может быть легко или много работы в зависимости от того, как они намотаны), чтобы получить какую-либо пользу.

Однако на большинстве тороидальных трансформаторов относительно легко добавить витки через отверстие, и это можно использовать на первичной обмотке для снижения вторичного напряжения. Вам нужно будет добавить первичные витки и соединить их последовательно с основной входной обмоткой. Это требует большей осторожности с соединениями и изоляцией, чем при работе со вторичной обмоткой. Если вы хотите попробовать это, вам нужно найти какой-нибудь изолированный провод от сети с током 0,5 А, пропустить 10 витков через отверстие и измерить напряжение, скажем, 8 В.Разделите число на 10, чтобы получить постоянную вольта на оборот, скажем, 0,8 В. Затем измерьте, насколько на самом деле больше правильного напряжения на вашей вторичной обмотке, и рассчитайте коэффициент, который вы хотите уменьшить, скажем, 7%. Затем умножьте свое сетевое напряжение на коэффициент уменьшения, чтобы получить 230 x 7% = 16 В, используйте это для определения необходимых дополнительных витков 16 В / 0,8 В / T = 20 витков.

Если вы подключите обмотку в неправильную фазу, ваше выходное напряжение увеличится, а не уменьшится, поэтому измерьте его перед подключением к электронике и поменяйте концы местами, если это проблема.

Упомянутое в комментарии к другому вопросу, если у вас нагреваются компоненты, они, возможно, вышли из строя ранее и вызвали перегорание вашего трансформатора, они могут сделать то же самое с вашим новым трансформатором, если вы не замените их. Электролитические конденсаторы большой емкости — известное слабое место в более старом электронном оборудовании.

Обратите также внимание на то, что номинал предохранителя не является прямым показателем требований к току вашей стереосистемы или сетевого трансформатора. Они рассчитаны на превышение нормальных рабочих и импульсных токов, но меньшие, чем ожидаемые токи повреждения.Вы можете обнаружить, что ваша система никогда не превышает 2 А, а трансформатор на 3 А слишком большой.

Как уменьшить выходное напряжение постоянного тока источника питания?

Как уменьшить выходное напряжение постоянного тока блока питания? — Обмен электротехнического стека
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 5к раз

\ $ \ begingroup \ $

У меня есть источник питания постоянного тока, который принимает 240 В переменного тока на входе и понижает до 30 В переменного тока с помощью понижающего трансформатора на 200 ВА с выпрямителями, но выходное напряжение, которое я получаю, составляет около 43-44 В постоянного тока.Напряжение, которое мне нужно получить на выходе, находится в диапазоне от 32 В до 33 В постоянного тока.

Как я могу уменьшить выходное напряжение с 44 В до 33 В постоянного тока, не меняя трансформатор, учитывая, что мои текущие требования составляют около 5-6 А?

Полиномиальный

5,1344 золотых знака3333 серебряных знака6868 бронзовых знаков

Создан 20 июл.

пользователь49712

1111 серебряный знак22 бронзовых знака

\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $

30 В переменного тока при выпрямлении становится примерно на \ $ \ sqrt2 \ $ выше минус пара падений напряжения на диоде примерно на 0.7 в каждый. это означает, что напряжение питания постоянного тока будет около 41 вольт. На холостом ходу это может легко составлять 43 вольта плюс-минус при неточном соотношении витков трансформатора.

Вот и объяснение — если вам нужно примерно 33 вольта постоянного тока, вам понадобится трансформатор с выходным напряжением 23 вольт переменного тока.

Другой способ (без рассеивания тепла) — использовать импульсный регулятор, чтобы взять 40 нечетных вольт и эффективно преобразовать их в 30 нечетных вольт. Понижающий стабилизатор — это то, что вам нужно, однако он может быть немного шумным для звука, поэтому лучше использовать понижающий стабилизатор, чтобы поднять его, может быть, до 34 вольт, а затем линейный регулятор с низким падением, чтобы обеспечить плавное 33 вольт.

В мире электрических цепей и электротехнических проектов трансформаторы определяются как пассивные электрические устройства, способные передавать энергию из одной цепи в другую (или даже во множество других цепей).Обычно они имеют две или более катушек и две цепи — первичную и вторичную.

Существует дюжина различных типов трансформаторов; каждая из них предназначена для выполнения уникальных или особых требований. В этом разделе мы рассмотрим трансформаторы переменного напряжения, также известные как «переменные».

Что такое трансформаторы переменного напряжения?

Трансформаторы переменного напряжения (также известные как регулируемые трансформаторы напряжения) — это трансформаторы, которые могут создавать различные уровни выходного напряжения всего из одного входного напряжения.Они предоставляют пользователям эффективный и беспроблемный способ изменения напряжения за короткое время.

Компенсация — одна из основных причин, по которой люди захотят так быстро изменить вторичное напряжение. При изменении входящего линейного напряжения лучше всего, чтобы вторичное напряжение, обслуживающее нагрузку, оставалось регулируемым. Это снижает риск сильных колебаний или постоянного скачка напряжения. Вот почему поддерживается предел допуска напряжения — от полувольта до нескольких вольт.

Трансформаторы переменного напряжения

, честно говоря, являются лучшим выбором для профессионалов и любителей, которым нужен более универсальный вариант для изменения соотношения между первичной и вторичной обмотками. Они широко доступны, просты в эксплуатации и (в зависимости от модели и бренда) могут быть интуитивно понятными. Вы даже можете запрограммировать трансформаторы переменного напряжения для автоматической регулировки для поддержания постоянного или регулярного выходного напряжения.

Что такое вариаки?

Чтобы полностью объяснить, что такое вариак, вам нужно знать, что такое «переменный автотрансформатор».

Автотрансформатор — это трансформатор, который состоит только из одной катушки, общей для первичной и вторичной стороны цепи. Термин «переменное» в регулируемом автотрансформаторе в основном относится к отношению первичных обмоток к вторичным обмоткам, то есть отношению вторичного напряжения к первичному напряжению.

« Variac » — это общее название регулируемых автотрансформаторов.

Variacs, пожалуй, самый популярный тип трансформаторов переменного напряжения.Это блоки питания переменного тока, которые дешевле, меньше по размеру и намного более портативны, чем двухобмоточные трансформаторы. У них также есть ряд полезных повседневных и промышленных приложений, которые делают их очень востребованными.

От энергосберегающих моделей до промышленных — определенно найдется вариант, отвечающий вашим конкретным потребностям.

Вариакальная структура

Несмотря на то, что разные типы вариаторов будут иметь вариации в конструкции, все модели имеют примерно одинаковую базовую структуру.

Детали вариатора / регулируемого автотрансформатора:

  • Первичная обмотка
  • Вторичная обмотка
  • Ламинированный магнитопровод
  • Угольная щетка (для вторичного напряжения, вращается)
  • Угольная щетка (регулируемое нажатие, перемещение вверх и вниз)

Как это работает:

Переменные автотрансформаторы имеют одну частично открытую обмотку — первичную обмотку — намотанную вокруг многослойного магнитного сердечника. Угольная щетка (также известная как подвижный дворник) расположена таким образом, что может создавать электрическое соединение с обмоткой.Первичное соединение трансформатора осуществляется с обоих концов первичной обмотки.

Это вторичное соединение, называемое общим соединением, выполняется только с одним концом обмотки и осуществляется через подвижную угольную щетку. Угольная щетка может вращаться или скользить по открытой части первичной обмотки. Передаточное отношение трансформатора изменяется по мере движения дворника.

Трансформаторы переменного напряжения обычно проектируются с несколькими первичными обмотками, достаточными для создания вторичного регулируемого напряжения, которое можно настраивать от нескольких вольт до долей вольта на оборот.Пока угольная щетка всегда контактирует с первичной обмоткой, вторичное напряжение можно регулировать.

Общие приложения для Variacs

Есть много общих применений и практических применений для variacs. Как мы упоминали ранее, они более портативны и более экономичны, чем обычные блоки питания переменного тока, что в значительной степени делает их лучшим выбором для краткосрочных проектов и случайных хобби. Вариаки можно использовать для постепенного восстановления ранее бездействующего электронного оборудования.Их также можно использовать для регулирования серводвигателей и контроля температуры духовок и обогревателей.

Регулировка напряжения при использовании с термостатическим регулированием обеспечивает более равномерный нагрев.

Вы также можете использовать вариаторы для моделирования различных напряжений и условий в линии для экспериментов или для питания электрического оборудования, рассчитанного на напряжение, отличное от обычных 120 или 240 В, поставляемых внутри страны.

Вот еще несколько приложений:

  • Регулирующее напряжение
  • Управление заданным входным напряжением для элементов выпрямителя для генерации переменного напряжения постоянного тока от источника переменного тока
  • Работающее электрическое оборудование — обычно двигатели — при правильном или оптимальном напряжении даже при ненормальном или превышающем нормальное напряжение питания
  • Изменение выходного напряжения ступенчатого трансформатора путем управления входным напряжением
  • Запуск синхронных или асинхронных двигателей для обеспечения 50% -60% общего напряжения на статоре двигателя во время запуска.
  • Корректировка напряжения в источниках питания с пониженным или повышенным напряжением в 1-фазных, 2-фазных или 3-фазных цепях
  • Компенсация падений напряжения за счет небольшого увеличения разводки кабеля
  • Управление работой двигателей переменного тока и двигателей постоянного тока по выпрямленным цепям переменного тока
  • Питание вентиляторов и других двигателей с низким пусковым моментом
  • Регулировка яркости / затемнения цепей ламп накаливания
  • Увеличение срока службы лампы за счет ее работы при напряжении ниже номинального
  • Калибровка электрооборудования и органов управления
  • Компенсация значительных падений напряжения на концах линий, где расстояния слишком велики (например, в сельских распределительных сетях)

Преимущества вариаторов / трансформаторов переменного напряжения

Доступно. Как упоминалось ранее, вариаки — это доступные источники питания переменного тока, которые способны удовлетворить потребности в напряжении и работать на том же уровне, что и трансформаторы или источники питания, которые стоят в четыре раза дороже. Вот почему вариаки пользуются большим спросом у случайных любителей.

Эффективный. Вариакальный трансформатор или автотрансформатор намного более эффективен для преобразования напряжения по сравнению с двухобмоточным трансформатором. Это связано с меньшими омическими потерями и потерями в сердечнике благодаря уменьшению материала трансформатора.

Действует. Трансформаторы переменного напряжения или автотрансформаторы переменного напряжения лучше регулируют напряжение, чем обычный двухобмоточный трансформатор того же номинала. Это связано с их значительно меньшим падением сопротивления и реактивного сопротивления.

Портативность. Регулируемые автотрансформаторы примерно вдвое меньше стандартного двухобмоточного трансформатора. Это упрощает обращение с ними. Отчасти поэтому они намного дешевле.

Рекомендуемые вариаторы / трансформаторы переменного напряжения

Variac TDGC2-0.5

Компактный и невероятно доступный, этот Variac TDGC2-0.5 рассчитан на входное напряжение 110 В с регулируемым диапазоном выходного напряжения от 0 до 130 В. Энергоэффективная и не искажающая форму сигнала, эта модель способна выдавать максимальный выходной ток 5 А при мощности (кВА) 0,5.

Выход переменного тока не влияет на частоту переменного тока. Это означает, что вы можете изменить входное напряжение 110 В переменного тока при 60 Гц на любое значение от 0 до 130 В — в зависимости от того, что вам нужно — без изменения цикла 60 Гц.

Характеристики и спецификации:

  • Вход: 110 В, 60 Гц
  • Выход: 0-130 В, 60 Гц
  • Размеры: 5 «x 6» x 6,5 «
  • Вес: 5 кг, 11 фунтов.

Примечание: Модель Variac TDGC2-0.5 не преобразует переменный ток в постоянный. Следовательно, для обеспечения выхода переменного тока требуется вход переменного тока.

Популярные приложения:

Этот трансформатор переменного напряжения очень популярен для жарки кофе в домашних условиях.Диапазон напряжения обеспечивает невероятно точный контроль температуры, что важно при выполнении стольких задач, как обжарка кофейных зерен.

Variac TDGC-0.5 может также использоваться в проектах научных лабораторий, для редактирования и усиления звука, а также в приложениях для освещения фильмов или видео.

Variac TDGC2-0.5D с цифровым дисплеем

Портативный и энергоэффективный, Variac TDGC2-0.5D с цифровым дисплеем представляет собой трансформатор переменного напряжения, способный генерировать переменное напряжение от 0 до 130 вольт.Он не искажает форму сигнала и может принимать входное напряжение до 110 вольт. Что касается тока, максимальный выходной ток составляет 5 А при мощности 0,5 (кВА). Вход должен быть переменным током, выход — переменным током и не влияет на входную частоту.

Как и в случае с предыдущим вариантом, перечисленным здесь, у вас может быть входное напряжение 110 переменного тока и 60 Гц, и этот автотрансформатор будет изменять выходное напряжение переменного тока, не влияя на цикл Гц.

Характеристики и спецификации:

  • Вход: 110 В, 60 Гц
  • Выход: 0-130 В, 60 Гц
  • Размеры: 5 дюймов x 6 дюймов x 6.5 ”
  • Вес: 5 кг, 11 фунтов.
  • Экран: ЖК-дисплей с цифровой индикацией напряжения

Примечание: Модель Variac TDGC2-0.5D не преобразует переменный ток в постоянный. Следовательно, для обеспечения выхода переменного тока требуется вход переменного тока. Он также несовместим с большинством розеток GFI (прерывание замыкания на землю).
Популярные приложения:

Эта модель довольно популярна для аудиопроектов; редактирование, усиление, запись и тому подобное. Это особенно хорошо подходит для старых ламповых усилителей.Другие потенциальные применения включают эксперименты в научных лабораториях, приложения для освещения и небольшие проекты в области электротехники.

Столешница Variac TDGC2-3D

Управляйте выходным напряжением переменного тока легко и с минимальным риском с помощью вариационного трансформатора TDGC2-3D. Эта универсальная модель обеспечивает высокоэффективный выходной сигнал без искажения формы волны — идеально подходит для множества профессиональных и случайных проектов. Он рассчитан на ток до 30 ампер или 2 кВА в пиковом режиме, что составляет 25 А. Однако он не преобразует переменный ток в постоянный и не влияет на частоту цикла.Если ваша система питания обеспечивает частоту 60 Гц, TDGC2-3D не будет искажать выходной сигнал.

Это устройство также оснащено ЖК-цифровым дисплеем, а не стандартным аналоговым дисплеем с циферблатом.

Характеристики и спецификации:

  • Экран: цифровой ЖК-дисплей с подсветкой
  • Выход: 30 А, пиковая 3 кВА | 25А непрерывный
  • Преобразование: вход переменного тока в выход переменного тока

Примечание: Variac TDGC2-3D — довольно мощный блок, рассчитанный на пиковую выходную мощность 30 А.Поскольку большинство домашних розеток рассчитаны только на 15 ампер, убедитесь, что используемый вами блок питания может обеспечивать достаточный ток для безопасной и оптимальной работы этой модели. Также стоит отметить, что пиковая мощность рекомендуется для кратковременной работы, а длительная работа не должна превышать 25 ампер непрерывной выходной мощности.

Популярные приложения:

Эта модель отлично подходит для всех видов домашнего использования. С его помощью можно регулировать температуру для приготовления или обжарки кофейных зерен.К другим менее распространенным, но не менее идеальным приложениям относятся хобби в области электротехники, научные проекты и проекты по редактированию / трансляции звука.

Вторичное напряжение — обзор

6.3.2 Промежуточные трансформаторы напряжения

Точность трансформатора напряжения — не единственный источник ошибок вторичного напряжения. Это также происходит из-за сопротивления проводов (см. Раздел 6.3.4 этой главы). Сумма этих двух ошибок во входящем и текущем питании не будет одинаковой на синхронизирующем оборудовании, особенно если длина соединительных кабелей и, следовательно, сопротивление проводов значительно различаются.Ясно, что для целей синхронизации важно, чтобы ошибки в измеренных напряжениях были как можно меньше. Однако есть еще одна причина, почему это важно, если два источника питания будут электрически соединены. Несмотря на то, что прямое соединение вторичных обмоток ТН не допускается, с профилактическими мерами, предпринимаемыми внутри и снаружи синхронизирующего оборудования, остается небольшой риск того, что это может произойти из-за неисправности или скрытой цепи. В этом случае трансформатор с более высоким из двух вторичных напряжений будет способствовать нагрузке трансформатора с более низким вторичным напряжением так же, как силовые трансформаторы разделяют нагрузку параллельно.Если разница напряжений мала, это состояние, вероятно, останется незамеченным при нормальной работе с предохранителями. Могут возникнуть сложности с защитой, измерением и т. Д., В которых могут быть задействованы и другие схемы.

Чтобы уменьшить ошибку напряжения во входящем и работающем источниках питания, промежуточный трансформатор напряжения (который также обеспечивает гальваническую развязку постоянного тока) установлен между вторичной обмоткой ТН и синхронизирующим оборудованием, как показано на рис. 12.22. Предусмотрены ответвления, чтобы облегчить определенную регулировку напряжения на месте.При номинальном системном напряжении каждое промежуточное ответвление ТН выбирается так, чтобы показывать 63,5 В ± 1% на синхронизирующем оборудовании с переключателем как в разомкнутом, так и в замкнутом состоянии. В схеме выбора напряжения это включает в себя каждый альтернативный источник питания.

РИС. 12.22. Упрощенная компоновка промежуточных трансформаторов напряжения

Промежуточные трансформаторы напряжения имеют соотношение между первичной и вторичной обмотками 110 / 63,5 В (63,5 / 63,5 В при напряжении передачи) и имеют минимальную номинальную мощность 25 ВА с максимальным пределом 50 ВА, за исключением при напряжении передачи, когда оно снижается до 36 ВА.Однако предпочтительно, чтобы во всей схеме синхронизации использовался единый рейтинг по причинам взаимозаменяемости. Регулировка напряжения осуществляется с шагом 0,5 В в диапазоне от 0 до +5 В выше номинального вторичного напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *