Как осуществляется передача электроэнергии – Передача электроэнергии — Википедия

Содержание

Передача электроэнергии — Википедия

Материал из Википедии — свободной энциклопедии

Передача электрической энергии — технология передачи энергии от мест генерирования к местам потребления. Передача электроэнергии осуществляется посредством электрических сетей, в состав которых входят преобразователи, линии электропередачи и распределительные устройства.

Возможность передачи электроэнергии на расстояние впервые обнаружил Стивен Грей в 1720-е годы. В опытах Грея заряд передавался по шёлковому проводу на расстояние до 800 футов[1]

До конца XIX века электричество использовалось только поблизости от мест генерации. Это, в свою очередь, ограничивало степень использования доступных ресурсов, так как большие мощности для местного производства не требовались. С изобретением электрического освещения необходимость передачи электричества на большие расстояния стало актуальной проблемой, так как освещение требовалось в первую очередь в крупных городах, удалённых от источников энергии[2].

В 1873 году Фонтен впервые продемонстрировал генератор и двигатель постоянного тока, связанные проводом длиной 2 км. В 1874 году Ф. А. Пироцкий осуществил передачу электроэнергии мощностью 6 л. с. на расстояние 1 км, а в 1876 году повторил опыт, используя в качестве проводника рельсы Сестрорецкой железной дороги длиной 3,5 км. В конце 1870-х — начале 1880-х Д. А. Лачинов показал, что потери энергии при передаче имеют обратную зависимость от напряжения, а П. Н. Яблочков и И. Ф. Усагин создали первые трансформаторы, что позволило Усагину на Всероссийской выставке в Москве в 1882 году продемонстрировать первую высоковольтную систему передачи электроэнергии, включавшую повышающий и понижающий трансформаторы и линию электропередачи. В том же году на Мюнхенской выставке опыт передачи постоянного электрического тока напряжением до 2000 В на расстояние 60 км продемонстрировал Марсель Депре, при этом потери составили 78 %

[2].

Прорывом в передаче электроэнергии на большие расстояния стал опыт М. О. Доливо-Добровольского на международной электротехнической выставке во Франкфурте-на-Майне в 1891 году, в ходе которого энергия от установки на реке Неккар в городе Лауффен была передана во Франкфурт по трёхфазной линии на 175 км. Энергия передавалась при напряжении 15200 В, преобразование осуществлялось с помощью трёхфазных трансформаторов. КПД линии достигал 80,9 %, а передаваемая мощность — более 100 л. с., использованных для работы электрического двигателя и освещения. Опыт способствовал внедрению трёхфазного переменного тока и высоковольтных систем передачи. К 1910 году в США появились первые линии 110 кВ, в 1923 — 220 кВ, в то же время началось внедрение высоковольтных линий в Европе

[2].

Передачи энергии на постоянном токе, в первую очередь, по системе Тюри, имела некоторое распространение в начале XX века, в частности, функционировали линия в Батуми протяжённость 10 км и линия Мутье-Лион протяжённостью 180 км, но в конце концов они были демонтированы и заменены линиями переменного тока

[2].

В настоящее время применяются схемы передачи, в которые входят[3]:

Схемы делятся на блочные, связанные и полусвязанные[4]

По типу линии электропередач[5]:

  • магистральные;
  • межсистемные.

По промежуточному отбору мощности[5]:

  • прямые;
  • с промежуточным отбором;
  • с промежуточной генерацией.

В линиях с промежуточным отбором и генерацией обычно предусматриваются дополнительные понижающие и повышающие трансформаторы для обеспечения нужд промежуточных потребителей электроэнергии и генерации.

По числу линий: одно-, двух- и трёхцепные[6].

Основным параметрами системы передачи энергии является пропускная способность P{\displaystyle P}[7]:

P=U2Z0{\displaystyle P={\frac {U^{2}}{Z_{0}}}}

где U{\displaystyle U} — напряжение, В;
Z0{\displaystyle Z_{0}} — волновое сопротивление, Ом.

Например, для линии 110 кВ пропускная способность составляет 30 МВт

Пропускную способность снижают потери энергии[8], другим ограничением является устойчивость параллельной работы синхронных машин, находящихся на концах линии[9].

  1. Храмов Ю. А. Грей Стефен (Gray Stephen) // Физики: Биографический справочник / Под ред. А. И. Ахиезера. — Изд. 2-е, испр. и дополн. — М.: Наука, 1983. — С. 91. — 400 с. — 200 000 экз. (в пер.)
  2. 1 2 3 4 Крачковский, 1953, с. 6—12.
  3. ↑ Крачковский, 1953, с. 23—24.
  4. ↑ Крачковский, 1953, с. 24.
  5. 1 2 Крачковский, 1953, с. 22.
  6. ↑ Крачковский, 1953, с. 23.
  7. ↑ Крачковский, 1953, с. 27.
  8. ↑ Крачковский, 1953, с. 28.
  9. ↑ Крачковский, 1953, с. 31.
  • Крачковский Н. Н. Передача электрической энергии на дальние расстояния / Отв. ред. академик А. В. Винтер. — М.: Издательство Академии наук СССР, 1953.
  • Герасименко А. А., Федин В. Т. Передача и распределение электрической энергии: Учебное пособие. — 2-е. — Ростов-на-Дону: Феникс, 2008. — 715 с. — (Высшее образование).

ru.wikipedia.org

популярные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры. Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы. Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные — более 750-ти кВ. Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ) Протяженность (км)
0,40 1,0
10,0 25,0
35,0 100,0
110,0 300,0
220,0 700,0
500,0 2300,0
1150,0* 4500,0*

* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс  полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

www.asutpp.ru

Как передается электроэнергия на расстоянии к потребителям

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии. Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД. В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов. Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi. Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный. Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно. Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Вот мы и рассмотрели схему передачи электричества от источника к дому. Надеемся, вам стало понятно, как передается электроэнергия на расстоянии к потребителям и почему для этого используют высокое напряжение.

Будет интересно прочитать:

samelectrik.ru

Передача электроэнергии на расстояние: принцип передачи

Передача тока на расстоянии сегодня это основа работы всех электроприборов дома и в условиях производства. Поэтому при подробном изучении электрики такой момент, как передача электроэнергии на расстояние, актуален. Об этом и о том, какие имеются потери электроэнергии при передаче на большие расстояния, другом далее.

Параметры

Главными конструктивными параметрами воздушной линии является длина пролета со стрелой проводного провеса, расстоянием от проводника до поверхности земли, покрытием пересекаемых дорожных линий и другим инженерным сооружением.

Передача электроэнергии на расстояние

Длина в промежуточном пролете — промежуток вдоль токовой линии, образующийся между несколькими смежными опорами. Длина пролета зависит от того, какой тип опор с маркой, проводным сечением и климатическим районным условием используется.

Стрела проводного провеса — промежуток по вертикальной линии между линией, который соединяет крепежные проводные точки на несколько опор смежного типа и низшую провесную точку в пролете. Провес зависит от длины пролета.

Габарит воздушной линии электропередач — наименьший промежуток расстояния по вертикали от проводника до земли, озера, связи, шоссейной или железной дороги. Его регламентируют правила установки электропередач. Он зависит от того, какое имеется напряжение в сети.

Обратите внимание! Чтобы обеспечить нормальную работу и безопасное обслуживание воздушной линии, нужно при установке соответствовать установленным нормам. Так проводное расстояние должно быть не меньше шести метров в поселке до земли по вертикали. Расстояние от верха до низа может быть меньше на 3,5 метров или же на 1 метр. Промежуток по горизонтали от проводника до балкона, террасы, здания и глухих окон не меньше метра. Стоит указать, что электропередачи не проводятся над сооружениями.

Параметры электропередачи

Принцип передачи

Передается электроэнергия благодаря возникновению и передачи тока. Он, в свою очередь, образуется благодаря напряжению. Мощность — это произведение показателя напряжения на электроток. Поэтому при увеличении напряжения, необходимо уменьшение передаваемого тока и уменьшения проводного сечения, которое нужно, чтобы передавать данную мощность и удешевить линию.

Принцип передачи

Способы электропередачи на дальние расстояния

Осуществление передачи электрической энергии можно сделать при помощи прямой передачи и преобразования электричества в другую энергию. В первом случае электричество идет по проводниковым элементам, а именно проводу или токопроводящей среде. В воздушной или кабельной линии используется данный метод электропередачи.

Обратите внимание! Благодаря преобразованию энергии в другую энергию открывается беспроводной способ снабжения потребителей. Из-за этого пользователи могут отказаться от электрической передачи и избавиться от монтажа и обслуживания.

Стоит также указать, что передается электроэнергия благодаря индуктивной, резонансной индуктивной, емкостной, магнитодинамической связи, свч-излучению и оптическому излучению. При этом переносчиком всех этих способов является магнитное и электрическое поле, а также видимый свет с инфракрасным излучением и ультрафиолетовым излучением.

Способы электропередачи

Передача через катушки

Самым легко реализуемым способом передачи электроэнергии является использовать катушку индуктивности. Принцип подключения при этом простой. Ставится несколько катушек рядом друг с другом. На одну подается напряжение, а другая является приемником. При регулировании или изменении силы тока, вторая катушка также автоматическим способом видоизменяется. По закону физику, при этом будет появляться сила, которая будет напрямую зависеть от того, как изменяется поток электрической энергии.

Минусов в подобной передачи энергии много. Они заключаются в маленькой мощности, небольшом расстоянии и малом коэффициенте полезного действия.

Данный способ не позволяет передать большой объем энергии и подключить мощностное электрооборудование. При попытке совершения этого, можно просто поплавить все электрообмотки.

Кроме того, данным методом нельзя передавать энергию на десятки с сотней метров. Он обладает ограниченным действием. Для физического понимания ситуации, нужно взять несколько и прикинуть местоположение и дальности их разводки, чтобы перестало появляться притяжение или отталкивание. Примерно так эффективны катушки.

Обратите внимание! Еще одной проблемой данного метода является низкий коэффициент полезного действия. Подобный способ не дает передачи большой энергии на соответствующее расстояние.

Передача энергии через катушки

Лазерный способ

С помощью линии электропередач передать энергию можно на приличное расстояние. Однако из-за наличия атмосферы, которая хорошо потребляет лазерную энергию, необходимо устанавливать подобное оборудование в космосе.

Лазерная передача энергии

Микроволны

Микроволны — специальные линии, имеющие длину в 12 сантиметров и частоту в 2,45 гигагерц, которые прозрачны для атмосферы. Вне зависимости от погоды, потеря энергии будет равна 5%. Вначале необходимо преобразование электротока в микроволны, потом их обнаруживание и возвращение в первое состояние. Первая проблема была решена благодаря постановке магнетрона, а вторая — благодаря ректенны или специальной антенны.

Микроволновая передача энергии

Схемы

На данный момент есть одноцепная, двухцепная или многоцепная схема электропередач. Одна из таких представлена на схеме ниже и может быть использована для обеспечения электроэнергией целого поселка или производственной станции. Другие схемы можно отыскать в гостах.

Схема электропередачи

В целом, электропередача энергии, благодаря которой функционирует вся домашняя и производственная сеть вместе с оборудованием, происходит катушками, лазером и микроволнами. Также есть способы перенаправления потока на дальние расстояния. Зависит это от длины проводов, стрелы их провеса, расстояния от земли и других факторов.

rusenergetics.ru

источники генерации энергии, передача ее на большие расстояния

Как и любой вид энергии, электрическая является силой, которая сообщается разными предметами друг другу. Получение и передача электроэнергии стала основным движущим фактором развития производства. Особенно актуально такое перемещение на большие расстояния. Разрабатывается возможность переброски энергетического потока без проводов, что создает большие перспективы в будущем.

Источники получения энергии

Прежде чем начать процесс передачи электроэнергии потребителю, необходимо ее получить. Этим вопросом занимаются электростанции, которых существует несколько видов:

  1. Тепловые. На первом этапе ведется сжигание органического топлива. Это может быть уголь, мазут или торф. Возникающая тепловая энергия преобразуется в механическую и только потом в электрическую. В некоторых случаях выработанное тепло сразу поступает в теплоцентрали и подается на производство.
  2. Гидроэлектростанции. Такие комплексы устанавливаются в местах протекания больших рек. Построенная плотина поднимает с одной стороны уровень воды, образуя водопад. Станция представляет собой сложную техническую конструкцию. Движущийся поток вращает турбины, которые превращают его силу в электрическую составляющую.
  3. Атомные станции. Здесь основным оборудованием является реактор. В нем происходит цепная реакция распада ядер тяжелых элементов. В качестве топлива используется плутоний или уран. Получаемое ядерное тепло затем преобразуется в электрическую энергию. Это наиболее перспективное направление развития, поскольку мировые ядерные запасы значительно превышают органические залежи топлива.

Также присутствует возможность выработки электричества при помощи солнечных лучей или силы ветра. В этих местах начинается генерация энергии, которая затем продолжает свое движение к потребителю. Территория любой станции является закрытой для посторонних. По ней не разрешается ходить без пропуска.

Движение электричества

Дальнейшая передача электрической энергии ведется по сетям. Они представляют собой комплекс оборудования, которое отвечает за распределение и поставку электричества потребителю. Их существует несколько разновидностей:

  1. Общие сети. Они обслуживают сельское хозяйство и производство.
  2. Контактные. Это выделенная группа, которая обеспечивает поставку электроэнергии движущемуся транспорту. Сюда входят поезда и трамваи.
  3. Для обслуживания удаленных объектов и инженерных коммуникаций.
  4. Автономные сети. Они обеспечивают электроэнергией крупные мобильные единицы. Это самолеты, морские суда и космические аппараты.

Передача на большие расстояния

Актуальность передачи электроэнергии на расстояние обуславливается тем, что электростанции снабжены мощным оборудованием, дающим на выходе большие показатели. Потребители же ее маломощные и разбросаны на большой территории. Строительство крупнейшего терминала обходится дорого, поэтому наблюдается тенденция к концентрации мощностей. Это существенно снижает затраты. Кроме того, значение имеет место размещения. Включается ряд факторов: близость к ресурсам, стоимость транспортировки и возможность работы в единой энергетической системе.

Чтобы понять, как осуществляется передача электроэнергии на большие расстояния, следует знать, что линии электропередач бывают постоянного и переменного тока. Главная характеристика — это их пропускная способность. Потери наблюдаются в процессе нагрева проводов или дальности расстояния. Передача осуществляется по следующей схеме:

  1. Электростанция. Она является источником образования электроэнергии.
  2. Повышающий трансформатор, который обеспечивает увеличение показателей до необходимых величин.
  3. Понижающий трансформатор. Он устанавливается на распределительных станциях и понижает параметры для подачи в частный сектор.
  4. Подача энергии в жилые дома.

Линии постоянного тока

В настоящее время больше отдается предпочтение передаче электроэнергии постоянным током. Это связано с тем, что все происходящие внутри процессы не носят волновой характер. Это значительно облегчает транспортировку энергии.

К преимуществам передачи постоянного тока относится:

  • небольшая себестоимость;
  • малая величина потерь;

Среди недостатков — невозможность установки ответвлений от основной ЛЭП. Связано это с тем, что в этих местах требуется монтаж преобразователей, которые обходятся очень дорого. Кроме того, создание выключателей высокого напряжения. Технически, это вызывает большие трудности.

Поставка переменного тока

К преимуществам транспортировки переменного тока относится легкость его трансформации. Осуществляется это при помощи приборов — трансформаторов, которые не отличаются сложностью в изготовлении. Конструкция электродвигателей такого тока значительно проще. Технология позволяет формировать линии в единую энергосистему. Этому способствует возможность создания выключателей в месте строительства ответвлений.

Передача энергии на большое расстояние имеет первостепенное значение для всех структур. Не всегда энергетические комплексы находятся близко, а в электричестве нуждаются везде. Без него не обойдется ни промышленность, ни общественные заведения, ни частный сектор.

220v.guru

Как осуществляется передача электрической энергии?

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. Электросетевое хозяйство — естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов, находящихся на подстанциях.

Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев — трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные.

Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:

широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;

незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;

эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.

Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах — коллекторах. Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков — для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения. Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки — вообще недоступны), что также является существенным эксплуатационным недостатком.

 


Вернуться назад

kt.tatarstan.ru

как осуществляется передача и получение

Современную жизнь трудно представить без электричества. Каждый день люди греют воду, пользуются компьютером и даже заряжают машину. Это говорит о том, что каждый аспект жизни неразрывно связан с электроэнергией. Но откуда она берется, как осуществляется передача электроэнергии на большие расстояния, почему люди так зависят от полезных ископаемых рассмотрено ниже.

Суть явления

В отличие от природных ресурсов вроде газа, электроэнергию невозможно закачивать в хранилища и брать оттуда столько, сколько нужно. Поэтому выработка электроэнергии напрямую зависит от потребления. Когда спрос на электричество больше, электростанция вырабатывает больше электроэнергии.

Повседневное использование электроэнергии

Таким образом, передачу электрического тока можно охарактеризовать как непрерывный процесс выработки, транспортировки и потребления. На государственном уровне передача электроэнергии относится к вопросам стратегической безопасности и является приоритетной задачей, на инфраструктуру которой ежегодно выделяются огромные суммы бюджетных средств.

Например, в России в 2018 году на благоустройство энергетической инфраструктуры было потрачено 30 миллиардов долларов.

Дополнительная информация. Недавно в Австралии была запущена первая в мире аккумулирующая электроэнергию станция фирмы Тесла. Саму электроэнергию добывают ветряки, которые заряжают гигантский блок батарей. От них энергия уже передается конечному потребителю по проводам. Таким образом, люди не остаются без электричества в безветренный день.

Решение проблемы ветряков аккумуляцией электроэнергии

Получение и передача

Для начала стоит затронуть тему получения энергии. За последние 150 лет человечество сделало огромный шаг в разработке способов добычи электричества. Сегодня используются невозобновляемые источники, например, сжигание угля и газа, и возобновляемые — движения воды, ветра.

Лучшие умы планеты работают над совершенствованием возобновляемых технологий добычи, проще говоря экологически чистых источников. Ведь потребление энергии растет с каждым годом и электростанциям приходится сжигать все больше угля и газа, тем самым исчерпывая природные запасы и нанося вред экологии. Другое дело ветряк или ГЭС, для которых ветер и вода никогда не закончатся. Но КПД от них пока крайне мал.

Виды электростанций

Так как в большинстве стран СНГ главным поставщиком электричества в дома являются местные ТЭС (Тепловые электростанции, работающие от угля, нефти или газа), нужно рассмотреть процесс получения именно на их примере.

Схема выработки энергии от сжигания полезных ископаемых на ТЭС

Как видно, процесс происходит следующим образом:

  1. Уголь и воздух подаются в топку.
  2. Жар от топки разогревает воду и превращает ее в пар.
  3. Пар под давлением подается на турбину.
  4. Мощный поток пара заставляет турбину вращаться.
  5. Вместе с турбиной начинает вращаться ротор генератора, который уже преобразует механическое движение в электричество.

Конечный смысл любой ЭС, неважно на каких источниках она работает, заключается во вращении турбины. На тепловых станциях турбину вращает пар, на ГЭС ­вода, в ветряке ветер.

Ввиду дороговизны строить в каждом городе по электростанции невозможно. На деле большинство станций обеспечивают электричеством один крупный мегаполис и сотни приближенных сел, деревень и ПГТ.

Прежде чем попасть в населенный пункт, добытая энергия проходит десятки, а то и сотни километров. Тут стоит рассказать о том, каким образом ток вообще путешествует по проводам.

После выхода с генератора станции электрический ток попадает на трансформатор для повышения напряжения до 1150 кВ. Зачем это делается? Чем больше напряжение, тем меньше электричество теряет свою мощность, путешествуя по кабелю. Но, что еще немаловажно — это затраты на передачу электричества. Чем выше напряжение, тем меньшего сечения провода нужны. Чем тоньше кабель, тем меньше в нем проводящего металла. Чем меньше металла, тем он дешевле.

Высоковольтные линии электропередачи

Тем не менее, существует и некоторый эффект рассеивания электричества. Пока ток пройдет сотню километров, он неизбежно потеряет некоторое количество своей мощности. Так же снижение КПД зависит от силы сопротивления металла в кабеле.

Дополнительная информация. Ученые рассматривают вопрос об исключении проводов из цепочки передачи электроэнергии. Для этого планируется использовать всем знакомую технологию Wi-Fi.

ЛЭП

Тут стоит рассказать о том, какие сети используются для передачи электроэнергии. От электростанции до конечного потребителя электричество проходит не только через повышающий трансформатор и высоковольтные линии. Если посмотреть на современный город с высоты, можно заметить целый клубок проводов, образующий единую сеть.

Чтобы попасть к потребителю, с высоковольтных линий ток заново поступает в трансформатор, но на этот раз напряжение понижается. После чего он подается на распределительную сеть и расходится на промышленные предприятия, которые имеют свою подстанцию для получения нужного им напряжения, на городские подстанции, которые расформировывают электричество по магистральным кабелям и на районные подстанции.

Городская подстанция

От районных подстанций через линии электропередач электричество подается в частные, многоквартирные дома и объекты инфраструктуры. В спальных микрорайонах кабеля от подстанций в основном прокладывают под землей, откуда они выходят уже на щиток подъезда, который дальше распределяет ток на каждую розетку и лампочку в доме.

Силовой ящик многоэтажки

Схемы передачи

На первый взгляд полная схема передачи электроэнергии от вращающейся турбины до розетки квартиры может показаться сложной и запутанной, но если посмотреть на схему, то все становится на свои места.

Структурная схема электроснабжения

Стоит обратить внимание, что если в городе нет промышленных предприятий, то подстанции для промышленного объекта и всей представленной для нее ветви в реальности не будет. Все остальные объекты электрической инфраструктуры будут присутствовать до изобретения беспроводной передачи.

На приведенной выше схеме можно заметить магистральные кабельные линии. Они могут быть двух типов — одиночные и с двухсторонним питанием. Двухсторонние сегодня более распространены, так как одиночные менее надежны, плюс на них тяжело отыскать место повреждения. Таким образом, конечный пользователь всегда снабжен электричеством, и поломки на магистралях ему незаметны.

Схема двухсторонней магистрали

Электричество получают, используя возобновляемые и невозобновляемые источники энергии для вращения турбины. Турбина приводит в действие ротор генератора, который и генерирует электричество. Для передачи тока трансформатор увеличивает его напряжение, а перед тем, как пустить его на городскую сеть, напряжение понижают обратно. Таким образом уменьшаются потери и затраты на строительство сетей. После этого электричество подается на городскую подстанцию, которая запитывает районные подстанции, а уже от них прокладываются разветвленные линии конечным потребителям.

rusenergetics.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о