Как определить фазы a b c. Основные понятия и определения
В нашем садоводческом товариществе установили трёхфазный электросчётчик с трансформатором тока. Счетчик был новый со всеми пломбами. Однако при полностью отключенной нагрузке диск счётчика медленно вращается, то есть у счётчика обнаружился «самоход». Понятно, платить товариществу за учитываемую счетчиком энергию, которую оно фактически не использовало, не хотелось.
Сначала решили, что счетчик неисправен. Заменяли счетчики несколько раз, но «самоход» оставался. В результате пришли к другому выводу — счетчик не виноват. Стали думать, что же вызывает подобный «самоход»? В заводской инструкции, приложенной к трёхфазному счетчику, записано: подключать счётчик к сети необходимо, соблюдая последовательность чередования фаз, чтобы фаза А сети была бы подключена к первому зажиму счётчика, фаза В — ко второму, а фаза С — к третьему зажиму счётчика.
Последовательность чередования фаз легко установить с помощью фазоуказателя. Таковой всегда имеется на электростанциях, в электрохозяйствах крупных заводов, но откуда ему быть в садоводческих товариществах? Наша попытка заполучить фазоуказатель на прокат на пару дней в крупном учреждении не удалась.
Устройство для определения последовательности чередования фаз в трехфазной сети
Итак, вышеупомянутое «Устройство для определения последовательности чередования фаз» предназначено для определения фазы, в которой напряжение отстаёт от напряжения в фазе, произвольно взятой для начала отсчёта. Знание этого отставания необходимо для правильного подключения к сети приборов, в которых требуется соблюдать последовательность чередования фаз, например, трёхфазных четырёхпроводных (с нулем) электросчетчиков.
Конструкция устройства достаточно простая (рис. 1). На основании из электроизоляционного материала, например текстолита, размещены два настенных электропатрона с ввинченными в них обычными осветительными лампами накаливания, закрытыми прозрачными кожухами, изготовленными из пластиковой тары от соков, воды и т. д. На основании укреплены также конденсатор и клеммы для подключения проводов.
Одни выводы от ламп и конденсатора спаяны (точка О), другие концы проводов соединены с клеммами А, В и С (рис. 2).
Принцип действия «Устройства для определения последовательности чередования фаз» таков. При подключении «Устройства…» к трехфазной сети из-за наличия конденсатора в каждой фазе изменяется напряжение, что приводит к разному накалу ламп. (В нашем случае к конденсатору подсоединена фаза В.) По величине накала (яркости свечения ламп) и судят о принадлежности оставшихся фаз (проводов) к фазе А или к фазе С.
8.1.Основные понятия и определения
Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.
В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.
Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.
Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а
tmzs.ru
Чередование фаз в трехфазной сети – что это и как проверить
Часто на объектах электроснабжения приходится решать задачу проверки чередования фаз, а также производить фазировку. Обычно эти задачи входят в комплекс работ по согласованию параллельной работы трансформаторов. Хочется поделиться небольшой историей, в которой будут затронуты темы чередования фаз в трехфазной сети и правильной фазировки, а также приборы и методы, использующиеся при этом.
Небольшое вступление
Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили короткое замыкание. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.
Что собой представляет чередование фаз?
Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.
Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, как пользоваться фазоуказателем, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.
Как выполнить проверку?
Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.
Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.
Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или осциллограф.
Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, как пользоваться мультиметром, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.
На видео ниже наглядно показывается, как проверить чередование фаз:
Когда нужно учитывать порядок?
Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.
Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.
Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь снять наружную изоляцию кабеля. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о цветовой маркировке проводов вы можете узнать из нашей статьи.
Но все же слепо доверяться такой маркировке нельзя. Так, на практике бывают случаи, что производители кабеля не могут гарантировать что в начале и в конце кабеля цвет жил будет один и тот же. Поэтому нужно все равно прозвонить жилы прозвонкой.
Теперь вы знаете, что такое чередование фаз в трехфазной сети и как его проверить с помощью приборов. Надеемся, информация была для вас полезной и интересной!
Советуем также прочитать:
samelectrik.ru
Электротехника. Трехфазные электрические цепи
Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет – УПИ»
Электротехника: Трехфазные электрические цепи
Учебное пособие
В.С. Проскуряков, С.В. Соболев, Н.В. Хрулькова Кафедра «Электротехника и электротехнологические системы»
Екатеринбург 2007
2
Оглавление
1.Основные понятия и определения
2.Получение трехфазной системы ЭДС.
3.Способы соединения фаз в трехфазной цепи.
4.Напряжения трехфазного источника.
5.Классификация приемников в трехфазной цепи.
6.Расчет трехфазной цепи при соединении фаз приемника «Звездой»
7.Значение нейтрального провода
8.Расчет трехфазной цепи при соединении фаз приемника «треугольником»
9.Мощность трехфазной цепи
3
Трехфазные электрические цепи.
1. Основные понятия и определения
Трехфазная цепь – это совокупность трех электрических цепей, в которых
действуют синусоидальные ЭДС, одинаковые | по амплитуде и частоте, | ||
сдвинутые по фазе одна от другой на угол | 2π | =120° и создаваемые общим | |
3 |
| ||
|
|
|
источником энергии.
Каждую отдельную цепь, входящую в трехфазную цепь принято называть фазой.
Таким образом, термин «фаза» имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей.
Трехфазная цепь является частным случаем многофазных систем переменного тока.
Широкое распространение трехфазных цепей объясняется рядом их преимуществ по сравнению как с однофазными, так и с другими многофазными цепями:
•экономичность производства и передачи энергии по сравнению с однофазными цепями;
•возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;
•возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.
Каждая фаза трехфазной цепи имеет стандартное наименование:
первая фаза – фаза «А»; вторая фаза – фаза «В»; третья фаза – фаза «С».
Начала и концы каждой фазы также имеют стандартные обозначения. Начала первой, второй и третьей фаз обозначаются соответственно А, В, С, а концы фаз – X, Y, Z.
Основными элементами трехфазной цепи являются: трехфазный генератор, преобразующий механическую энергию в электрическую; линии электропередач; приемники (потребители), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
4
2. Получение трехфазной системы ЭДС.
Трехфазный генератор создает одновременно три ЭДС, одинаковые по величине и отличающиеся по фазе на 1200.
Получение трехфазной системы ЭДС основано на принципе электромагнитной индукции, используемом в трехфазном генераторе. Трехфазный генератор представляет собой синхронную электрическую машину. Простейшая конструкция такого генератора изображена на рис. 3.1.
Рис. 3.1. Схема устройства трехфазного генератора
На статоре 1 генератора размещается трехфазная обмотка 2. Каждая фаза трехфазной обмотки статора представляет собой совокупность нескольких катушек с определенным количеством витков, расположенных в пазах статора. На рис. 3.1 каждая фаза условно изображена одним витком. Три фазы обмотки статора генератора повернуты в пространстве друг относительно друга на 1/3 часть окружности, т.е. магнитные оси фаз повернуты в пространстве на угол
23π =120°. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z.
Ротор 3 генератора представляет собой постоянный электромагнит, возбуждаемый постоянным током обмотки возбуждения 4. Ротор создает постоянное магнитное поле, силовые линии которого показаны на рис.3.1 пунктиром. При работе генератора это магнитное поле вращается вместе с ротором.
5
При вращении ротора турбиной с постоянной скоростью происходит пересечение проводников обмотки статора с силовыми линиями магнитного поля. При этом в каждой фазе индуктируется синусоидальная ЭДС.
Величина этой ЭДС определяется интенсивностью магнитного поля ротора и количеством витков в обмотке.
Частота этой ЭДС определяется частотой вращения ротора.
Поскольку все фазы обмотки статора одинаковы (имеют одинаковое количество витков) и взаимодействуют с одним и тем же магнитным полем вращающегося ротора, то ЭДС всех фаз имеют одинаковую амплитуду Em и частоту ω.
| 2π | Но, так | как магнитные оси фаз в | пространстве повернуты на | угол | ||||||||
| =120°, начальные фазы их ЭДС отличаются на угол | 2π | . |
| |||||||||
3 |
|
| |||||||||||
|
|
|
|
|
|
| 3 |
|
| ||||
|
| Примем начальную фазу ЭДС фазы А, равной нулю, то есть ψеА = 0 | , | ||||||||||
| тогда | eA = Em sinωt . | (3.1) | ||||||||||
ЭДС фазы В отстает от ЭДС фазы А на |
| 2π |
|
|
|
|
| ||||||
|
|
| : |
|
|
|
|
| |||||
3 |
|
|
|
|
|
| |||||||
|
|
|
| 2π | = Em sin(ωt −120). |
| |||||||
|
|
| eB = Em sin ωt − |
|
|
| (3.2) | ||||||
|
|
|
|
| |||||||||
|
|
|
|
| 3 |
|
|
|
|
| |||
|
|
|
|
|
|
|
|
| 2π |
| |||
ЭДС фазы С отстает от ЭДС фазы В еще на |
| : |
|
|
| ||||||||
3 |
|
|
| ||||||||||
|
|
|
| 4π | = Em sin(ωt −240). |
| |||||||
|
|
| eС = Em sin ωt − |
|
|
|
| (3.3) | |||||
|
|
|
|
|
| ||||||||
|
|
|
|
| 3 |
|
|
|
|
|
Действующее значение ЭДС всех фаз одинаковы:
E | A | = E | B | = E | = | Em = E | . | (3.4) |
|
| C |
| 2 | ||||
|
|
|
|
|
|
|
|
Трехфазная симметричная система ЭДС может изображаться тригонометрическими функциями, функциями комплексного переменного, графиками на временных диаграммах, векторами на векторных диаграммах.
Аналитическое изображение тригонометрическими функциями приведено в (3.1) – (3.3).
6
В комплексном виде ЭДС фаз изображаются их комплексными действующими значениями:
& | j0 | 0 | & | = Ee | − j120 | 0 | & | − j2400 |
|
|
|
| (3.5) | ||||
EA = Ee |
|
| = E ; EB |
|
| ; EC = Ee |
Графики мгновенных значений трехфазной симметричной системы ЭДС на временной диаграмме показаны на рис. 3.2. Они представляют из себя три синусоиды, сдвинутые друг относительно друга на 1/3 часть периода.
Рис. 3.2. Графики мгновенных значений трехфазной симметричной системы ЭДС.
На векторной диаграмме ЭДС фаз изображаются векторами одинаковой длины, повернутыми друг относительно друга на угол 120° (рис.3.3а).
Рис. 3.3. Векторные диаграммы ЭДС трехфазных симметричных систем. (а – прямая последовательность фаз; б – обратная последовательность фаз).
7
Так как ЭДС индуктированные в обмотках статора имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°, полученная трехфазная система ЭДС является симметричной.
Следует отметить, что чередование во времени фазных ЭДС зависит от направления вращения ротора генератора относительно трехфазной обмотки статора. При вращении ротора по часовой стрелке, как показано на рис.3.1, полученная симметричная трехфазная система ЭДС имеет прямое чередование (А – В – С) (рис.3.3а). При вращении ротора против часовой стрелки образуется также симметричная трехфазная система ЭДС. Однако чередование фазных ЭДС во времени изменится. Такое чередование называется обратным (А – С – В) (рис.3.3б).
Чередование фазных ЭДС важно учитывать при анализе трехфазных цепей и устройств. Например, последовательность фаз определяет направление вращения трехфазных двигателей, и т.п. Для практического определения последовательности фаз используются специальные приборы – фазоуказатели.
По умолчанию при построении трехфазных цепей и их анализе принимается прямое чередование фазных ЭДС трехфазного источника.
На схемах обмотку статора генератора изображают как показано на рис. 3.4а с использованием принятых обозначений начал и концов фаз.
На схеме замещения трехфазный источник представлен тремя идеальными источниками ЭДС (рис.3.4б)
Рис. 3.4. Условное изображение обмотки статора генератора.
За условное положительное направление ЭДС в каждой фазе принимают направление от конца фазы к началу.
3. Способы соединения фаз в трехфазной цепи.
Для построения трехфазной цепи к каждой фазе трехфазного источника присоединяется отдельный приемник электроэнергии, либо одна фаза трехфазного приемника.
8
Рис.3.5 Схема несвязанной трехфазной цепи.
Здесь трехфазный источник представлен тремя идеальными источниками ЭДС E&A , E&B , E&C . Три фазы приемника представлены условно идеальными
элементами с полными комплексными сопротивлениями Z a , Z b , Z c . Каждая фаза приемника подсоединяется к соответствующей фазе источника, как показано на рис. 3.5. При этом образуются три электрические цепи, объединенные конструктивно одним трехфазным источником, т.е. трехфазная цепь. В этой цепи три фазы объединены лишь конструктивно и не имеют между собой электрической связи (электрически не связаны между собой). Такая цепь называется несвязанной трехфазной цепью и практически не используется.
На практике три фазы трехфазной цепи соединены между собой (электрически связаны).
Существуют различные способы соединения фаз трехфазных источников и трехфазных потребителей электроэнергии. Наиболее распространенными являются соединения «звезда» и «треугольник». При этом способ соединения фаз источников и фаз потребителей в трехфазных системах могут быть различными. Фазы источника обычно соединены «звездой», фазы потребителей соединяются либо «звездой», либо «треугольником».
При соединении фаз обмотки генератора (или трансформатора) «звездой» их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников x, y, z также соединяют в одну точку n (нейтральная точка приемника). Такое соединение называется соединение «звезда».
9
Рис. 3.6. Схема соединения фаз источника и приемника в звезду.
Провода A-a, B-b и C-c, соединяющие начала фаз генератора и приемника, называются линейными проводами (линейный провод А, линейный провод В, линейный провод С). Провод N-n, соединяющий точку N генератора с точкой n приемника, называют нейтральным проводом.
Здесь по–прежнему каждая фаза представляет собой электрическую цепь, в которой приемник подключен к соответствующей фазе источника посредством нейтрального провода и одного из линейных проводов (пунктир на рис.3.6). Однако, в отличие от несвязанной трехфазной цепи, в линии передачи используется меньшее количество проводов. Это определяет одно из преимуществ трехфазных цепей – экономичность передачи энергии.
При соединении фаз трехфазного источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к трем фазам приемника, также соединенным способом «треугольник».
Рис. 3.7. Схема соединения фаз источника и приемника в треугольник
10
Здесь также каждая фаза представляет собой электрическую цепь, в которой приемник подключен к соответствующей фазе источника посредством двух линейных проводов (пунктир на рис.3.7). Однако в линии передачи используется еще меньшее количество проводов. Это делает передачу электроэнергии еще более экономичной
При способе соединения «треугольник» фазы приемника именуют двумя символами в соответствии с линейными проводами, к которым данная фаза подключена: фаза «ab», фаза «bc», фаза «ca». Параметры фаз обозначают
соответствующими индексами: Z ab , Z bc , Z ca
4. Напряжения трехфазного источника.
Трехфазный источник, соединенный способом «звезда», создает две трехфазные системы напряжения разной величины. При этом различают фазные напряжения и линейные напряжения.
На рис.3.8 показана схема замещения трехфазного источника, соединенного «звездой» и присоединенного к линии электропередачи.
Рис.3.8. Схема замещения трехфазного источника
Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (U&A , U&B , U&C ). За условно
положительные направления фазных напряжений принимают направления от начала к концу фаз.
Линейное напряжение (UЛ) – напряжение между линейными проводами или между началами фаз (U&AB , U&BC , U&CA ). Условно положительные
направления линейных напряжений приняты от точек соответствующих первому индексу, к точкам соответствующим второму индексу (то есть, от точек с более высоким потенциалом к точкам с более низким) (рис. 3.8).
studfile.net
Извините такой страницы Wp-content Uploads 2014 03 Trehfaznye-tsepi-na-ladoni Pdf не существует!
Выбор статьи по меткам03 (1)9 класс (3)10 класс (1)11 класс (2)12 (1)13 (С1) (3)14 ноября (2)14 февраля (1)15 задание ЕГЭ (2)16 задача профиль (1)18 (С5) (2)18 задача ЕГЭ (2)23 марта (1)31 января (1)2016 (2)140319 (1)14032019 (1)C5 (1)RC-цепь (1)А9 (1)Александрова (2)Ампера (2)Архимед (1)Бернулли (1)Бойля-Мариотта (1)В8 (1)В12 (1)В13 (1)В15 (1)ВК (1)ВШЭ (2)ГИА физика задания 5 (1)Герона (1)Герцшпрунга-Рассела (1)Гринвич (1)ДВИ (1)ДПТ (1)Десятичные приставки (1)Дж (1)Диэлектрические проницаемости веществ (1)ЕГЭ 11 (2)ЕГЭ 14 (1)ЕГЭ 15 (2)ЕГЭ 18 (1)ЕГЭ С1 (1)ЕГЭ по математике (25)ЕГЭ по физике (49)ЕГЭ профиль (6)Европа (1)Задача 17 ЕГЭ (6)Задачи на движение (1)Закон Архимеда (2)Законы Ньютона (1)Земля (1)Ио (1)КПД (9)Каллисто (1)Кельвин (1)Кирхгоф (1)Кирхгофа (1)Койпера (1)Колебания (1)Коши (1)Коэффициенты поверхностного натяжения жидкостей (1)Кулона-Амонтона (1)Ломоносов (2)Лоренца (1)Луна (1)МГУ (1)МКТ (7)Максвелл (2)Максвелла (1)Максимальное удаление тела от точки бросания (1)Менделеева-Клапейрона (3)Менелая (3)Метод наложения (2)Метод узловых потенциалов (1)Метод эквивалентных преобразований (1)НОД (1)Нансен (1)НеИСО (1)ОГЭ (11)ОГЭ (ГИА) по математике (27)ОГЭ 3 (ГИА В1) (1)ОГЭ 21 (3)ОГЭ 21 (ГИА С1) (4)ОГЭ 22 (2)ОГЭ 25 (3)ОГЭ 26 (1)ОГЭ 26 (ГИА С6) (1)ОГЭ по физике 5 (1)ОДЗ (12)Обыкновенная дробь (1)Оорта (1)Основные физические константы (1)Отношение объемов (1)Плюк (1)Показатели преломления (1)Показательные неравенства (1)Противо-эдс (1)Работа выхода электронов (1)Радиус кривизны траектории (1)Релятивистское замедление времени (1)Релятивистское изменение массы (1)С1 (1)С1 ЕГЭ (1)С2 (2)С3 (1)С4 (3)С6 (5)СУНЦ МГУ (2)Сиена (1)Синхронная машина (1)Снеллиуса (2)Солнечной системы (1)Солнце (2)СпБ ГУ вступительный (1)Средняя кинетическая энергия молекул (1)Статград физика (3)Таблица Менделеева (1)Текстовые задачи (8)Тьерри Даксу (1)ФИПИ (1)Фазовые переходы (1)Фаренгейт (1)Фобос (1)Френеля (1)Цельсий (1)ЭДС (6)ЭДС индукции (2)Эйлера (1)Электрохимические эквиваленты (1)Эрастофен (1)абсолютная (1)абсолютная влажность (2)абсолютная звездная величина (3)абсолютная температура (1)абсолютный ноль (1)адиабаты (1)аксиомы (1)алгоритм Евклида (2)алгоритм Робертса (1)аморфное (1)амплитуда (3)аналитическое решение (1)анекдоты (1)апериодический переходной процесс (2)аргумент (1)арифметическая прогрессия (5)арифметической прогрессии (1)арки (1)арккосинус (1)арккотангенс (1)арксинус (1)арктангенс (1)архимеда (3)асинхронный (1)атмосферное (2)атомная масса (2)афелий (2)база (1)балка (1)банк (1)без калькулятора (1)белого карлика (1)бензин (1)бесконечная периодическая дробь (1)бесконечный предел (1)биквадратные уравнения (1)бипризма (1)биссектриса (3)биссектрисы (2)благоприятный исход (1)блеск (4)блок (2)боковой поверхности (1)большая полуось (1)большем давлении (1)бревно (1)бригада (2)бросили вертикально (1)бросили под углом (3)бросили со скоростью (2)броуновское движение (1)брошенного горизонтально (2)бруски (1)брусок (3)брусок распилили (1)быстрый способ извлечения (1)вариант (3)вариант ЕГЭ (12)вариант ЕГЭ по физике (18)варианты ЕГЭ (6)вариент по физике (1)введение дополнительного угла (1)вектор (5)векторное произведение (2)велосипедисты (1)вероятность (1)вертикальная составляющая (1)вертикально вверх (1)вертикальные углы (1)вес (3)весов (1)вес тела (1)ветви (1)ветвь (2)ветер (1)взаимодействие зарядов (1)видеоразбор (2)видеоразбор варианта (1)видимая звездная величина (2)виртуальный банк (1)виртуальных перемещений (1)витка (1)витков (1)виток (1)вклад (1)влажность (3)влажность воздуха (1)влетает (2)вневписанная окружность (2)внутреннее сопротивление (1)внутреннее сопротивление источника (1)внутреннюю энергию (1)внутренняя энергия (8)вода течет (1)воды (1)возведение в квадрат (1)возвратное уравнение (1)возвратность (1)возвратные уравнения (2)воздушный шар (1)возрастающая (1)возрастет (1)волны (1)вписанная окружность (3)вписанной окружности (1)вписанный угол (4)в правильной пирамиде (1)вращение (1)времени (2)время (24)время в минутах (1)время выполнения (1)время движения (2)время минимально (1)время падения (1)всесибирская олимпиада (1)в стоячей воде (1)встретились (1)встретятся (1)вступительный (1)вступительный экзамен (1)вторая половина пути (1)вторичная (1)вторичная обмотка (1)вторичные изображения (1)второй закон Ньютона (4)выбор двигателя (1)выборка корней (4)выколотая точка (1)выплаты (2)выразить вектор (1)высота (5)высота Солнца (1)высота столба (1)высота столба жидкости (1)высота столбика (1)высоте (3)высоту (1)высоты (3)выталкивающая сила (2)вычисления (2)газ (3)газа (1)газов (1)газовая атмосфера (1)галочка (1)гамма-лучей (1)гармоника (2)гвоздя (1)геометрическая вероятность (1)геометрическая прогрессия (4)геометрические высказывания (1)геометрический смысл (2)геометрическую прогрессию (1)геометрия (7)гигрометр (1)гидродинамика (1)гидростатика (3)гимназия при ВШЭ (1)гипербола (2)гипотенуза (3)гистерезисный двигатель (1)главный период (1)глубина (1)глухозаземленная нейтраль (1)гомотетия (2)гонщик (1)горизонтальная сила (1)горизонтальной спицы (1)горизонтальную силу (1)гравитационная постоянная (1)градус (1)грани (2)график (2)графики функций (5)графически (1)графический способ (1)графическое решение (2)груз (2)грузик (2)группа (1)давление (28)давление жидкости (3)давление пара (1)дальность полета (1)двигатель с активным ротором (1)движение под углом (1)движение под углом к горизонту (4)движение по кругу (1)движение по течению (1)движение с постоянной скоростью (2)двойное неравенство (1)двойной фокус (1)двугранный угол при вершине (1)девальвация (1)действительная часть (1)действующее значение (2)деление (1)деление многочленов (2)деление уголком (1)делимость (15)делимость чисел (1)делители (1)делитель (2)делится (3)демонстрационный варант (1)деталей в час (1)диаграмма (1)диаметр (2)диаметру (1)динамика (4)диод (1)диск (1)дискриминант (4)дифракционная решетка (2)дифференцированный платеж (1)диффузия (1)диэлектрик (1)диэлектрическая проницаемость (1)длина (4)длина вектора (1)длина волны (7)длина отрезка (2)длина пружины (1)длина тени (1)длиной волны (2)длину нити (1)длительность разгона (1)длительный режим (1)добротность (1)догнал (1)догоняет (1)докажите (1)долг (1)доля (1)дополнительный угол (1)досок (1)досрочный (2)досрочный вариант (1)дптр (1)дуга (1)единицы продукции (1)единичный источник (1)единичных кубов (1)единственный корень (1)ежесекундно (1)емкость (7)емкость заряженного шара (1)естественная область определения (1)желоб (2)жесткость (6)жеткость (1)живая математика (2)жидкости (1)жидкость (1)завод (1)загадка (2)задание 13 (2)задание 15 (3)задание 23 (1)задания 1-14 ЕГЭ (1)задача 9 (1)задача 13 профиль (1)задача 14 профиль (3)задача 16 (1)задача 16 ЕГЭ (1)задача 16 профиль (3)задача 17 (1)задача 18 (1)задача 26 ОГЭ (2)задача с параметром (6)задачи (1)задачи на доказательство (4)задачи на разрезание (4)задачи на совместную работу (3)задачи про часы (1)задачи с фантазией (1)задерживающее напряжение (1)заземление (1)заказ (1)закон Бернулли (1)закон Гука (1)закон Ома (3)закон Снеллиуса (1)закона сохранения (1)закон движения (1)закон кулона (7)закон сложения классических скоростей (1)закон сохранения импульса (6)закон сохранения энергии (4)законы Кирхгофа (6)законы коммутации (1)законы сохранения (1)закрытым концом (1)замена переменной (2)замкнутая система (2)зануление (1)запаянная (2)заряд (9)заряда (1)заряд конденсатора (1)защитная характеристика (1)звездочка (1)звезды (1)зенит (1)зенитное расстояние (1)зеркало (2)знак неравенства (1)знаменатель (1)знаменатель прогрессии (4)значение выражения (1)идеальный блок (1)идеальный газ (5)извлечение в столбик (1)излом (1)излучение (2)изменение длины (2)изобара (1)изобаричесикй (1)изобарический (2)изобарный (1)изобарный процесс (1)изображение (3)изолированная нейтраль (1)изопроцессы (1)изотерма (2)изотермический (2)изотермический процесс (1)изотоп (1)изохора (1)изохорический (1)изохорный процесс (1)импульс (9)импульса (1)импульс силы (1)импульс системы (1)импульс системы тел (4)импульс тела (4)импульс частицы (1)инвариантность (1)индуктивно-связанные цепи (1)индуктивное сопротивление (1)индуктивность (1)индукцией (1)индукция (8)интеграл Дюамеля (1)интервал (1)интересное (3)интерференционных полос (1)иррациональность (2)испарение (2)исследование функции (4)источник (1)источник света (1)исход (1)камень (1)камешек (1)капилляр (1)карлик (2)касательная (4)касательного (1)касательные (1)касаются (1)катер (2)катет (3)катушка (4)качаний (2)квадлратичная зависимость (1)квадрант (1)квадрат (3)квадратичная функция (3)квадратное (1)квадратное уравнение (4)квадратную рамку (1)квазар (1)квант (1)квантов (1)кинематика (2)кинематическая связь (1)кинематические связи (1)кинетическая (12)кинетическая энергия (4)кинетической (1)кинетической энергии (1)кинетическую энегрию (1)классический метод (3)классический метод расчета (1)клин (1)ключ (1)кодификатор (1)колебаний (1)колене (1)количество вещества (1)количество теплоты (9)коллектор (1)кольцо (2)комбинаторика (1)коммутация (1)комплексное сопротивление (1)комплексное число (1)комплексные числа (1)компонент (1)конвекция (3)конденсатор (10)конденсаторы (1)конечная скорость (1)конечная температура (1)конечная температура смеси (1)конечный предел (1)консоль (1)контрольная (1)контрольные (1)контур (5)конус (4)концентрация (7)концентрическим (1)координата (5)координаты (3)координаты вектора (2)координаты середины отрезка (1)координаты точки (1)корабля (1)корень (2)корень квадратный (1)корень кубический (1)корни (2)корни иррациональные (1)корни квадратного уравнения (3)корни уравнения (1)корпоративных (1)косинус (2)косинусы (1)котангенс (1)коэффициент (1)коэффициент жесткости (1)коэффициент наклона (3)коэффициент поверхностного натяжения (3)коэффициент подобия (5)коэффициент трансформации (1)коэффициент трения (5)коэффициенты (1)красное смещение (1)красной границы (1)красный (1)кратковременный режим (1)кратные звезды (1)кредит (11)кредитная ставка (4)кредиты (1)криволинейная трапеция (2)кристаллизация (1)критерии оценки (1)круговая частота (1)круговой контур (1)кружок (1)кубическая парабола (1)кулонова сила (1)кульминация (1)кусочная функция (1)левом колене (1)лед (1)лет (1)линейная скорость (2)линейное напряжение (1)линейное уравнение (2)линейный размер (1)линза (2)линзы (2)линии излома (1)линиями поля (1)линия отвеса (1)литров (1)лифт (1)лифта (1)лифте (1)логарифм (9)логарифмические неравенства (3)логарифмические уравнения (1)логарифмическое неравенство (3)логарифмы (1)лучевая (1)льда (1)магнитное поле (2)магнитном поле (2)магнитные цепи (1)максимальная высота (1)максимальная скорость (1)максимум (1)малых колебаний (1)масса (23)массе (1)массивная звезда (1)массовое содержание (1)массой (1)массу (1)математика (4)математический маятник (1)математического маятника (1)маятник (4)мгновенный центр вращения (1)медиана (1)меридиан (1)мертвая вода (1)мертвая петля (1)метод внутреннего проецирования (1)метод замены переменной (4)метод интервалов (3)метод комплексных амплитуд (3)метод контурных токов (1)метод координат (1)метод линий (1)методом внутреннего проецирования (1)метод переброски (1)метод переменных состояния (1)метод подстановки (4)метод рационализации (4)метод решетки (1)метод следов (5)метод сложения (4)метод телескопирования (1)метод узловых напряжений (1)методы расчета цепей (2)методы расчета цепей постоянного тока (1)метод эквивалентного генератора (2)механика (1)механическая характеристика (1)механическое напряжение (1)миля (1)минимальная скорость (1)минимальное (1)минимальной высоты (1)минимальной скоростью (1)минимум (1)мишени (1)мнимая единица (1)мнимая часть (1)многоугольник (1)многочлены (1)мода (2)модули (1)модуль (13)модуль Юнга (1)модуль средней скорости (1)молекулярно-кинетическая теория (2)моль (2)молярная масса (5)момент (7)момент инерции (1)момент инерции двигателя (1)момент нагрузки (1)момент сил (1)монотонная (1)монотонность функции (1)монохроматического (1)мощности силы тяжести (1)мощность (9)мощностью (1)мяч (1)наблюдатель (1)нагревание (1)нагреватель (1)нагревателя (1)нагрели (1)наибольшее (1)наивысшая точка (1)наименьшее (1)наименьшее общее кратное (1)наклон (1)наклонная плоскость (2)налог (1)на подумать (2)направление (1)направление обхода (3)направлении (1)направляющий вектор (1)напряжение (9)напряжение на зажимах (1)напряжение смещения нейтрали (2)напряженность (4)напряженность поля (6)насос (2)насоса (1)насыщенный пар (4)натуральное (7)натуральные (7)натуральных (1)натяжение нити (5)натяжения (1)находился в полете (2)начальная температура (1)начальной скоростью (1)недовозбуждение (1)незамкнутая система (2)нелинейное сопротивление (1)неопределенность типа бесконечность на бесконечность (1)неопределенность типа ноль на ноль (1)непериодическая дробь (1)неравенства (8)неравенство (22)неразрывности струи (1)нерастяжимой (1)нерастяжимой нити (1)нерастянутой резинки (1)несимметричная нагрузка (1)несинусоидальный ток (3)нестандартные задачи (1)нестрогое (1)неупругим (1)нецентральный (1)нечетная функция (2)нечетное (1)нечетность (1)неявнополюсный (1)нити (2)нити паутины (1)нить (2)нить нерастяжима (1)новости (1)нормаль (1)нормальное ускорение (11)нулевой ток (2)обкладками (1)обкладках (1)обкладки (1)область допустимых значений (9)область значений (1)область определения (8)область определения функции (4)оборот (1)обратные тригонометрические функции (1)обратные функции (1)общая хорда (1)общее сопротивление (1)общее сопротивление цепи (1)объем (36)объемный расход (1)объемом (1)объем пара (1)объем параллелепипеда (1)объем пирамиды (1)одинаковые части (1)одновременно из одной точки (1)окружность (13)окружность описанная (1)олимпиада (2)олимпиады по физике (2)они встретятся (1)операторный метод (4)оптика (1)оптимизация (1)оптическая разность хода (1)оптический центр (1)орбитам (1)орбитой (1)оригинал (1)осевое сечение (1)оси (1)основание (2)основание логарифма (2)основания трапеции (1)основное тригонометрическое тождество (1)основное уравнение МКТ (2)основной газовый закон (1)основной период (1)основной уровень (1)основные углы (1)остаток (1)ось (1)отбор корней (5)ответ (1)отданное (1)относительная (1)относительная влажность (3)относительно (2)относительность движениия (1)относительность движения (2)относительность скоростей (1)отношение (5)отношение времен (1)отношение длин (1)отношение площадей (3)отношение скоростей (2)отрезок (1)отсечение невидимых граней (1)очки (1)падает (1)падает луч (1)падает под углом (1)падение (3)падение напряжения (2)падения (1)пар (3)парабола (5)параболы (1)параллакс (5)параллелепепед (2)параллелепипед (3)параллелограмм (4)параллелограмм Виньера (1)параллельно (2)параллельно двум векторам (1)параллельное соединение (3)параллельные прямые (1)параллельными граням (1)параметр (30)параметры (1)парообразование (1)парсек (1)парциальное (1)парциальное давление (1)паскаль (1)первая треть (1)первичная (1)переброски (1)перевозбуждение (1)перегородка (1)перегрузок (1)переливания (1)переменное магнитное поле (1)переменное основание (2)перемещение (6)перемычка (5)перемычке (1)перемычку (1)переносная скорость (1)пересекает (1)пересечение (1)пересечения (1)переходная проводимость (1)переходное сопротивление (1)переходной процесс (1)переходные процессы (9)перигелий (2)периметр (3)период (15)периодическая дробь (1)период колебаний (2)период малых колебаний (1)период обращения (2)период функции (1)периоды (1)перпендикулярно (1)песок (1)пион (1)пипетка (1)пирамида (7)пирамида шестиугольная (1)пирамиды (2)пирсона (1)плавание (1)плавкие предохранители (1)плавление (1)план (1)планете (1)планеты (3)планиметрия (12)планиметрия профиль (1)пластинами (1)пластинка (1)платеж (8)плечо (2)плоского зеркала (1)плоскопараллельная (1)плоскость (4)плоскость сечения (1)плотности веществ (1)плотность (22)плотность пара (3)плотность сосуда (1)плотность энергии (1)площади (2)площади фигур на клетчатой бумаге (1)площадь (30)площадь круга (1)площадь пластин (1)площадь поверхности (1)площадь под кривой (2)площадь проекции (1)площадь проекции сечения (1)площадь сектора (1)площадь сечения (5)площадь треугольника (1)поверхностная плотность заряда (1)поворот (1)повторно-кратковременный режим (1)погрешность (1)погружено (1)подготовка к контрольным (3)под каким углом (1)подмодульное (1)подмодульных выражений (1)подобен (1)подобие (7)подобия треугольников (1)подобны (1)подпереть (1)под углом (2)под углом к горизонту (2)показателем преломления (1)показатель преломления (4)поле (1)полезной работы (1)полезную мощность (1)полигон частот (1)по линиям сетки (1)полное ускорение (1)половина времени (1)половинный угол (1)положительный знаменатель (1)полония (1)полость (1)полуокружность (1)полупроводник (1)полученное (1)понижение горизонта (1)по окружности (1)по переменному основанию (1)поправка часов (1)по прямой (1)поршень (4)порядок решетки (2)последовательно (1)последовательное соединение (3)последовательность (3)по сторонам клеток (1)посторонние корни (4)постоянная Авогадро (1)постоянная Хаббла (1)постоянная времени (1)постоянная скорость (1)постоянная составляющая (2)постоянный ток (5)построение (2)построение графика функции (1)потенциал (5)потенциал шара (1)потенциальная (13)потенциальная энергия (3)потенциальной (1)потери в стали (2)потеря корней (4)поток (5)по физике (1)правило левой (1)правило моментов (3)правильную пирамиду (1)правильный многоугольник (1)правом колене (1)предел функции (1)преломляющий угол (1)преобразование графиков функций (1)преобразования (3)преподаватели (2)пресс (2)призма (6)призмы (3)признаки подобия (4)признаки равенства треугольников (3)пробн (1)пробник (154)пробник по физике (7)пробниук (1)пробный (1)пробный ЕГЭ (2)пробный ЕГЭ по физике (3)пробный вариант (25)пробный вариант ЕГЭ (17)пробный вариант ЕГЭ по физике (92)пробный вариант по физике (1)провода (1)проводник (1)проводник с током (1)проводящего шара (1)проволока (1)проволоки (1)прогрессия (5)проекции ускорения (2)проекция (6)проекция перемещения (1)проекция скорости (4)проекция ускорения (2)производительность (2)производная (2)промежутка времени (1)промежуток (1)промежуток знакопостоянства (1)пропорциональны (1)проскальзывает (1)проскальзывания (1)противоположное событие (1)противостояние (1)протона (1)прототипы (1)профиль (2)профильный ЕГЭ (1)процент (5)процентная ставка (6)процентное отношение (1)процентное содержание (2)проценты (3)пружин (1)пружина (6)пружинный
easy-physic.ru
Трехфазные электрические цепи
Выдающийся русский инженер-изобретатель Михаил Осипович Доливо-Добровольский, помимо асинхронного двигателя изобрел трехфазную электрическую сеть, которая могла бы питать такой двигатель.
Трехфазная система представляет собой три отдельные электрические цепи, в которых действуют синусоидальные ЭДС одной и той же частоты, которые в свою очередь сдвинуты друг от друга на 120°, и создаваемые одним источником энергии. Источником энергии чаще всего выступает трехфазный генератор.
Преимущество трехфазной цепи заключается в её уравновешенности. То есть суммарная мгновенная мощность трехфазной цепи, остается величиной постоянной в течение всего периода ЭДС.
Трехфазный генератор переменного тока имеет три самостоятельные обмотки, которые сдвинуты между собой на угол 120°. Также как и обмотки, начальные фазы ЭДС сдвинуты на 120°. Уравнения описывающие изменение ЭДС в каждой из обмоток выглядят следующим образом:
Векторная диаграмма ЭДС в начальный момент времени представляет собой три вектора, длина которых равна амплитудному значению ЭДС Em, и угол между которыми равен 120°. Если вращать векторы против часовой стрелке, относительно неподвижной оси, то они будут проходить в порядке Ea,Eb,Ec, такой порядок называют прямой последовательностью.
По сути, каждую отдельную фазу можно было бы соединить отдельными проводами, но в таком случае получилась бы шестипроводная несвязная система. Это было бы крайне не выгодно с экономичной точки зрения, ведь как-никак, перерасход материала. Для того чтобы это избежать придумали связанные системы соединения.
Соединение звездой
При соединении обмоток звездой все три фазы имеют одну общую точку – ноль. При этом такая система может быть трехпроводной или четырехпроводной. В последнем случае используется нулевой провод. Нулевой провод не нужен, если система симметрична, то есть токи в фазах такой системы одинаковы. Но если нагрузка несимметрична, то фазные токи различны, и в нулевом проводе возникает ток, который равен векторной сумме фазных токов
Также, нулевой провод может выступать в роле одной из фаз, если она выйдет из строя, это предотвратит выход из строя всей системы. Правда нужно учитывать, что нулевой провод не рассчитан на подобные нагрузки, и в целях экономии металла и изоляции он изготавливает под более малые токи, чем в фазах.
В трехфазных цепях существуют так называемые фазные и линейные напряжения и токи.
Фазное напряжение – это разность потенциалов между нулевой точкой и линейным проводом. То есть, проще говоря, фазное напряжение — это напряжение на фазе.
Линейное напряжение – это разность потенциалов между линейными проводами.
При соединении звездой фазные и линейные напряжения соотносятся как
А фазные и линейные токи при симметричной нагрузке одинаковы
Таким образом, можно сделать вывод, что в симметричной трехфазной цепи при соединении фаз звездой напряжения отличаются друг от друга в 1,72 раз, а линейные и фазные токи равны.
Соединение треугольником
При соединении треугольником конец одной обмотки соединяется с началом другой. Таким образом, образуется замкнутый контур.
В таком соединении каждая фаза находится под линейным напряжением, то есть линейные и фазные напряжения равны
А фазные и линейные токи соотносятся как
Аналогичным способом, сделаем вывод для соединения треугольником: в симметричной трехфазной цепи при соединении фаз треугольником токи отличаются друг от друга в 1,72 раз, а линейные и фазные напряжения равны.
Читайте также — задачи на трехфазные цепи
electroandi.ru
что это такое, причины, последствия, защита
Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.
Что такое перекос фаз?
Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.
Диаграмма напряжений в идеальных трехфазных сетяхКак видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.
Пример диаграммы напряжений при возникновении перекосаДопустимые нормы значений перекоса
Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.
Нормы несимметрии напряжения ГОСТ 13109-97Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.
Вырезка из СП 31-110 (п 9.5)Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.
Причины перекоса фаз в трехфазной сети
Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.
Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.
Перекос фаз, вызванный обрывом нейтралиВ данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.
К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.
Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:
- Неравномерная нагрузка на линии трехфазной сети.
- При обрыве нейтрали.
- При КЗ одного из фазных проводов на землю.
Несимметрия в высоковольтных сетях
Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.
В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.
Опасность и последствия
Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.
При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.
Перечислим, какие последствия можно ожидать, когда появляется перекос:
- Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
- Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
- Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
- Увеличивается потребление электричества оборудованием.
- Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
- Снижается ресурс техники.
Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.
Защита от перекоса фаз в трехфазной сети
Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.
Реле контроля фаз (А) и пример схемы его подключения (В)Данный трехфазный автомат может обладать следующими функциями:
- Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
- Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
- Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
- Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.
Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.
Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.
Защита в однофазной сети
В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.
Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.
Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.
www.asutpp.ru
Трехфазные электрические цепи Основные понятия и определения
Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.
Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, понятие «фаза» имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей. Цепи в зависимости от количества фаз называют двухфазными, трехфазными, шестифазными и т.п.
Трехфазные цепи – наиболее распространенные в современной электроэнергетике. Это объясняется рядом их преимуществ по сравнению как с однофазными, так и с другими многофазными цепями:
экономичность производства и передачи энергии по сравнению с однофазными цепями;
возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;
возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.
Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
Трехфазный генератор представляет собой синхронную машину двух типов: турбогенератор и гидрогенератор. Модель трехфазного генератора схематически изображена на рис. 3.1.
Рис. 3.1
На статоре 1 генератора размещается обмотка 2, состоящая из трех частей или, как их принято называть, фаз. Обмотки фаз располагаются на статоре таким образом, чтобы их магнитные оси были сдвинуты в пространстве относительно друг друга на угол 2π/3, т.е. на 120°. На рис. 3.1 каждая фаза обмотки статора условно показана состоящей из одного витка. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z. Ротор 3 представляет собой электромагнит, возбуждаемый постоянным током обмотки возбуждения 4, расположенной на роторе.
При вращении ротора турбиной с равномерной скоростью в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся друг от друга по фазе на 120° вследствие их пространственного смещения.
На схеме обмотку (или фазу) источника питания изображают как показано на рис. 3.2.
За условное положительное направление ЭДС в каждой фазе принимают направление от конца к началу. Обычно индуктированные в обмотках статора ЭДС имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°. Такая система ЭДС называется симметричной.
Рис. 3.2
Трехфазная симметричная система ЭДС может изображаться графиками, тригонометрическими функциями, векторами и функциями комплексного переменного.
Графики мгновенных значений трехфазной симметричной системы ЭДС показаны на рис. 3.3.
Если ЭДС одной фазы (например, фазы А) принять за исходную и считать её начальную фазу равной нулю, то выражения мгновенных значений ЭДС можно записать в виде
(3.1)
eA = Em sin ωt, eB = Em sin (ωt — 120°), eC = Em sin (ωt — 240°) = Em sin (ωt + 120°).
Из графика мгновенных значений (рис 3.3) следует
(3.2)
eA + eB + eC = 0
Комплексные действующие ЭДС будут иметь выражения:
(3.3)
ĖA = Em ej0° = Em (1 + j0), ĖB = Em e-j120° = Em (-1/2 — j/2), ĖC = Em e+j120° = Em (-1/2 + j/2).
Векторная диаграмма трехфазной симметричной системы ЭДС показана на рис 3.4а.
Рис. 3.4
На диаграмме рис. 3.4а вектор ĖA направлен вертикально, так как при расчете трехфазных цепей принято направлять вертикально вверх ось действительных величин. Из векторных диаграмм рис 3.4 следует, что для симметричной трехфазной системы геометрическая сумма векторов ЭДС всех фаз равна нулю:
(3.4)
ĖA + ĖB + ĖC = 0.
Систему ЭДС, в которой ЭДС фазы В отстает по фазе от ЭДС фазы А, а ЭДС фазы С по фазе – от ЭДС фазы В, называют системой прямой последовательности. Если изменить направление вращения ротора генератора, то последовательность фаз изменится (рис. 3.4б) и будет называться обратной.
Последовательность фаз определяет направление вращения трехфазных двигателей. Для определения последовательности фаз имеются специальные приборы – фазоуказатели.
В период зарождения трехфазных систем имелись попытки использовать несвязанную систему, в которой фазы обмотки генератора не были электрически соединены между собой и каждая фаза соединялась со своим приемником двумя проводами (рис. 3.5). Такие системы не получили применения вследствие их неэкономичности: для соединения генератора с приемником требовалось шесть проводов (рис. 3.5)
Рис. 3.5
Более совершенными и экономичными являются связанные цепи, в которых фазы обмотки электрически соединены между собой. Существуют различные способы соединения фаз трехфазных источников питания и трехфазных потребителей электроэнергии. Наиболее распространенными являются соединения «звезда» и «треугольник». При этом способ соединения фаз источников и фаз потребителей в трехфазных системах могут быть различными. Фазы источника обычно соединены «звездой», фазы потребителей соединяются либо «звездой», либо «треугольником».
studfile.net