Электромагнитная индукция — материалы для подготовки к ЕГЭ по Физике
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: явление электромагнитной индукции, магнитный поток, закон электромагнитной индукции Фарадея, правило Ленца.Опыт Эрстеда показал, что электрический ток создаёт в окружающем пространстве магнитное поле. Майкл Фарадей пришёл к мысли, что может существовать и обратный эффект: магнитное поле, в свою очередь, порождает электрический ток.
Иными словами, пусть в магнитном поле находится замкнутый проводник; не будет ли в этом проводнике возникать электрический ток под действием магнитного поля?
Через десять лет поисков и экспериментов Фарадею наконец удалось этот эффект обнаружить. В 1831 году он поставил следующие опыты.
1. На одну и ту же деревянную основу были намотаны две катушки; витки второй катушки были проложены между витками первой и изолированы.
Электрического контакта между контурами не было, только лишь магнитное поле первой катушки пронизывало вторую катушку.
При замыкании цепи первой катушки гальванометр регистрировал короткий и слабый импульс тока во второй катушке.
Когда по первой катушке протекал постоянный ток, никакого тока во второй катушке не возникало.
При размыкании цепи первой катушки снова возникал короткий и слабый импульс тока во второй катушке, но на сей раз в обратном направлении по сравнению с током при замыкании цепи.
Вывод.
Меняющееся во времени магнитное поле первой катушки порождает (или, как говорят, индуцирует) электрический ток во второй катушке. Этот ток называется индукционным током.
Если магнитное поле первой катушки увеличивается (в момент нарастания тока при замыкании цепи), то индукционный ток во второй катушке течёт в одном направлении.
Если магнитное поле первой катушки уменьшается (в момент убывания тока при размыкании цепи), то индукционный ток во второй катушке течёт в другом направлении.
Если магнитное поле первой катушки не меняется (постоянный ток через неё), то индукционного тока во второй катушке нет.
Обнаруженное явление Фарадей назвал электромагнитной индукцией (т. е. «наведение электричества магнетизмом»).
2. Для подтверждения догадки о том, что индукционный ток порождается переменным магнитным полем, Фарадей перемещал катушки друг относительно друга. Цепь первой катушки всё время оставалась замкнутой, по ней протекал постоянный ток, но за счёт перемещения (сближения или удаления) вторая катушка оказывалась в переменном магнитном поле первой катушки.
Гальванометр снова фиксировал ток во второй катушке.
3. Первая катушка была заменена постоянным магнитом. При внесении магнита внутрь второй катушки возникал индукционный ток. При выдвигании магнита снова появлялся ток, но в другом направлении. И опять-таки сила индукционного тока была тем больше, чем быстрее двигался магнит.
Эти и последующие опыты показали, что индукционный ток в проводящем контуре возникает во всех тех случаях, когда меняется «количество линий» магнитного поля, пронизывающих контур. Сила индукционного тока оказывается тем больше, чем быстрее меняется это количество линий. Направление тока будет одним при увеличении количества линий сквозь контур, и другим — при их уменьшении.
Замечательно, что для величины силы тока в данном контуре важна лишь скорость изменения количества линий. Что конкретно при этом происходит, роли не играет — меняется ли само поле, пронизывающее неподвижный контур, или же контур перемещается из области с одной густотой линий в область с другой густотой.
Такова суть закона электромагнитной индукции. Но, чтобы написать формулу и производить расчёты, нужно чётко формализовать расплывчатое понятие «количество линий поля сквозь контур».
Магнитный поток
Понятие магнитного потока как раз и является характеристикой количества линий магнитного поля, пронизывающих контур.
Для простоты мы ограничиваемся случаем однородного магнитного поля. Рассмотрим контур площади , находящийся в магнитном поле с индукцией .
Пусть сначала магнитное поле перпендикулярно плоскости контура (рис. 1).
Рис. 1.
В этом случае магнитный поток определяется очень просто — как произведение индукции магнитного поля на площадь контура:
(1)
Теперь рассмотрим общий случай, когда вектор образует угол с нормалью к плоскости контура (рис. 2).
Рис. 2.
Мы видим, что теперь сквозь контур «протекает» лишь перпендикулярная составляющая вектора магнитной индукции (а та составляющая, которая параллельна контуру, не «течёт» сквозь него). Поэтому, согласно формуле (1), имеем . Но , поэтому
(2)
Это и есть общее определение магнитного потока в случае однородного магнитного поля. Обратите внимание, что если вектор параллелен плоскости контура (то есть ), то магнитный поток становится равным нулю.
А как определить магнитный поток, если поле не является однородным? Укажем лишь идею. Поверхность контура разбивается на очень большое число очень маленьких площадок, в пределах которых поле можно считать однородным. Для каждой площадки вычисляем свой маленький магнитный поток по формуле (2), а затем все эти магнитные потоки суммируем.
Единицей измерения магнитного потока является вебер (Вб). Как видим,
Вб = Тл · м = В · с. (3)
Почему же магнитный поток характеризует «количество линий» магнитного поля, пронизывающих контур? Очень просто. «Количество линий» определяется их густотой (а значит, величиной — ведь чем больше индукция, тем гуще линии) и «эффективной» площадью, пронизываемой полем (а это есть не что иное, как ).
Теперь мы можем дать более чёткое определение явления электромагнитной индукции, открытого Фарадеем.
Электромагнитная индукция — это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.
ЭДС индукции
Каков механизм возникновения индукционного тока? Это мы обсудим позже. Пока ясно одно: при изменении магнитного потока, проходящего через контур, на свободные заряды в контуре действуют некоторые силы —
Как мы знаем, работа сторонних сил по перемещению единичного положительного заряда вокруг контура называется электродвижущей силой (ЭДС): . В нашем случае, когда меняется магнитный поток сквозь контур, соответствующая ЭДС называется ЭДС индукции и обозначается .
Итак, ЭДС индукции — это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура.
Природу сторонних сил, возникающих в данном случае в контуре, мы скоро выясним.
Закон электромагнитной индукции Фарадея
Сила индукционного тока в опытах Фарадея оказывалась тем больше, чем быстрее менялся магнитный поток через контур.
Если за малое время изменение магнитного потока равно , то скорость изменения магнитного потока — это дробь (или, что тоже самое, производная магнитного потока по времени).
Опыты показали, что сила индукционного тока прямо пропорциональна модулю скорости изменения магнитного потока:
Модуль поставлен для того, чтобы не связываться пока с отрицательными величинами (ведь при убывании магнитного потока будет ). Впоследствии мы это модуль снимем.
Из закона Ома для полной цепи мы в то же время имеем: . Поэтому ЭДС индукции прямо пропорциональна скорости изменения магнитного потока:
(4)
ЭДС измеряется в вольтах. Но и скорость изменения магнитного потока также измеряется в вольтах! Действительно, из (3) мы видим, что Вб/с = В. Стало быть, единицы измерения обеих частей пропорциональности (4) совпадают, поэтому коэффициент пропорциональности — величина безразмерная. В системе СИ она полагается равной единице, и мы получаем:
(5)
Это и есть
Закон электромагнитной индукции Фарадея. При изменении магнитного потока, пронизывающего контур, в этом контуре возникает ЭДС индукции, равная модулю скорости изменения магнитного потока.
Правило Ленца
Магнитный поток, изменение которого приводит к появлению индукционного тока в контуре, мы будем называть внешним магнитным потоком. А само магнитное поле, которое создаёт этот магнитный поток, мы будем называть внешним магнитным полем.
Зачем нам эти термины? Дело в том, что индукционный ток, возникающий в контуре, создаёт своё собственное магнитное поле, которое по принципу суперпозиции складывается с внешним магнитным полем.
Соответственно, наряду с внешним магнитным потоком через контур будет проходить собственный магнитный поток, создаваемый магнитным полем индукционного тока.
Оказывается, эти два магнитных потока — собственный и внешний — связаны между собой строго определённым образом.
Правило Ленца . Индукционный ток всегда имеет такое направление, что собственный магнитный поток препятствует изменению внешнего магнитного потока .
Правило Ленца позволяет находить направление индукционного тока в любой ситуации.
Рассмотрим некоторые примеры применения правила Ленца.
Предположим, что контур пронизывается магнитным полем, которое возрастает со временем (рис. (3)). Например, мы приближаем снизу к контуру магнит, северный полюс которого направлен в данном случае вверх, к контуру.
Магнитный поток через контур увеличивается. Индукционный ток будет иметь такое направление, чтобы создаваемый им магнитный поток препятствовал увеличению внешнего магнитного потока. Для этого магнитное поле, создаваемое индукционным током, должно быть направлено против внешнего магнитного поля.
Индукционный ток течёт против часовой стрелки, если смотреть со стороны создаваемого им магнитного поля. В данном случае ток будет направлен по часовой стрелке, если смотреть сверху, со стороны внешнего магнитного поля, как и показано на (рис. (3)).
Рис. 3. Магнитный поток возрастает
Теперь предположим, что магнитное поле, пронизывающее контур, уменьшается со временем (рис. 4). Например, мы удаляем магнит вниз от контура, а северный полюс магнита направлен на контур.
Рис. 4. Магнитный поток убывает
Магнитный поток через контур уменьшается. Индукционный ток будет иметь такое направление, чтобы его собственный магнитный поток поддерживал внешний магнитный поток, препятствуя его убыванию. Для этого магнитное поле индукционного тока должно быть направлено в ту же сторону , что и внешнее магнитное поле.
В этом случае индукционный ток потечёт против часовой стрелки, если смотреть сверху, со стороны обоих магнитных полей.
Взаимодействие магнита с контуром
Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?
Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.
1. Магнит приближаем к контуру, северный полюс направлен на контур.
2. Магнит удаляем от контура, северный полюс направлен на контур.
3. Магнит приближаем к контуру, южный полюс направлен на контур.
4. Магнит удаляем от контура, южный полюс направлен на контур.
Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.
Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .
Уж во всяком случае вы должны запомнить этот факт — вдруг такой вопрос попадётся в части А1
Результат этот можно объяснить и из совершенно общих соображений — при помощи закона сохранения энергии.
Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте — мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.
Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .
Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.
Закон Фарадея + Правило Ленца = Снятие модуля
Выше мы обещали снять модуль в законе Фарадея (5). Правило Ленца позволяет это сделать. Но сначала нам нужно будет договориться о знаке ЭДС индукции — ведь без модуля, стоящего в правой части (5), величина ЭДС может получаться как положительной, так и отрицательной.
Прежде всего, фиксируется одно из двух возможных направлений обхода контура. Это направление объявляется положительным . Противоположное направление обхода контура называется, соответственно, отрицательным . Какое именно направление обхода мы берём в качестве положительного, роли не играет — важно лишь сделать этот выбор.
Магнитный поток через контур считается положительным , если магнитное поле, пронизывающее контур, направлено туда, глядя откуда обход контура в положительном направлении совершается против часовой стрелки. Если же с конца вектора магнитной индукции положительное направление обхода видится по часовой стрелке, то магнитный поток считается отрицательным .
ЭДС индукции считается положительной , если индукционный ток течёт в положительном направлении. В этом случае направление сторонних сил, возникающих в контуре при изменении магнитного потока через него, совпадает с положительным направлением обхода контура.
Наоборот, ЭДС индукции считается отрицательной , если индукционный ток течёт в отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль отрицательного направления обхода контура.
Итак, пусть контур находится в магнитном поле . Фиксируем направление положительного обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положительный обход совершается против часовой стрелки. Тогда магнитный поток положителен: .
Предположим, далее, что магнитный поток увеличивается . Согласно правилу Ленца индукционный ток потечёт в отрицательном направлении (рис. 5).
Рис. 5. Магнитный поток возрастает
Стало быть, в данном случае имеем . Знак ЭДС индукции оказался противоположен знаку скорости изменения магнитного потока. Проверим это в другой ситуации.
А именно, предположим теперь, что магнитный поток убывает . По правилу Ленца индукционный ток потечёт в положительном направлении. Стало быть, (рис. 6).
Рис. 6. Магнитный поток возрастает
Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца всегда приводит к тому, что знак ЭДС индукции противоположен знаку скорости изменения магнитного потока :
(6)
Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.
Вихревое электрическое поле
Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?
Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.
Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.
Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с конца вектора . Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.
Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора , (рис. 7).
Рис. 7. Вихревое электрическое поле при увеличении магнитного поля
Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис. 8).
Рис. 8. Вихревое электрическое поле при уменьшении магнитного поля
Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.
Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.
1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.
Итак, ЭДС индукции в неподвижном контуре — это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .
Пусть, например, контур является кольцом радиуса и пронизывается однородным переменным магнитным полем. Тогда напряжённость вихревого электрического поля одинакова во всех точках кольца. Работа силы , с которой вихревое поле действует на заряд , равна:
Следовательно, для ЭДС индукции получаем:
ЭДС индукции в движущемся проводнике
Если проводник перемещается в постоянном магнитном поле, то в нём также появляется ЭДС индукции. Однако причиной теперь служит не вихревое электрическое поле (оно не возникает — ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды проводника.
Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости расположены параллельные рельсы, расстояние между которыми равно . Рельсы находятся в вертикальном однородном магнитном поле . По рельсам движется тонкий проводящий стержень со скоростью ; он всё время остаётся перпендикулярным рельсам (рис. 9).
Рис. 9. Движение проводника в магнитном поле
Возьмём внутри стержня положительный свободный заряд . Вследствие движения этого заряда вместе со стержнем со скоростью на заряд будет действовать сила Лоренца:
Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами — не забывайте правило часовой стрелки или левой руки!).
Сила Лоренца играет в данном случае роль сторонней силы: она приводит в движение свободные заряды стержня. При перемещении заряда от точки к точке наша сторонняя сила совершит работу:
(Длину стержня мы также считаем равной .) Стало быть, ЭДС индукции в стержне окажется равной:
(7)
Таким образом, стержень аналогичен источнику тока с положительной клеммой и отрицательной клеммой . Внутри стержня за счёт действия сторонней силы Лоренца происходит разделение зарядов: положительные заряды двигаются к точке , отрицательные — к точке .
Допустим сначала,что рельсы непроводят ток.Тогда движение зарядов в стержне постепенно прекратится. Ведь по мере накопления положительных зарядов на торце и отрицательных зарядов на торце будет возрастать кулоновская сила, с которой положительный свободный заряд отталкивается от и притягивается к — и в какой-то момент эта кулоновская сила уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная ЭДС индукции (7).
Теперь предположим, что рельсы и перемычка являются проводящими. Тогда в цепи возникнет индукционный ток; он пойдёт в направлении (от «плюса источника» к «минусу» N). Предположим, что сопротивление стержня равно (это аналог внутреннего сопротивления источника тока), а сопротивление участка равно (сопротивление внешней цепи). Тогда сила индукционного тока найдётся по закону Ома для полной цепи:
Замечательно, что выражение (7) для ЭДС индукции можно получить также с помощью закона Фарадея. Сделаем это.
За время наш стержень проходит путь и занимает положение (рис. 9). Площадь контура возрастает на величину площади прямоугольника :
Магнитный поток через контур увеличивается. Приращение магнитного потока равно:
Скорость изменения магнитного потока положительна и равна ЭДС индукции:
Мы получили тот же самый результат, что и в (7). Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно, раз ток течёт в направлении , то его магнитное поле направлено противоположно внешнему полю и, стало быть, препятствует возрастанию магнитного потока через контур.
На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле, можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с помощью закона Фарадея. Результаты будут получаться одинаковые.
Дистанционное обучение. Урок № 7-8 (31).
Класс 9. Тема: Электромагнитная индукцияДистанционное обучение.
Урок № 7-8 (31)
Класс 9.
Тема: Электромагнитная индукция
План урока:
1. Изучение темы по презентации: Электромагнитная индукция.
2. Просмотр видео: Опыты по наблюдению явления.
3. Лабораторная работа «Изучение явления электромагнитной индукции».
4. Оформите работу в тетради по плану:
1) Название. 2) Цель. 3) Оборудование. 4) Ход работы: изобразите рисунки и определите направления: направление движения магнитов, линий магнитной индукций. 5) Вывод.
5. Выслать отчет по работе (фото или скан) в Вк.
Обязательное задание – лабораторная работа — на оценку в журнал для всех!!!!!
1. Презентация: «Электромагнитная индукция. Физика.9 класс»
2.
Лабораторная работа «Изучение явления электромагнитной индукции»
Цель работы: Познакомиться с различными способами получения индукционного тока в катушке и экспериментально подтвердить правило Ленца для определения направления тока.
Оборудование: миллиамперметр, катушка, магнит полосовой или дугообразный.
Ход выполнения:
- Подключите катушку к зажимам миллиамперметра и выполните действия, указанные в таблице. (При выполнении опытов магнит перемещают с одной и той же стороны катушки, положение которой не меняется)
- Определите направление индукционного тока в катушке, вектора магнитной индукции тока, вектора магнитной индукции магнита.
- Определите: увеличивается или уменьшается магнитный поток в каждом из случаев.
- Выполните задания
А) Определите направления движения магнитов
Б) Покажите направление индукционного тока.
В) Определите направление линий магнитной индукции магнита (на рисунке изображены пунктирными линиями)
6. Сделайте вывод о проделанной работе.
Правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.
просмотров всего 3,650 , просмотров сегодня 2
Направление индукционного тока. Правило Ленца. Вихревое поле.
Направление индукционного тока
При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.
Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.
Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.
Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.
Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.
Имеется катушка с подключенным к ней гальванометром. К одному и краев катушки начинаем подносить магнит, например, северным полюсом. Количество линий, которые будут пронизывать поверхность каждого витка катушки, будет увеличиваться. Следовательно, будет увеличиваться и значение магнитного потока.Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.
То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть — вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.
Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.
Правило Ленца.
Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.
Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:
1. Определить направление линий магнитной индукции вектора В внешнего магнитного поля.
2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром (ΔФ > 0), или уменьшается (ΔФ < 0).
3. Установить направление линий магнитной индукции вектора В’ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции вектора В’ при ΔФ > 0 и иметь одинаковое с ними направление при ΔФ < 0.
4. Зная направление линий магнитной индукции вектора В’, найти направление индукционного тока, пользуясь правилом буравчика.
Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток.
Вихревое электрическое поле.
Причина возникновения электрического тока в неподвижном проводнике — электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.
Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
электростатическое поле | индукционное электрическое поле (вихревое электрическое поле ) |
1. создается неподвижными электрическими зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты -потенциальное поле | 2. силовые линии замкнуты — вихревое поле |
3. источниками поля являются электрические заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути равна нулю. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции |
8 класс. Электромагнитная индукция | План-конспект урока по физике (8 класс):
Явление электромагнитной индукции.
Цель урока:
Познакомить с явлением электромагнитной индукции; ввести понятие индукционный ток; уметь анализировать экспериментальные данные и результаты наблюдений.
Задачи:
Образовательная. Актуализация знаний о магнитных явлениях и продолжение их изучения.
Развивающая. Развитие творческих способностей учащихся, формирование умения находить ответы на вопросы, делать самостоятельные выводы и анализировать факты в ходе обсуждения демонстрационных опытов.
Воспитательная. Воспитание культуры речи учащихся, умение самостоятельного исследования, умения прислушиваться к мнению окружающих, рационального разделения труда.
Оборудование:2 катушки ( большая и маленькая), источник тока, сердечник, полосовой магнит, гальванометр, мультимедийный проектор, компьютер, интерактивная доска.
Для фронтальной лабораторной работы: катушка, милиамперметр, соединительные провода, полосовой магнит.
План урока:
- Оргмомент.(2 мин)
- Устная работа ( 4-5 мин)
- Фронтальная лабораторная работа. ( 5 мин)
- Видеоролик. (2 мин)
- Демонстрационные опыты. Другие способы получения индукционного тока. ( 10 мин)
- Майкл Фарадей. Сообщение учащегося.(7 мин) Презентация.
- Закрепление. Интерактивная доска. ( 7 мин)
- Рефлексия. Устройство детской игрушки: юла. Итог урока. (3 мин)
Ход урока.
- Здравствуйте ребята. Однажды Майкл Фарадей увидел опыты Эрстеда, удивился, затем проявил любопытство и сделал великое открытие, с которым мы и познакомимся сегодня. Итак, эпиграфом к нашему уроку послужит высказывание Луи де Бройля: « Знания – дети любопытства и удивления».
Цель урока: Познакомиться с явлением электромагнитной индукции; узнать способы получения индукционного тока; научиться анализировать экспериментальные данные и результаты наблюдений.
- Ну что же поиграем? Устная работа проходит в форме игры . Соединить стрелками физическую величину с её единицей измерения и с названием и формулой для вычисления.
1.Упорядоченное движение заряженных частиц это-
магнитные линии.
магнитный поток; электрический ток;
- Магнитное поле можно обнаружить
по действию на…
движущиеся заряженные частицы;
подвешенный на нити, легкий заряженный
шарик;
мелкие кусочки бумаги;
- Определите направление тока в проводнике, сечение которого и магнитное поле показаны на рисунке
от нас перпендикулярно чертежу.
на нас перпендикулярно чертежу;
- В каком направлении будет двигаться проводник, расположенный перпендикулярно к плоскости чертежа, если ток в проводнике идет от наблюдателя?
- Проводник с током расположен перпендикулярно плоскости листа, ток направлен от нас. Выберите рисунок, изображающий магнитное поле такого проводника с током.
- Что наблюдается в опыте Эрстеда?
Проводник с током действует на электрические заряды
Магнитная стрелка поворачивается вблизи заряженного проводника
Магнитная стрелка поворачивается вблизи проводника с током
- Выберите правильное продолжение фразы: «Магнитные поля создаются…»
…как неподвижными, так и движущимися электрическими зарядами
…неподвижными электрическими зарядами
…движущимися электрическими зарядами.
Итак , вокруг заряженного проводника существует магнитное поле. Если электрический ток может порождать магнитное поле, то не может ли магнитное поле порождать электрическое в проводнике? Впервые такую задачу решил английский учёный Майкл Фарадей.
Попробуем и мы превратить магнетизм в электричество с помощью приборов, находящихся на ваших столах. Выполните опыт 1 по описанию, данному в рабочих листах, и запишите выводы на рабочий лист. Итак, что же вы получили?
Демонстрируем опыт на магнитной доске. Будет ли двигаться стрелка гальванометра при движении магнита внутрь катушки? Остановке магнита? Выдвижении магнита из катушки? Что вы можете сказать о поведении стрелки гальванометра при движении внутрь катушки и выдвижении из неё? Мы знаем, что гальванометр регистрирует наличие тока в проводнике, поэтому можем утверждать, что при движении магнита относительно замкнутой катушки в ней возникает электрический ток. Это явление называется электромагнитной индукцией, а ток возникающий в катушке называют индукционным.
При всяком ли движении магнита в катушке возникает индукционный ток? Вставьте магнит в катушку и не вынимая из неё вращайте магнит внутри. Отклоняется стрела гальванометра? Нет. Выдвинем магнит из катушки, стрелка отклоняется. Таким образом, можно предположить, что причиной возникновения тока является изменение магнитного поля в катушке. Посмотрим видеоролик, показывающий нам, как же изменяется МП при движении магнита.
Рассмотрим, в каких ещё случаях можно получить индукционный ток.
Опыт 2. Соберём установку, в которой К1 и К2 помещены на общий железный сердечник . Замыкая и размыкая ключ в цепи электромагнита, замечаем, что стрелка отклоняется. Также изменяя сопротивление реостата, меняем силу тока в ЭМ, а следовательно, и его магнитное поле и замечаем, что в К1 опять появляется ИТ. Итак, явление ЭМИ заключается в появлении индукционного тока в замкнутой катушке, если внутри катушки меняется магнитное поле.
Ну что же поздравляю вас – вы научились превращать магнетизм в электричество! И помог нам в этом Великий английский учёный самоучка – М Ф!
Кто же он этот великий самоучка? Послушаем и посмотрим презентацию, которую приготовил Вова Красилов.
1 слайд — Майкл Фарадей родился в Лондоне в семье кузнеца. Мальчик смог получить лишь начальное образование.
2 слайд — С двенадцати лет он работал, сначала разносчиком газет, затем подмастерьем в переплетной мастерской. Однако недостаток знаний Фарадей компенсирует самообразованием. В 1813 один из заказчиков подарил Фарадею пригласительные билеты на лекции великого химика Гемфри Дэви в Королевском институте. Эти лекции сыграли большую роль в решении Фарадея посвятить себя науке.
3 слайд — Все основные работы по электричеству и магнетизму Фарадей представлял Королевскому обществу в виде серий докладов на протяжении 24 лет под названием Экспериментальные исследования по электричеству. Однажды, когда он не явился на заседание королевского общества, его спросили, по какой причине он не пришел. Он ответил: «Я занимался более важным делом- я превращал магнетизм в электричество.»
После открытия в 1820 Х. Эрстедом магнитного действия электрического тока Фарадея увлекла проблема связи между электричеством и магнетизмом. В 1822 в его лабораторном дневнике появилась запись: «Превратить магнетизм в электричество».
4 слайд — В 1824 Фарадей был избран членом Королевского общества, а через год стал директором лаборатории в Королевском институте. Величайшей заслугой Фарадея стало то, что он высказал идею об электрическом и магнитном поле.
5 слайд — Он не мог математически развить эти идеи, и в его монументальной работе «Экспериментальные исследования электричества» нет ни одного уравнения! Однако именно идеи Фарадея легли в основу уравнений Максвелла. Позднее Эйнштейн говорил, что в развитии электромагнетизма Фарадей по отношению к Максвеллу – то же самое, что в развитии механики Галилей по отношению к Ньютону.
6 слайд — Однажды после лекции Фарадея в Королевском обществе, где он демонстрировал свои опыты, к нему подошел богатый коммерсант, оказывавший обществу материальную поддержку, и надменным голосом спросил:
— Всё, что вы нам здесь показывали, господин Фарадей, действительно красиво. Но теперь скажите мне, для чего годится эта магнитная индукция!?
— А для чего годится только что родившийся ребёнок? — ответил рассердившийся Фарадей. На вопрос коммерсанта в последующие годы ответили многие учёные и изобретатели, и прежде всего, Вернер фон Сименс (1816-1892), изобретший в 1866г. динамо-машину, положившую основу для промышленного производства электроэнергии.
7слайд — На счету великого ученого более 10 открытий в области химии и физики.
8 слайд — Никакие почести не уменьшили природную скромность Фарадея. Он отказался от дворянского звания, президентства в Королевском обществе, крупных гонораров и даже от государственной пенсии. Следуя его воле, на его надгробии в Вестминстерском аббатстве выбито лишь два слова — Майкл Фарадей.
Имя Майкла Фарадея и его открытия заняли достойное место среди гениальных ученых человечества. Его имя вошло в историю физики и в честь этого гениального ученного была названа единица измерения ёмкости.
Закрепление. По интерактивной доске.
1. Наука о природе. (Физика)
2.Когда с тобою этот друг
Ты можешь без дорог
Шагать на север и на юг
На запад и восток.
(Компас)
3. Прибор, показывающий наличие тока в цепи. (Гальванометр)
4 Тело, способное притягивать к себе железные тела. (Магнит)
5. Физическая величина, характеризующая магнитное поле. (Индукция)
6. Учёный, первым обнаруживший связь, между электрическими и магнитными полями. (Эрстед)
7. Ученый, основоположник экспериментальной физики. (Галилей)
Из данных фраз составьте определение ЭМИ.
Явление электромагнитной индукции
заключается
внутри
индукционного тока
если
в появлении
катушки
меняется
магнитное поле.
в замкнутой катушке,
Ток возникающий в катушке называется – ………………………………………………….
Переменным
постоянным
индукционным
Домашнее задание: §34.
Спасибо за урок!
Рабочий лист.
«Превратить магнетизм в электричество» М. Фарадей
Фамилия, имя __________________________________________
Цель: изучить явление электромагнитной индукции.
Оборудование:
1. Внесите магнит в катушку, вынесите магнит из катушки.
Отклонялась ли стрелка гальванометра во время движения магнита? ___________
Во время его остановки? ____________
Во время вращения магнита внутри катушки? ________________________________
Появлялся ли электрический ток в катушке во время движения магнита? __________
Во время остановки? ________________
Во время вращения магнита внутри катушки?_________________
Менялось ли магнитное поле, пронизывающее катушку
во время движения магнита? ______
во время его остановки? ______
Во время вращения магнита внутри катушки?__________________________
Меняется ли направление возникающего тока в катушке при вдвигании магнита в катушку и выдвигании из неё? ______________________
Явление возникновения электрического тока в замкнутой катушке при движении магнита относительно её называется _______________________________________________________________________
Ток, возникающий в катушке, называется ________________________________________________________________________
2. На основании ваших ответов сделайте вывод о том, при каком условии в катушке возникал индукционный ток.
Вывод: _________________________________________________________________
________________________________________________________________________
________________________________________________________________________________________________________________________________________________
Деятельность учителя направлена на вызов у учащихся уже имеющихся знаний по изучаемому вопросу, активизацию их деятельности, мотивацию к дальнейшей работе. Предлагаю начать урок с небольшого социологического исследования. Вы согласны? Поднимите руку те, кто всегда носит с собой мобильный телефон. Для чего чаще всего используете «мобильник»? Мобильный телефон стал сейчас для многих необходимой вещью. Можно и с друзьями пообщаться, и музыку послушать, и найти нужные сведения в интернете, и поиграть, но все это требует затрат энергии. Хорошо, если есть возможность подзарядить телефон, а если вы находитесь, например, в походе? Как поступить в подобном случае? Ваши предложения. Спасибо, но это не все возможные варианты. Предлагаю учащимся ответить на вопрос «Что может объединять Майкла Фарадея, который жил в 19 столетии и беспроводное зарядное устройство для мобильного телефона и устройства для зарядки телефона без источника питания, которые были изобретены в 21 веке.
Сегодня на уроке мы с вами должны узнать, как работает данное устройство, какое явление в нем происходит. Я открою вам секрет, в основу работы положено явление электромагнитной индукции, которое и будет темой нашего урока.
А нельзя ли наоборот, имея магнитное поле, получить электрический ток? Что для этого нужно сделать? Такую задачу поставил перед собой Майкл Фарадей и решал ее почти 10 лет. Предлагаю попробовать решить ее сегодня на уроке. Согласны? |
Деятельность учащихся направлена на: — вспоминание того, что им известно по данному вопросу; выдвижение предположений; систематизацию информации до изучения нового материала; формулировку вопросов, на которые хотелось бы получить ответы. Пытаются разрешить проблемную ситуацию, идет обсуждение принципа работы данного устройства
Понять в чем заключается сущность явления.
|
— диагностика имеющихся знаний, построенная на ассоциативном методе с использованием образно-критического мышления, дает учащимся свободу выбора, использует разные методы и формы памяти: речевую, зрительную, слуховую (воспроизведение учителем). — создана проблемная ситуация: как подзарядить мобильный телефон, не имея источника тока — эвристическая беседа, выдвижение гипотезы создание поисковой ситуации, установление взаимосвязи между явлениями. |
Что происходит при движении магнита? О чем говорит отклонение стрелки гальванометра? Когда появляется ток в катушке? Если магнит неподвижен, что показывает гальванометр? Так когда возникает ток в катушке? Ток, который мы получили, называют индукционным (наведённым).
Самостоятельная работа по учебнику А сейчас откройте учебник на стр. 164 -165 , попробуйте проделать опыты, изображенные на рис.127 и рис.128. По результатам проделанных опытов объясните причину возникновения индукционного тока и сделайте вывод. При этом можно общаться друг с другом, пользоваться текстом учебника. Помните, что магнитный поток зависит от числа линий магнитной индукции, от площади контура и от ориентации контура в магнитном поле. Учитель показывает опыты возникновения индукционного тока при замыкании и размыкании цепи, при перемещении одной катушки относительно другой, при вращении катушки в магнитном поле. Физическое явление Электромагнитной индукции заключается в том, что в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего данный контур. Причина возникновения электрического тока в замкнутом контуре – изменение магнитного потока, пронизывающего замкнутый контур. От чего зависит величина индукционного тока? |
Учащие объясняют у доски, почему при замыкании и размыкании цепи, при перемещении катушек относительно друг друга возникает индукционный ток. Вывод: Формулируют закон электромагнитной индукции.
Учащиеся проводят опыты:
Вывод: Величина индукционного тока зависит от изменения скорости магнитного потока и величины магнитного потока. |
Демонстрация эксперимента учащимся у доски с логическим выводом. Создание проблемной ситуации (при каких условиях возникает ЭМИ) Сопоставление, сравнение, обоснование. Построение рассуждений, самостоятельный вывод определения явления электромагнитной индукции.
Самостоятельная работа с текстом учебника направленная на формирование умения самостоятельно обрабатывать информацию, логически, образно мыслить. |
Итак, давайте подведем итог сегодняшнего урока. Так что же объединяет Майкла Фарадея и беспроводное зарядное устройство для мобильного телефона и устройства для зарядки телефона без источника питания данной теме. Сегодня на уроке мы с вами
|
Все это объединяет явление электромагнитной индукции. Ребята оценивают урок и свою работу на нем, делают выводы о том, достигнуты ли цели урока. Говорят о том, что узнали нового. |
Урок 38. Лабораторная работа № 09 «Изучение явления электромагнитной индукции»
Лабораторная работа № 9
Изучение явления электромагнитной индукции
Цель работы: изучить условия возникновения индукционного тока, ЭДС индукции.
Оборудование: катушка, два полосовых магнита, миллиамперметр.
Теория
Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции.
Многочисленные опыты Фарадея показывают, что с помощью магнитного поля можно получить электрический ток в проводнике.
Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.
Ток, возникающий при явлении электромагнитной индукции, называют индукционным.
В электрической цепи (рисунок 1) возникает индукционный ток, если есть движение магнита относительно катушки, или наоборот. Направление индукционного тока зависит как от направления движения магнита, так и от расположения его полюсов. Индукционный ток отсутствует, если нет относительного перемещения катушки и магнита.
Рисунок 1.
Строго говоря, при движении контура в магнитном поле генерируется не определенный ток , а определенная э. д. с.
Рисунок 2.
Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:
Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограниченную контуром.
Знак минус в формуле отражает правило Ленца.
В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
При возрастании магнитного потока Ф>0, а εинд < 0, т.е. э. д. с. индукции вызывает ток такого направления, при котором его магнитное поле уменьшает магнитный поток через контур.
При уменьшении магнитного потока Ф<0, а εинд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.
ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой — слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке 2.
На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.
По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.
Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке 1 красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.
Ход работы.
Подготовьте для отчета таблицу и по мере проведения опытов заполните её.
№ п/п |
Действия с магнитом и катушкой |
Показания милли-амперметра, мА |
Направления отклонения стрелки миллиампер-метра (вправо, влево или не откланяется) |
Направление индукционного тока (по правилу Ленца) |
1 |
Быстро вставить магнит в катушку северным полюсом |
|
|
|
2 |
Оставить магнит в катушке неподвижным после опыта 1 |
|
|
|
3 |
Быстро вытащить магнит из катушки |
|
|
|
4 |
Быстро приблизить катушку к северному полюсу магнита |
|
|
|
5 |
Оставить катушку неподвижной после опыта 4 |
|
|
|
6 |
Быстро вытащить катушку от северного полюса магнита |
|
|
|
7 |
Медленно вставить в катушку магнит северным полюсом |
|
|
|
8 |
Медленно вытащить магнит из катушки |
|
|
|
9 |
Быстро вставить в катушку 2 магнита северными полюсами |
|
|
|
10 |
Быстро вставить магнит в катушку южным полюсом |
|
|
|
11 |
Быстро вытащить магнит из катушки после опыта 10 |
|
|
|
12 |
Быстро вставить в катушку 2 магнита южными полюсами |
|
|
|
Записать общий вывод по работе на основе проведённых наблюдений.
КОНТРОЛЬНЫЕ ВОПРОСЫ.
- В чем заключается явление электромагнитной индукции?
- Какой ток называют индукционным?
- Сформулируйте закон электромагнитной индукции. Какой формулой он описывается?
- Как формулируется правило Ленца?
- Какова связь правила Ленца с законом сохранения энергии?
Презентация для демонстрации студентам (с решением): скачать с Яндекс-Диск
Как найти индукционный ток формула
Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.
Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.
Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия электромагнитной индукции. Если не углубляется в тонкости закона электромагнитной индукции, то в двух словах ее можно описать так. Электромагнитная индукция это явление возникновение тока в проводящем контуре под действие переменного магнитного поля.
С помощью этого закона можно определить и величину индукционного тока. Так как он нам дает значение ЭДС, которая возникает в контуре под действие переменного магнитного поля.
Как видно из формулы 1 величина ЭДС индукции, а значит и индукционного тока зависит от скорости изменения магнитного потока пронизывающего контур. То есть чем быстрее будет меняться магнитный поток, тем больший индукционный ток можно получить. В случае, когда мы имеем постоянное магнитное поле, в котором движется проводящий контур, то величина ЭДС будет зависеть от скорости движения контура.
Чтобы определить направление индукционного тока используют правило Ленца. Которое гласит что, индукционный ток направлен навстречу тому току, который его вызвал. Отсюда и знак минус в формуле для определения ЭДС индукции.
Индукционный ток играет важную роль в современной электротехнике. Например, индукционный ток, возникающий в роторе асинхронного двигателя, взаимодействует с током, подводимым от источника питания в его статоре, вследствие чего ротор вращается. На этом принципе построены современные электродвигатели.
В трансформаторе же индукционный ток, возникающий во вторичной обмотке, используется для питания различных электротехнических приборов. Величина этого тока может быть задана параметрами трансформатора.
И наконец, индукционные токи могут возникать и в массивных проводниках. Это так называемые токи Фуко. Благодаря им можно производить индукционную плавку металлов. То есть вихревые токи, текущие в проводнике вызывают его разогрев. В зависимости от величины этих токов проводник может разогреваться выше точки плавления.
Итак, мы выяснили, что индукционный ток может оказывать механическое, электрическое и тепловое действие. Все эти эффекты повсеместно используются в современном мире, как в промышленных масштабах, так и на бытовом уровне.
Задача 11.4. Рамка сопротивлением r находится в переменном магнитном поле. За время Dt магнитный поток изменился от значения Ф1 до значения Ф2. Определите величину тока, считая изменение магнитного потока равномерным.
Ф1, Ф2, Dt, R | Решение. В рамке возникла ЭДС индукции |
i = ? |
ℰi .
Рис. 11.25 |
Для рамки справедлив закон Ома для замкнутой цепи, т.е. рамку в изменяющемся магнитном поле можно заменить на эквивалентную электрическую схему (рис. 11.25), где источник ЭДС имеет нулевое внутреннее сопротивление. Тогда
i = ℰi/R = .
Читатель: А что означает знак «минус»?
Автор: Ток может идти как по, так и против согласованного направления обхода контура. Если Ф2 > Ф1 (поток возрастает), то ток идет против направления обхода, а если Ф2 > Ф1 (поток убывает) – по направлению обхода контура.
СТОП! Решите самостоятельно: А22–А24, В27, В28, С18, С19, D3.
Рис. 11.26 |
Задача 11.5. Квадратная рамка разделена на две части куском проволоки из такого же материала и помещена в переменное магнитное поле (рис. 11.26). Известно, что в точно такой же рамке без перемычки, помещенной в такое же поле, ЭДС индукции ℰ = 1 В. Сопротивление стороны квадрата R = 1 Ом. Определите индукционный ток в перемычке. Все значения считаются точными.
ℰ = 1 В R = 1 Ом | Решение. В рамке без перемычки возникает ЭДС индукции, по модулю равная |ℰ| . (1) |
I = ? |
В рамке с перемычкой в каждом из контуров (левом и правом) тоже возникает ЭДС индукции:
|ℰл| , (2)
|ℰп| . (3)
Рис. 11.27 |
Из равенств (1)–(3) видим, что ℰл = ℰ, ℰп = ℰ. Теперь можно начертить эквивалентную схему (рис. 11.27).
Для точки А запишем первое правило Кирхгофа:
Для левого и правого контуров запишем второе правило Кирхгофа:
ℰ. (6)
ℰ. (7)
Подставляя численные значения ℰ = 1 В и R = 1 Ом в уравнения (6) и (7), получим:
Теперь в эту систему из уравнения (5) подставим значение I = Iл– Iп:
Подставим значение Iл из (9) в (8):
Þ А.
А.
Теперь из формулы (5) находим искомый индукционный ток через перемычку:
I = Iл– Iп = А.
Ответ: через перемычку пойдет индукционный ток I = А.
СТОП! Решите самостоятельно: В29, С20, С21, D4.
Дата добавления: 2016-04-11 ; просмотров: 941 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.
Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.
Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.
Накопленная энергия в индуктивности
Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.
Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:
где L — индуктивность, I — ток, протекающий через катушку индуктивности.
Гидравлическая модель
Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.
Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.
Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.
Индуктивность в электрических цепях
В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.
В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:
Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:
где ω является угловой частотой резонансной частоты F:
Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.
Индуктивное сопротивление ХL определяется по формуле:
где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.
Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:
Схемы соединения катушек индуктивностей
Параллельное соединение индуктивностей
Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:
Последовательное соединение индуктивностей
Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:
Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.
Добротность катушки индуктивности
На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.
Добротность катушки индуктивности может быть найдена через следующую формулу:
где R является собственным сопротивлением обмотки.
Катушка индуктивности. Формула индуктивности
Базовая формула индуктивности катушки:
- L = индуктивность в генри
- μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
- μ г = относительная проницаемость материала сердечника
- N = число витков
- A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
- l = длина катушки в метрах (м)
Индуктивность прямого проводника:
- L = индуктивность в нГн
- l = длина проводника
- d = диаметр проводника в тех же единицах, что и l
Индуктивность катушки с воздушным сердечником:
- L = индуктивность в мкГн
- r = внешний радиус катушки
- l = длина катушки
- N = число витков
Индуктивность многослойной катушки с воздушным сердечником:
- L = индуктивность в мкГн
- r = средний радиус катушки
- l = длина катушки
- N = число витков
- d = глубина катушки
Индуктивность плоской катушки:
- L = индуктивность в мкГн
- r = средний радиус катушки
- N = число витков
- d = глубина катушки
Конструкция катушки индуктивности
Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.
Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.
Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.
Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.
Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.
Применение катушек индуктивности
Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.
Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.
Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.
По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.
Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.
Как рассчитать индукционные токи, напряжение и петли — стенограмма видео и урока
Приложения
Трансформаторы — это устройства, используемые для увеличения или уменьшения напряжения. Они состоят из железного металлического сердечника в форме рамки для фотографий. По обе стороны от железного сердечника находятся петли из проволоки. Напряжение первичной обмотки влияет на напряжение вторичной обмотки. Если вторичная обмотка имеет больше витков, чем первичная обмотка, напряжение повышается до более высокого напряжения. Если вторичная обмотка имеет меньше витков, чем первичная обмотка, напряжение понижается до более низкого напряжения.Он используется при передаче электроэнергии от электростанций к жилым домам и предприятиям.
Электрические зубные щетки заряжаются за счет наведенного напряжения. Внутри зарядного устройства находится катушка с проводом. Зарядное устройство имеет катушку, которая испытывает изменяющееся магнитное поле из-за переменного тока в электрической системе дома. Поскольку магнитное поле изменяется из-за переменного тока, в катушке индуцируется ток, который заряжает электрическую зубную щетку.
Теперь давайте сделаем расчет с учетом наведенных напряжений и токов из-за изменения магнитных полей.
Пример
Подсказка: круглый провод с радиусом 10 см подвергается воздействию магнитного поля 0,1 Тл, направленного вверх. Круглый проводник перпендикулярен магнитному полю и имеет сопротивление 0,2 Ом. Магнитное поле увеличивается до 0,5 Тл за 0,5 секунды. Какова величина индуцированного напряжения, индуцированного тока и направления тока?
Решение: Всегда полезно нарисовать сценарий.
Нам нужно определить ΔΦ , то есть изменение магнитного потока. Поскольку петля круговая, площадь будет вычисляться с использованием уравнения площади круга, πr2 .
Теперь мы можем подставить ΔΦ в наше уравнение:
Как видим, наведенное напряжение ≈ 0.025 В. С помощью закона Ома можно определить силу тока в контуре.
V = IR
I = V / R
I = 0,025 В / 0,2 Ом
I ≈ 0,13 ампер
Мы можем определить направление тока, указав правой рукой большой палец вверх, потому что проволочная петля не хочет, чтобы магнитное поле изменялось, и оно уменьшается в направлении вниз. Кончик большого пальца правой руки направлен вверх, пальцы правой руки согнуты влево.Если посмотреть на петлю, это будет поток против часовой стрелки.
Итоги урока
Давайте рассмотрим. Закон Фарадея определяет наведенное напряжение в замкнутом проводящем контуре при изменении магнитного потока. Магнитный поток — это величина магнитного поля, проникающего перпендикулярно через область. Катушка с проволокой, которая испытывает изменение магнитного поля и / или изменение площади катушки, вызывает изменение магнитного потока.
Это вызовет напряжение, создающее электрический ток через провод. Направление тока создаст магнитное поле в том направлении, которое будет пытаться поддерживать постоянное чистое магнитное поле.
Закон Ома ( В = IR ) может использоваться для определения наведенного тока в контуре.
Трансформаторы — это устройства, которые увеличивают или уменьшают напряжение в зависимости от количества витков провода вокруг первичной и вторичной катушек на противоположных сторонах железного сердечника. Они используются для передачи электроэнергии от электростанций к жилым домам и предприятиям, а также в системах зарядки электрических зубных щеток.
Что такое закон индукции Фарадея?
Закон индукции Фарадея описывает, как электрический ток создает магнитное поле и, наоборот, как изменяющееся магнитное поле генерирует электрический ток в проводнике.Английский физик Майкл Фарадей получил признание за открытие магнитной индукции в 1830 году; однако, по данным Техасского университета, американский физик Джозеф Генри независимо сделал то же самое открытие примерно в то же время.
Значение открытия Фарадея невозможно переоценить. Магнитная индукция делает возможным создание электродвигателей, генераторов и трансформаторов, которые составляют основу современной техники. Понимая и используя индукцию, мы получаем электрическую сеть и многие вещи, которые мы в нее подключаем.
Закон Фарадея позже был включен в более полные уравнения Максвелла, по словам Майкла Дубсона, профессора физики в Университете Колорадо в Боулдере. Уравнения Максвелла были разработаны шотландским физиком Джеймсом Клерком Максвеллом, чтобы объяснить взаимосвязь между электричеством и магнетизмом, по сути объединив их в единую электромагнитную силу и описав электромагнитные волны, из которых состоят радиоволны, видимый свет и рентгеновские лучи.
Электричество
Электрический заряд — фундаментальное свойство материи, согласно Рочестерскому технологическому институту.Хотя трудно описать, что это на самом деле, мы хорошо знакомы с тем, как он ведет себя и взаимодействует с другими зарядами и полями. По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, электрическое поле от локализованного точечного заряда относительно просто. Он описывает его как излучающий одинаково во всех направлениях, как свет от голой лампочки, и уменьшающийся в силе как обратный квадрат расстояния (1/ r 2 ) в соответствии с законом Кулона.Когда вы отодвигаетесь вдвое дальше, напряженность поля уменьшается до одной четвертой, а когда вы удаляетесь в три раза дальше, она уменьшается до одной девятой.
Протоны имеют положительный заряд, а электроны — отрицательный. Однако протоны в основном иммобилизованы внутри атомных ядер, поэтому перенос заряда из одного места в другое выполняют электроны. Электроны в проводящем материале, таком как металл, в значительной степени могут свободно перемещаться от одного атома к другому по своим зонам проводимости, которые являются высшими электронными орбитами.Достаточная электродвижущая сила (ЭДС) или напряжение вызывает дисбаланс заряда, который может заставить электроны перемещаться по проводнику из области с более отрицательным зарядом в область с более положительным зарядом. Это движение мы называем электрическим током.
Магнетизм
Чтобы понять закон индукции Фарадея, важно иметь базовые представления о магнитных полях. По сравнению с электрическим полем магнитное поле более сложное. По данным Государственного университета Сан-Хосе, хотя положительные и отрицательные электрические заряды могут существовать отдельно, магнитные полюса всегда приходят парами — один северный, а другой южный. Обычно магниты всех размеров — от субатомных частиц до магнитов промышленных размеров до планет и звезд — являются диполями, то есть каждый из них имеет два полюса. Мы называем эти полюса северным и южным по направлению, в котором указывают стрелки компаса. Интересно, что поскольку противоположные полюса притягиваются и, как полюса, отталкиваются, северный магнитный полюс Земли на самом деле является южным магнитным полюсом, потому что он притягивает северные полюса стрелок компаса.
Магнитное поле часто изображают в виде линий магнитного потока.В случае стержневого магнита силовые линии выходят из северного полюса и изгибаются, чтобы вернуться в южный полюс. В этой модели количество силовых линий, проходящих через данную поверхность в пространстве, представляет собой плотность потока или напряженность поля. Однако следует отметить, что это только модель. Магнитное поле гладкое и непрерывное и фактически не состоит из дискретных линий.
Силовые линии магнитного поля от стержневого магнита. (Изображение предоставлено snapgalleria Shutterstock)Магнитное поле Земли создает огромный магнитный поток, но он рассредоточен по огромному пространству.Следовательно, через данную область проходит только небольшое количество потока, что приводит к относительно слабому полю. Для сравнения, магнитный поток от магнита-холодильника крошечный по сравнению с магнитным потоком Земли, но его напряженность поля во много раз сильнее на близком расстоянии, где его силовые линии гораздо более плотно упакованы. Однако по мере удаления поле быстро становится намного слабее.
Индукция
Если пропустить через провод электрический ток, вокруг него возникнет магнитное поле.Направление этого магнитного поля можно определить по правилу правой руки. По данным физического факультета Университета штата Буффало в Нью-Йорке, если вы вытянете большой палец и согнете пальцы правой руки, ваш большой палец будет указывать в положительном направлении тока, а пальцы согнуты в северном направлении магнитного поля. .
Правило левой и правой руки для магнитного поля, создаваемого током в прямом проводе. (Изображение предоставлено Фуадом А. Саадом Shutterstock)Если вы согнете провод в петлю, силовые линии магнитного поля согнутся вместе с ним, образуя тороид или форму пончика.В этом случае ваш большой палец указывает на северное направление магнитного поля, выходящего из центра петли, а ваши пальцы будут указывать в положительном направлении тока в петле.
В круговой петле с током: (а) правило правой руки определяет направление магнитного поля внутри и снаружи петли. (б) Более подробное отображение поля, подобное полю стержневого магнита. (Изображение предоставлено OpenStax)Если мы пропустим ток через проволочную петлю в магнитном поле, взаимодействие этих магнитных полей вызовет скручивающую силу или крутящий момент в петле, заставляя ее вращаться, согласно данным Рочестерского института. Технологии.Однако он будет вращаться только до тех пор, пока магнитные поля не выровняются. Если мы хотим, чтобы петля продолжала вращаться, мы должны изменить направление тока, что изменит направление магнитного поля петли. Затем петля повернется на 180 градусов, пока ее поле не выровняется в другом направлении. Это основа электродвигателя.
И наоборот, если мы вращаем проволочную петлю в магнитном поле, поле вызовет электрический ток в проводе. Направление тока меняется каждые пол-оборота, создавая переменный ток.Это основа электрогенератора. Здесь следует отметить, что это не движение провода, а скорее размыкание и замыкание петли по отношению к направлению поля, которое индуцирует ток. Когда петля обращена лицом к полю, через петлю проходит максимальное количество магнитного потока. Однако, когда петля повернута ребром к полю, силовые линии не проходят через петлю. Именно это изменение количества потока, проходящего через контур, вызывает ток.
Другой эксперимент, который мы можем провести, — сформировать из провода петлю и подключить концы к чувствительному измерителю тока или гальванометру. Если затем протолкнуть стержневой магнит через петлю, стрелка гальванометра переместится, указывая на индуцированный ток. Однако, как только мы останавливаем движение магнита, ток возвращается к нулю. Поле от магнита будет индуцировать ток только тогда, когда он увеличивается или уменьшается. Если мы вытащим магнит обратно, он снова вызовет ток в проводе, но на этот раз он будет в противоположном направлении.
Магнит в проволочной петле, подключенной к гальванометру. (Изображение предоставлено: Фуад А.Saad Shutterstock)Если бы мы включили в цепь лампочку, она рассеивала бы электрическую энергию в виде света и тепла, и мы бы почувствовали сопротивление движению магнита, когда мы перемещали его в контур и из него. . Чтобы переместить магнит, мы должны совершить работу, эквивалентную энергии, используемой лампочкой.
В еще одном эксперименте мы могли бы построить две проволочные петли, соединить концы одной с батареей с помощью переключателя и подключить концы другой петли к гальванометру. Если мы поместим две петли близко друг к другу лицом к лицу и включим питание первой петли, гальванометр, подключенный ко второй петле, покажет индуцированный ток, а затем быстро вернется к нулю.
Здесь происходит то, что ток в первом контуре создает магнитное поле, которое, в свою очередь, индуцирует ток во втором контуре, но только на мгновение, когда магнитное поле изменяется. Когда вы выключите переключатель, счетчик на мгновение отклонится в противоположном направлении.Это еще один признак того, что ток вызывает изменение интенсивности магнитного поля, а не его сила или движение.
Это объясняется тем, что магнитное поле заставляет электроны в проводнике двигаться. Это движение называется электрическим током. В конце концов, однако, электроны достигают точки, в которой они находятся в равновесии с полем, и в этой точке они перестают двигаться. Затем, когда поле снимается или выключается, электроны возвращаются в исходное положение, создавая ток в противоположном направлении.
В отличие от гравитационного или электрического поля, магнитное дипольное поле представляет собой более сложную трехмерную структуру, сила и направление которой изменяется в зависимости от места измерения, поэтому для ее полного описания требуется расчет. Однако мы можем описать упрощенный случай однородного магнитного поля — например, очень маленькую часть очень большого поля — как Φ B = BA , где Φ B — абсолютное значение магнитного потока. , B, — это напряженность поля, а A — это определенная область, через которую проходит поле.Наоборот, в этом случае напряженность магнитного поля — это поток на единицу площади, или B = Φ B / A .
Закон Фарадея
Теперь, когда у нас есть базовое понимание магнитного поля, мы готовы определить закон индукции Фарадея. Он утверждает, что индуцированное напряжение в цепи пропорционально скорости изменения во времени магнитного потока, проходящего через эту цепь. Другими словами, чем быстрее изменяется магнитное поле, тем больше будет напряжение в цепи.Направление изменения магнитного поля определяет направление тока.
Увеличить напряжение можно за счет увеличения количества витков в цепи. Индуцированное напряжение в катушке с двумя петлями будет вдвое больше, чем с одной петлей, а с тремя петлями — втрое. Вот почему настоящие двигатели и генераторы обычно имеют большое количество катушек.
Теоретически двигатели и генераторы одинаковы. Если вы включите двигатель, он будет генерировать электричество, а подача напряжения на генератор заставит его вращаться.Однако большинство реальных двигателей и генераторов оптимизированы только для одной функции.
Трансформаторы
Еще одним важным приложением закона индукции Фарадея является трансформатор, изобретенный Никой Тесла. В этом устройстве переменный ток, который меняет направление много раз в секунду, проходит через катушку, намотанную вокруг магнитного сердечника. Это создает изменяющееся магнитное поле в сердечнике, которое, в свою очередь, индуцирует ток во второй катушке, намотанной вокруг другой части того же магнитного сердечника.
Схема трансформатора (Изображение предоставлено photoiconix Shutterstock)Отношение числа витков в катушках определяет соотношение напряжения между входным и выходным током. Например, если мы возьмем трансформатор со 100 витками на входе и 50 витками на выходе, и введем переменный ток при 220 вольт, выход будет 110 вольт. Согласно Hyperphysics, трансформатор не может увеличивать мощность, которая является произведением напряжения и тока, поэтому, если напряжение повышается, ток пропорционально понижается, и наоборот.В нашем примере входное напряжение 220 В при 10 А или 2200 Вт даст выходное напряжение 110 В при 20 А, опять же 2200 Вт. На практике трансформаторы никогда не бывают идеально эффективными, но, по данным Техасского университета, потери мощности хорошо спроектированного трансформатора обычно составляют всего несколько процентов.
Трансформаторы делают возможным создание электрической сети, от которой мы зависим для нашего промышленного и технологического общества. Линии электропередачи по пересеченной местности работают под напряжением в сотни тысяч вольт, чтобы передавать больше энергии в пределах токоведущей силы проводов.Это напряжение многократно понижается с помощью трансформаторов на распределительных подстанциях, пока оно не достигнет вашего дома, где оно, наконец, понижается до 220 и 110 вольт, которые могут запустить вашу электрическую плиту и компьютер.
Дополнительные ресурсы
Магнитный поток, индукция и закон Фарадея
Индуцированные ЭДС и магнитный поток
Закон индукции Фарадея гласит, что электродвижущая сила индуцируется изменением магнитного потока.
Цели обучения
Объясните взаимосвязь между магнитным полем и электродвижущей силой
Основные выводы
Ключевые моменты
- Это изменение потока магнитного поля, которое приводит к возникновению электродвижущей силы (или напряжения).
- Магнитный поток (часто обозначаемый Φ или Φ B ) через поверхность — это составляющая магнитного поля, проходящего через эту поверхность.
- В самом общем виде магнитный поток определяется как [латекс] \ Phi _ {\ text {B}} = \ iint _ {\ text {A}} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].Это интеграл (сумма) всего магнитного поля, проходящего через бесконечно малые элементы площади dA.
Ключевые термины
- векторная площадь : вектор, величина которого соответствует рассматриваемой области и направление которого перпендикулярно площади поверхности.
- гальванометр : Аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.
Индуцированная ЭДС
Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на следующем рисунке. Когда переключатель замкнут, магнитное поле создается в катушке на верхней части железного кольца и передается (или направляется) на катушку в нижней части кольца. Гальванометр используется для обнаружения любого тока, индуцированного в отдельной катушке внизу.
Аппарат Фарадея : Это аппарат Фарадея для демонстрации того, что магнитное поле может производить ток.Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях. Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.
Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. Каждый раз при размыкании переключателя гальванометр обнаруживает ток в противоположном направлении.Интересно, что если переключатель остается замкнутым или разомкнутым в течение какого-то времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток. Это изменение магнитного поля, которое создает ток. Более важным, чем текущий ток, является вызывающая его электродвижущая сила (ЭДС). Ток является результатом ЭДС, индуцированной изменяющимся магнитным полем, независимо от того, есть ли путь для протекания тока.
Магнитный поток
Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.Магнитный поток через некоторую поверхность пропорционален количеству силовых линий, проходящих через эту поверхность. Магнитный поток, проходящий через поверхность с векторной площадью А, равен
.[латекс] \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ mathbf {\ text {A}} = \ text {BA} \ cos \ theta [/ latex],
, где B — величина магнитного поля (в Тесла, Тл), A — площадь поверхности, а θ — угол между силовыми линиями магнитного поля и нормалью (перпендикулярно) к A.
Для переменного магнитного поля сначала рассмотрим магнитный поток [латекс] \ text {d} \ Phi _ \ text {B} [/ latex] через бесконечно малый элемент площади dA, где мы можем считать поле постоянным:
Изменяющееся магнитное поле : Каждая точка на поверхности связана с направлением, называемым нормалью к поверхности; магнитный поток, проходящий через точку, является тогда составляющей магнитного поля вдоль этого нормального направления.
[латекс] \ text {d} \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]
Общая поверхность A затем может быть разбита на бесконечно малые элементы, и тогда полный магнитный поток через поверхность равен интегралу поверхности
[латекс] \ Phi_ \ text {B} = \ iint_ \ text {A} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].
Закон индукции Фарадея и закон Ленца
Закон индукции Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, равна [латексу] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [ / латекс], когда поток изменяется на Δ за время Δt.
Цели обучения
Выразите закон индукции Фарадея в форме уравнения
Основные выводы
Ключевые моменты
- Минус в законе Фарадея означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца.
- Закон индукции Фарадея — это фундаментальный принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
- Закон Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, зависит от изменения магнитного потока Δ, времени Δt и количества витков катушек.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- соленоид : Катушка с проволокой, которая действует как магнит, когда через нее протекает электрический ток.
- поток : Скорость передачи энергии (или другой физической величины) через заданную поверхность, в частности электрического или магнитного потока.
Закон индукции Фарадея
Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит только от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока Δ. Во-вторых, ЭДС является наибольшей, когда изменение во времени Δt наименьшее, то есть ЭДС обратно пропорциональна Δt. Наконец, если катушка имеет N витков, будет создаваться ЭДС, которая в N раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна N.Уравнение для ЭДС, вызванной изменением магнитного потока, равно
[латекс] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
Это соотношение известно как закон индукции Фарадея. Единицы измерения ЭДС, как обычно, — вольты.
Закон Ленца
Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые препятствуют изменению потока Δ, известному как закон Ленца. Направление (обозначенное знаком минус) ЭМП настолько важно, что оно названо законом Ленца в честь русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции.Фарадей знал о направлении, но Ленц заявил об этом, поэтому ему приписывают это открытие.
Закон Ленца : (a) Когда стержневой магнит вдавливается в катушку, сила магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном направлению стержневого магнита, чтобы противодействовать увеличению. Это один из аспектов закона Ленца — индукция препятствует любому изменению потока. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противостоит изменению магнитного потока и что показанное направление тока согласуется с правилом правой руки.
Энергосбережение
Закон Ленца — это проявление сохранения энергии. Индуцированная ЭДС создает ток, который противодействует изменению магнитного потока, потому что изменение магнитного потока означает изменение энергии. Энергия может входить или уходить, но не мгновенно. Закон Ленца — это следствие. Когда изменение начинается, закон гласит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не давала бы нам бесплатную энергию из любого видимого источника — сохранение энергии было бы нарушено.
Движение ЭДС
Движение в магнитном поле, которое является стационарным относительно Земли, индуцирует ЭДС движения (электродвижущую силу).
Цели обучения
Определить процесс, вызывающий двигательную электродвижущую силу
Основные выводы
Ключевые моменты
- Закон индукции Фарадея можно использовать для расчета ЭДС движения, когда изменение магнитного потока вызвано движущимся элементом в системе.
- То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является одной из причин, по которой электрические и магнитные силы теперь рассматриваются как разные проявления одной и той же силы.
- Любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- магнитный поток : мера силы магнитного поля в данной области.
- индукция : Генерация электрического тока с помощью переменного магнитного поля.
Как было показано в предыдущих статьях, любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции. Например, магнит, движущийся к катушке, индуцирует ЭДС, а катушка, движущаяся к магниту, создает аналогичную ЭДС. В этом Атоме мы концентрируемся на движении в магнитном поле, которое является стационарным относительно Земли, производя то, что в общих чертах называется двигательной ЭДС.
ЭДС движения
Рассмотрим ситуацию, показанную на. Стержень перемещается со скоростью v по паре проводящих рельсов, разделенных расстоянием в однородном магнитном поле B. Рельсы неподвижны относительно B и подключены к стационарному резистору R ( резистором может быть что угодно от лампочки до вольтметра). Учтите площадь, ограниченную подвижным стержнем, направляющими и резистором. B перпендикулярно этой области, и площадь увеличивается по мере перемещения стержня. Таким образом, увеличивается магнитный поток между рельсами, стержнем и резистором.Когда поток изменяется, ЭДС индуцируется согласно закону индукции Фарадея.
ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца определяет направления индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы.Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.
Чтобы найти величину ЭДС, индуцированной вдоль движущегося стержня, мы используем закон индукции Фарадея без знака:
[латекс] \ text {EMF} = \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
В этом уравнении N = 1 и поток Φ = BAcosθ. У нас θ = 0º и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ (BA) = BΔA, поскольку B однородна. Отметим, что площадь, заметаемая стержнем, равна ΔA = ℓx.Ввод этих величин в выражение для ЭДС дает:
[латекс] \ text {EMF} = \ frac {\ text {B} \ Delta \ text {A}} {\ Delta \ text {t}} = \ text {B} \ frac {\ text {l} \ Дельта \ text {x}} {\ Delta \ text {t}} = \ text {Blv} [/ latex].
Чтобы найти направление индуцированного поля, направление тока и полярность наведенной ЭДС, мы применяем закон Ленца, как объяснено в Законе индукции Фарадея: Закон Ленца. Как видно на рис. 1 (b), уровень освещенности увеличивается, так как увеличивается закрытая площадь.Таким образом, индуцированное поле должно противостоять существующему и быть вне страницы. (Правило правой руки требует, чтобы я вращался против часовой стрелки, что, в свою очередь, означает, что вершина стержня положительна, как показано на рисунке.)
Электрическое поле против магнитного поля
Между электрической и магнитной силой существует множество связей. То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является одной из причин, по которой электрические и магнитные силы теперь рассматриваются как различных проявлений одной и той же силы (впервые замечено Альбертом Эйнштейном) .Это классическое объединение электрических и магнитных сил в так называемую электромагнитную силу является источником вдохновения для современных усилий по объединению других основных сил.
Обратная ЭДС, вихревые токи и магнитное демпфирование
Обратная ЭДС, вихревые токи и магнитное затухание — все это происходит из-за наведенной ЭДС и может быть объяснено законом индукции Фарадея.
Цели обучения
Объясните взаимосвязь между двигательной электродвижущей силой, вихревыми токами и магнитным демпфированием
Основные выводы
Ключевые моменты
- Входной ЭДС, которая питает двигатель, может противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
- Если ЭДС движения может вызвать токовую петлю в проводнике, ток называется вихревым током.
- Вихревые токи могут вызывать значительное сопротивление, называемое магнитным демпфированием, при движении.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Задняя ЭДС
Двигатели и генераторы очень похожи. (Прочтите наши атомы в разделах «Электрические генераторы» и «Электродвигатели».) Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую. Кроме того, двигатели и генераторы имеют одинаковую конструкцию. Когда катушка двигателя поворачивается, магнитный поток изменяется, и возникает электродвижущая сила (ЭДС), соответствующая закону индукции Фарадея. Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается.Это произойдет независимо от того, поворачивается ли вал под действием внешнего воздействия, например ременной передачи, или под действием самого двигателя. То есть, когда двигатель выполняет работу и его вал вращается, создается ЭДС. Закон Ленца говорит нам, что наведенная ЭДС противодействует любому изменению, так что входной ЭДС, которая питает двигатель, будет противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
Вихретоковый
Как обсуждалось в разделе «ЭДС движения», ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника.Если подвижная ЭДС может вызвать токовую петлю в проводнике, мы называем этот ток вихревым. Вихревые токи могут вызывать значительное сопротивление движению, называемое магнитным затуханием.
Рассмотрим устройство, показанное на, которое раскачивает маятник между полюсами сильного магнита. Если боб металлический, то при входе в поле и выходе из него он испытывает значительное сопротивление, что быстро гасит движение. Если, однако, боб представляет собой металлическую пластину с прорезями, как показано на (b), то влияние магнита будет гораздо меньше.На боб из изолятора заметного воздействия не наблюдается.
Устройство для исследования вихревых токов и магнитного затухания : Обычное демонстрационное устройство для изучения вихревых токов и магнитного затухания. (а) Движение металлического маятника, раскачивающегося между полюсами магнита, быстро затухает под действием вихревых токов. (b) Движение металлического боба с прорезями мало влияет, что означает, что вихревые токи становятся менее эффективными. (c) На непроводящем стержне также отсутствует магнитное затухание, поскольку вихревые токи чрезвычайно малы.
показывает, что происходит с металлической пластиной, когда она входит в магнитное поле и выходит из него. В обоих случаях он испытывает силу, противодействующую его движению. Когда он входит слева, поток увеличивается, и поэтому возникает вихревой ток (закон Фарадея), направленный против часовой стрелки (закон Ленца), как показано. Только правая сторона токовой петли находится в поле, так что слева на нее действует беспрепятственная сила (правило правой руки). Когда металлическая пластина полностью находится внутри поля, вихревой ток отсутствует, если поле однородно, поскольку поток остается постоянным в этой области.Но когда пластина покидает поле справа, поток уменьшается, вызывая вихревой ток в направлении по часовой стрелке, который, опять же, испытывает силу слева, еще больше замедляя движение. Аналогичный анализ того, что происходит, когда пластина поворачивается справа налево, показывает, что ее движение также затухает при входе в поле и выходе из него.
Проводящая пластина, проходящая между полюсами магнита : Более подробный взгляд на проводящую пластину, проходящую между полюсами магнита.Когда он входит в поле и выходит из него, изменение потока создает вихревой ток. Магнитная сила на токовой петле препятствует движению. Когда пластина полностью находится внутри однородного поля, отсутствует ток и магнитное сопротивление.
Когда металлическая пластина с прорезями входит в поле, как показано на, ЭДС индуцируется изменением магнитного потока, но это менее эффективно, потому что прорези ограничивают размер токовых петель. Более того, в соседних контурах есть токи в противоположных направлениях, и их эффекты отменяются.Когда используется изолирующий материал, вихревые токи очень малы, поэтому магнитное затухание на изоляторах незначительно. Если необходимо избегать вихревых токов в проводниках, то они могут быть выполнены с прорезями или состоять из тонких слоев проводящего материала, разделенных изоляционными листами.
Вихревые токи, индуцируемые в металлической пластине с прорезями : Вихревые токи, индуцируемые в металлической пластине с прорезями, входящие в магнитное поле, образуют небольшие петли, и силы на них имеют тенденцию нейтрализоваться, тем самым делая магнитное сопротивление почти нулевым.
Изменение магнитного потока создает электрическое поле
Закон индукции Фарадея гласит, что изменение магнитного поля создает электрическое поле: [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex].
Цели обучения
Опишите взаимосвязь между изменяющимся магнитным полем и электрическим полем
Основные выводы
Ключевые моменты
- Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу.
- Альтернативная дифференциальная форма закона индукции Фарадея выражается в уравнении [латекс] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} { \ partial \ text {t}} [/ latex].
- Закон индукции Фарадея — одно из четырех уравнений в уравнениях Максвелла, управляющих всеми электромагнитными явлениями.
Ключевые термины
- векторная область : вектор, величина которого соответствует рассматриваемой области, а направление перпендикулярно плоскости.
- Уравнения Максвелла : Набор уравнений, описывающих, как электрические и магнитные поля генерируются и изменяются друг другом, а также зарядами и токами.
- Теорема Стокса : утверждение об интегрировании дифференциальных форм на многообразиях, которое одновременно упрощает и обобщает несколько теорем векторного исчисления.
Мы изучили закон индукции Фарадея в предыдущих атомах. Мы узнали взаимосвязь между наведенной электродвижущей силой (ЭДС) и магнитным потоком. Вкратце, закон гласит, что изменение магнитного поля [латекс] (\ frac {\ text {d} \ Phi_ \ text {B}} {\ text {dt}}) [/ latex] создает электрическое поле [латекс] (\ varepsilon) [/ latex], закон индукции Фарадея выражается как [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex], где [латекс] \ varepsilon [/ latex] индуцирована ЭДС, а [latex] \ Phi_ \ text {B} [/ latex] — магнитный поток. («N» опущено из нашего предыдущего выражения. Число витков катушки может быть включено в магнитный поток, поэтому коэффициент не является обязательным.) Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). В этом Атоме мы узнаем об альтернативном математическом выражении закона.
Эксперимент Фарадея : эксперимент Фарадея, показывающий индукцию между витками проволоки: жидкая батарея (справа) обеспечивает ток, который течет через маленькую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется.Но когда малая катушка перемещается внутрь или из большой катушки (B), магнитный поток через большую катушку изменяется, вызывая ток, который регистрируется гальванометром (G).
Дифференциальная форма закона Фарадея
Магнитный поток [латекс] \ Phi_ \ text {B} = \ int_ \ text {S} \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}} [/ латекс], где [латекс] \ vec {\ text {A}} [/ latex] — это векторная площадь над замкнутой поверхностью S. Устройство, которое может поддерживать разность потенциалов, несмотря на протекание тока, является источником электродвижущей силы. .(EMF) Математически определение [латекс] \ varepsilon = \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} [/ latex], где интеграл вычисляется по замкнутому циклу C.
Закон Фарадея теперь можно переписать [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = — \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}}) [/ latex]. Используя теорему Стокса в векторном исчислении, левая часть равна [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = \ int_ \ text {S} (\ nabla \ times \ vec {\ text {E}}) \ cdot \ text {d} \ vec {\ text {A}} [/ latex].Также обратите внимание, что в правой части [latex] \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ текст {A}}) = \ int \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} \ cdot \ text {d} \ vec {\ text {A}} [ /латекс]. Таким образом, мы получаем альтернативную форму закона индукции Фарадея: [latex] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} [/ latex]. Это также называют дифференциальной формой закона Фарадея. Это одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
Электрогенераторы
Электрические генераторы преобразуют механическую энергию в электрическую; они индуцируют ЭДС, вращая катушку в магнитном поле.
Цели обучения
Объясните, как в электрогенераторах индуцируется электродвижущая сила.
Основные выводы
Ключевые моменты
- Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, заданную как функцию времени величиной ε = NABw sinωt.
- Генераторы вырабатывают почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
- Двигатель становится генератором, когда его вал вращается.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- турбина : Любая из различных вращающихся машин, которые используют кинетическую энергию непрерывного потока жидкости (жидкости или газа) для вращения вала.
Электрические генераторы — это устройства, преобразующие механическую энергию в электрическую. Они индуцируют электродвижущую силу (ЭДС), вращая катушку в магнитном поле. Это устройство, преобразующее механическую энергию в электрическую. Генератор заставляет электрический заряд (обычно переносимый электронами) течь через внешнюю электрическую цепь. Возможные источники механической энергии включают в себя поршневой или турбинный паровой двигатель, воду, падающую через турбину или водяное колесо, двигатель внутреннего сгорания, ветряную турбину, ручной кривошип, сжатый воздух или любой другой источник механической энергии.Генераторы поставляют почти всю мощность для электросетей, которые обеспечивают большую часть мировой электроэнергии.
Паровой турбогенератор : Современный паротурбинный генератор.
Базовая настройка
Рассмотрим схему, показанную на. Заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи. Однако те, кто находится в верхнем и нижнем сегментах, ощущают силу, перпендикулярную проводу; эта сила не вызывает тока. Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. ЭДС движения задается как ЭДС = Bℓv, где скорость v перпендикулярна магнитному полю B (см. Наш Атом в разделе «ЭДС движения»). Здесь скорость находится под углом θ к B, так что ее составляющая, перпендикулярная B, равна vsinθ.
Схема электрического генератора : Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени.Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.
Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ЭДС = Bℓvsinθ, и они направлены в одном направлении. Общая ЭДС [латекс] \ varepsilon [/ latex] вокруг петли тогда:
[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ theta} [/ latex].
Это выражение действительное, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω.Угол θ связан с угловой скоростью соотношением θ = ωt, так что:
[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ omega \ text {t}} [/ latex].
Теперь линейная скорость v связана с угловой скоростью соотношением v = rω. Здесь r = w / 2, так что v = (w / 2) ω, и:
[латекс] \ varepsilon = 2 \ text {Bl} \ frac {\ text {w}} {2} \ omega \ sin {\ omega \ text {t}} = (\ text {lw}) \ text {B } \ omega \ sin {\ omega \ text {t}} [/ латекс].
Учитывая, что площадь петли A = ℓw, и учитывая N петель, мы находим, что:
[латекс] \ varepsilon = \ text {NABw} ~ \ sin {\ omega \ text {t}} [/ latex] — ЭДС, индуцированная в катушке генератора из N витков и площади A, вращающейся с постоянной угловой скоростью в однородное магнитное поле B.
Генераторы, показанные в этом Atom, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.
Электродвигатели
Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.
Цели обучения
Объясните, как сила создается в электродвигателях
Основные выводы
Ключевые моменты
- Большинство электродвигателей используют взаимодействие магнитных полей и токопроводящих проводников для создания силы.
- Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца.
- В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.
Ключевые термины
- Сила Лоренца : Сила, действующая на заряженную частицу в электромагнитном поле.
- крутящий момент : вращательное или скручивающее действие силы; (Единица СИ ньютон-метр или Нм; британская единица измерения фут-фунт или фут-фунт)
Основные принципы работы двигателя такие же, как и у генератора, за исключением того, что двигатель преобразует электрическую энергию в механическую энергию (движение). (Сначала прочтите наш атом об электрических генераторах.) Большинство электродвигателей используют взаимодействие магнитных полей и проводников с током для создания силы. Электродвигатели используются в самых разных областях, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовые приборы, электроинструменты и дисководы.
Лоренц Форс
Если вы поместите движущуюся заряженную частицу в магнитное поле, на нее будет действовать сила, называемая силой Лоренца:
[латекс] \ text {F} = \ text {q} \ times \ text {v} \ times \ text {B} [/ latex]
Правило правой руки : Правило правой руки, показывающее направление силы Лоренца
, где v — скорость движущегося заряда, q — заряд, а B — магнитное поле.Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца. Для неподвижного прямолинейного токоведущего провода сила Лоренца составляет:
[латекс] \ text {F} = \ text {I} \ times \ text {L} \ times \ text {B} [/ latex]
где F — сила (в ньютонах, Н), I — ток в проводе (в амперах, А), L — длина провода, находящегося в магнитном поле (в м). , а B — напряженность магнитного поля (в теслах, Тл).Направление силы Лоренца перпендикулярно как направлению потока тока, так и магнитного поля, и его можно найти с помощью правила правой руки, показанного на рисунке. Используя правую руку, направьте большой палец в направлении тока, и укажите указательным пальцем в направлении магнитного поля. Ваш третий палец теперь будет указывать в направлении силы.
Момент : Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях.Это означает, что катушка будет вращаться.
Механика двигателя
И двигатели, и генераторы можно описать с помощью катушки, вращающейся в магнитном поле. В генераторе катушка подключена к внешней цепи, которая затем включается. Это приводит к изменению потока, который индуцирует электромагнитное поле. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться. Любая катушка, по которой течет ток, может ощущать силу в магнитном поле. Эта сила является силой Лоренца, действующей на движущиеся заряды в проводнике. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях. Это означает, что катушка будет вращаться.
Индуктивность
Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве или на самом себе.
Цели обучения
Описание свойств катушки индуктивности с указанием взаимной индуктивности и самоиндукции
Основные выводы
Ключевые моменты
- Взаимная индуктивность — это влияние двух устройств на индукцию ЭДС друг в друге.Изменение тока ΔI 1 / Δt в одном вызывает ЭДС ЭДС2 в секунду: ЭДС 2 = -M ΔI 1 / Δt, где M определяется как взаимная индуктивность между двумя устройствами.
- Самоиндуктивность — это эффект, который устройство вызывает само по себе.
- Устройство, которое проявляет значительную самоиндукцию, называется индуктором, и ЭДС, индуцированная в нем изменением тока через него, равна ЭДС = −L ΔI / Δt.
Ключевые термины
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
- трансформатор : статическое устройство, которое передает электрическую энергию от одной цепи к другой с помощью магнитной связи. Их основное использование — передача энергии между различными уровнями напряжения, что позволяет выбирать наиболее подходящее напряжение для производства, передачи и распределения электроэнергии отдельно.
Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными при наведении желаемого напряжения и тока с очень небольшими потерями энергии в другие формы (см. Наш атом в разделе «Трансформаторы.«) Есть ли полезная физическая величина, связанная с тем, насколько« эффективно »данное устройство? Ответ положительный, и эта физическая величина называется индуктивностью.
Взаимная индуктивность
Взаимная индуктивность — это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. Посмотрите, где простые катушки наводят друг на друга ЭДС.
Взаимная индуктивность катушек : Эти катушки могут наводить ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что «E2 индуцированный» представляет наведенную ЭДС в катушке 2.)
Во многих случаях, когда геометрия устройств фиксирована, магнитный поток изменяется за счет изменения тока. Поэтому мы сконцентрируемся на скорости изменения тока ΔI / Δt как на причине индукции. Изменение тока I 1 в одном устройстве, катушка 1, индуцирует ЭДС 2 в другом.Мы выражаем это в форме уравнения как
[латекс] \ text {EMF} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex],
, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус — это выражение закона Ленца. Чем больше взаимная индуктивность M, тем эффективнее связь.
Природа здесь симметрична. Если мы изменим ток I2 в катушке 2, мы индуцируем ЭДС 1 в катушке 1, которая определяется как
[латекс] \ text {EMF} _1 = — \ text {M} \ frac {\ Delta \ text {I} _2} {\ Delta \ text {t}} [/ latex],
, где M то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью M.
Собственная индуктивность
Самоиндуктивность, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, ток через катушку увеличивается, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, которая препятствует уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока целиком связано с изменением тока ΔI через устройство.Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается
[латекс] \ text {EMF} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ latex],
где L — собственная индуктивность устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором. Опять же, знак минус является выражением закона Ленца, указывающего на то, что ЭДС препятствует изменению тока.
Количественная интерпретация ЭДС движения
A ЭДС движения — это электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B.
Цели обучения
Сформулируйте два вида, которые применяются для расчета электродвижущей силы
Основные выводы
Ключевые моменты
- Движущая и индуцированная ЭДС — одно и то же явление, наблюдаемое только в разных системах отсчета. Эквивалентность этих двух явлений подтолкнула Эйнштейна к работе над специальной теорией относительности.
- ЭДС, возникающая из-за относительного движения петли и магнита, задается как [латекс] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Ур.1), где L — длина объекта, движущегося со скоростью v относительно магнита.
- ЭДС можно рассчитать с двух разных точек зрения: 1) с точки зрения магнитной силы, действующей на движущиеся электроны в магнитном поле, и 2) с точки зрения скорости изменения магнитного потока. Оба дают одинаковый результат.
Ключевые термины
- специальная теория относительности : теория, которая (игнорируя эффекты гравитации) согласовывает принцип относительности с наблюдением, что скорость света постоянна во всех системах отсчета.
- магнитное поле : Состояние в пространстве вокруг магнита или электрического тока, в котором существует обнаруживаемая магнитная сила и где присутствуют два магнитных полюса.
- рамка отсчета : система координат или набор осей, в пределах которых можно измерить положение, ориентацию и другие свойства объектов в ней.
Электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B, называется ЭДС движения. Вы могли заметить, что ЭДС движения очень похожа на ЭДС, вызванную изменением магнитного поля.В этом атоме мы видим, что это действительно одно и то же явление, показанное в разных системах отсчета.
ЭДС движения
В случае, когда проводящая петля движется к магниту, показанному на (а), магнитная сила, действующая на движущийся заряд в петле, определяется выражением [латекс] evB [/ латекс] (сила Лоренца, e: заряд электрона).
Петля проводника, движущаяся в магнит : (a) ЭДС движения. Токовая петля переходит в неподвижный магнит. Направление магнитного поля — внутрь экрана.(б) Индуцированная ЭДС. Токовая петля неподвижна, а магнит движется.
Из-за силы электроны будут продолжать накапливаться с одной стороны (нижний конец на рисунке), пока на стержне не установится достаточное электрическое поле, препятствующее движению электронов, то есть [латекс] \ text {eE} [/ латекс]. Приравнивая две силы, получаем [латекс] \ text {E} = \ text {vB} [/ latex].
Следовательно, двигательная ЭДС на длине L стороны петли определяется как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq .1), где L — длина объекта, движущегося со скоростью v относительно магнита.
Индуцированная ЭДС
Так как скорость изменения магнитного потока, проходящего через петлю, равна [latex] \ text {B} \ frac {\ text {dA}} {\ text {dt}} [/ latex] (A: площадь петли что магнитное поле проходит), индуцированная ЭДС [латекс] \ varepsilon _ {\ text {индуцированный}} = \ text {BLv} [/ latex] (уравнение 2).
Эквивалентность движущей и индуцированной ЭДС
Из уравнения. 1 и уравнение. 2 мы можем подтвердить, что двигательная и индуцированная ЭДС дают одинаковый результат.Фактически, эквивалентность этих двух явлений побудила Альберта Эйнштейна исследовать специальную теорию относительности. В своей основополагающей статье по специальной теории относительности, опубликованной в 1905 году, Эйнштейн начинает с упоминания эквивалентности двух явлений:
«…… например, взаимное электродинамическое действие магнита и проводника. Наблюдаемое явление здесь зависит только от относительного движения проводника и магнита, в то время как обычный взгляд проводит резкое различие между двумя случаями, в которых одно или другое из этих тел находится в движении.Ведь если магнит находится в движении, а проводник находится в покое, в окрестности магнита возникает электрическое поле с определенной энергией , производящее ток в местах, где части проводника находятся расположенный. Но если магнит неподвижен, а проводник находится в движении, электрическое поле поблизости от магнита не возникает. В проводнике, однако, мы находим электродвижущую силу, которой сама по себе не соответствует энергия, но которая порождает — при условии равенства относительного движения в двух рассмотренных случаях — электрические токи того же пути и силы, что и создаваемые электрическими силами в первом случае.«
Механические работы и электроэнергия
Механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию; энергия сохраняется в процессе.
Цели обучения
Применить закон сохранения энергии для описания производственной двигательной электродвижущей силы с механической работой
Основные выводы
Ключевые моменты
- ЭДС движения, создаваемая движущимся проводником в однородном поле, задается следующим образом [latex] \ varepsilon = \ text {Blv} [/ latex].
- Чтобы стержень двигался с постоянной скоростью v, мы должны постоянно прикладывать внешнюю силу F ext к стержню во время его движения.
- Закон Ленца гарантирует, что движение стержня противоположно, и, следовательно, закон сохранения энергии не нарушается.
Ключевые термины
- ЭДС движения : ЭДС (электродвижущая сила), индуцированная движением относительно магнитного поля.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Мы узнали о двигательной ЭДС ранее (см. Наш Атом в «Двигательной ЭДС»). Для простой схемы, показанной ниже, ЭДС движения [латекс] (\ varepsilon) [/ латекс], создаваемая движущимся проводником (в однородном поле), имеет следующий вид:
[латекс] \ varepsilon = \ text {Blv} [/ латекс]
, где B — магнитное поле, l — длина проводящего стержня, а v — (постоянная) скорость его движения. ( B , l и v все перпендикулярны друг другу, как показано на изображении ниже.)
ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца определяет направления индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы. Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.
Сохранение энергии
В этом атоме мы рассмотрим систему с точки зрения энергии . Поскольку стержень движется и пропускает ток и , он ощущает силу Лоренца
.[латекс] \ text {F} _ \ text {L} = \ text {iBL} [/ latex].
Чтобы стержень двигался с постоянной скоростью v , мы должны постоянно прикладывать внешнюю силу F ext (равную величине F L и противоположную по направлению) к стержню во время его движения. .Поскольку стержень движется под углом v , мощность P , передаваемая внешней силой, будет:
[латекс] \ text {P} = \ text {F} _ {\ text {ext}} \ text {v} = (\ text {iBL}) \ times \ text {v} = \ text {i} \ варепсилон [/ латекс].
На последнем этапе мы использовали первое уравнение, о котором мы говорили. Обратите внимание, что это в точности мощность, рассеиваемая в контуре (= ток [латекс] \ умноженное на [/ латекс] напряжение). Таким образом, мы заключаем, что механическая работа, совершаемая внешней силой, чтобы стержень двигался с постоянной скоростью, преобразуется в тепловую энергию в контуре.В более общем смысле, механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию. Энергия сохраняется в процессе.
Закон Ленца
Из «Закона индукции Фарадея и закона Ленца» мы узнали, что закон Ленца является проявлением сохранения энергии. Как мы видим в примере с этим атомом, закон Ленца гарантирует, что движение стержня противодействует из-за склонности природы противодействовать изменению магнитного поля. Если бы индуцированная ЭДС была в том же направлении, что и изменение потока, возникла бы положительная обратная связь, заставляющая стержень улетать от малейшего возмущения.
Энергия в магнитном поле
Магнитное поле накапливает энергию. Плотность энергии задается как [латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} [/ latex].
Цели обучения
Выразите плотность энергии магнитного поля в форме уравнения
Основные выводы
Ключевые моменты
- Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала внутри магнитного поля.2 [/ латекс].
Ключевые термины
- проницаемость : количественная мера степени намагничивания материала в присутствии приложенного магнитного поля (измеряется в ньютонах на ампер в квадрате в единицах СИ).
- индуктор : Пассивное устройство, которое вводит индуктивность в электрическую цепь.
- ферромагнетик : Материалы, обладающие постоянными магнитными свойствами.
Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле. В случае недисперсионных материалов эта же энергия высвобождается при разрушении магнитного поля. Следовательно, эту энергию можно смоделировать как «хранящуюся» в магнитном поле.
Магнитное поле, создаваемое соленоидом : Магнитное поле, создаваемое соленоидом (вид в разрезе), описанное с помощью силовых линий. Энергия «хранится» в магнитном поле.
Энергия, запасенная в магнитном поле
Для линейных недисперсионных материалов (таких, что B = мкм, H, где мкм, называемая проницаемостью, не зависит от частоты), плотность энергии составляет:
[латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} = \ frac {\ mu \ mathbf {\ text {H}} \ cdot \ mathbf {\ text {H}}} {2} [/ latex].
Плотность энергии — это количество энергии, хранящейся в данной системе или области пространства на единицу объема. Если поблизости нет магнитных материалов, μ можно заменить на μ 0 . Однако приведенное выше уравнение нельзя использовать для нелинейных материалов; необходимо использовать более общее выражение (приведенное ниже).
В общем, дополнительная работа на единицу объема δW , необходимая для того, чтобы вызвать небольшое изменение магнитного поля δ B, составляет:
[латекс] \ delta \ text {W} = \ mathbf {\ text {H}} \ cdot \ delta \ mathbf {\ text {B}} [/ latex].
Когда связь между H и B известна, это уравнение используется для определения работы, необходимой для достижения данного магнитного состояния. Для гистерезисных материалов, таких как ферромагнетики и сверхпроводники, необходимая работа также зависит от того, как создается магнитное поле. Однако для линейных недисперсионных материалов общее уравнение приводит непосредственно к более простому уравнению плотности энергии, приведенному выше.
Энергия, запасенная в поле соленоида
Энергия, запасенная индуктором, равна количеству работы, необходимой для установления тока через индуктор и, следовательно, магнитного поля. 2 [/ латекс].
Трансформаторы
Трансформаторы преобразуют напряжения из одного значения в другое; его функция определяется уравнением трансформатора.
Цели обучения
Примените уравнение трансформатора для сравнения вторичного и первичного напряжений
Основные выводы
Ключевые моменты
- Трансформаторы часто используются в нескольких точках систем распределения электроэнергии, а также во многих бытовых адаптерах питания. Уравнение
- трансформатора утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках: [латекс] \ frac {\ text {V} _ \ text {s}} {\ text { V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ text {N} _ \ text {p}} [/ latex].
- Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Это приводит нас к другому полезному вопросу: [latex] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ текст {p}} {\ text {N} _ \ text {s}} [/ latex]. Если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Ключевые термины
- магнитный поток : мера силы магнитного поля в заданной области.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Трансформаторы изменяют напряжение с одного значения на другое. Например, такие устройства, как сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшая бытовая техника, имеют трансформатор (встроенный в их съемный блок), который преобразует 120 В в напряжение, соответствующее устройству.Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке. Энергия передается на большие расстояния при высоком напряжении, поскольку для данного количества мощности требуется меньший ток (это означает меньшие потери в линии). Поскольку высокое напряжение представляет большую опасность, трансформаторы используются для создания более низкого напряжения в месте нахождения пользователя.
Настройка трансформатора : Трансформаторы изменяют напряжение в нескольких точках в системе распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, а иногда и до 700 кВ, для ограничения потерь энергии.Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.
Тип трансформатора, рассматриваемого здесь, основан на законе индукции Фарадея и очень похож по конструкции на устройство, которое Фарадей использовал для демонстрации того, что магнитные поля могут создавать токи (показано на рисунке). Две катушки называются первичной и вторичной катушками. При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но и его намагничивание увеличивает напряженность поля. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.
Простой трансформатор : Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, который ламинирован для минимизации вихревых токов.Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной. На рисунке показан простой трансформатор с двумя катушками, намотанными с обеих сторон многослойного ферромагнитного сердечника. Набор катушек с левой стороны сердечника обозначен как первичный, и его номер указан как N p. Напряжение на первичной обмотке равно V p. Набор катушек с правой стороны сердечника обозначен как вторичный, и его номер представлен как N s.Напряжение на вторичной обмотке равно В с. Символ трансформатора также показан под диаграммой. Он состоит из двух катушек индуктивности, разделенных двумя равными параллельными линиями, представляющими сердечник.
Уравнение трансформатора
Для простого трансформатора, показанного на фиг.3, выходное напряжение V s почти полностью зависит от входного напряжения V p и соотношения количества витков в первичной и вторичной катушках. Закон индукции Фарадея для вторичной обмотки дает ее индуцированное выходное напряжение V с как:
[латекс] \ text {V} _ \ text {s} = — \ text {N} _ \ text {s} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex],
, где N s — количество витков вторичной обмотки, а Δ / Δt — скорость изменения магнитного потока. Обратите внимание, что выходное напряжение равно индуцированной ЭДС (В с = ЭДС с ), при условии, что сопротивление катушки невелико. Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому / Δt одинаково с обеих сторон. Входное первичное напряжение V p также связано с изменением магнитного потока:
[латекс] \ text {V} _ \ text {p} = — \ text {N} _ \ text {p} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
Соотношение этих двух последних уравнений дает полезное соотношение:
[латекс] \ frac {\ text {V} _ \ text {s}} {\ text {V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ текст {N} _ \ text {p}} [/ latex].
Это известно как уравнение трансформатора , которое просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают регулируемый выходной сигнал, позволяя выполнять подключение в разных точках вторичной обмотки.Повышающий трансформатор — это трансформатор, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение.
Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Уравнивание входной и выходной мощности,
[латекс] \ text {P} _ \ text {p} = \ text {I} _ \ text {p} \ text {V} _ \ text {p} = \ text {I} _ \ text {s} \ text {V} _ \ text {s} = \ text {P} _ \ text {s} [/ latex].
Комбинируя эти результаты с уравнением трансформатора, находим:
[латекс] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ text {p}} {\ текст {N} _ \ text {s}} [/ latex].
Значит, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Электромагнитная индукция
Магнитное поле через петлю можно изменить либо путем изменения величины поля, либо путем изменения площади петли. Чтобы иметь возможность количественно описать эти изменения, магнитный поток определяется как Φ = BA cosθ, где θ — угол между B и направлением, перпендикулярным плоскости петли (вдоль оси петли). .
Закон Фарадея
При изменении магнитного потока через проволочную петлю индуцируется ток. Закон Фарадея гласит, что ЭДС, индуцированная в проводе, пропорциональна скорости потока, проходящего через петлю. Математически
, где N — количество витков, ΔΦ — изменение потока во времени, Δ t . Знак минус указывает полярность наведенной ЭДС.
Предыдущее уравнение легко использовать, когда магнитный поток задается электромагнитом.Если электромагнит включен или выключен, наведенная ЭДС равна количеству витков в контуре, умноженному на скорость изменения магнитного потока. Поток также может быть изменен с помощью петли, изменяя размер петли. Представьте скользящую проволоку, как показано на рисунке 1, где l — длина проволоки, которая движется в контакте с U-образной проволокой. В этом случае ε = Blv , где v — скорость длины скольжения.
Обратите внимание, что эта наведенная ЭДС неотличима от ЭДС батареи, и что ток по-прежнему является просто скоростью движения зарядов; поэтому закон Ома и другие соотношения для токов в проводах остаются в силе.
Закон Ленца
Направление индуцированного тока может быть найдено из закона Ленца, который гласит, что магнитное поле, создаваемое индуцированной ЭДС, создает ток, магнитное поле которого противодействует первоначальному изменению потока через проволочную петлю. Снова рассмотрите рисунок и предположите, что слайд движется вправо. Фигуры x указывают на то, что на странице находится B ; таким образом, когда слайд перемещается вправо, поле, проходящее через слайд, увеличивается на странице.(Изменение потока является решающей величиной.) Магнитное поле индуцированного тока будет направлено за пределы страницы, потому что оно будет противодействовать изменению потока. Воспользуйтесь правилом из вторых рук и поместите сгибы пальцев из страницы в центр петли. Направление большого пальца указывает, что ток будет течь против часовой стрелки. (Неправильно утверждать, что ток направлен справа, потому что он находится слева в верхней части петли.) И наоборот, если ползун перемещается влево, B будет уменьшаться в петле.Изменение потока будет вне страницы, а индуцированный ток будет по часовой стрелке. Тот же анализ используется, если электромагнит включен или выключен.
| ||
Закон Ленца также является законом сохранения.Если бы магнитное поле, создаваемое индуцированным током, могло быть в том же направлении, что и первоначальное изменение магнитного потока, изменение стало бы больше, а индуцированный ток больше. Это невозможное условие было бы лучшим обменом энергии, чем вечный двигатель.
Генераторы и двигатели
Генераторы и двигатели являются приложениями электромагнитной индукции. На рисунке показан простой электрический генератор.
Рисунок 2 | Простой электрогенератор. |
Кривошип представляет собой механический метод поворота проволочной петли в магнитном поле. Изменение магнитного потока через контур генерирует индуцированный ток; таким образом, генератор преобразует механическую энергию в электрическую. Работа двигателя аналогична работе генератора, но в обратном порядке. Двигатель имеет аналогичные физические компоненты, за исключением того, что электрический ток, подаваемый в контур, создает крутящий момент, который поворачивает контур.Таким образом, двигатель преобразует электрическую энергию в механическую.
Взаимная индуктивность и самоиндукция
Взаимная индуктивность возникает, когда две цепи расположены так, что изменение тока в одной вызывает наведение ЭДС в другой.
Представьте себе простую схему выключателя, катушки и батареи. Когда переключатель замкнут, ток через катушку создает магнитное поле. По мере увеличения тока магнитный поток через катушку также изменяется.Этот изменяющийся магнитный поток генерирует ЭДС, противоположную ЭДС батареи. Этот эффект возникает только тогда, когда ток либо увеличивается до своего установившегося значения сразу после замыкания переключателя, либо уменьшается до нуля при размыкании переключателя. Этот эффект называется самоиндуктивностью . Пропорциональная постоянная между самоиндуцированной ЭДС и скоростью изменения тока во времени называется индуктивностью (L) и выражается выражением
.Единицей измерения индуктивности в системе СИ является генри, а 1 генри = 1 (Вс / А).
Используя закон Фарадея, индуктивность можно выразить через изменение магнитного потока и тока:
, где N — количество витков катушки.
Уравнения Максвелла и электромагнитные волны
Уравнения Максвелла суммируют электромагнитные эффекты в четырех уравнениях. Уравнения слишком сложны для этого текста, но концепции, заложенные в них, важно учитывать. Максвелл объяснил, что электрические и магнитные волны могут генерироваться колебаниями электрических зарядов.Эти электромагнитные волны могут быть изображены как скрещенные электрические и магнитные поля, распространяющиеся в пространстве перпендикулярно направлению движения и друг к другу, как показано на рисунке 3.
| ||
Закон электромагнитной индукции Фарадея | Электромагнетизм
10.3 Закон электромагнитной индукции Фарадея (ESBPY)
Ток, индуцированный изменяющимся магнитным полем (ESBPZ)
В то время как удивительное открытие электромагнетизма Эрстедом проложило путь для более практических применений электричества, именно Майкл Фарадей дал нам ключ к практическому производству электричества: электромагнитной индукции .
Фарадей обнаружил, что когда он перемещал магнит около провода, на нем генерировалось напряжение. Если магнит удерживался в неподвижном состоянии, напряжение не генерировалось, оно существовало только во время движения магнита.Мы называем это напряжение индуцированной ЭДС (\ (\ mathcal {E} \)).
Цепь, подключенная к чувствительному амперметру, будет регистрировать ток, если он настроен, как показано на этом рисунке, и магнит перемещается вверх и вниз:
Магнитный поток
Прежде чем мы перейдем к определению закона электромагнитной индукции Фарадея и примерам, нам сначала нужно потратить некоторое время на изучение магнитного потока. Для петли площадью \ (A \) в присутствии однородного магнитного поля \ (\ vec {B} \) магнитный поток (\ (φ \)) определяется как: \ [\ phi = BA \ cos \ theta \] Где: \ begin {align *} \ theta & = \ text {угол между магнитным полем B и нормалью к петле в области A} \\ A & = \ text {область петли} \\ B & = \ text {магнитное поле} \ end {align *}
S.I. единица магнитного потока — Вебер (Вб).
Вы можете спросить себя, почему включен угол \ (\ theta \). Поток зависит от магнитного поля, проходящего через поверхность. Мы знаем, что поле, параллельное поверхности, не может вызвать ток, потому что оно не проходит через поверхность. Если магнитное поле не перпендикулярно поверхности, то есть компонент, который перпендикулярен, и компонент, который параллелен поверхности. Параллельная составляющая не может вносить вклад в поток, только вертикальная составляющая может.
На этой диаграмме мы показываем, что магнитное поле под углом, отличным от перпендикулярного, может быть разбито на составляющие. Компонент, перпендикулярный поверхности, имеет величину \ (B \ cos (\ theta) \), где \ (\ theta \) — угол между нормалью и магнитным полем.
- Закон электромагнитной индукции Фарадея
ЭДС \ (\ mathcal {E} \), создаваемая вокруг контура проводника, пропорциональна скорости изменения магнитного потока φ через площадь A контура.Математически это можно выразить как:
\ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]где \ (\ phi = B · A \), а B — напряженность магнитного поля. \ (N \) — количество контуров схемы. Магнитное поле измеряется в теслах (Тл). Знак минус указывает направление и что наведенная ЭДС имеет тенденцию противодействовать изменению магнитного потока. При расчете звездных величин знак минус можно не учитывать.
Закон Фарадея связывает наведенную ЭДС со скоростью изменения магнитного потока, который является произведением магнитного поля и площади поперечного сечения, через которое проходят силовые линии.
Это не площадь самого провода, а площадь, которую он охватывает. Это означает, что если вы согнете проволоку в круг, площадь, которую мы будем использовать при вычислении потока, будет площадью поверхности круга, а не проволоки.
На этом рисунке, где магнит находится в той же плоскости, что и контур цепи, не было бы тока, даже если бы магнит перемещался все ближе и дальше. Это связано с тем, что силовые линии магнитного поля не проходят через замкнутое пространство, а параллельны ему.Силовые линии магнитного поля должны проходить через область, ограниченную контуром контура, чтобы возникла ЭДС.
Направление индуцированного тока (ESBQ2)
Самая важная вещь, которую следует помнить, — это то, что индуцированный ток противодействует происходящему изменению.
На первом рисунке (слева) контур имеет южный полюс приближающегося магнита. Величина поля от магнита становится больше. Реакция наведенной ЭДС будет состоять в том, чтобы попытаться противодействовать усилению поля по направлению к полюсу.Поле является вектором, поэтому ток будет течь в таком направлении, чтобы поля, возникающие из-за тока, имели тенденцию нейтрализовать поля от магнита, сохраняя результирующее поле неизменным.
Чтобы противостоять переходу от приближающегося южного полюса сверху, ток должен приводить к силовым линиям, удаляющимся от приближающегося полюса. Таким образом, индуцированное магнитное поле должно иметь силовые линии, идущие вниз по внутренней стороне контура. Направление тока, указанное стрелками на контуре цепи, будет достигнуто.Проверьте это, используя Правило правой руки. Положите большой палец правой руки в направлении одной из стрелок и обратите внимание на то, что поле закручивается вниз в область, ограниченную петлей.
На второй диаграмме южный полюс удаляется. Это означает, что поле от магнита станет слабее. Отклик на индуцированный ток будет заключаться в создании магнитного поля, которое добавляется к существующему от магнитного поля, чтобы сопротивляться его уменьшению в силе.
Другой способ представить ту же функцию — просто использовать полюса.Чтобы противостоять приближающемуся южному полюсу, индуцируемый ток создает поле, которое выглядит как другой южный полюс на стороне приближающегося южного полюса. Подобно отталкиванию полюсов, вы можете представить себе, как течение создает южный полюс, чтобы отразить приближающийся южный полюс. На второй панели ток устанавливает северный полюс, чтобы привлечь южный полюс и остановить его движение.
Мы также можем использовать вариант правила правой руки, помещая пальцы в направлении течения, чтобы большой палец указывал в направлении силовых линий (или северного полюса).
Мы можем проверить все это на случаях, когда северный полюс перемещается ближе или дальше от цепи. В первом случае приближения северного полюса ток будет сопротивляться изменению, создавая поле в направлении, противоположном полю, исходящему от магнита, который становится сильнее. Используйте Правило правой руки, чтобы убедиться, что стрелки создают поле с линиями поля, которые изгибаются вверх в замкнутой области, нейтрализуя те, которые изгибаются вниз от северного полюса магнита.
Подобно тому, как полюса отталкиваются, в качестве альтернативы проверьте, что если поместить пальцы правой руки в направлении течения, большой палец будет указывать вверх, указывая на северный полюс.
Для второй фигуры, где северный полюс удаляется, ситуация обратная.
Направление индуцированного тока в соленоиде (ESBQ3)
Подход к изучению направления тока в соленоиде аналогичен подходу, описанному выше. Единственная разница в том, что в соленоиде есть несколько витков проволоки, поэтому величина наведенной ЭДС будет другой.Поток будет рассчитан с использованием площади поверхности соленоида, умноженной на количество витков.
Помните: направления токов и связанных с ними магнитных полей можно найти, используя только Правило правой руки. Когда пальцы правой руки направлены в направлении магнитного поля, большой палец указывает в направлении тока. Когда большой палец направлен в направлении магнитного поля, пальцы указывают в направлении тока.
Направление тока будет таким, чтобы препятствовать изменению. Мы бы использовали установку, как в этом скетче, для проведения теста:
В случае, когда северный полюс направлен к соленоиду, ток будет течь так, чтобы северный полюс установился на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его (проверьте, используя Правило правой руки):
В случае, когда северный полюс движется от соленоида, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:
В случае, когда южный полюс движется от соленоида, ток будет течь так, что северный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:
В случае, если южный полюс направлен к соленоиду, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его:
Простой способ создать магнитное поле изменяющейся интенсивности — переместить постоянный магнит рядом с проволокой или катушкой с проволокой.Магнитное поле должно увеличиваться или уменьшаться по напряженности перпендикулярно проводу (так, чтобы силовые линии магнитного поля «пересекали» проводник), иначе не будет индуцироваться напряжение.
Наведенный ток создает магнитное поле. Индуцированное магнитное поле имеет направление, которое стремится нейтрализовать изменение магнитного поля в петле из проволоки. Таким образом, вы можете использовать Правило правой руки, чтобы найти направление индуцированного тока, помня, что индуцированное магнитное поле противоположно направлению изменения магнитного поля.
Индукция
Электромагнитная индукция находит практическое применение в конструкции электрических генераторов, которые используют механическую энергию для перемещения магнитного поля мимо катушек с проволокой для генерации напряжения. Однако это далеко не единственное практическое применение этого принципа.
Если мы вспомним, магнитное поле, создаваемое проводом с током, всегда перпендикулярно проводу, и что сила потока этого магнитного поля зависит от величины тока, который проходит через него.Таким образом, мы можем видеть, что провод может создавать напряжение на своей собственной длине , если ток изменяется. Этот эффект называется самоиндукцией . Самоиндукция — это когда изменяющееся магнитное поле создается изменениями тока через провод, вызывая напряжение по длине того же провода.
Если магнитный поток усиливается путем сгибания проволоки в форме катушки и / или наматывания этой катушки на материал с высокой проницаемостью, этот эффект самоиндуцированного напряжения будет более интенсивным.Устройство, созданное для использования этого эффекта, называется дросселем .
Помните, что индуцированный ток создает магнитное поле, которое противодействует изменению магнитного потока. Это известно как закон Ленца.
Рабочий пример 1: Закон Фарадея
Рассмотрим плоскую квадратную катушку с 5 витками. Катушка расположена \ (\ text {0,50} \) \ (\ text {m} \) с каждой стороны и имеет магнитное поле \ (\ text {0,5} \) \ (\ text {T} \) проходя через него. Плоскость катушки перпендикулярна магнитному полю: поле направлено за пределы страницы.Используйте закон Фарадея для вычисления наведенной ЭДС, если магнитное поле увеличивается равномерно от \ (\ text {0,5} \) \ (\ text {T} \) до \ (\ text {1} \) \ (\ текст {T} \) в \ (\ text {10} \) \ (\ text {s} \). Определите направление индуцированного тока.
Определите, что требуется
Мы обязаны использовать Закон Фарадея для расчета наведенной ЭДС.
Написать закон Фарадея
\ [\ mathcal {E} = — N \ frac {\ Delta \ phi} {\ Delta t} \] Мы знаем, что магнитное поле расположено под прямым углом к поверхности и поэтому выровнено по нормали.Это означает, что нам не нужно беспокоиться об угле, который поле образует с нормалью и \ (\ phi = BA \). Начальное или начальное магнитное поле, \ (B_i \), задается как конечная величина поля, \ (B_f \). Мы хотим определить величину ЭДС, чтобы можно было игнорировать знак минус.
Площадь \ (A \) — это площадь квадратной катушки. 2 (\ text {1} — \ text {0,50})} {\ text {10}} \\ & = \ текст {0,0625} \ текст {V} \ end {выровнять *}
Наведенный ток направлен против часовой стрелки, если смотреть со стороны возрастающего магнитного поля.
Рабочий пример 2: закон Фарадея
Рассмотрим соленоид из 9 витков с неизвестным радиусом \ (r \). На соленоид действует магнитное поле \ (\ text {0,12} \) \ (\ text {T} \). Ось соленоида параллельна магнитному полю. Когда поле равномерно переключается на \ (\ text {12} \) \ (\ text {T} \) в течение 2 минут, ЭДС с величиной \ (- \ text {0,3} \) \ (\ text {V} \) индуцируется. Определите радиус соленоида.
Определите, что требуется
Требуется определить радиус соленоида.Мы знаем, что связь между наведенной ЭДС и полем регулируется законом Фарадея, который включает геометрию соленоида. Мы можем использовать это соотношение, чтобы найти радиус.
Написать закон Фарадея
\ [\ mathcal {E} = — N \ frac {\ Delta \ phi} {\ Delta t} \] Мы знаем, что магнитное поле расположено под прямым углом к поверхности и поэтому выровнено по нормали. Это означает, что нам не нужно беспокоиться об угле, который поле образует с нормалью и \ (\ phi = BA \).{- \ text {2}} \) \ (\ text {m} \). Соленоид подвергается воздействию переменного магнитного поля, которое равномерно изменяется от \ (\ text {0,4} \) \ (\ text {T} \) до \ (\ text {3,4} \) \ (\ text { T} \) в интервале \ (\ text {27} \) \ (\ text {s} \). Ось соленоида составляет угол \ (\ text {35} \) \ (\ text {°} \) к магнитному полю. Найдите наведенную ЭДС.
Определите, что требуется
Мы обязаны использовать Закон Фарадея для расчета наведенной ЭДС.
Написать закон Фарадея
\ [\ mathcal {E} = — N \ frac {\ Delta \ phi} {\ Delta t} \] Мы знаем, что магнитное поле расположено под углом к нормали к поверхности.{- \ text {3}} \ text {V} \ end {выровнять *}
Наведенный ток направлен против часовой стрелки, если смотреть со стороны возрастающего магнитного поля.
Реальные приложения
Следующие устройства используют в своей работе закон Фарадея.
индукционные плиты
магнитофонов
металлоискатели
трансформаторы
Реальные применения закона Фарадея
Выберите одно из следующих устройств и поищите в Интернете или библиотеке, как работает ваше устройство.В объяснении вам нужно будет сослаться на закон Фарадея.
индукционные плиты
магнитофонов
металлоискатели
трансформаторы
Присоединяйтесь к тысячам учащихся, улучшающих свои научные оценки онлайн с помощью Siyavula Practice.
Зарегистрируйтесь здесьЗакон Фарадея
Упражнение 10.2Изложите закон электромагнитной индукции Фарадея словами и запишите математическое соотношение.
ЭДС \ (\ mathcal {E} \), создаваемая вокруг контура проводника, пропорциональна скорости изменения магнитного потока φ через площадь A контура. Математически это можно выразить как:
\ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]где \ (\ phi = B · A \), а B — напряженность магнитного поля.\ (N \) — количество контуров схемы. Магнитное поле измеряется в теслах (Тл). Знак минус указывает направление и что наведенная ЭДС имеет тенденцию противодействовать изменению магнитного потока. При расчете звездных величин знак минус можно не учитывать.
Опишите, что происходит, когда стержневой магнит вдавливается в соленоид, подключенный к амперметру, или вытягивается из него. Нарисуйте картинки, подтверждающие ваше описание.
В случае, когда северный полюс направлен к соленоиду, ток будет течь так, чтобы северный полюс установился на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его (проверьте, используя Правило правой руки):
В случае, когда северный полюс движется от соленоида, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:
В случае, когда южный полюс движется от соленоида, ток будет течь так, что северный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:
В случае, если южный полюс направлен к соленоиду, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его:
Объясните, как магнитный поток может быть нулевым, если магнитное поле не равно нулю.
Поток связан с магнитным полем:
\ (\ phi = BA \ cos \ theta \)Если \ (\ cos \ theta \) равно 0, то магнитный поток будет равен 0, даже если есть магнитное поле. В этом случае магнитное поле параллельно поверхности и не проходит через нее.
Используйте правило правой руки, чтобы определить направление индуцированного тока в соленоиде ниже.
Южный полюс магнита приближается к соленоиду.Закон Ленца говорит нам, что ток будет течь, чтобы противостоять изменению. Южный полюс на конце соленоида будет противодействовать приближающемуся южному полюсу. Ток будет циркулировать по странице в верхней части катушки, так что большой палец правой руки указывает влево.
Рассмотрим круговую катушку из 5 витков с радиусом \ (\ text {1,73} \) \ (\ text {m} \). Катушка подвергается воздействию переменного магнитного поля, которое равномерно изменяется от \ (\ text {2,18} \) \ (\ text {T} \) до \ (\ text {12,7} \) \ (\ text { T} \) в интервале \ (\ text {3} \) \ (\ text {minutes} \). {2} & = \ текст {0,0479} \\ г & = \ текст {0,22} \ текст {м} \ end {выровнять *}
Найдите изменение потока, если ЭДС равна \ (\ text {12} \) \ (\ text {V} \) за период \ (\ text {12} \) \ (\ text {s} \) .
\ begin {align *} \ mathcal {E} & = N \ frac {\ Delta \ phi} {\ Delta t} \\ 12 & = 5 \ left (\ frac {\ Delta \ phi} {12} \ right) \\ \ Delta \ phi & = \ text {28,8} \ text {Wb} \ end {выровнять *}
Если угол изменить на \ (\ text {45} \) \ (\ text {°} \), на какой временной интервал нужно изменить, чтобы наведенная ЭДС оставалась прежней?
\ begin {align *} \ mathcal {E} & = N \ frac {\ Delta \ phi} {\ Delta t} \\ & = N \ frac {\ phi_ {f} — \ phi_ {i}} {\ Delta t} \\ & = N \ frac {B_ {f} A \ cos \ theta — B_ {i} A \ cos \ theta} {\ Delta t} \\ & = \ cos \ theta \ times N \ frac {B_ {f} A — B_ {i} A} {\ Delta t} \ end {выровнять *}Все значения остаются неизменными в двух описанных ситуациях, за исключением угла и времени.Мы можем приравнять уравнения для двух сценариев:
\ begin {align *} \ mathcal {E} _1 & = \ mathcal {E} _2 \\ \ cos \ theta_1 \ times N \ frac {B_ {f} A — B_ {i} A} {\ Delta t_1} & = \ cos \ theta_2 \ times N \ frac {B_ {f} A — B_ {i} A } {\ Delta t_2} \\ \ cos \ theta_1 \ frac {1} {\ Delta t_1} & = \ cos \ theta_2 \ frac {1} {\ Delta t_2} \\ \ Delta t_2 & = \ frac {\ Delta t_1 \ cos \ theta_2} {\ cos \ theta_1} \\ \ Delta t_2 & = \ frac {(\ text {12} \ cos (\ text {45}} {\ cos (\ text {23})} \\ \ Delta t_2 & = \ text {9,22} \ text {s} \ end {выровнять *}
| Студенты могут задаться вопросом, как работают трансформаторы и генераторы. Здесь описывается потенциальная лаборатория или демонстрация принципа электромагнитной индукции Фарадея. Поскольку медные катушки (называемые петлей) содержат изменяющийся электрический заряд, объект, помещенный в электрическое поле, станет заряженным (намагниченным).Когда стержень проталкивается внутрь и из катушек, магнитное поле вокруг катушки заменены. Это, в свою очередь, заставляет электроны (ток) в катушка двигаться. Это можно наблюдать по чередующемуся (+) и (-) движениям. на гальванометре. Альтернативно или дополнительно устройство можно перестроить так, чтобы электрический ток, генерируемый батареей, проходил через катушку. Стержень обеспечивает направление тока и стабилизирует его.Кроме того, стержень намагничивается, и его можно использовать для захвата небольших металлических предметов, например скрепок. Справочная информация: Закон индукции Фарадея Прописью: Индуцированная ЭДС (напряжение или разность потенциалов) вокруг замкнутого контура равна мгновенной скорости изменения (производной) магнитного потока через контур. В форме уравнения: Есть три способа изменить магнитный поток через петлю:
Следовательно, изменение угла либо увеличивает, либо уменьшает поток, потому что скалярное произведение зависит от синуса угла между векторами B и dA . Так работает генератор. Генератор вращает петлю (фактически несколько витков) провода через фиксированное магнитное поле и индуцирует напряжение вокруг петли, быстро изменяя поток через петлю при ее вращении.Это индуцированное напряжение вокруг контуров заставляет ток течь по проводу, и это выходной ток генератора. Знак минус указывает, что индуцированное напряжение направлено в направлении, которое создает ток, противодействующий изменению магнитного потока в контуре. Эта связь зафиксирована в Законе Ленца. Закон Ленца : Индуцированный ток в петле из проволоки будет иметь направление, противоположное изменению потока через петлю.Другими словами, если поток через контур увеличивается, то индуцированный ток создаст свой собственный поток, который будет пытаться компенсировать увеличение потока. Если поток через петлю уменьшается, то индуцированный ток будет в направлении, которое пытается увеличить поток через петлю. | Процедура :
|
20.2 Электромагнитная индукция | Texas Gateway
Индуцированная электродвижущая сила
Если в катушке индуцируется ток, Фарадей рассуждал, что должно быть то, что он назвал электродвижущей силой , проталкивающей заряды через катушку. Эта интерпретация оказалась неверной; вместо этого внешний источник, выполняющий работу по перемещению магнита, добавляет энергию зарядам в катушке. Энергия, добавляемая на единицу заряда, измеряется в вольтах, поэтому электродвижущая сила на самом деле является потенциалом.К сожалению, название «электродвижущая сила» прижилось, а вместе с ним и возможность спутать его с реальной силой. По этой причине мы избегаем термина электродвижущая сила и просто используем сокращение эдс , которое имеет математический символ ε.ε. ЭДС может быть определена как скорость, с которой энергия отбирается от источника на единицу тока, протекающего по цепи. Таким образом, ЭДС — это энергия на единицу заряда , добавленная источником, что контрастирует с напряжением, которое представляет собой энергию на единицу заряда , высвобождаемую , когда заряды проходят через цепь.
Чтобы понять, почему в катушке возникает ЭДС из-за движущегося магнита, рассмотрим рисунок 20.27, на котором показан стержневой магнит, движущийся вниз относительно проволочной петли. Первоначально через петлю проходят семь силовых линий магнитного поля (см. Изображение слева). Поскольку магнит удаляется от катушки, только пять силовых линий магнитного поля проходят через петлю за короткое время ΔtΔt (см. Изображение справа). Таким образом, когда происходит изменение количества силовых линий магнитного поля, проходящих через область, определяемую проволочной петлей, в проволочной петле индуцируется ЭДС.Подобные эксперименты показывают, что наведенная ЭДС пропорциональна скорости изменения магнитного поля. Математически мы выражаем это как
20.10ε∝ΔBΔt, ε∝ΔBΔt,, где ΔBΔB — изменение величины магнитного поля за время ΔtΔt, а A — площадь контура.
Рис. 20.27 Стержневой магнит движется вниз относительно проволочной петли, так что количество силовых линий магнитного поля, проходящих через петлю, со временем уменьшается.Это вызывает индукцию ЭДС в контуре, создающую электрический ток.
Обратите внимание, что силовые линии магнитного поля, лежащие в плоскости проволочной петли, на самом деле не проходят через петлю, как показано крайним левым витком на рис. 20.28. На этом рисунке стрелка, выходящая из петли, представляет собой вектор, величина которого представляет собой площадь петли, а направление перпендикулярно плоскости петли. На рисунке 20.28 петля поворачивается от θ = 90 ° θ = 90 °. до θ = 0 °, θ = 0 ° вклад силовых линий магнитного поля в ЭДС увеличивается.Таким образом, для создания ЭДС в проволочной петле важна составляющая магнитного поля, которая на перпендикулярна плоскости петли на , то есть Bcosθ.Bcosθ.
Это аналог паруса на ветру. Думайте о проводящей петле как о парусе, а о магнитном поле — как о ветре. Чтобы максимизировать силу ветра на парусе, парус ориентируют так, чтобы вектор его поверхности указывал в том же направлении, что и ветер, как в самой правой петле на рис. 20.28. Когда парус выровнен так, что его вектор поверхности перпендикулярен ветру, как в самой левой петле на рисунке 20.28, то ветер не действует на парус.
Таким образом, с учетом угла наклона магнитного поля к площади, пропорциональность E∝ΔB / ΔtE∝ΔB / Δt становится равной
20.11E∝ΔBcosθΔt.E∝ΔBcosθΔt. Рис. 20.28 Магнитное поле лежит в плоскости самой левой петли, поэтому в этом случае оно не может генерировать ЭДС. Когда петля поворачивается так, что угол магнитного поля с вектором, перпендикулярным области петли, увеличивается до 90 ° 90 ° (см. Крайнюю правую петлю), магнитное поле вносит максимальный вклад в ЭДС в петле.Точки показывают, где силовые линии магнитного поля пересекают плоскость, определяемую петлей.Другой способ уменьшить количество силовых линий магнитного поля, которые проходят через проводящую петлю на рисунке 20.28, — это не перемещать магнит, а сделать петлю меньше. Эксперименты показывают, что изменение площади проводящей петли в стабильном магнитном поле вызывает в петле ЭДС. Таким образом, ЭДС, создаваемая в проводящей петле, пропорциональна скорости изменения произведения перпендикулярного магнитного поля и площади петли
. 20.12ε∝Δ [(Bcosθ) A] Δt, ε∝Δ [(Bcosθ) A] Δt,, где BcosθBcosθ — перпендикулярное магнитное поле, а A — площадь контура. Продукт BAcosθBAcosθ очень важен. Оно пропорционально количеству силовых линий магнитного поля, которые проходят перпендикулярно через поверхность площадью A . Возвращаясь к нашей аналогии с парусом, он будет пропорционален силе ветра на парусе. Он называется магнитным потоком и обозначается как ΦΦ.
20,13Φ = BAcosθΦ = BAcosθЕдиницей измерения магнитного потока является Вебер (Вб), который представляет собой магнитное поле на единицу площади, или Т / м 2 .Вебер — это также вольт-секунда (Vs).
Индуцированная ЭДС фактически пропорциональна скорости изменения магнитного потока через проводящую петлю.
20,14ε∝ΔΦΔtε∝ΔΦΔtНаконец, для катушки из N витков ЭДС в N раз сильнее, чем для одиночной петли. Таким образом, ЭДС, наведенная изменяющимся магнитным полем в катушке из N витков, составляет
ε∝NΔBcosθΔtA.ε∝NΔBcosθΔtA.Последний вопрос, на который нужно ответить, прежде чем мы сможем преобразовать пропорциональность в уравнение: «В каком направлении течет ток?» Русский ученый Генрих Ленц (1804–1865) объяснил, что ток течет в направлении, которое создает магнитное поле, которое пытается сохранить постоянный поток в контуре.Например, снова рассмотрим рисунок 20.27. Движение стержневого магнита вызывает уменьшение количества направленных вверх силовых линий магнитного поля, которые проходят через петлю. Следовательно, в контуре генерируется ЭДС, которая направляет ток в направлении, которое создает больше направленных вверх линий магнитного поля. Используя правило правой руки, мы видим, что этот ток должен течь в направлении, показанном на рисунке. Чтобы выразить тот факт, что индуцированная ЭДС действует, чтобы противодействовать изменению магнитного потока через проволочную петлю, знак минус вводится в пропорциональность ε∝ΔΦ / Δtε∝ΔΦ / Δt, которая дает закон индукции Фарадея.) внутри катушки, направленной влево. Это будет противодействовать увеличению магнитного потока, направленного вправо. Чтобы увидеть, в каком направлении должен течь ток, направьте большой палец правой руки в желаемом направлении магнитного поля B → катушка, B → катушка, и ток будет течь в направлении, указанном сгибанием ваших пальцев правой руки. Это показано изображением правой руки в верхнем ряду рисунка 20.29. Таким образом, ток должен течь в направлении, показанном на рисунке 4 (а).
На Рисунке 4 (b) направление, в котором движется магнит, обратное.В катушке направленное вправо магнитное поле B → magB → mag из-за движущегося магнита уменьшается. Закон Ленца гласит, что, чтобы противостоять этому уменьшению, ЭДС возбуждает ток, который создает дополнительное направленное вправо магнитное поле B → катушка B → катушка в катушке. Опять же, направьте большой палец правой руки в желаемом направлении магнитного поля, и ток будет течь в направлении, указанном сгибанием ваших пальцев правой руки (Рисунок 4 (b)).
Наконец, на Рисунке 4 (c) магнит перевернут, так что южный полюс находится ближе всего к катушке.Теперь магнитное поле B → magB → mag направлено на магнит, а не на катушку. Когда магнит приближается к катушке, он вызывает увеличение направленного влево магнитного поля в катушке. Закон Ленца гласит, что ЭДС, индуцированная в катушке, будет управлять током в направлении, которое создает магнитное поле, направленное вправо. Это будет противодействовать увеличению магнитного потока, направленного влево из-за магнита. Повторное использование правила правой руки, как показано на рисунке, показывает, что ток должен течь в направлении, показанном на рисунке 4 (c).
Рис. 20.29 Закон Ленца говорит нам, что ЭДС, индуцированная магнитным полем, будет управлять током, который сопротивляется изменению магнитного потока в цепи. Это показано на панелях (а) — (с) для различных ориентаций и скоростей магнита. Правые руки справа показывают, как применить правило правой руки, чтобы найти, в каком направлении наведенный ток течет вокруг катушки.
Виртуальная физика
Электромагнитная лаборатория Фарадея
Это моделирование предлагает несколько действий.А пока щелкните вкладку Pickup Coil, на которой представлен стержневой магнит, который можно перемещать через катушку. Когда вы это сделаете, вы увидите, как электроны движутся в катушке, и загорится лампочка, или вольтметр покажет напряжение на резисторе. Обратите внимание, что вольтметр позволяет вам видеть знак напряжения при перемещении магнита. Вы также можете оставить стержневой магнит в покое и переместить катушку, хотя наблюдать за результатами сложнее.
Проверка захвата
Сориентируйте стержневой магнит так, чтобы северный полюс был направлен вправо, и поместите приемную катушку справа от стержневого магнита.Теперь переместите стержневой магнит к катушке и посмотрите, в каком направлении движутся электроны. Это такая же ситуация, как показано ниже. Протекает ли ток в симуляции в том же направлении, что и показано ниже? Объясните, почему да или почему нет.- Да, ток в моделировании течет в том же направлении, потому что направление тока противоположно направлению потока электронов.
- Нет, ток в моделировании течет в противоположном направлении, потому что направление тока совпадает с направлением потока электронов.
Watch Physics
Индуцированный ток в проводе
В этом видео объясняется, как можно индуцировать ток в прямом проводе, перемещая его через магнитное поле. Лектор использует перекрестное произведение , тип векторного умножения. Не волнуйтесь, если вы не знакомы с этим, он в основном объединяет правило правой руки для определения силы, действующей на заряды в проводе, с уравнением F = qvBsinθ.F = qvBsinθ.
Проверка захвата
Какая ЭДС создается на прямом проводе 0.через однородное магнитное поле (0,30 Тл) ẑ ? Проволока проходит в направлении ŷ . Кроме того, какой конец провода находится под более высоким потенциалом — пусть нижний конец провода будет на y = 0, а верхний конец на y = 0,5 м)?
- 0,15 В и нижний конец провода будет иметь более высокий потенциал
- 0,15 В и на верхнем конце провода будет более высокий потенциал
- 0,075 В, и нижний конец провода будет иметь более высокий потенциал
- 0.075 В и на верхнем конце провода будет более высокий потенциал
Рабочий пример
ЭДС, индуцированная в проводящей катушке движущимся магнитом
Представьте, что магнитное поле проходит через катушку в направлении, указанном на рисунке 20.31. Диаметр катушки 2,0 см. Если магнитное поле изменится с 0,020 до 0,010 Тл за 34 с, каковы направление и величина индуцированного тока? Предположим, что катушка имеет сопротивление 0,1 Ом.
Рисунок 20.31 Катушка, через которую проходит магнитное поле B .
СТРАТЕГИЯ
Используйте уравнение ε = −NΔΦ / Δtε = −NΔΦ / Δt, чтобы найти наведенную ЭДС в катушке, где Δt = 34 sΔt = 34 с. Подсчитав количество петель в соленоиде, находим, что у него 16 петель, поэтому N = 16.N = 16. Используйте уравнение Φ = BAcosθΦ = BAcosθ для расчета магнитного потока
20,16Φ = BAcosθ = Bπ (d2) 2, Φ = BAcosθ = Bπ (d2) 2,, где d — диаметр соленоида, и мы использовали cos0 ° = 1. cos0 ° = 1. Поскольку площадь соленоида не меняется, изменение магнитного потока через соленоид составляет
20.17ΔΦ = ΔBπ (d2) 2.ΔΦ = ΔBπ (d2) 2.Найдя ЭДС, мы можем использовать закон Ома, ε = IR, ε = IR, чтобы найти ток.
Наконец, закон Ленца гласит, что ток должен создавать магнитное поле, которое препятствует уменьшению приложенного магнитного поля. Таким образом, ток должен создавать магнитное поле справа.
Решение
Объединение уравнений ε = −NΔΦ / Δtε = −NΔΦ / Δt и Φ = BAcosθΦ = BAcosθ дает
20,18ε = −NΔΦΔt = −NΔBπd24Δt.ε = −NΔΦΔt = −NΔBπd24Δt.Решив закон Ома для тока и используя этот результат, получаем
20.19I = εR = −NΔBπd24RΔt = −16 (−0,010 Тл) π (0,020 м) 24 (0,10 Ом) (34 с) = 15 мкА.I = εR = −NΔBπd24RΔt = −16 (−0,010 Тл) π (0,020 м ) 24 (0,10 Ом) (34 с) = 15 мкА.Закон Ленца гласит, что ток должен создавать магнитное поле вправо. Таким образом, мы направляем большой палец правой руки вправо и сжимаем пальцы правой руки вокруг соленоида. Ток должен течь в том направлении, в котором указывают наши пальцы, поэтому он входит в левый конец соленоида и выходит на правом конце.
Обсуждение
Давайте посмотрим, имеет ли смысл знак минус в законе индукции Фарадея.Определите направление магнитного поля как положительное. Это означает, что изменение магнитного поля отрицательное, как мы обнаружили выше. Знак минус в законе индукции Фарадея отрицает отрицательное изменение магнитного поля, оставляя нам положительный ток. Следовательно, ток должен течь в направлении магнитного поля, что мы и обнаружили.
Теперь попробуйте определить положительное направление как направление, противоположное направлению магнитного поля, то есть положительное направление находится слева на рисунке 20.31. В этом случае вы обнаружите отрицательный ток. Но поскольку положительное направление находится влево, отрицательный ток должен течь вправо, что снова согласуется с тем, что мы обнаружили с помощью закона Ленца.
Рабочий пример
Магнитная индукция из-за изменения размера цепи
Схема, показанная на рисунке 20.32, состоит из U-образного провода с резистором, концы которого соединены скользящим токопроводящим стержнем. Магнитное поле, заполняющее область, ограниченную контуром, имеет постоянное значение 0.01 T. Если стержень тянут вправо со скоростью v = 0,50 м / с, v = 0,50 м / с, какой ток индуцируется в цепи и в каком направлении он течет?
Рисунок 20.32 Схема ползунка. Магнитное поле постоянно, и шток тянется вправо со скоростью v . Изменяющаяся область, заключенная в цепи, вызывает в цепи ЭДС.
СТРАТЕГИЯ
Мы снова используем закон индукции Фарадея, E = −NΔΦΔt, E = −NΔΦΔt, хотя на этот раз магнитное поле остается постоянным и площадь, ограниченная контуром, изменяется.Схема состоит из одного контура, поэтому N = 1. N = 1. Скорость изменения площади ΔAΔt = vℓ.ΔAΔt = vℓ. Таким образом, скорость изменения магнитного потока составляет
20,20ΔΦΔt = Δ (BAcosθ) Δt = BΔAΔt = Bvℓ, ΔΦΔt = Δ (BAcosθ) Δt = BΔAΔt = Bvℓ,, где мы использовали тот факт, что угол θθ между вектором площади и магнитным полем равен 0 °. Зная ЭДС, мы можем найти ток, используя закон Ома. Чтобы найти направление тока, мы применяем закон Ленца.
Решение
Закон индукции Фарадея дает
20.21E = −NΔΦΔt = −Bvℓ.E = −NΔΦΔt = −Bvℓ.Решение закона Ома для тока и использование предыдущего результата для ЭДС дает
20,22I = ER = −BvℓR = — (0,010 Тл) (0,50 м / с) (0,10 м) 20 Ом = 25 мкА.I = ER = −BvℓR = — (0,010 Тл) (0,50 м / с) (0,10 м ) 20 Ом = 25 мкА.Когда стержень скользит вправо, магнитный поток, проходящий через контур, увеличивается. Закон Ленца говорит нам, что индуцированный ток создаст магнитное поле, которое будет противодействовать этому увеличению. Таким образом, магнитное поле, создаваемое индуцированным током, должно попадать на страницу.Сгибание петли пальцами правой руки по часовой стрелке заставляет большой палец правой руки указывать на страницу, что является желаемым направлением магнитного поля. Таким образом, ток должен течь по цепи по часовой стрелке.
Обсуждение
Сохраняется ли энергия в этой цепи? Внешний агент должен тянуть стержень с достаточной силой, чтобы просто уравновесить силу на проводе с током в магнитном поле — вспомните, что F = IℓBsinθ.F = IℓBsinθ. Скорость, с которой эта сила действует на стержень, должна уравновешиваться скоростью, с которой схема рассеивает мощность.Используя F = IℓBsinθ, F = IℓBsinθ, сила, необходимая для протягивания проволоки с постоянной скоростью v , равна
. 20.23Fpull = IℓBsinθ = IℓB, Fpull = IℓBsinθ = IℓB,, где мы использовали тот факт, что угол θθ между током и магнитным полем составляет 90 ° .90 °. Подставляя приведенное выше выражение для тока в это уравнение, получаем
20.24Fpull = IℓB = −BvℓR (ℓB) = — B2vℓ2R.Fpull = IℓB = −BvℓR (ℓB) = — B2vℓ2R.Сила, создаваемая агентом, тянущим стержень, равна Fpullv, или Fpullv, или
. 20.25Ppull = Fpullv = −B2v2ℓ2R.Потяните = Fpullv = −B2v2ℓ2R.Мощность, рассеиваемая схемой, составляет
. 20,26Pdissipated = I2R = (- BvℓR) 2R = B2v2ℓ2R.Pdissipated = I2R = (- BvℓR) 2R = B2v2ℓ2R.Таким образом, мы видим, что Ppull + Pdissipated = 0, Ppull + Pdissipated = 0, что означает, что мощность сохраняется в системе, состоящей из цепи и агента, который тянет стержень. Таким образом, в этой системе сохраняется энергия.
.