Как подключить автомобильный диодный мост к трансформатору: Как подключить автомобильный диодный мост к трансформатору

Содержание

Как подключить автомобильный диодный мост к трансформатору

Главная > Дороги > Как подключить автомобильный диодный мост к трансформатору

можно ли сделать простое зарядное устройство из трансформатора 12v и автомобильного Кириллдиодного моста? | Автор топика: Валентин

аккумолятор авто

Ярослав Собрать можно.

Выход от транса подключаешь к мосту Василий .А с алюминиевых «подков»выход постоянного тока. Но 12 в явно мало-он должен давать порядка 18 в. Часть напряжения будет сажаться на диодах, а часть на внутреннем сопротивлении транса.

Илья Смотря что надо заряжать.
——-
Тогда можно.

Вячеслав Нужно выше 12в и регулировка зарядного тока.

Николай Транс должен быть соотв. мощности, ведь зарядный ток должен быть 1/10 часть ёмкости акк

Михаил Напряжение надо 16вольт мощность транса не менее 80вт. диоды жел на 10ампер. самое простое паставить реостат послед аккумурят .Если сам не сталкивался попроси знакомых помогут

Геннадий  12 вольт мало. Сопротивление R1 зависит от напряжения на выходе моста.

в этом видео описано как можно применить диоды от моста автомобильного генератора.

хочу подключить диодный мост Владимир от генератора москвича к трансформатору ну незнаю как подскажите. | Автор топика: Петр

Диодный мост Андрей может у кого есть схемы зарание спасибо!

Валерий  Там трехфазный мост. Подключить можно, но часть диодов не будут работать. Вот штатная схема:

Петр а нахрена?? ? есть же нормальные диодные мосты Иван в радиомагазине

Дмитрий выбей 2 и спаяй зачем тебе всю сборку ляпать

Советы начинающим: способы не спать за рулем от …

… это смертельноопасное и часто подводит водителей в дальней дороге. … Он выспится и поможет не уснуть тебе, отвлекая разговорами. … Кола тоже чуть помогает, кофеин все таки :)) Лично я кофе не пью, энергетики не признаю. ….. Иногда матаюсь из дома в Москву в основном ночью(порядка 750 км).

схема сборки своими руками, подключение к трансформатору

Автор Aluarius На чтение 5 мин. Просмотров 1.6k. Опубликовано

Преобразовать переменный ток в постоянный поможет диодный мост – схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный – достаточно часто встречающаяся необходимость.

Принцип действия полупроводникового диода

Полупроводниковый диодРис. 1

Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

  • повышенная степень пульсаций выпрямленного напряжения;
  • низкий КПД;
  • большой вес трансформатора и его нерациональное использование.

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

Схема диодного моста

Схема диодного мостаРис. 2

Диодный мост – схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное – к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 – закрыты.

Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное – к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат – более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.


Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста – необходимость замены всей сборки при выходе из строя даже одного диода.

Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.

Выпрямитель на основе диодного моста

Рис. 3Рис. 3

Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

Диодный мост – это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

назначение и схема подключения, как собрать своими руками

Схема подключения диодного мостаПростейшим преобразователем переменного тока в постоянный является диодный мост. Им называется такой элемент электрической цепи, который состоит из нескольких диодов, соединённых друг с другом по специальной схеме. Придуманный ещё в 1895 году такой способ включения до сих пор успешно применяется в электроцепях. Практически ни один блок питания не обходится без его использования, ведь фактически все электронные схемы запитываются от источников постоянного тока.

История изобретения

В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.

В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

Сфера применения диодного мостаВ середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

Изобретателем же схемы выпрямительного моста считается электротехник из Польши Карол Поллак. Позже в журнале Elektronische Zeitung опубликовали результаты исследований Лео Гретца, поэтому в литературе можно встретить и другое название диодного моста — схема или мост Гретца.

Физические процессы

Виды диодных мостовВ основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

Схема диодного моста

Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

Схема сборки из диодов

Как самим собрать диодный мостВыражение «мост из диодов» происходит от слияния двух слов, подчёркивающих принцип работы устройства. Под этим словосочетанием понимается электрический прибор, служащий для преобразования переменного тока в пульсирующий. Состоит он из четырёх диодов, образующих соединение по схеме Гретца.

Переменное электрическое напряжение представляет собой гармонический сигнал, амплитуда которого изменяется по синусоидальному закону во времени. Условно его можно представить в виде отрицательных и положительных полуволн. При подаче сигнала на вход диода через него может пройти только одна полуволна, в результате чего на выходе направление тока станет односторонним.

На этом принципе и работает диодный мост. Но так как один диод при прохождении через него изменяющегося во времени сигнала даёт на выходе только пачку импульсов, то для получения действительно постоянного напряжения необходимо, чтобы устройство выпрямляло две полуволны. Другими словами, являлось двухполупериодным.

Схема диодного мостаДля создания полноценного выпрямителя схема диодного моста должна обеспечивать преобразование как положительной, так и отрицательной составляющей сигнала. Если диоды подключить по схеме Гретца, то в каждый полупериод волны ток сможет протекать только через два элемента. То есть устройство будет поочерёдно выпрямлять каждую полуволну.

При подаче на вход моста переменного напряжения в тот момент, когда сигнал будет описываться положительной составляющей, диоды VD2 и VD3 будут для него открыты, а VD1 и VD4 заперты. При смене полярности состояние выпрямителей изменится, ток потечёт через VD4 и VD1, в то время как VD3, VD2 окажутся закрытыми.

В итоге форма сигнала станет постоянной, так как на выходе устройства практически не будет промежутка времени, при котором напряжение будет равно нулю. При этом частота выходного сигнала увеличится вдвое. Например, если на устройство подать напряжение 220 в из электросети, то на его выходе получится постоянный ток с частотой 100 Гц. Это пульсирование считается паразитным, мешающим работе электронных узлов, поэтому в электрических схемах выход прибора подключается к электролитическому конденсатору, сглаживающему пульсации. Такая схема применяется в однофазных сетях, в трёхфазных же используется шесть диодов, работающих попарно (по аналогии со схемой Гретца).

Виды и характеристики

Трехфазный диодный мостСовременная промышленность выпускает различные по конструкции и характеристикам устройства. Все выпрямительные мосты разделяют на два вида: монолитные и наборные. Первые выполняются в цельном диэлектрическом корпусе, наподобие микросхемы, и имеют четыре вывода. Форма их корпуса может быть прямоугольной, квадратной, цилиндрической. При этом тип корпуса может быть также любым, например, SOT 23, MDI, SDIP, SMD.

На корпусе обычно подписываются полярные ноги символами + и —, соответствующие выходному сигналу. Входные же выводы могут не подписываться или обозначаться знаком тильды ~. Вторые же представляют собой четыре отдельных диода, запаянных по схеме моста, чаще всего в специально отведённые для них места на плате.

При работе выпрямительный мост может нагреваться, поэтому некоторые конструкции предполагают их совместное использование с радиатором. Как и любой электрический прибор, мост характеризуется рядом параметров:

  1. Самодельные диодные мостыНаибольшее обратное напряжение, В — характеризуется максимальным значением напряжения, приложенного при обратном включении диодов, подача которого на прибор не приводит к его повреждению. Превышение этого значения вызывает пробой, то есть полупроводник превращается в проводник.
  2. Действующее напряжение, В — определяется среднеквадратичным значением амплитуды входного сигнала.
  3. Максимальный ток, А — это величина, определяющая наибольшую мощность, которую может потреблять нагрузка, подключённая к прибору.
  4. Максимальное падение напряжения, В — этот параметр обозначает потери мощности сигнала на элементе, то есть фактически характеризует эффективность прибора. Потери мощности связаны с активным внутренним сопротивлением устройства, на котором электрическая энергия преобразуется в тепловую.
  5. Интервал рабочих температур, С — обозначает диапазон, в котором характеристики устройства практически не изменяются.

Кроме этого, в зависимости от типа используемых диодов устройства могут быть высокочастотными и импульсными. Первые используются в цепях с высокочастотным электричеством. Диоды, на базе которых собирается конструкция, называются Шотки. В них вместо классического p-n перехода используется контакт металл-полупроводник. Вторые же являются обычными выпрямителями.

Обозначение и маркировка

Где используются диодные мостыУсловно-графическое обозначение полупроводникового моста на принципиальных электрических схемах выглядит как ромб, из вершин которого выходят прямые короткие линии, символизирующие выводы. Каждый вывод подписывается знаком, соответствующим виду сигнала. Так, плюсом обозначается положительный выход, минусом — отрицательный, а тильдой — входы для подачи переменного сигнала. В середине ромба может как изображаться выпрямительный диод, так и нет.

В литературе, различных спецификациях и на схемах устройство подписывается латинскими символами VDS, после которых ставится арабская цифра, обозначающая порядковый номер. В иностранной литературе можно также встретить обозначение BDS. Стандарта для маркировки мостов не существует. Каждый производитель обозначает свою продукцию, как хочет, согласно своей системе.

Если внимательно изучить различные обозначения, то можно проследить тенденцию в маркировке, нанесённой на корпус прибора. На ней почти всегда присутствуют данные о его основных характеристиках. То есть указывается максимальный ток или рабочее напряжение. Например, DB151S — первые две цифры обозначают ток 1,5 А, а вторая напряжение согласно таблице, в этом случае 50 В.

Схема подключения и назначение диодного моста

Отечественные изделия классифицируются по-другому. Сам мост обозначается буквой «Ц», стоящее за ней число обозначает материал, а последующие цифры номер разработки. Например, популярный мостик у радиолюбителей выдерживающий обратное напряжение до 400 В, маркируется как КЦ407А.

Самостоятельное изготовление

Выпрямительные однофазные мосты обычно не являются дефицитными радиодеталями, поэтому их можно купить и выбрать по необходимым параметрам практически в любом радиомагазине. Но не всегда есть на это время, поэтому нужный мост можно собрать и своими руками. Для этого понадобится подготовить:

  1. Назначение диодного мостаЧетыре одинаковых по своим характеристикам диода. Можно в принципе брать и любые, но следует понимать, что общие параметры моста будут определяться самым слабым элементом.
  2. Монтажный провод.
  3. Паяльник.
  4. Пинцет.
  5. Флюс и припой.
  6. Бокорезы.
  7. Электрическую схему диодного моста выпрямителя.

После того как всё подготовлено, на первом этапе залуживают выводы диодов. Для этого ножки радиоэлементов смазываются флюсом, и на них с помощью разогретого паяльника переносится олово, образующее тонкий слой. На следующем этапе диоды соединяются согласно схеме.

Для этого необходимо знать, где у элемента катод, а где анод. На схеме аноду соответствует вершина треугольника, а катоду — основание. На самом же элементе обозначается только анод. Это может быть полоска, точка или условно-графическое обозначение, смещённое к одному из выводов.

Затем берутся два элемента, и анод одного соединяется с катодом другого. Аналогичное действие повторяется и для оставшихся элементов. В итоге получается пара, каждая из которых состоит из двух диодов. Далее, между собой спаиваются катоды, а поле — аноды. После того как диоды соединены к точкам пайки, подсоединяются проводники, формирующие выводы устройства. На последнем этапе конструкция проверяется с помощью мультиметра.

Проверка радиоприбора

Чтобы проверить мост, понадобится взять цифровой прибор и переключить его в режим прозвонки диодов. На мультиметре этот режим соответствует символу диода. К тестеру подключается щуп чёрного цвета в гнездо COM, а красного в V/Ω. Суть проверки заключается в прозвонке переходов. Если за вывод № 1 принять положительный электрод устройства, за № 2 и 3 — входы для переменного сигнала, а за № 4 — отрицательный выход, то тестирование можно выполнить в следующем порядке:

  1. Проверка диодного моста мультиметромЧёрным щупом дотрагиваются до первого вывода, а красным до третьего. На экране тестера должно загореться трёхзначное число, обозначающее сопротивление перехода. При смене полярности на табло должна появиться единица (бесконечность).
  2. Красным щупом дотрагиваются до третьего вывода, а чёрным — до четвёртого. Тестер должен показать бесконечность, а при смене полярности должно появиться трёхзначное число.
  3. К первой ноге подключается чёрный провод, а ко второй — красный. Прибор должен показать сопротивление перехода, при смене полярности — обрыв.
  4. К третьему выводу подключается красный провод, к четвёртому — чёрный. Переход звониться не должен. При смене положения проводов тестер должен показать сопротивление.

Если все четыре пункта выполняются, то можно считать, что выпрямитель собран правильно и находится в работоспособном состоянии. При этом таким способом можно проверить любой полупроводниковый мост.

Назначение и практическое использование

Как подключить диодный мостОбласть использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

  • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
  • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
  • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

Проверка на работоспособность

Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

Блок питания

Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

  1. Понижающий трансформатор.
  2. Выпрямительный мост.
  3. Фильтр.

Применение диодного мостаСинусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

Трёхфазный выпрямитель

Разновидности диодных мостовНа производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

Таким образом, использование мостовых выпрямителей позволяет преобразовывать переменный ток в постоянный, которым запитывается вся электронная аппаратура. Самостоятельно сделать диодный мост несложно. При этом его применение позволяет получить не только качественный сигнал, но и повысить надёжность устройства в целом.

Диодный Мост Схема Подключения — tokzamer.ru

А вот в N-P переходе эти два вида токов встречаются.


Диодный мост — это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим.
Что будет если подключить диодный мост к трансформатору!? — Опыт

Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются.

Обратите внимание!

Но если в решётку добавить атомы определённых элементов легирование , физические свойства такого материала кардинально изменяются.

Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Он состоит из 6 диодов, по паре диодов на каждую фазу.

Диодный мост. Принцип работы схемы.

Устройство выпрямителя и схема подключения

Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Это выход выпрямленного, пульсирующего напряжения тока. Он максимально передаёт габаритную мощность трансформатора.


Его величина возрастает и зависит только сопротивления p- и n- области. Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно.

Создавая, таким образом, разность потенциалов на одноимённых выводах. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения.

При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки.

Но для работы приборов с постоянным источником питания такой переворот недопустим. При выходе из строя одного диода требуется замена всей детали, исключая возможность удаления одного элемента.

В итоге получится квадрат, в углах которого образовались следующие соединения: анод, катод — вход одного провода переменного напряжения; анод, анод — выход отрицательного потенциала; катод, анод — вход второго провода переменного напряжения; катод, катод — выход положительного потенциала. Состав выпрямительного модуля Всем, кто хотел бы более подробно ознакомиться с тем, что такое выпрямитель, советуем сделать небольшой исторический экскурс.

Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.
Как проверить диодную сборку типа KBPC.

Читайте также: Документы необходимые для проведения аудита энергохозяйства

Схема и принцип работы диодного моста

Схема диодного моста Рис. Наибольший рабочий ток выпрямления.

С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Ответ изображён на следующем рисунке. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.


Результат — более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора. В случае выхода из строя одного диода в составе монолитной сборки менять придется всю ее целиком несмотря на то, что три оставшихся элемента могут быть исправными.

Пульсации сглаживаются, а напряжение становится близким к постоянному. Схема подключения устройства На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами.

Следуя из названия, собран мост из 4 или 6 диодов. Работая с обеими полуволнами переменного напряжения, диодный мост выгодно отличается от однополупериодных выпрямителей.

Принцип работы диодного моста


Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром.

В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста.

Его величина возрастает и зависит только сопротивления p- и n- области. Устройство выпрямителя и схема подключения На сегодняшний день не придумано ничего лучшего для полноценного выпрямления напряжения, чем обычный диодный мост.
ЧТО ТАКОЕ ДИОДНЫЙ МОСТ

Что такое диоды

Схема диодной сборки Из приведенного выше рисунка видно, что в мостовую схему входят четыре полупроводниковых элемента диода , порядок соединения которых соответствует встречно-параллельному принципу. Любое преобразование напряжения требует применения диодных мостов.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. В электронике данная схема применяется в настоящее время повсеместно.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное — к катоду VD3. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление.

Схема диодного моста Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей , которые активно применяются в электронике. Его превращение в постоянный — достаточно часто встречающаяся необходимость. В области соединения материала n- и p-типа существует потенциальный барьер.

Статья по теме: Объем испытаний

Физические свойства p-n перехода

Также в нем будет рассмотрен вопрос, касающийся того, как сделать диодный мост своими руками. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный. Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Пару слов о том, как работает диодный мост.

Схема и принцип работы диодного моста На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения В. Диод Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп.

Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока. Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, то есть является постоянным.

Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. При загорании включенного через ограничивающий резистор светодиода можно быть уверенным в том, что на выходе появился постоянный потенциал. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Однако отдельные образцы современных электронных устройств ваш мобильный, например нуждаются в постоянном или выпрямленном напряжении.
Способы соединения диодных мостов, выпрямителей для увеличения их максимального тока и напряжения

Как подсоединить диодный мост — Moy-Instrument.Ru

Что такое диодный мост схема устройства

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. Как сразу слышно, в данном термине присутствует слово «диод». И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов.

Предназначение диодного моста — преобразовывать напряжение переменное в напряжение постоянное.

Схема диодного моста

Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

На схеме, как и на корпусе моста две точки для подачи переменного напряжения обозначены значком «

». А с двух других проводов или выходов, плюса и минуса, снимается постоянное напряжение.

Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно. Как известно диод пропускает напряжение, только превышающее ноль, в противоположном случае диод заперт, а переменное напряжение изменяет свою величину в течение времени. Вроде бы все понятно.

Но получается, что при таком методе получения из переменного напряжения постоянный ток, по этой «замечательной» схеме, диод оставляет только положительную полуволну, а отрицательную срезает. Вместе с ней он просто срезает половину мощности тока переменного напряжения. Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Вышеописанную ситуацию исправляет диодный мост схема которого разрабатывалась специально для того, чтобы отрицательную полуволну перевернуть. Получиться вторая положительная полуволна и вся мощность электрического тока будет сохранена. В результате диодный мост подает постоянный ток, с напряжением, пульсирующем в два раза большей частотой, чем частота сети переменного тока.

Уверен, схема в особом описании не нуждается, главное помнить, куда подключать переменное напряжение, а откуда получают постоянный ток. Теперь давайте посмотрим на работу диода и диодного моста на практике. На корпусе диода, практически любого производителя, катод помечен точкой или полоской. Для безопасности экспериментов используем трансформатор, выдающий двенадцать вольт.

На осциллографе видно, что максимальная амплитуда 16 с половиной вольт, следовательно, простые расчеты (делим на корень из двух максимальное амплитудное значение) говорят, что действующее напряжение имеет значение 11.8 В.

Теперь припаяем к проводу обмотки (вторичной, естественно) трансформатора диод и измеряем осциллографом. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения. Соответственно, потерялась и половина мощности.

Теперь возьмем еще три таких же диода и собираем диодный мост. Подключаем к обмотке трансформатора диодный мост, там, где вход для переменного тока, а с двух оставшихся точек снимаем щупами прибора постоянное напряжение. Смотрим на осциллограф и видим на экране пульсирующее напряжение, но без потери мощности.

Как сделать диодный мост видео

Для того чтобы не возиться с диодами и пайкой, промышленность выпускает готовые диодные мосты в одном корпусе с четырьмя контактами, отечественные — побольше, а импортные покомпактнее. На диодных мостах советского производства промаркированы и контакты постоянного тока, и контакты для переменного напряжения.

Если подключить импортный диодный мост к переменному напряжению и осциллографу, вы увидите, что эта радиодеталь отлично работает, выдавая пульсирующий постоянный ток. Сам диодный мост если проверять, то только прозвонив каждый из четырех диодов.

Итак, теперь вы знаете для чего нужен в радиоэлектронике диодный мост схема и принцип действия которого описаны в данной статье. Следует отметить, что это весьма популярная деталь, широко применяемая в самой разнообразной радиоаппаратуре, подключаемой к электрической сети. Магнитофон, телевизор, зарядное устройство для мобилки — везде используется диодный мост.

Схема и принцип действия диодного моста

Преобразовать переменный ток в постоянный поможет диодный мост – схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный – достаточно часто встречающаяся необходимость.

Принцип действия полупроводникового диода

Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

  • повышенная степень пульсаций выпрямленного напряжения;
  • низкий КПД;
  • большой вес трансформатора и его нерациональное использование.

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

Схема диодного моста

Диодный мост – схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное – к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 – закрыты.

Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное – к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат – более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.

Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста – необходимость замены всей сборки при выходе из строя даже одного диода.

Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.

Выпрямитель на основе диодного моста

Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

Диодный мост – это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

Подключение и принцип работы диодного моста в схеме стабилизатора

Основой бытовой питающей сети является переменное напряжение 220В. Оно преобразуется в разнообразные пониженные уровни. Однако для питания многих приборов и устройств необходимо постоянное и стабильное напряжение. Основой преобразования служит диодный мост, установленный в схему стабилизатора после понижающего трансформатора.

Принцип работы диодного моста

Природа переменного напряжения такова, что оно по принципу волны меняет плюсовой всплеск на минусовой. Но для работы приборов с постоянным источником питания такой переворот недопустим. Требуется выпрямитель, а, возможно, и стабилизатор. Мост, как заправский регулировщик направляет положительную полуволну в одну сторону, а отрицательную — в другую. Создавая, таким образом, сортирующий фильтр на пути прохождения переменного тока. На выходе диодного моста получаются периодические пульсации соответствующей полярности, а для их первичного сглаживания применяют электролитический конденсатор большой ёмкости.

Устройство выпрямителя и схема подключения

На сегодняшний день не придумано ничего лучшего для полноценного выпрямления напряжения, чем обычный диодный мост. Он максимально передаёт габаритную мощность трансформатора. Работая с обеими полуволнами переменного напряжения, диодный мост выгодно отличается от однополупериодных выпрямителей.

Следуя из названия, собран мост из 4 или 6 диодов. Это зависит от подключения к однофазной или трёхфазной сети. Они имеют одинаковые электрические характеристики и соединены особым образом. Полупроводники, чем собственно и являются диоды, перенаправляют разноимённые полупериоды переменного напряжения на «плюсовой» или «минусовой» выводы. Создавая, таким образом, разность потенциалов на одноимённых выводах. Диоды, соответственно, и преобразовывают напряжение с выводов подключённого трансформатора.

Выпускаемый в форме одной детали, мост имеет 4 вывода:

» — вход переменного напряжения;
«

» — вход переменного напряжения;

  • «+» — положительный выход потенциала;
  • «–» — отрицательный выход потенциала.
  • Моноблок обладает значительными положительными достоинствами. Собранный в едином корпусе, он обеспечивает одинаковый тепловой режим работы всех его компонентов. Это стабилизирует характеристики диодов, включённых в его состав. Облегчается монтаж на печатную плату, и, соответственно, удешевляется весь процесс сборки.

    Однако надо отметить и недостаток, вытекающий из применения единого корпуса. При выходе из строя одного диода требуется замена всей детали, исключая возможность удаления одного элемента.

    Область применения

    Электронные схемы питаются в основном постоянным напряжением. Компьютеры, например, используют потенциал в 5 вольт, а для ремонта электронных устройств применяются блоки питания на 12 и 24 вольта. Даже заряжая, уже привычный, смартфон для выпрямления напряжения используется всё те же 4 полупроводника. В автомобиле генератор вырабатывает трёхфазное переменное напряжение, и для дальнейшего применения его необходимо выпрямить и стабилизировать. Любое преобразование напряжения требует применения диодных мостов.

    Самостоятельное изготовление

    Начинающие радиолюбители часто сталкиваются с вопросом электропитания своих поделок. Часто приходится изготавливать блок питания своими руками. Однако не все знают как сделать диодный мост и при этом правильно подключить его к схеме стабилизатора. Следует подробно остановиться на этой задаче и способе её решения.

    Диод — это полупроводник с двумя электродами. Они называются анод и катод. Преследуя цель сделать мост и правильно собрать его схему, необходимо взять 4 одинаковых выпрямительных диода. Проверить, по справочнику, соответствие проходящего тока и параметры расчётной мощности. Правильный подбор послужит основой надёжной работы выпрямителя.

    Следующим шагом будет сборка отдельных элементов в диодный мост. Необходимо взять 2 диода и соединить анод одного с катодом другого. Сделать то же самое с оставшимися полупроводниками. Образовались две одинаковые пары со свободными электродами. Далее, соединяем катод одной сборки с соответствующим выводом второй. Повторим эту процедуру с оставшимися анодами. В итоге получится квадрат, в углах которого образовались следующие соединения:

    • анод, катод — вход одного провода переменного напряжения;
    • анод, анод — выход отрицательного потенциала;
    • катод, анод — вход второго провода переменного напряжения;
    • катод, катод — выход положительного потенциала.

    Таким образом, получилась классическая схема диодного моста. Осталось подать переменное напряжение с трансформатора и снимать практически постоянное. Однако пульсации на выходе диодного моста могут повлиять на работу подключённого устройства. Для сглаживания подобных всплесков применяются фильтры и электролитические конденсаторы большой ёмкости. Создавая более стабильное питание, необходимо использовать схемы стабилизаторов, подключаемых к выходу диодного моста.

    Диодный мост

    Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

    Обозначение на схеме

    Диодный мост на схемах выглядит подобным образом:

    Иногда в схемах его обозначают еще так:

    Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “

    ”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

    Принцип работы

    Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

    Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

    Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

    На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

    Практические опыты

    Для начала возьмем простой диод.

    Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

    Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

    На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.

    Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

    3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

    Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

    Припаяем к одному концу вторичной обмотки трансформатора наш диод.

    Цепляемся снова щупами осциллографа

    Смотрим на осциллограмму

    А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

    Находим еще три таких диода и спаиваем диодный мост.

    Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

    С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

    Вот, теперь порядок.

    Виды диодных мостов

    Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

    Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ”

    “, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.

    Существует множество видов диодных мостов в разных корпусах

    Есть даже автомобильный диодный мост

    Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

    В основном трехфазные диодные мосты используются в силовой электронике.

    Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

    Как проверить диодный мост

    1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

    2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “

    ”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.

    Значит, импортный диодный мост исправен.

    Резюме

    Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

    Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

    Диодный мост схема, принцип работы

    В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

    Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

    Принцип работы диодного моста

    Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

    Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

    Трехфазный диодный мост схема

    Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

    Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

    Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

    Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

    Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

    Навигация по записям

    8 thoughts on “ Диодный мост схема, принцип работы ”

    Как будет выглядеть синусоида, при полключении двух фаз?

    Вопрос на засыпку.
    Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле.
    Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так.
    Так как работает однофазный мост установленный 3 раза на каждую фазу и объединенный общим минусом?

    Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.

    Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.

    Если бы было замыкание был бы бабах, а его не и все работает только криво.

    сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?

    Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В).
    Если смотреть трехфазные схемы, то там и без фильтров пульсации меньше. Среднее выходное напряжение будет сильно зависеть от схемы включения.
    Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.

    Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).

    Диодный мост

    Схема диодного моста

    Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

    Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

    Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


    Схема диодного моста

    Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

    В железе это выглядит следующим образом.


    Диодный мост из отдельных диодов S1J37

    Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

    Как работает диодный мост?

    Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

    ») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

    Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

    Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

    Обозначение диодного моста на схеме.

    На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

    Диодная сборка.

    Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

    Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

    Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

    ». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

    Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

    Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

    Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

    Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

    В реальности сборка диодного моста может выглядеть вот так.


    Диодная сборка KBL02 на печатной плате


    Диодная сборка RS607 на плате компьютерного блока питания

    А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

    Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

    Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

    Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


    Условное изображение диодного моста и диодной сборки

    Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

    На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

    Где применяется схема диодного моста?

    Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

    Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

    В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

    Зарядное для автомобильного аккумулятора своими руками: схема и описание

    Простое самодельное зарядное устройство для автомобильного аккумулятора, сделанное своими руками.

    Самое простое зарядное для АКБ автомобиля, можно сделать из трансформатора от советского телевизора. Полностью разряженный автомобильный аккумулятор, он заряжает в течение суток.

    Схема зарядного устройства для автомобильного аккумулятора.

     

    Для изготовления самого простого зарядного устройства, понадобится: трансформатор и диодный мост.

    С трансформатора нужно убрать все вторичные обмотки. Первичная обмотка всегда первая от сердечника. Можно найти выводы первичной обмотки следующим способом, чтобы убедиться, что это действительно первичная обмотка, нужно проверить ее сопротивление. На таком трансформаторе оно должно быть примерно 7 ом.

    При отсутствии мультиметра, можно проверить другим способом.

    Подключить последовательно к обмотке, лампочку на 40 ватт. И включить в сеть. Если это первичная обмотка, то лампочка будет гореть менее чем в пол накала. В том случае если это окажется вторичная, то лампа загорится на всю мощность.

    Нужно намотать вторичную обмотку, несколько витков провода, и проверить напряжение мультиметром. В таком тр-ре, витковый коэффициент равен 1:3. то есть на 1 вольт нужно мотать 3 витка и + на потери 5%.

    Добавляя витки, необходимо рассчитать их количество, чтобы после диодного моста напряжение было 14.2 вольта. При таком напряжении выхода, зарядка АКБ будет идти в нормальном режиме.

    Затем нужно подключить вторичную обмотку к диодному мосту. Диодный мост я взял с генератора от трактора Т-150, так как у меня он был, но подойдёт любой другой. Можно например собрать мост из 4 диодов Д122-40.

    Подсоединяем выход + -.

    Вот и всё, получаем простое зарядное устройство для автомобильного аккумулятора, сделанное своими руками.


    Автор самоделки: Электроник.

    Как правильно подключить диодный мост к трансформатору

    Выпрямитель – это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

    Определение

    Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

    Различают два типа выпрямителей:

    Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

    Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

    Что значит стабилизированное и нестабилизированное напряжение?

    Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

    Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

    Выходное напряжение

    Основные величины переменного напряжения – амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

    Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

    Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

    Амплитудное напряжение в сети 220В равняется:

    Схемы

    Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

    Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

    Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

    Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

    О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

    1. Выпрямитель по схеме Гретца или диодный мост;

    2. Выпрямитель со средней точкой.

    Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

    Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

    Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

    По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

    Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

    Сглаживание пульсаций

    Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

    Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

    Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

    Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

    Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

    Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

    где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

    Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

    Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

    Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

    Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

    Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

    Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

    Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

    Как сделать блок питания своими руками?

    Простейший блок питания постоянного тока состоит из трёх элементов:

    Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью – Как устроен компьютерный блок питания.

    Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

    У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

    Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

    Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

    Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

    Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

    Входное напряжение должно превышать выходное на 2-2.5В.

    Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

    Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

    На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

    Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

    Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

    Как сделать мостовой выпрямитель

    Мостовой выпрямитель — это электронная сеть, использующая 4 диода, которая используется для преобразования входного переменного тока в выход постоянного тока. Этот процесс называется двухполупериодным выпрямлением.

    Здесь мы изучим основной принцип работы выпрямительных диодов, таких как 1N4007 или 1N5408, а также узнаем , как подключить диоды 1N4007 для быстрого построения мостовой выпрямительной схемы .

    Введение

    Диоды — один из важных электронных компонентов, используемых для преобразования переменного тока в постоянный.Диоды имеют свойство пропускать постоянный ток в указанном направлении и выпрямлять переменный ток через свои выводы. Давайте изучим компоненты более подробно.

    Диоды — это крошечные электронные компоненты, которые обычно узнаваемы по цилиндрическому корпусу черного цвета с белой полосой по краю.

    Распиновка диодов

    У них есть два штифта на двух концах корпуса.

    Выводам, также называемым выводами, присваивается соответствующая полярность, называемая катодом и анодом.

    Вывод, выходящий из стороны с полосами, является катодом, а противоположный вывод — анодом.

    Диоды черного цвета обычно рассчитаны на более высокий ток, в то время как меньшие диоды красного цвета имеют гораздо более низкую номинальную мощность.

    Номинальная мощность показывает, какой ток можно пропустить через устройство, не нагревая его до опасного уровня.

    Диоды выполняют одну важную функцию, которая становится их исключительной собственностью. Когда переменный ток подается через анод и землю диода, выход через катод и землю представляет собой постоянный ток, что означает, что диод может преобразовывать переменный ток в постоянный с помощью процесса, называемого выпрямлением.

    Как происходит выпрямление в диодах

    Мы знаем, что переменный ток состоит из нестабильного напряжения, то есть напряжение и ток постоянно меняют свою полярность от нуля до заданного максимального пика напряжения, а затем он падает обратно до нуля, затем возвращается к отрицательной полярности и направляется к отрицательному пику напряжения и постепенно возвращается к нулевой отметке для повторения еще одного аналогичного цикла.

    Это повторяющееся изменение полярности или циклов может иметь определенные периоды времени в зависимости от частоты переменного тока или наоборот.

    Когда вышеупомянутый переменный ток вводится на анод диода относительно земли, отрицательные циклы блокируются диодом, и разрешается проходить только положительным циклам, которые появляются на катоде диода относительно земли.

    Теперь, если тот же самый переменный ток подается на катод диода относительно земли, положительные циклы блокируются, и мы можем получить только отрицательные циклы относительно земли.

    Таким образом, в зависимости от полярности диода, приложенный переменный ток эффективно выпрямляется, так что только заданное напряжение появляется на другом конце или выходе устройства.

    В случае, если требуется обработать оба цикла переменного тока для повышения эффективности и для получения полностью выпрямленного переменного тока, используется мостовой выпрямитель.

    Конфигурация мостового выпрямителя представляет собой интеллектуальную схему из четырех диодов, при которой приложенный переменный ток в сети приводит к выпрямлению обеих половин цикла переменного тока.

    Это означает, что как положительная половина, так и отрицательная половина цикла преобразуются в положительные потенциалы на выходе конфигурации моста.Такое расположение приводит к лучшему и более эффективному сигналу переменного тока.

    Фильтрующий конденсатор обычно используется на выходе моста, так что провалы или мгновенные отключения напряжения могут быть скомпенсированы за счет заряда, хранящегося внутри конденсатора, и для создания хорошо оптимизированного и более плавного постоянного тока на выходе.

    Как сделать схему мостового выпрямителя с использованием диодов 1N4007

    Изготовить мостовой выпрямитель с использованием четырех диодов 1N4007 совсем не сложно.Просто скрутив выводы четырех диодов по определенной схеме, мостовой выпрямитель можно сделать за секунды.

    Для изготовления мостового выпрямителя можно выполнить следующие шаги:

    • Возьмите четыре диода 1N4007.
    • Возьмите два из них и совместите их стороны с полосами или катоды вместе так, чтобы они удерживались в форме стрелки.
    • Теперь плотно скрутите клеммы, чтобы соединение сохраняло ориентацию. Держите эту пару диодов в стороне.
    • Теперь выберите оставшуюся пару диодов и повторите описанную выше процедуру, однако убедитесь, что теперь противоположные концы или аноды проходят через описанные выше шаги.
    • Наконец, пришло время исправить последнюю мостовую сеть, которая выполняется путем объединения двух вышеупомянутых сборок вместе с их соответствующими свободными концами, как показано на рисунке.
    • Конструкция мостового выпрямителя готова и может использоваться по назначению.

    В качестве альтернативы описанному выше методу изготовления моста можно следовать и на печатной плате, вставив диоды в печатную плату в соответствии с объясненной ориентацией и припаяв их в необходимых местах.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    .

    Теория схемы мостового выпрямителя с рабочим режимом

    Bridge Rectifier Bridge Rectifier Мостовой выпрямитель

    Схема мостового выпрямителя является общей частью электронных источников питания. Для многих электронных схем требуется выпрямленный источник постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока. Мы можем найти этот выпрямитель в большом количестве электронных устройств питания переменного тока, таких как бытовая техника, контроллеры двигателей, процессы модуляции, сварочные аппараты и т. Д.

    Что такое мостовой выпрямитель?

    Мостовой выпрямитель — это преобразователь переменного тока в постоянный (DC), который выпрямляет входной переменный ток сети в выход постоянного тока.Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств. Они могут быть сконструированы с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.
    В зависимости от требований к току нагрузки выбирается соответствующий мостовой выпрямитель. Номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальный переходный ток, номинальный прямой ток, требования к установке и другие соображения принимаются во внимание при выборе источника питания выпрямителя для соответствующей области применения электронной схемы.


    Типы мостовых выпрямителей

    Выпрямители Bride подразделяются на несколько типов в зависимости от следующих факторов: тип источника питания, возможности управления, конфигурация схемы подключения и т. Д. Мостовые выпрямители в основном подразделяются на однофазные и трехфазные. Оба эти типа далее подразделяются на неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые из этих типов выпрямителей описаны ниже.

    1. Однофазные и трехфазные выпрямители

    Single Phase and Three Phase Rectifiers Single Phase and Three Phase Rectifiers Однофазные и трехфазные выпрямители

    Характер питания, т.е.е. однофазное или трехфазное питание решает эти выпрямители. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть неуправляемые или управляемые выпрямители, в зависимости от компонентов схемы, таких как диоды, тиристоры и так далее.

    2. Неуправляемые мостовые выпрямители

    PCBWay PCBWay
    Uncontrolled Bridge Rectifiers Uncontrolled Bridge Rectifiers Неуправляемые мостовые выпрямители

    В этом мостовом выпрямителе используются диоды для выпрямления входа, как показано на рисунке.Поскольку диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Такая конфигурация диодов в выпрямителе не позволяет изменять мощность в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания.

    3. Управляемый мостовой выпрямитель

    Controlled Bridge Rectifier Controlled Bridge Rectifier Управляемый мостовой выпрямитель

    В этом типе выпрямителя, преобразователя переменного / постоянного тока или выпрямителя — вместо неуправляемых диодов используются управляемые твердотельные устройства, такие как SCR, MOSFET, IGBT и т. Д.используются для изменения выходной мощности при разных напряжениях. Посредством срабатывания этих устройств в различные моменты времени выходная мощность на нагрузке изменяется соответствующим образом.

    Схема мостового выпрямителя

    Основным преимуществом мостового выпрямителя является то, что он дает почти вдвое большее выходное напряжение, чем в случае двухполупериодного выпрямителя с трансформатором с центральным отводом. Но для этой схемы не нужен трансформатор с центральным ответвлением, поэтому она похожа на недорогой выпрямитель.

    Схема мостового выпрямителя состоит из различных каскадов устройств, таких как трансформатор, диодный мост, фильтрация и регуляторы.Обычно все эти комбинации блоков называют регулируемым источником постоянного тока, питающим различные электронные устройства.

    Первый каскад схемы — это трансформатор понижающего типа, который изменяет амплитуду входного напряжения. В большинстве электронных проектов используется трансформатор 230/12 В для понижения напряжения сети переменного тока с 230 В до 12 В переменного тока.

    Bridge Rectifier Circuit Diagram Bridge Rectifier Circuit Diagram Схема мостового выпрямителя

    Следующим этапом является диодно-мостовой выпрямитель, в котором используются четыре или более диодов в зависимости от типа мостового выпрямителя.При выборе конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя необходимо учитывать некоторые особенности устройства, такие как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Оно отвечает за создание однонаправленного или постоянного тока на нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.

    Так как выход после выпрямителя с диодным мостом имеет пульсирующий характер, и для его создания в виде чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны.Этот номинал конденсатора также зависит от выходного напряжения.

    Последней ступенью этого стабилизированного источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне. Предположим, микроконтроллер работает при 5 В постоянного тока, но выход после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня — независимо от изменений напряжения на входе — необходим регулятор напряжения.

    Работа мостового выпрямителя

    Как мы обсуждали выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключается поперек нагрузки.Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть приведенную ниже схему в демонстрационных целях.

    Во время положительного полупериода входного сигнала переменного тока диоды D1 и D2 смещены в прямом направлении, а D3 и D4 — в обратном направлении. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводить — ток нагрузки начинает течь через него, как показано на схеме ниже в виде красных линий.

    Bridge Rectifier Operation Bridge Rectifier Operation Работа мостового выпрямителя

    Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном направлении.Ток нагрузки начинает течь через диоды D3 и D4, когда эти диоды начинают проводить ток, как показано на рисунке.

    Мы можем заметить, что в обоих случаях направление тока нагрузки одинаковое, то есть вверх-вниз, как показано на рисунке — так однонаправлено, что означает постоянный ток. Таким образом, с помощью мостового выпрямителя входной переменный ток преобразуется в постоянный. Выходной сигнал на нагрузке с этим мостовым выпрямителем имеет пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр, такой как конденсатор.Эта же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей срабатывание тиристоров необходимо для подачи тока на нагрузку.

    Это все о теории мостовых выпрямителей, их типах, схемах и принципах работы. Мы надеемся, что этот полезный материал по этой теме будет полезен при создании студентами электронных или электрических проектов, а также при наблюдении за различными электронными устройствами или приборами. Благодарим вас за внимание и внимание к этой статье.И поэтому, пожалуйста, напишите нам для выбора требуемых характеристик компонентов в этом мостовом выпрямителе для вашего приложения и для любых других технических рекомендаций.

    Фото:

    .

    Схема одного транзисторного автоматического зарядного устройства

    Последнее обновление by Swagatam

    Эта схема дешевого транзисторного зарядного устройства предназначена для автоматического отключения питания аккумулятора, как только аккумулятор полностью зарядится. уровень.

    В этой статье описывается очень простая однотранзисторная автоматическая схема зарядного устройства, в которой используется всего один транзистор для определения напряжения, а также для автоматического отключения батареи от источника питания, когда она полностью заряжена.

    Работа схемы

    Как показано на схеме, мы можем увидеть простую конфигурацию, в которой одиночный транзистор подключен в стандартном рабочем режиме. Функционирование схемы можно понять с помощью следующих пунктов:

    Учитывая, что заряжаемая батарея — это батарея на 12 вольт, мы знаем, что рекомендуется заряжать батарею, пока она не достигнет значения от 13,9 до 14,3 вольт.

    Базовое напряжение транзистора регулируется с помощью предустановки P1, так что транзистор просто проводит и управляет реле при напряжении около 14 вольт.

    Как отрегулировать пороговое значение

    Эта регулировка становится точкой срабатывания цепи высокого напряжения и используется для отключения напряжения зарядки аккумулятора, когда он полностью заряжен или его напряжение достигает примерно 14 вольт.

    Нижняя точка срабатывания цепи не может быть отрегулирована, так как эта схема слишком проста и не включает функцию обнаружения низкого напряжения.

    Однако сам транзистор снабжен функцией выключения на случай, если его базовое напряжение станет слишком низким.

    Обычно транзистор общего назначения, подобный показанному (BC547), при настройке на включение при 14 вольт может иметь нижний порог около 10 вольт, когда он может просто выключиться.

    Такая большая разница напряжений между верхним заданным порогом и нижним естественным порогом связана с большим гистерезисом конструкции. Это действует как естественный гистерезис конструкции.

    Нижний порог в 10 вольт опасно низок, и мы не можем ждать, пока цепь перезапустит процесс зарядки, пока напряжение батареи не упадет до этого опасного уровня в 10 вольт.

    Разрядка аккумулятора до 10 В может сделать аккумулятор навсегда разряженным и сократить срок его службы. . Поэтому для устранения этой проблемы в схеме нужно было как-то снизить уровень гистерезиса. Это делается путем установки пары диодов на эмиттер транзистора.

    Мы знаем, что обычно на диодах 1N4007 падение напряжения составляет около 0,7 вольт, а на двух диодах — 1,4 вольт. Вставляя два диода последовательно с эмиттером транзистора, мы заставляем транзистор выключиться 1.На 4 В раньше, чем его нормальный указанный предел в 10 вольт.

    Таким образом, теперь нижний порог срабатывания схемы становится 10 + 1,4 = 11,4 В, что можно считать нормальным для аккумулятора и для автоматического перезапуска процесса зарядки.

    После обновления обоих пороговых значений в соответствии со стандартными требованиями к зарядке у нас теперь есть автоматическое зарядное устройство для автомобильных аккумуляторов, которое не только дешево в сборке, но и достаточно умно, чтобы очень эффективно заботиться о состоянии заряда аккумулятора.

    Принципиальная схема

    Перечень деталей для предлагаемой схемы одного транзисторного автоматического зарядного устройства

    R1 = 4K7
    P1 = предустановка 10K,
    T1 = BC547B,
    Реле = 12В, 400 Ом, SPDT,
    TR1 = 0 — 14В, ток 1/10 батареи AH
    Мостовые диоды = равны номинальному току трансформатора
    , эмиттерные диоды
    = 1N4007,
    C1 = 100 мкФ / 25 В

    Дизайн печатной платы
    О Swagatam

    Я инженер-электронщик ( dipIETE), любитель, изобретатель, разработчик схем / плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

    .

    3 простых схемы ИБП постоянного тока для модема / маршрутизатора

    В следующей статье мы обсудим 3 полезных схемы источника бесперебойного питания постоянного тока или схемы ИБП постоянного тока для источников бесперебойного питания с низким постоянным током

    Первая идея ниже представляет схему ИБП постоянного тока может использоваться для обеспечения резервного питания модемов или маршрутизаторов во время сбоев в электросети, так что широкополосное / WiFi-соединение никогда не прерывается. Идею запросил г-н Галив.

    Технические характеристики

    Мне нужна такая схема, как
    У меня есть два адаптера постоянного тока на 12 В (600 мА и 2 А).
    При наличии входной сети с адаптером 600 мА я хочу заряжать аккумулятор (7,5 Ач), а с адаптером 2 А я хочу использовать свой Wi-Fi роутер.
    при отключении сети переменного тока аккумулятор будет обеспечивать резервное копирование моего Wi-Fi роутера без перебоев. Как ИБП.
    Модем MY рассчитан на 12 В 2,0 А. Вот почему я хочу использовать два адаптера постоянного тока 12 В.

    Конструкция

    Два адаптера фактически не требуются для предлагаемого применения. Один адаптер, вероятно, тот, который используется для зарядки аккумулятора ноутбука, может также использоваться для зарядки внешнего аккумулятора.

    Глядя на данную принципиальную схему ИБП с модемом постоянного тока, мы можем увидеть простую, но интересную конфигурацию, включающую пару диодов D1, D2 и резистор R1.

    Обычно зарядное устройство для ноутбука рассчитано на 18 В, поэтому для зарядки аккумулятора на 12 В его необходимо снизить до 14 В. Это легко сделать с помощью транзисторного стабилитрона.

    При наличии сети напряжение на катоде D1 больше положительного, чем на D2, что поддерживает обратное смещение D2. Это позволяет проводить только D1, подавая напряжение с адаптера на модем.

    D2 выключается, подключенная батарея начинает получать необходимое зарядное напряжение через R1 и начинает заряжаться в процессе.

    В случае выхода из строя сети переменного тока D1 отключается и, следовательно, позволяет D2 проводить, позволяя напряжению батареи мгновенно достигать модема, не вызывая перебоев в сети.

    R1 следует выбирать в зависимости от силы тока зарядки подключенного аккумулятора.

    Намного лучшая и улучшенная версия вышеупомянутого показана на следующей диаграмме:

    2) Схема повышающего ИБП от 6 В до 220 В

    Вторая схема объясняет простую схему ИБП с повышающим преобразователем для подачи бесперебойного питания на спутниковое ТВ. ящики, чтобы запись в автономном режиме никогда не прерывалась во время отключения электроэнергии.Идея была предложена г-ном Анируддха Мукхерджи.

    Технические характеристики

    Я энтузиаст, увлекающийся электроникой. Хотя я знаю только основы, я уверен, что вы должны получать сотни писем ежедневно, и я полностью рассчитываю на свою удачу, если это попадет вам в «глаза»

    Мое требование:

    16 вольт Резервный источник постоянного тока 1 А для моей квартиры Централизованный распределительный щит Tata sky.
    Проблема: люди, обслуживающие мою квартиру, не используют резервное копирование (генератор) в дневное время, у меня есть цифровой видеорегистратор Tata sky, который не может записывать, поскольку происходит потеря сигнала из-за сбоя питания.

    Разрешение:

    Я подумал о небольшой резервной системе, я купил небольшую схему балласта CFL на 6 вольт и 11 ватт, думая как дешевое альтернативное решение, но то же самое не сработало.

    Почему я ищу источник переменного тока вместо постоянного тока? Я не хочу вмешиваться в их систему и получать штрафы за любые сбои, которые могут возникнуть в результате естественного хода работы.

    Не могли бы вы помочь мне с очень простой рентабельной схемой, которая даст мне 220 вольт 20 ватт мощности от 6 вольт 5ач батареи.Если быть точным, 220 вольт от 6-вольтовой батареи, так как я недавно купил 6-вольтовую 5-ач батарею . Требуемая выходная мощность составляет менее 20 Вт, характеристики адаптера
    :

    Выход — 16 вольт 1 ампер
    Вход — 240 вольт 0,06 ампер

    Я знаю, у вас много работы, но если бы вы могли уделить немного времени и помочь мне с этим, это было бы большим подспорьем. спасибо

    Спасибо,
    Aniruddha

    Конструкция

    Поскольку сегодня все электронные системы используют источник питания SMPS, вход не обязательно должен быть переменного тока для питания этого оборудования, а скорее его эквивалентом Постоянный или импульсный постоянный ток также становятся полезными и работают так же хорошо.

    Ссылаясь на диаграмму выше, можно увидеть несколько разделов, конфигурация IC1 позволяет повысить постоянный ток 6 В до гораздо более высокого импульсного постоянного тока 220 В через топологию повышающего преобразователя с использованием IC 555 в нестабильной форме. Крайняя левая аккумуляторная секция обеспечивает переключение с сети на резервную батарею каждый раз, когда цепь обнаруживает сбой питания.

    Идея довольно проста и не требует особой проработки.

    Как работает схема

    IC1 сконфигурирован как нестабильный генератор, который управляет T1 и, следовательно, L1 с одинаковой частотой.

    T1 индуцирует полный ток батареи через L1, в результате чего на нем появляется пропорционально повышенное напряжение во время периодов выключения T1 (индуцированная обратная ЭДС от L1).

    L1 должен быть соответствующим образом рассчитан так, чтобы он генерировал требуемую величину напряжения на показанных клеммах.

    Указанные 200 витков ориентировочно рассчитаны и могут потребовать значительных изменений для достижения запланированного 220 В от входного источника питания 6 В.

    T2 введен для регулирования выходного напряжения до желаемого безопасного уровня, который здесь составляет 220 В.

    Z1 должен быть стабилитроном 220 В, который проводит только при превышении этого предела, что вынуждает T2 проводить и заземлять вывод 5 ИС, останавливая частоту на выводе 3 до нулевого напряжения.

    Вышеупомянутый процесс постоянно быстро корректируется, обеспечивая постоянное напряжение 220 В на выходе.

    Адаптер, который можно увидеть в крайнем левом углу, используется по двум причинам: во-первых, чтобы гарантировать, что IC1 работает непрерывно и выдает необходимое 220 В для подключенной нагрузки независимо от наличия сети (как и в онлайн-системах ИБП), а также для обеспечения зарядного тока аккумулятора при наличии сетевого напряжения.

    Соответствующий транзистор TIP122 предназначен для генерации регулируемого постоянного тока 7 В для аккумулятора, а также для ограничения чрезмерной зарядки аккумулятора.

    Использование выключения операционного усилителя

    Если вам нужна точная схема, которая будет точно контролировать батарею ИБП постоянного тока и реализовывать требуемые выключения при перезарядке и низком разряде, следующая конструкция может оказаться полезной.

    3) Схема резервного ИБП постоянного тока

    В рамках этой третьей концепции ниже мы изучим пару простых резервных цепей ИБП для обеспечения безопасного бесперебойного питания важнейших устройств, таких как компьютер ATX или модемы и т. Д.Идея была предложена г-ном Шаяном Фирузи.

    Цели и требования схемы

    1. Есть много продуктов, которые имеют 2 входа для разных источников питания, например, один для нормальной сети, один для генератора или другой сети, например, серверы, маршрутизаторы и некоторое критическое оборудование, которое мы называем это резервные источники питания
    2. У меня есть оборудование, которое потребляет 3 ампера при 12 вольт постоянного тока, если я использую 2 передачи с 12 вольт, 3-амперный выход, который берет на себя ответственность, а какой ждет первой потери ?? Оба одинаковы по напряжению и силе тока, я не хочу, чтобы они работали вместе,
    3. Я хочу, чтобы второй блок питания был в режиме ожидания
    4. Просто простой вопрос: что произойдет, если я заменю батарею другим блоком питания на 12 вольт? Будет ли он работать как резервный или резервный источник питания?
    5. Спасибо за ваш ответ заранее. И если можно, расскажите нам о модели диода и других компонентов на 12 вольт 3 ампера

    Конструкция

    По запросу схема, описанная в приведенной выше ссылке, может быть изменена для работы с другим источником питания постоянного тока путем исключения батареи и связанных каскадов, как показано в следующей форме резервной схемы ИБП:

    Использование двух входов источника питания

    Как мы видим, схема предназначена для работы с парой источников питания блоки питания с идентичными характеристиками, так что при выходе из строя основного источника питания реле мгновенно переключается на дополнительный источник питания, обеспечивая бесперебойное питание подключенной нагрузки.

    Диод D1 гарантирует, что пока первичный источник питания активен, а реле находится в деактивированном положении, он подключается последовательно с D3, создавая большее прямое падение, чем диод первичного питания D4 … таким образом, позволяя первичному напряжению быть в команде и питании нагрузки.

    Однако, как только основной источник выходит из строя, D4 отключается, и на эту долю секунды D1 и D4 принимают на себя питание нагрузки, пока реле не переключится на обход D1 и включение полной номинальной мощности нагрузки.

    На следующей схеме показан метод, который позволяет включить батарею в предложенную резервную схему ИБП, а основной источник питания заменить солнечной панелью, что делает систему трехсторонней защищенной цепью ИБП.

    Использование источника питания с батареей

    Ссылаясь на схему, пока доступна солнечная энергия, реле остается активированным, обеспечивая отключение питающей сети 14 В от системы.

    Солнечная энергия тем временем заряжает аккумулятор, а также подключенную нагрузку через D1.

    Энергия батареи немного ниже, чем мощность солнечной панели, поэтому D2 остается деактивированным, так что только D1 может передавать солнечную энергию на подключенную нагрузку на выходе.

    Использование TIP122 для зарядки батареи постоянного тока

    TIP122 обеспечивает регулируемое и безопасное защищенное от перезарядки питание для батареи, которая заряжается исключительно через напряжение панели в дневное время.

    С наступлением ночи реле деактивируется в какой-то момент, когда солнечная энергия становится слишком слабой, чтобы удерживать реле в активном состоянии.

    Вышеупомянутое переключение мгновенно переключает питание от сети 14 В в систему, позволяя нагрузке переключаться на напряжение сети без прерывания.

    Питание от батареи гарантирует, что, пока реле переключается с солнечной батареи на питание от сетевого адаптера, оно компенсирует кратковременную потерю мощности при переключении за счет подачи собственного питания на нагрузку и предотвращения даже микросекундного перерыва в питании. Загрузка.

    Батарея также образует третью «линию защиты» на случай одновременного отказа как первичного, так и вторичного источника питания, и всегда находится в режиме ожидания для рекомендуемой работы схемы резервного источника бесперебойного питания.

    Первую резервную схему ИБП, включающую два источника питания, можно лучше модифицировать, как показано ниже, здесь видно, что реле Н / З напрямую связано с нагрузкой, что обеспечивает нулевое падение напряжения в линии питания:

    Модем ИБП с использованием зарядного устройства TP4056 Li-IOn

    Если вы заинтересованы в изготовлении ИБП 5 В постоянного тока для вашего маршрутизатора с использованием высокопроизводительных зарядных устройств, таких как TP4056 и модули повышающих преобразователей, вам может помочь следующая конструкция:

    Можно также построить вышеуказанную конструкцию без реле, как указано ниже:

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *